xref: /openbmc/linux/sound/pci/ctxfi/cthw20k2.c (revision e720b820)
1 /**
2  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  *
8  * @File	cthw20k2.c
9  *
10  * @Brief
11  * This file contains the implementation of hardware access method for 20k2.
12  *
13  * @Author	Liu Chun
14  * @Date 	May 14 2008
15  *
16  */
17 
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include "cthw20k2.h"
27 #include "ct20k2reg.h"
28 
29 #if BITS_PER_LONG == 32
30 #define CT_XFI_DMA_MASK		DMA_BIT_MASK(32) /* 32 bit PTE */
31 #else
32 #define CT_XFI_DMA_MASK		DMA_BIT_MASK(64) /* 64 bit PTE */
33 #endif
34 
35 struct hw20k2 {
36 	struct hw hw;
37 	/* for i2c */
38 	unsigned char dev_id;
39 	unsigned char addr_size;
40 	unsigned char data_size;
41 
42 	int mic_source;
43 };
44 
45 static u32 hw_read_20kx(struct hw *hw, u32 reg);
46 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
47 
48 /*
49  * Type definition block.
50  * The layout of control structures can be directly applied on 20k2 chip.
51  */
52 
53 /*
54  * SRC control block definitions.
55  */
56 
57 /* SRC resource control block */
58 #define SRCCTL_STATE	0x00000007
59 #define SRCCTL_BM	0x00000008
60 #define SRCCTL_RSR	0x00000030
61 #define SRCCTL_SF	0x000001C0
62 #define SRCCTL_WR	0x00000200
63 #define SRCCTL_PM	0x00000400
64 #define SRCCTL_ROM	0x00001800
65 #define SRCCTL_VO	0x00002000
66 #define SRCCTL_ST	0x00004000
67 #define SRCCTL_IE	0x00008000
68 #define SRCCTL_ILSZ	0x000F0000
69 #define SRCCTL_BP	0x00100000
70 
71 #define SRCCCR_CISZ	0x000007FF
72 #define SRCCCR_CWA	0x001FF800
73 #define SRCCCR_D	0x00200000
74 #define SRCCCR_RS	0x01C00000
75 #define SRCCCR_NAL	0x3E000000
76 #define SRCCCR_RA	0xC0000000
77 
78 #define SRCCA_CA	0x0FFFFFFF
79 #define SRCCA_RS	0xE0000000
80 
81 #define SRCSA_SA	0x0FFFFFFF
82 
83 #define SRCLA_LA	0x0FFFFFFF
84 
85 /* Mixer Parameter Ring ram Low and Hight register.
86  * Fixed-point value in 8.24 format for parameter channel */
87 #define MPRLH_PITCH	0xFFFFFFFF
88 
89 /* SRC resource register dirty flags */
90 union src_dirty {
91 	struct {
92 		u16 ctl:1;
93 		u16 ccr:1;
94 		u16 sa:1;
95 		u16 la:1;
96 		u16 ca:1;
97 		u16 mpr:1;
98 		u16 czbfs:1;	/* Clear Z-Buffers */
99 		u16 rsv:9;
100 	} bf;
101 	u16 data;
102 };
103 
104 struct src_rsc_ctrl_blk {
105 	unsigned int	ctl;
106 	unsigned int 	ccr;
107 	unsigned int	ca;
108 	unsigned int	sa;
109 	unsigned int	la;
110 	unsigned int	mpr;
111 	union src_dirty	dirty;
112 };
113 
114 /* SRC manager control block */
115 union src_mgr_dirty {
116 	struct {
117 		u16 enb0:1;
118 		u16 enb1:1;
119 		u16 enb2:1;
120 		u16 enb3:1;
121 		u16 enb4:1;
122 		u16 enb5:1;
123 		u16 enb6:1;
124 		u16 enb7:1;
125 		u16 enbsa:1;
126 		u16 rsv:7;
127 	} bf;
128 	u16 data;
129 };
130 
131 struct src_mgr_ctrl_blk {
132 	unsigned int		enbsa;
133 	unsigned int		enb[8];
134 	union src_mgr_dirty	dirty;
135 };
136 
137 /* SRCIMP manager control block */
138 #define SRCAIM_ARC	0x00000FFF
139 #define SRCAIM_NXT	0x00FF0000
140 #define SRCAIM_SRC	0xFF000000
141 
142 struct srcimap {
143 	unsigned int srcaim;
144 	unsigned int idx;
145 };
146 
147 /* SRCIMP manager register dirty flags */
148 union srcimp_mgr_dirty {
149 	struct {
150 		u16 srcimap:1;
151 		u16 rsv:15;
152 	} bf;
153 	u16 data;
154 };
155 
156 struct srcimp_mgr_ctrl_blk {
157 	struct srcimap		srcimap;
158 	union srcimp_mgr_dirty	dirty;
159 };
160 
161 /*
162  * Function implementation block.
163  */
164 
165 static int src_get_rsc_ctrl_blk(void **rblk)
166 {
167 	struct src_rsc_ctrl_blk *blk;
168 
169 	*rblk = NULL;
170 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
171 	if (!blk)
172 		return -ENOMEM;
173 
174 	*rblk = blk;
175 
176 	return 0;
177 }
178 
179 static int src_put_rsc_ctrl_blk(void *blk)
180 {
181 	kfree(blk);
182 
183 	return 0;
184 }
185 
186 static int src_set_state(void *blk, unsigned int state)
187 {
188 	struct src_rsc_ctrl_blk *ctl = blk;
189 
190 	set_field(&ctl->ctl, SRCCTL_STATE, state);
191 	ctl->dirty.bf.ctl = 1;
192 	return 0;
193 }
194 
195 static int src_set_bm(void *blk, unsigned int bm)
196 {
197 	struct src_rsc_ctrl_blk *ctl = blk;
198 
199 	set_field(&ctl->ctl, SRCCTL_BM, bm);
200 	ctl->dirty.bf.ctl = 1;
201 	return 0;
202 }
203 
204 static int src_set_rsr(void *blk, unsigned int rsr)
205 {
206 	struct src_rsc_ctrl_blk *ctl = blk;
207 
208 	set_field(&ctl->ctl, SRCCTL_RSR, rsr);
209 	ctl->dirty.bf.ctl = 1;
210 	return 0;
211 }
212 
213 static int src_set_sf(void *blk, unsigned int sf)
214 {
215 	struct src_rsc_ctrl_blk *ctl = blk;
216 
217 	set_field(&ctl->ctl, SRCCTL_SF, sf);
218 	ctl->dirty.bf.ctl = 1;
219 	return 0;
220 }
221 
222 static int src_set_wr(void *blk, unsigned int wr)
223 {
224 	struct src_rsc_ctrl_blk *ctl = blk;
225 
226 	set_field(&ctl->ctl, SRCCTL_WR, wr);
227 	ctl->dirty.bf.ctl = 1;
228 	return 0;
229 }
230 
231 static int src_set_pm(void *blk, unsigned int pm)
232 {
233 	struct src_rsc_ctrl_blk *ctl = blk;
234 
235 	set_field(&ctl->ctl, SRCCTL_PM, pm);
236 	ctl->dirty.bf.ctl = 1;
237 	return 0;
238 }
239 
240 static int src_set_rom(void *blk, unsigned int rom)
241 {
242 	struct src_rsc_ctrl_blk *ctl = blk;
243 
244 	set_field(&ctl->ctl, SRCCTL_ROM, rom);
245 	ctl->dirty.bf.ctl = 1;
246 	return 0;
247 }
248 
249 static int src_set_vo(void *blk, unsigned int vo)
250 {
251 	struct src_rsc_ctrl_blk *ctl = blk;
252 
253 	set_field(&ctl->ctl, SRCCTL_VO, vo);
254 	ctl->dirty.bf.ctl = 1;
255 	return 0;
256 }
257 
258 static int src_set_st(void *blk, unsigned int st)
259 {
260 	struct src_rsc_ctrl_blk *ctl = blk;
261 
262 	set_field(&ctl->ctl, SRCCTL_ST, st);
263 	ctl->dirty.bf.ctl = 1;
264 	return 0;
265 }
266 
267 static int src_set_ie(void *blk, unsigned int ie)
268 {
269 	struct src_rsc_ctrl_blk *ctl = blk;
270 
271 	set_field(&ctl->ctl, SRCCTL_IE, ie);
272 	ctl->dirty.bf.ctl = 1;
273 	return 0;
274 }
275 
276 static int src_set_ilsz(void *blk, unsigned int ilsz)
277 {
278 	struct src_rsc_ctrl_blk *ctl = blk;
279 
280 	set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
281 	ctl->dirty.bf.ctl = 1;
282 	return 0;
283 }
284 
285 static int src_set_bp(void *blk, unsigned int bp)
286 {
287 	struct src_rsc_ctrl_blk *ctl = blk;
288 
289 	set_field(&ctl->ctl, SRCCTL_BP, bp);
290 	ctl->dirty.bf.ctl = 1;
291 	return 0;
292 }
293 
294 static int src_set_cisz(void *blk, unsigned int cisz)
295 {
296 	struct src_rsc_ctrl_blk *ctl = blk;
297 
298 	set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
299 	ctl->dirty.bf.ccr = 1;
300 	return 0;
301 }
302 
303 static int src_set_ca(void *blk, unsigned int ca)
304 {
305 	struct src_rsc_ctrl_blk *ctl = blk;
306 
307 	set_field(&ctl->ca, SRCCA_CA, ca);
308 	ctl->dirty.bf.ca = 1;
309 	return 0;
310 }
311 
312 static int src_set_sa(void *blk, unsigned int sa)
313 {
314 	struct src_rsc_ctrl_blk *ctl = blk;
315 
316 	set_field(&ctl->sa, SRCSA_SA, sa);
317 	ctl->dirty.bf.sa = 1;
318 	return 0;
319 }
320 
321 static int src_set_la(void *blk, unsigned int la)
322 {
323 	struct src_rsc_ctrl_blk *ctl = blk;
324 
325 	set_field(&ctl->la, SRCLA_LA, la);
326 	ctl->dirty.bf.la = 1;
327 	return 0;
328 }
329 
330 static int src_set_pitch(void *blk, unsigned int pitch)
331 {
332 	struct src_rsc_ctrl_blk *ctl = blk;
333 
334 	set_field(&ctl->mpr, MPRLH_PITCH, pitch);
335 	ctl->dirty.bf.mpr = 1;
336 	return 0;
337 }
338 
339 static int src_set_clear_zbufs(void *blk, unsigned int clear)
340 {
341 	((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
342 	return 0;
343 }
344 
345 static int src_set_dirty(void *blk, unsigned int flags)
346 {
347 	((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
348 	return 0;
349 }
350 
351 static int src_set_dirty_all(void *blk)
352 {
353 	((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
354 	return 0;
355 }
356 
357 #define AR_SLOT_SIZE		4096
358 #define AR_SLOT_BLOCK_SIZE	16
359 #define AR_PTS_PITCH		6
360 #define AR_PARAM_SRC_OFFSET	0x60
361 
362 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
363 {
364 	return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
365 			- AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
366 
367 }
368 
369 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
370 {
371 	struct src_rsc_ctrl_blk *ctl = blk;
372 	int i;
373 
374 	if (ctl->dirty.bf.czbfs) {
375 		/* Clear Z-Buffer registers */
376 		for (i = 0; i < 8; i++)
377 			hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
378 
379 		for (i = 0; i < 4; i++)
380 			hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
381 
382 		for (i = 0; i < 8; i++)
383 			hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
384 
385 		ctl->dirty.bf.czbfs = 0;
386 	}
387 	if (ctl->dirty.bf.mpr) {
388 		/* Take the parameter mixer resource in the same group as that
389 		 * the idx src is in for simplicity. Unlike src, all conjugate
390 		 * parameter mixer resources must be programmed for
391 		 * corresponding conjugate src resources. */
392 		unsigned int pm_idx = src_param_pitch_mixer(idx);
393 		hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
394 		hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
395 		hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
396 		ctl->dirty.bf.mpr = 0;
397 	}
398 	if (ctl->dirty.bf.sa) {
399 		hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
400 		ctl->dirty.bf.sa = 0;
401 	}
402 	if (ctl->dirty.bf.la) {
403 		hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
404 		ctl->dirty.bf.la = 0;
405 	}
406 	if (ctl->dirty.bf.ca) {
407 		hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
408 		ctl->dirty.bf.ca = 0;
409 	}
410 
411 	/* Write srccf register */
412 	hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
413 
414 	if (ctl->dirty.bf.ccr) {
415 		hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
416 		ctl->dirty.bf.ccr = 0;
417 	}
418 	if (ctl->dirty.bf.ctl) {
419 		hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
420 		ctl->dirty.bf.ctl = 0;
421 	}
422 
423 	return 0;
424 }
425 
426 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
427 {
428 	struct src_rsc_ctrl_blk *ctl = blk;
429 
430 	ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
431 	ctl->dirty.bf.ca = 0;
432 
433 	return get_field(ctl->ca, SRCCA_CA);
434 }
435 
436 static unsigned int src_get_dirty(void *blk)
437 {
438 	return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
439 }
440 
441 static unsigned int src_dirty_conj_mask(void)
442 {
443 	return 0x20;
444 }
445 
446 static int src_mgr_enbs_src(void *blk, unsigned int idx)
447 {
448 	((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
449 	((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
450 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451 	return 0;
452 }
453 
454 static int src_mgr_enb_src(void *blk, unsigned int idx)
455 {
456 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
457 	((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
458 	return 0;
459 }
460 
461 static int src_mgr_dsb_src(void *blk, unsigned int idx)
462 {
463 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
464 	((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
465 	return 0;
466 }
467 
468 static int src_mgr_commit_write(struct hw *hw, void *blk)
469 {
470 	struct src_mgr_ctrl_blk *ctl = blk;
471 	int i;
472 	unsigned int ret;
473 
474 	if (ctl->dirty.bf.enbsa) {
475 		do {
476 			ret = hw_read_20kx(hw, SRC_ENBSTAT);
477 		} while (ret & 0x1);
478 		hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
479 		ctl->dirty.bf.enbsa = 0;
480 	}
481 	for (i = 0; i < 8; i++) {
482 		if ((ctl->dirty.data & (0x1 << i))) {
483 			hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
484 			ctl->dirty.data &= ~(0x1 << i);
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 static int src_mgr_get_ctrl_blk(void **rblk)
492 {
493 	struct src_mgr_ctrl_blk *blk;
494 
495 	*rblk = NULL;
496 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
497 	if (!blk)
498 		return -ENOMEM;
499 
500 	*rblk = blk;
501 
502 	return 0;
503 }
504 
505 static int src_mgr_put_ctrl_blk(void *blk)
506 {
507 	kfree(blk);
508 
509 	return 0;
510 }
511 
512 static int srcimp_mgr_get_ctrl_blk(void **rblk)
513 {
514 	struct srcimp_mgr_ctrl_blk *blk;
515 
516 	*rblk = NULL;
517 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
518 	if (!blk)
519 		return -ENOMEM;
520 
521 	*rblk = blk;
522 
523 	return 0;
524 }
525 
526 static int srcimp_mgr_put_ctrl_blk(void *blk)
527 {
528 	kfree(blk);
529 
530 	return 0;
531 }
532 
533 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
534 {
535 	struct srcimp_mgr_ctrl_blk *ctl = blk;
536 
537 	set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
538 	ctl->dirty.bf.srcimap = 1;
539 	return 0;
540 }
541 
542 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
543 {
544 	struct srcimp_mgr_ctrl_blk *ctl = blk;
545 
546 	set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
547 	ctl->dirty.bf.srcimap = 1;
548 	return 0;
549 }
550 
551 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
552 {
553 	struct srcimp_mgr_ctrl_blk *ctl = blk;
554 
555 	set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
556 	ctl->dirty.bf.srcimap = 1;
557 	return 0;
558 }
559 
560 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
561 {
562 	((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
563 	((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
564 	return 0;
565 }
566 
567 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
568 {
569 	struct srcimp_mgr_ctrl_blk *ctl = blk;
570 
571 	if (ctl->dirty.bf.srcimap) {
572 		hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
573 						ctl->srcimap.srcaim);
574 		ctl->dirty.bf.srcimap = 0;
575 	}
576 
577 	return 0;
578 }
579 
580 /*
581  * AMIXER control block definitions.
582  */
583 
584 #define AMOPLO_M	0x00000003
585 #define AMOPLO_IV	0x00000004
586 #define AMOPLO_X	0x0003FFF0
587 #define AMOPLO_Y	0xFFFC0000
588 
589 #define AMOPHI_SADR	0x000000FF
590 #define AMOPHI_SE	0x80000000
591 
592 /* AMIXER resource register dirty flags */
593 union amixer_dirty {
594 	struct {
595 		u16 amoplo:1;
596 		u16 amophi:1;
597 		u16 rsv:14;
598 	} bf;
599 	u16 data;
600 };
601 
602 /* AMIXER resource control block */
603 struct amixer_rsc_ctrl_blk {
604 	unsigned int		amoplo;
605 	unsigned int		amophi;
606 	union amixer_dirty	dirty;
607 };
608 
609 static int amixer_set_mode(void *blk, unsigned int mode)
610 {
611 	struct amixer_rsc_ctrl_blk *ctl = blk;
612 
613 	set_field(&ctl->amoplo, AMOPLO_M, mode);
614 	ctl->dirty.bf.amoplo = 1;
615 	return 0;
616 }
617 
618 static int amixer_set_iv(void *blk, unsigned int iv)
619 {
620 	struct amixer_rsc_ctrl_blk *ctl = blk;
621 
622 	set_field(&ctl->amoplo, AMOPLO_IV, iv);
623 	ctl->dirty.bf.amoplo = 1;
624 	return 0;
625 }
626 
627 static int amixer_set_x(void *blk, unsigned int x)
628 {
629 	struct amixer_rsc_ctrl_blk *ctl = blk;
630 
631 	set_field(&ctl->amoplo, AMOPLO_X, x);
632 	ctl->dirty.bf.amoplo = 1;
633 	return 0;
634 }
635 
636 static int amixer_set_y(void *blk, unsigned int y)
637 {
638 	struct amixer_rsc_ctrl_blk *ctl = blk;
639 
640 	set_field(&ctl->amoplo, AMOPLO_Y, y);
641 	ctl->dirty.bf.amoplo = 1;
642 	return 0;
643 }
644 
645 static int amixer_set_sadr(void *blk, unsigned int sadr)
646 {
647 	struct amixer_rsc_ctrl_blk *ctl = blk;
648 
649 	set_field(&ctl->amophi, AMOPHI_SADR, sadr);
650 	ctl->dirty.bf.amophi = 1;
651 	return 0;
652 }
653 
654 static int amixer_set_se(void *blk, unsigned int se)
655 {
656 	struct amixer_rsc_ctrl_blk *ctl = blk;
657 
658 	set_field(&ctl->amophi, AMOPHI_SE, se);
659 	ctl->dirty.bf.amophi = 1;
660 	return 0;
661 }
662 
663 static int amixer_set_dirty(void *blk, unsigned int flags)
664 {
665 	((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
666 	return 0;
667 }
668 
669 static int amixer_set_dirty_all(void *blk)
670 {
671 	((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
672 	return 0;
673 }
674 
675 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
676 {
677 	struct amixer_rsc_ctrl_blk *ctl = blk;
678 
679 	if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
680 		hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
681 		ctl->dirty.bf.amoplo = 0;
682 		hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
683 		ctl->dirty.bf.amophi = 0;
684 	}
685 
686 	return 0;
687 }
688 
689 static int amixer_get_y(void *blk)
690 {
691 	struct amixer_rsc_ctrl_blk *ctl = blk;
692 
693 	return get_field(ctl->amoplo, AMOPLO_Y);
694 }
695 
696 static unsigned int amixer_get_dirty(void *blk)
697 {
698 	return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
699 }
700 
701 static int amixer_rsc_get_ctrl_blk(void **rblk)
702 {
703 	struct amixer_rsc_ctrl_blk *blk;
704 
705 	*rblk = NULL;
706 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
707 	if (!blk)
708 		return -ENOMEM;
709 
710 	*rblk = blk;
711 
712 	return 0;
713 }
714 
715 static int amixer_rsc_put_ctrl_blk(void *blk)
716 {
717 	kfree(blk);
718 
719 	return 0;
720 }
721 
722 static int amixer_mgr_get_ctrl_blk(void **rblk)
723 {
724 	*rblk = NULL;
725 
726 	return 0;
727 }
728 
729 static int amixer_mgr_put_ctrl_blk(void *blk)
730 {
731 	return 0;
732 }
733 
734 /*
735  * DAIO control block definitions.
736  */
737 
738 /* Receiver Sample Rate Tracker Control register */
739 #define SRTCTL_SRCO	0x000000FF
740 #define SRTCTL_SRCM	0x0000FF00
741 #define SRTCTL_RSR	0x00030000
742 #define SRTCTL_DRAT	0x00300000
743 #define SRTCTL_EC	0x01000000
744 #define SRTCTL_ET	0x10000000
745 
746 /* DAIO Receiver register dirty flags */
747 union dai_dirty {
748 	struct {
749 		u16 srt:1;
750 		u16 rsv:15;
751 	} bf;
752 	u16 data;
753 };
754 
755 /* DAIO Receiver control block */
756 struct dai_ctrl_blk {
757 	unsigned int	srt;
758 	union dai_dirty	dirty;
759 };
760 
761 /* Audio Input Mapper RAM */
762 #define AIM_ARC		0x00000FFF
763 #define AIM_NXT		0x007F0000
764 
765 struct daoimap {
766 	unsigned int aim;
767 	unsigned int idx;
768 };
769 
770 /* Audio Transmitter Control and Status register */
771 #define ATXCTL_EN	0x00000001
772 #define ATXCTL_MODE	0x00000010
773 #define ATXCTL_CD	0x00000020
774 #define ATXCTL_RAW	0x00000100
775 #define ATXCTL_MT	0x00000200
776 #define ATXCTL_NUC	0x00003000
777 #define ATXCTL_BEN	0x00010000
778 #define ATXCTL_BMUX	0x00700000
779 #define ATXCTL_B24	0x01000000
780 #define ATXCTL_CPF	0x02000000
781 #define ATXCTL_RIV	0x10000000
782 #define ATXCTL_LIV	0x20000000
783 #define ATXCTL_RSAT	0x40000000
784 #define ATXCTL_LSAT	0x80000000
785 
786 /* XDIF Transmitter register dirty flags */
787 union dao_dirty {
788 	struct {
789 		u16 atxcsl:1;
790 		u16 rsv:15;
791 	} bf;
792 	u16 data;
793 };
794 
795 /* XDIF Transmitter control block */
796 struct dao_ctrl_blk {
797 	/* XDIF Transmitter Channel Status Low Register */
798 	unsigned int	atxcsl;
799 	union dao_dirty	dirty;
800 };
801 
802 /* Audio Receiver Control register */
803 #define ARXCTL_EN	0x00000001
804 
805 /* DAIO manager register dirty flags */
806 union daio_mgr_dirty {
807 	struct {
808 		u32 atxctl:8;
809 		u32 arxctl:8;
810 		u32 daoimap:1;
811 		u32 rsv:15;
812 	} bf;
813 	u32 data;
814 };
815 
816 /* DAIO manager control block */
817 struct daio_mgr_ctrl_blk {
818 	struct daoimap		daoimap;
819 	unsigned int		txctl[8];
820 	unsigned int		rxctl[8];
821 	union daio_mgr_dirty	dirty;
822 };
823 
824 static int dai_srt_set_srco(void *blk, unsigned int src)
825 {
826 	struct dai_ctrl_blk *ctl = blk;
827 
828 	set_field(&ctl->srt, SRTCTL_SRCO, src);
829 	ctl->dirty.bf.srt = 1;
830 	return 0;
831 }
832 
833 static int dai_srt_set_srcm(void *blk, unsigned int src)
834 {
835 	struct dai_ctrl_blk *ctl = blk;
836 
837 	set_field(&ctl->srt, SRTCTL_SRCM, src);
838 	ctl->dirty.bf.srt = 1;
839 	return 0;
840 }
841 
842 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
843 {
844 	struct dai_ctrl_blk *ctl = blk;
845 
846 	set_field(&ctl->srt, SRTCTL_RSR, rsr);
847 	ctl->dirty.bf.srt = 1;
848 	return 0;
849 }
850 
851 static int dai_srt_set_drat(void *blk, unsigned int drat)
852 {
853 	struct dai_ctrl_blk *ctl = blk;
854 
855 	set_field(&ctl->srt, SRTCTL_DRAT, drat);
856 	ctl->dirty.bf.srt = 1;
857 	return 0;
858 }
859 
860 static int dai_srt_set_ec(void *blk, unsigned int ec)
861 {
862 	struct dai_ctrl_blk *ctl = blk;
863 
864 	set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
865 	ctl->dirty.bf.srt = 1;
866 	return 0;
867 }
868 
869 static int dai_srt_set_et(void *blk, unsigned int et)
870 {
871 	struct dai_ctrl_blk *ctl = blk;
872 
873 	set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
874 	ctl->dirty.bf.srt = 1;
875 	return 0;
876 }
877 
878 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
879 {
880 	struct dai_ctrl_blk *ctl = blk;
881 
882 	if (ctl->dirty.bf.srt) {
883 		hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
884 		ctl->dirty.bf.srt = 0;
885 	}
886 
887 	return 0;
888 }
889 
890 static int dai_get_ctrl_blk(void **rblk)
891 {
892 	struct dai_ctrl_blk *blk;
893 
894 	*rblk = NULL;
895 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
896 	if (!blk)
897 		return -ENOMEM;
898 
899 	*rblk = blk;
900 
901 	return 0;
902 }
903 
904 static int dai_put_ctrl_blk(void *blk)
905 {
906 	kfree(blk);
907 
908 	return 0;
909 }
910 
911 static int dao_set_spos(void *blk, unsigned int spos)
912 {
913 	((struct dao_ctrl_blk *)blk)->atxcsl = spos;
914 	((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
915 	return 0;
916 }
917 
918 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
919 {
920 	struct dao_ctrl_blk *ctl = blk;
921 
922 	if (ctl->dirty.bf.atxcsl) {
923 		if (idx < 4) {
924 			/* S/PDIF SPOSx */
925 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
926 							ctl->atxcsl);
927 		}
928 		ctl->dirty.bf.atxcsl = 0;
929 	}
930 
931 	return 0;
932 }
933 
934 static int dao_get_spos(void *blk, unsigned int *spos)
935 {
936 	*spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
937 	return 0;
938 }
939 
940 static int dao_get_ctrl_blk(void **rblk)
941 {
942 	struct dao_ctrl_blk *blk;
943 
944 	*rblk = NULL;
945 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
946 	if (!blk)
947 		return -ENOMEM;
948 
949 	*rblk = blk;
950 
951 	return 0;
952 }
953 
954 static int dao_put_ctrl_blk(void *blk)
955 {
956 	kfree(blk);
957 
958 	return 0;
959 }
960 
961 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
962 {
963 	struct daio_mgr_ctrl_blk *ctl = blk;
964 
965 	set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
966 	ctl->dirty.bf.arxctl |= (0x1 << idx);
967 	return 0;
968 }
969 
970 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
971 {
972 	struct daio_mgr_ctrl_blk *ctl = blk;
973 
974 	set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
975 
976 	ctl->dirty.bf.arxctl |= (0x1 << idx);
977 	return 0;
978 }
979 
980 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
981 {
982 	struct daio_mgr_ctrl_blk *ctl = blk;
983 
984 	set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
985 	ctl->dirty.bf.atxctl |= (0x1 << idx);
986 	return 0;
987 }
988 
989 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
990 {
991 	struct daio_mgr_ctrl_blk *ctl = blk;
992 
993 	set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
994 	ctl->dirty.bf.atxctl |= (0x1 << idx);
995 	return 0;
996 }
997 
998 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
999 {
1000 	struct daio_mgr_ctrl_blk *ctl = blk;
1001 
1002 	if (idx < 4) {
1003 		/* S/PDIF output */
1004 		switch ((conf & 0x7)) {
1005 		case 1:
1006 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
1007 			break;
1008 		case 2:
1009 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1010 			break;
1011 		case 4:
1012 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1013 			break;
1014 		case 8:
1015 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1016 			break;
1017 		default:
1018 			break;
1019 		}
1020 		/* CDIF */
1021 		set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1022 		/* Non-audio */
1023 		set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1024 		/* Non-audio */
1025 		set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1026 		set_field(&ctl->txctl[idx], ATXCTL_RAW,
1027 			  ((conf >> 3) & 0x1) ? 0 : 0);
1028 		ctl->dirty.bf.atxctl |= (0x1 << idx);
1029 	} else {
1030 		/* I2S output */
1031 		/*idx %= 4; */
1032 	}
1033 	return 0;
1034 }
1035 
1036 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1037 {
1038 	struct daio_mgr_ctrl_blk *ctl = blk;
1039 
1040 	set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1041 	ctl->dirty.bf.daoimap = 1;
1042 	return 0;
1043 }
1044 
1045 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1046 {
1047 	struct daio_mgr_ctrl_blk *ctl = blk;
1048 
1049 	set_field(&ctl->daoimap.aim, AIM_NXT, next);
1050 	ctl->dirty.bf.daoimap = 1;
1051 	return 0;
1052 }
1053 
1054 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1055 {
1056 	((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1057 	((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1058 	return 0;
1059 }
1060 
1061 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1062 {
1063 	struct daio_mgr_ctrl_blk *ctl = blk;
1064 	unsigned int data;
1065 	int i;
1066 
1067 	for (i = 0; i < 8; i++) {
1068 		if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1069 			data = ctl->txctl[i];
1070 			hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1071 			ctl->dirty.bf.atxctl &= ~(0x1 << i);
1072 			mdelay(1);
1073 		}
1074 		if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1075 			data = ctl->rxctl[i];
1076 			hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1077 			ctl->dirty.bf.arxctl &= ~(0x1 << i);
1078 			mdelay(1);
1079 		}
1080 	}
1081 	if (ctl->dirty.bf.daoimap) {
1082 		hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1083 						ctl->daoimap.aim);
1084 		ctl->dirty.bf.daoimap = 0;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1091 {
1092 	struct daio_mgr_ctrl_blk *blk;
1093 	int i;
1094 
1095 	*rblk = NULL;
1096 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1097 	if (!blk)
1098 		return -ENOMEM;
1099 
1100 	for (i = 0; i < 8; i++) {
1101 		blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1102 		blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1103 	}
1104 
1105 	*rblk = blk;
1106 
1107 	return 0;
1108 }
1109 
1110 static int daio_mgr_put_ctrl_blk(void *blk)
1111 {
1112 	kfree(blk);
1113 
1114 	return 0;
1115 }
1116 
1117 /* Timer interrupt */
1118 static int set_timer_irq(struct hw *hw, int enable)
1119 {
1120 	hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1121 	return 0;
1122 }
1123 
1124 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1125 {
1126 	if (ticks)
1127 		ticks |= TIMR_IE | TIMR_IP;
1128 	hw_write_20kx(hw, TIMR, ticks);
1129 	return 0;
1130 }
1131 
1132 static unsigned int get_wc(struct hw *hw)
1133 {
1134 	return hw_read_20kx(hw, WC);
1135 }
1136 
1137 /* Card hardware initialization block */
1138 struct dac_conf {
1139 	unsigned int msr; /* master sample rate in rsrs */
1140 };
1141 
1142 struct adc_conf {
1143 	unsigned int msr; 	/* master sample rate in rsrs */
1144 	unsigned char input; 	/* the input source of ADC */
1145 	unsigned char mic20db; 	/* boost mic by 20db if input is microphone */
1146 };
1147 
1148 struct daio_conf {
1149 	unsigned int msr; /* master sample rate in rsrs */
1150 };
1151 
1152 struct trn_conf {
1153 	unsigned long vm_pgt_phys;
1154 };
1155 
1156 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1157 {
1158 	u32 data;
1159 	int i;
1160 
1161 	/* Program I2S with proper sample rate and enable the correct I2S
1162 	 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1163 	if (1 == info->msr) {
1164 		hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1165 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1166 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1167 	} else if (2 == info->msr) {
1168 		if (hw->model != CTSB1270) {
1169 			hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1170 		} else {
1171 			/* PCM4220 on Titanium HD is different. */
1172 			hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1173 		}
1174 		/* Specify all playing 96khz
1175 		 * EA [0]	- Enabled
1176 		 * RTA [4:5]	- 96kHz
1177 		 * EB [8]	- Enabled
1178 		 * RTB [12:13]	- 96kHz
1179 		 * EC [16]	- Enabled
1180 		 * RTC [20:21]	- 96kHz
1181 		 * ED [24]	- Enabled
1182 		 * RTD [28:29]	- 96kHz */
1183 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1184 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1185 	} else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1186 		hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1187 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1188 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1189 	} else {
1190 		pr_alert("ctxfi: ERROR!!! Invalid sampling rate!!!\n");
1191 		return -EINVAL;
1192 	}
1193 
1194 	for (i = 0; i < 8; i++) {
1195 		if (i <= 3) {
1196 			/* This comment looks wrong since loop is over 4  */
1197 			/* channels and emu20k2 supports 4 spdif IOs.     */
1198 			/* 1st 3 channels are SPDIFs (SB0960) */
1199 			if (i == 3)
1200 				data = 0x1001001;
1201 			else
1202 				data = 0x1000001;
1203 
1204 			hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1205 			hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1206 
1207 			/* Initialize the SPDIF Out Channel status registers.
1208 			 * The value specified here is based on the typical
1209 			 * values provided in the specification, namely: Clock
1210 			 * Accuracy of 1000ppm, Sample Rate of 48KHz,
1211 			 * unspecified source number, Generation status = 1,
1212 			 * Category code = 0x12 (Digital Signal Mixer),
1213 			 * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1214 			 * (indicating that we're transmitting digital audio,
1215 			 * and the Professional Use bit is 0. */
1216 
1217 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1218 					0x02109204); /* Default to 48kHz */
1219 
1220 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1221 		} else {
1222 			/* Again, loop is over 4 channels not 5. */
1223 			/* Next 5 channels are I2S (SB0960) */
1224 			data = 0x11;
1225 			hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1226 			if (2 == info->msr) {
1227 				/* Four channels per sample period */
1228 				data |= 0x1000;
1229 			} else if (4 == info->msr) {
1230 				/* FIXME: check this against the chip spec */
1231 				data |= 0x2000;
1232 			}
1233 			hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1234 		}
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 /* TRANSPORT operations */
1241 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1242 {
1243 	u32 vmctl, data;
1244 	u32 ptp_phys_low, ptp_phys_high;
1245 	int i;
1246 
1247 	/* Set up device page table */
1248 	if ((~0UL) == info->vm_pgt_phys) {
1249 		pr_alert("ctxfi: "
1250 		       "Wrong device page table page address!!!\n");
1251 		return -1;
1252 	}
1253 
1254 	vmctl = 0x80000C0F;  /* 32-bit, 4k-size page */
1255 	ptp_phys_low = (u32)info->vm_pgt_phys;
1256 	ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1257 	if (sizeof(void *) == 8) /* 64bit address */
1258 		vmctl |= (3 << 8);
1259 	/* Write page table physical address to all PTPAL registers */
1260 	for (i = 0; i < 64; i++) {
1261 		hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1262 		hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1263 	}
1264 	/* Enable virtual memory transfer */
1265 	hw_write_20kx(hw, VMEM_CTL, vmctl);
1266 	/* Enable transport bus master and queueing of request */
1267 	hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1268 	hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1269 	/* Enable transport ring */
1270 	data = hw_read_20kx(hw, TRANSPORT_ENB);
1271 	hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1272 
1273 	return 0;
1274 }
1275 
1276 /* Card initialization */
1277 #define GCTL_AIE	0x00000001
1278 #define GCTL_UAA	0x00000002
1279 #define GCTL_DPC	0x00000004
1280 #define GCTL_DBP	0x00000008
1281 #define GCTL_ABP	0x00000010
1282 #define GCTL_TBP	0x00000020
1283 #define GCTL_SBP	0x00000040
1284 #define GCTL_FBP	0x00000080
1285 #define GCTL_ME		0x00000100
1286 #define GCTL_AID	0x00001000
1287 
1288 #define PLLCTL_SRC	0x00000007
1289 #define PLLCTL_SPE	0x00000008
1290 #define PLLCTL_RD	0x000000F0
1291 #define PLLCTL_FD	0x0001FF00
1292 #define PLLCTL_OD	0x00060000
1293 #define PLLCTL_B	0x00080000
1294 #define PLLCTL_AS	0x00100000
1295 #define PLLCTL_LF	0x03E00000
1296 #define PLLCTL_SPS	0x1C000000
1297 #define PLLCTL_AD	0x60000000
1298 
1299 #define PLLSTAT_CCS	0x00000007
1300 #define PLLSTAT_SPL	0x00000008
1301 #define PLLSTAT_CRD	0x000000F0
1302 #define PLLSTAT_CFD	0x0001FF00
1303 #define PLLSTAT_SL	0x00020000
1304 #define PLLSTAT_FAS	0x00040000
1305 #define PLLSTAT_B	0x00080000
1306 #define PLLSTAT_PD	0x00100000
1307 #define PLLSTAT_OCA	0x00200000
1308 #define PLLSTAT_NCA	0x00400000
1309 
1310 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1311 {
1312 	unsigned int pllenb;
1313 	unsigned int pllctl;
1314 	unsigned int pllstat;
1315 	int i;
1316 
1317 	pllenb = 0xB;
1318 	hw_write_20kx(hw, PLL_ENB, pllenb);
1319 	pllctl = 0x20C00000;
1320 	set_field(&pllctl, PLLCTL_B, 0);
1321 	set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1322 	set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1323 	hw_write_20kx(hw, PLL_CTL, pllctl);
1324 	mdelay(40);
1325 
1326 	pllctl = hw_read_20kx(hw, PLL_CTL);
1327 	set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1328 	hw_write_20kx(hw, PLL_CTL, pllctl);
1329 	mdelay(40);
1330 
1331 	for (i = 0; i < 1000; i++) {
1332 		pllstat = hw_read_20kx(hw, PLL_STAT);
1333 		if (get_field(pllstat, PLLSTAT_PD))
1334 			continue;
1335 
1336 		if (get_field(pllstat, PLLSTAT_B) !=
1337 					get_field(pllctl, PLLCTL_B))
1338 			continue;
1339 
1340 		if (get_field(pllstat, PLLSTAT_CCS) !=
1341 					get_field(pllctl, PLLCTL_SRC))
1342 			continue;
1343 
1344 		if (get_field(pllstat, PLLSTAT_CRD) !=
1345 					get_field(pllctl, PLLCTL_RD))
1346 			continue;
1347 
1348 		if (get_field(pllstat, PLLSTAT_CFD) !=
1349 					get_field(pllctl, PLLCTL_FD))
1350 			continue;
1351 
1352 		break;
1353 	}
1354 	if (i >= 1000) {
1355 		pr_alert("ctxfi: PLL initialization failed!!!\n");
1356 		return -EBUSY;
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 static int hw_auto_init(struct hw *hw)
1363 {
1364 	unsigned int gctl;
1365 	int i;
1366 
1367 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1368 	set_field(&gctl, GCTL_AIE, 0);
1369 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1370 	set_field(&gctl, GCTL_AIE, 1);
1371 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1372 	mdelay(10);
1373 	for (i = 0; i < 400000; i++) {
1374 		gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1375 		if (get_field(gctl, GCTL_AID))
1376 			break;
1377 	}
1378 	if (!get_field(gctl, GCTL_AID)) {
1379 		pr_alert("ctxfi: Card Auto-init failed!!!\n");
1380 		return -EBUSY;
1381 	}
1382 
1383 	return 0;
1384 }
1385 
1386 /* DAC operations */
1387 
1388 #define CS4382_MC1 		0x1
1389 #define CS4382_MC2 		0x2
1390 #define CS4382_MC3		0x3
1391 #define CS4382_FC		0x4
1392 #define CS4382_IC		0x5
1393 #define CS4382_XC1		0x6
1394 #define CS4382_VCA1 		0x7
1395 #define CS4382_VCB1 		0x8
1396 #define CS4382_XC2		0x9
1397 #define CS4382_VCA2 		0xA
1398 #define CS4382_VCB2 		0xB
1399 #define CS4382_XC3		0xC
1400 #define CS4382_VCA3		0xD
1401 #define CS4382_VCB3		0xE
1402 #define CS4382_XC4 		0xF
1403 #define CS4382_VCA4 		0x10
1404 #define CS4382_VCB4 		0x11
1405 #define CS4382_CREV 		0x12
1406 
1407 /* I2C status */
1408 #define STATE_LOCKED		0x00
1409 #define STATE_UNLOCKED		0xAA
1410 #define DATA_READY		0x800000    /* Used with I2C_IF_STATUS */
1411 #define DATA_ABORT		0x10000     /* Used with I2C_IF_STATUS */
1412 
1413 #define I2C_STATUS_DCM	0x00000001
1414 #define I2C_STATUS_BC	0x00000006
1415 #define I2C_STATUS_APD	0x00000008
1416 #define I2C_STATUS_AB	0x00010000
1417 #define I2C_STATUS_DR	0x00800000
1418 
1419 #define I2C_ADDRESS_PTAD	0x0000FFFF
1420 #define I2C_ADDRESS_SLAD	0x007F0000
1421 
1422 struct regs_cs4382 {
1423 	u32 mode_control_1;
1424 	u32 mode_control_2;
1425 	u32 mode_control_3;
1426 
1427 	u32 filter_control;
1428 	u32 invert_control;
1429 
1430 	u32 mix_control_P1;
1431 	u32 vol_control_A1;
1432 	u32 vol_control_B1;
1433 
1434 	u32 mix_control_P2;
1435 	u32 vol_control_A2;
1436 	u32 vol_control_B2;
1437 
1438 	u32 mix_control_P3;
1439 	u32 vol_control_A3;
1440 	u32 vol_control_B3;
1441 
1442 	u32 mix_control_P4;
1443 	u32 vol_control_A4;
1444 	u32 vol_control_B4;
1445 };
1446 
1447 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1448 {
1449 	u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] =  {0xB3, 0xD4};
1450 
1451 	/* Send keys for forced BIOS mode */
1452 	hw_write_20kx(hw, I2C_IF_WLOCK,
1453 			UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1454 	hw_write_20kx(hw, I2C_IF_WLOCK,
1455 			UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1456 	/* Check whether the chip is unlocked */
1457 	if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1458 		return 0;
1459 
1460 	return -1;
1461 }
1462 
1463 static int hw20k2_i2c_lock_chip(struct hw *hw)
1464 {
1465 	/* Write twice */
1466 	hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1467 	hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1468 	if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1469 		return 0;
1470 
1471 	return -1;
1472 }
1473 
1474 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1475 {
1476 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1477 	int err;
1478 	unsigned int i2c_status;
1479 	unsigned int i2c_addr;
1480 
1481 	err = hw20k2_i2c_unlock_full_access(hw);
1482 	if (err < 0)
1483 		return err;
1484 
1485 	hw20k2->addr_size = addr_size;
1486 	hw20k2->data_size = data_size;
1487 	hw20k2->dev_id = dev_id;
1488 
1489 	i2c_addr = 0;
1490 	set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1491 
1492 	hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1493 
1494 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1495 
1496 	set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1497 
1498 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1499 
1500 	return 0;
1501 }
1502 
1503 static int hw20k2_i2c_uninit(struct hw *hw)
1504 {
1505 	unsigned int i2c_status;
1506 	unsigned int i2c_addr;
1507 
1508 	i2c_addr = 0;
1509 	set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1510 
1511 	hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1512 
1513 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1514 
1515 	set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1516 
1517 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1518 
1519 	return hw20k2_i2c_lock_chip(hw);
1520 }
1521 
1522 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1523 {
1524 	int i = 0x400000;
1525 	unsigned int ret;
1526 
1527 	do {
1528 		ret = hw_read_20kx(hw, I2C_IF_STATUS);
1529 	} while ((!(ret & DATA_READY)) && --i);
1530 
1531 	return i;
1532 }
1533 
1534 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1535 {
1536 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1537 	unsigned int i2c_status;
1538 
1539 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1540 	set_field(&i2c_status, I2C_STATUS_BC,
1541 		  (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1542 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1543 	if (!hw20k2_i2c_wait_data_ready(hw))
1544 		return -1;
1545 
1546 	hw_write_20kx(hw, I2C_IF_WDATA, addr);
1547 	if (!hw20k2_i2c_wait_data_ready(hw))
1548 		return -1;
1549 
1550 	/* Force a read operation */
1551 	hw_write_20kx(hw, I2C_IF_RDATA, 0);
1552 	if (!hw20k2_i2c_wait_data_ready(hw))
1553 		return -1;
1554 
1555 	*datap = hw_read_20kx(hw, I2C_IF_RDATA);
1556 
1557 	return 0;
1558 }
1559 
1560 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1561 {
1562 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1563 	unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1564 	unsigned int i2c_status;
1565 
1566 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1567 
1568 	set_field(&i2c_status, I2C_STATUS_BC,
1569 		  (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1570 		  0 : (hw20k2->addr_size + hw20k2->data_size));
1571 
1572 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1573 	hw20k2_i2c_wait_data_ready(hw);
1574 	/* Dummy write to trigger the write operation */
1575 	hw_write_20kx(hw, I2C_IF_WDATA, 0);
1576 	hw20k2_i2c_wait_data_ready(hw);
1577 
1578 	/* This is the real data */
1579 	hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1580 	hw20k2_i2c_wait_data_ready(hw);
1581 
1582 	return 0;
1583 }
1584 
1585 static void hw_dac_stop(struct hw *hw)
1586 {
1587 	u32 data;
1588 	data = hw_read_20kx(hw, GPIO_DATA);
1589 	data &= 0xFFFFFFFD;
1590 	hw_write_20kx(hw, GPIO_DATA, data);
1591 	mdelay(10);
1592 }
1593 
1594 static void hw_dac_start(struct hw *hw)
1595 {
1596 	u32 data;
1597 	data = hw_read_20kx(hw, GPIO_DATA);
1598 	data |= 0x2;
1599 	hw_write_20kx(hw, GPIO_DATA, data);
1600 	mdelay(50);
1601 }
1602 
1603 static void hw_dac_reset(struct hw *hw)
1604 {
1605 	hw_dac_stop(hw);
1606 	hw_dac_start(hw);
1607 }
1608 
1609 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1610 {
1611 	int err;
1612 	u32 data;
1613 	int i;
1614 	struct regs_cs4382 cs_read = {0};
1615 	struct regs_cs4382 cs_def = {
1616 				   0x00000001,  /* Mode Control 1 */
1617 				   0x00000000,  /* Mode Control 2 */
1618 				   0x00000084,  /* Mode Control 3 */
1619 				   0x00000000,  /* Filter Control */
1620 				   0x00000000,  /* Invert Control */
1621 				   0x00000024,  /* Mixing Control Pair 1 */
1622 				   0x00000000,  /* Vol Control A1 */
1623 				   0x00000000,  /* Vol Control B1 */
1624 				   0x00000024,  /* Mixing Control Pair 2 */
1625 				   0x00000000,  /* Vol Control A2 */
1626 				   0x00000000,  /* Vol Control B2 */
1627 				   0x00000024,  /* Mixing Control Pair 3 */
1628 				   0x00000000,  /* Vol Control A3 */
1629 				   0x00000000,  /* Vol Control B3 */
1630 				   0x00000024,  /* Mixing Control Pair 4 */
1631 				   0x00000000,  /* Vol Control A4 */
1632 				   0x00000000   /* Vol Control B4 */
1633 				 };
1634 
1635 	if (hw->model == CTSB1270) {
1636 		hw_dac_stop(hw);
1637 		data = hw_read_20kx(hw, GPIO_DATA);
1638 		data &= ~0x0600;
1639 		if (1 == info->msr)
1640 			data |= 0x0000; /* Single Speed Mode 0-50kHz */
1641 		else if (2 == info->msr)
1642 			data |= 0x0200; /* Double Speed Mode 50-100kHz */
1643 		else
1644 			data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1645 		hw_write_20kx(hw, GPIO_DATA, data);
1646 		hw_dac_start(hw);
1647 		return 0;
1648 	}
1649 
1650 	/* Set DAC reset bit as output */
1651 	data = hw_read_20kx(hw, GPIO_CTRL);
1652 	data |= 0x02;
1653 	hw_write_20kx(hw, GPIO_CTRL, data);
1654 
1655 	err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1656 	if (err < 0)
1657 		goto End;
1658 
1659 	for (i = 0; i < 2; i++) {
1660 		/* Reset DAC twice just in-case the chip
1661 		 * didn't initialized properly */
1662 		hw_dac_reset(hw);
1663 		hw_dac_reset(hw);
1664 
1665 		if (hw20k2_i2c_read(hw, CS4382_MC1,  &cs_read.mode_control_1))
1666 			continue;
1667 
1668 		if (hw20k2_i2c_read(hw, CS4382_MC2,  &cs_read.mode_control_2))
1669 			continue;
1670 
1671 		if (hw20k2_i2c_read(hw, CS4382_MC3,  &cs_read.mode_control_3))
1672 			continue;
1673 
1674 		if (hw20k2_i2c_read(hw, CS4382_FC,   &cs_read.filter_control))
1675 			continue;
1676 
1677 		if (hw20k2_i2c_read(hw, CS4382_IC,   &cs_read.invert_control))
1678 			continue;
1679 
1680 		if (hw20k2_i2c_read(hw, CS4382_XC1,  &cs_read.mix_control_P1))
1681 			continue;
1682 
1683 		if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1684 			continue;
1685 
1686 		if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1687 			continue;
1688 
1689 		if (hw20k2_i2c_read(hw, CS4382_XC2,  &cs_read.mix_control_P2))
1690 			continue;
1691 
1692 		if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1693 			continue;
1694 
1695 		if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1696 			continue;
1697 
1698 		if (hw20k2_i2c_read(hw, CS4382_XC3,  &cs_read.mix_control_P3))
1699 			continue;
1700 
1701 		if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1702 			continue;
1703 
1704 		if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1705 			continue;
1706 
1707 		if (hw20k2_i2c_read(hw, CS4382_XC4,  &cs_read.mix_control_P4))
1708 			continue;
1709 
1710 		if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1711 			continue;
1712 
1713 		if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1714 			continue;
1715 
1716 		if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1717 			continue;
1718 		else
1719 			break;
1720 	}
1721 
1722 	if (i >= 2)
1723 		goto End;
1724 
1725 	/* Note: Every I2C write must have some delay.
1726 	 * This is not a requirement but the delay works here... */
1727 	hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1728 	hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1729 	if (1 == info->msr) {
1730 		hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1731 		hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1732 		hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1733 		hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1734 	} else if (2 == info->msr) {
1735 		hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1736 		hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1737 		hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1738 		hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1739 	} else {
1740 		hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1741 		hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1742 		hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1743 		hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1744 	}
1745 
1746 	return 0;
1747 End:
1748 
1749 	hw20k2_i2c_uninit(hw);
1750 	return -1;
1751 }
1752 
1753 /* ADC operations */
1754 #define MAKE_WM8775_ADDR(addr, data)	(u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1755 #define MAKE_WM8775_DATA(data)	(u32)(data&0xFF)
1756 
1757 #define WM8775_IC       0x0B
1758 #define WM8775_MMC      0x0C
1759 #define WM8775_AADCL    0x0E
1760 #define WM8775_AADCR    0x0F
1761 #define WM8775_ADCMC    0x15
1762 #define WM8775_RESET    0x17
1763 
1764 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1765 {
1766 	u32 data;
1767 	if (hw->model == CTSB1270) {
1768 		/* Titanium HD has two ADC chips, one for line in and one */
1769 		/* for MIC. We don't need to switch the ADC input. */
1770 		return 1;
1771 	}
1772 	data = hw_read_20kx(hw, GPIO_DATA);
1773 	switch (type) {
1774 	case ADC_MICIN:
1775 		data = (data & (0x1 << 14)) ? 1 : 0;
1776 		break;
1777 	case ADC_LINEIN:
1778 		data = (data & (0x1 << 14)) ? 0 : 1;
1779 		break;
1780 	default:
1781 		data = 0;
1782 	}
1783 	return data;
1784 }
1785 
1786 #define MIC_BOOST_0DB 0xCF
1787 #define MIC_BOOST_STEPS_PER_DB 2
1788 
1789 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1790 {
1791 	u32 adcmc, gain;
1792 
1793 	if (input > 3)
1794 		input = 3;
1795 
1796 	adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1797 
1798 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1799 				MAKE_WM8775_DATA(adcmc));
1800 
1801 	if (gain_in_db < -103)
1802 		gain_in_db = -103;
1803 	if (gain_in_db > 24)
1804 		gain_in_db = 24;
1805 
1806 	gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1807 
1808 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1809 				MAKE_WM8775_DATA(gain));
1810 	/* ...so there should be no need for the following. */
1811 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1812 				MAKE_WM8775_DATA(gain));
1813 }
1814 
1815 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1816 {
1817 	u32 data;
1818 	data = hw_read_20kx(hw, GPIO_DATA);
1819 	switch (type) {
1820 	case ADC_MICIN:
1821 		data |= (0x1 << 14);
1822 		hw_write_20kx(hw, GPIO_DATA, data);
1823 		hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1824 		break;
1825 	case ADC_LINEIN:
1826 		data &= ~(0x1 << 14);
1827 		hw_write_20kx(hw, GPIO_DATA, data);
1828 		hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1829 		break;
1830 	default:
1831 		break;
1832 	}
1833 
1834 	return 0;
1835 }
1836 
1837 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1838 {
1839 	int err;
1840 	u32 data, ctl;
1841 
1842 	/*  Set ADC reset bit as output */
1843 	data = hw_read_20kx(hw, GPIO_CTRL);
1844 	data |= (0x1 << 15);
1845 	hw_write_20kx(hw, GPIO_CTRL, data);
1846 
1847 	/* Initialize I2C */
1848 	err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1849 	if (err < 0) {
1850 		pr_alert("ctxfi: Failure to acquire I2C!!!\n");
1851 		goto error;
1852 	}
1853 
1854 	/* Reset the ADC (reset is active low). */
1855 	data = hw_read_20kx(hw, GPIO_DATA);
1856 	data &= ~(0x1 << 15);
1857 	hw_write_20kx(hw, GPIO_DATA, data);
1858 
1859 	if (hw->model == CTSB1270) {
1860 		/* Set up the PCM4220 ADC on Titanium HD */
1861 		data &= ~0x0C;
1862 		if (1 == info->msr)
1863 			data |= 0x00; /* Single Speed Mode 32-50kHz */
1864 		else if (2 == info->msr)
1865 			data |= 0x08; /* Double Speed Mode 50-108kHz */
1866 		else
1867 			data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1868 		hw_write_20kx(hw, GPIO_DATA, data);
1869 	}
1870 
1871 	mdelay(10);
1872 	/* Return the ADC to normal operation. */
1873 	data |= (0x1 << 15);
1874 	hw_write_20kx(hw, GPIO_DATA, data);
1875 	mdelay(50);
1876 
1877 	/* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1878 	/* invert bit, interface format to I2S, word length to 24-bit, */
1879 	/* enable ADC high pass filter. Fixes bug 5323?		*/
1880 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1881 			 MAKE_WM8775_DATA(0x26));
1882 
1883 	/* Set the master mode (256fs) */
1884 	if (1 == info->msr) {
1885 		/* slave mode, 128x oversampling 256fs */
1886 		hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1887 						MAKE_WM8775_DATA(0x02));
1888 	} else if ((2 == info->msr) || (4 == info->msr)) {
1889 		/* slave mode, 64x oversampling, 256fs */
1890 		hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1891 						MAKE_WM8775_DATA(0x0A));
1892 	} else {
1893 		pr_alert("ctxfi: Invalid master sampling "
1894 				  "rate (msr %d)!!!\n", info->msr);
1895 		err = -EINVAL;
1896 		goto error;
1897 	}
1898 
1899 	if (hw->model != CTSB1270) {
1900 		/* Configure GPIO bit 14 change to line-in/mic-in */
1901 		ctl = hw_read_20kx(hw, GPIO_CTRL);
1902 		ctl |= 0x1 << 14;
1903 		hw_write_20kx(hw, GPIO_CTRL, ctl);
1904 		hw_adc_input_select(hw, ADC_LINEIN);
1905 	} else {
1906 		hw_wm8775_input_select(hw, 0, 0);
1907 	}
1908 
1909 	return 0;
1910 error:
1911 	hw20k2_i2c_uninit(hw);
1912 	return err;
1913 }
1914 
1915 static struct capabilities hw_capabilities(struct hw *hw)
1916 {
1917 	struct capabilities cap;
1918 
1919 	cap.digit_io_switch = 0;
1920 	cap.dedicated_mic = hw->model == CTSB1270;
1921 	cap.output_switch = hw->model == CTSB1270;
1922 	cap.mic_source_switch = hw->model == CTSB1270;
1923 
1924 	return cap;
1925 }
1926 
1927 static int hw_output_switch_get(struct hw *hw)
1928 {
1929 	u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1930 
1931 	switch (data & 0x30) {
1932 	case 0x00:
1933 	     return 0;
1934 	case 0x10:
1935 	     return 1;
1936 	case 0x20:
1937 	     return 2;
1938 	default:
1939 	     return 3;
1940 	}
1941 }
1942 
1943 static int hw_output_switch_put(struct hw *hw, int position)
1944 {
1945 	u32 data;
1946 
1947 	if (position == hw_output_switch_get(hw))
1948 		return 0;
1949 
1950 	/* Mute line and headphones (intended for anti-pop). */
1951 	data = hw_read_20kx(hw, GPIO_DATA);
1952 	data |= (0x03 << 11);
1953 	hw_write_20kx(hw, GPIO_DATA, data);
1954 
1955 	data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1956 	switch (position) {
1957 	case 0:
1958 		break;
1959 	case 1:
1960 		data |= 0x10;
1961 		break;
1962 	default:
1963 		data |= 0x20;
1964 	}
1965 	hw_write_20kx(hw, GPIO_EXT_DATA, data);
1966 
1967 	/* Unmute line and headphones. */
1968 	data = hw_read_20kx(hw, GPIO_DATA);
1969 	data &= ~(0x03 << 11);
1970 	hw_write_20kx(hw, GPIO_DATA, data);
1971 
1972 	return 1;
1973 }
1974 
1975 static int hw_mic_source_switch_get(struct hw *hw)
1976 {
1977 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1978 
1979 	return hw20k2->mic_source;
1980 }
1981 
1982 static int hw_mic_source_switch_put(struct hw *hw, int position)
1983 {
1984 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1985 
1986 	if (position == hw20k2->mic_source)
1987 		return 0;
1988 
1989 	switch (position) {
1990 	case 0:
1991 		hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1992 		break;
1993 	case 1:
1994 		hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1995 		break;
1996 	case 2:
1997 		hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
1998 		break;
1999 	default:
2000 		return 0;
2001 	}
2002 
2003 	hw20k2->mic_source = position;
2004 
2005 	return 1;
2006 }
2007 
2008 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2009 {
2010 	struct hw *hw = dev_id;
2011 	unsigned int status;
2012 
2013 	status = hw_read_20kx(hw, GIP);
2014 	if (!status)
2015 		return IRQ_NONE;
2016 
2017 	if (hw->irq_callback)
2018 		hw->irq_callback(hw->irq_callback_data, status);
2019 
2020 	hw_write_20kx(hw, GIP, status);
2021 	return IRQ_HANDLED;
2022 }
2023 
2024 static int hw_card_start(struct hw *hw)
2025 {
2026 	int err = 0;
2027 	struct pci_dev *pci = hw->pci;
2028 	unsigned int gctl;
2029 
2030 	err = pci_enable_device(pci);
2031 	if (err < 0)
2032 		return err;
2033 
2034 	/* Set DMA transfer mask */
2035 	if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 ||
2036 	    pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) {
2037 		pr_err("ctxfi: architecture does not support PCI "
2038 		"busmaster DMA with mask 0x%llx\n", CT_XFI_DMA_MASK);
2039 		err = -ENXIO;
2040 		goto error1;
2041 	}
2042 
2043 	if (!hw->io_base) {
2044 		err = pci_request_regions(pci, "XFi");
2045 		if (err < 0)
2046 			goto error1;
2047 
2048 		hw->io_base = pci_resource_start(hw->pci, 2);
2049 		hw->mem_base = (unsigned long)ioremap(hw->io_base,
2050 					pci_resource_len(hw->pci, 2));
2051 		if (!hw->mem_base) {
2052 			err = -ENOENT;
2053 			goto error2;
2054 		}
2055 	}
2056 
2057 	/* Switch to 20k2 mode from UAA mode. */
2058 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2059 	set_field(&gctl, GCTL_UAA, 0);
2060 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2061 
2062 	if (hw->irq < 0) {
2063 		err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2064 				  KBUILD_MODNAME, hw);
2065 		if (err < 0) {
2066 			pr_err("XFi: Cannot get irq %d\n", pci->irq);
2067 			goto error2;
2068 		}
2069 		hw->irq = pci->irq;
2070 	}
2071 
2072 	pci_set_master(pci);
2073 
2074 	return 0;
2075 
2076 /*error3:
2077 	iounmap((void *)hw->mem_base);
2078 	hw->mem_base = (unsigned long)NULL;*/
2079 error2:
2080 	pci_release_regions(pci);
2081 	hw->io_base = 0;
2082 error1:
2083 	pci_disable_device(pci);
2084 	return err;
2085 }
2086 
2087 static int hw_card_stop(struct hw *hw)
2088 {
2089 	unsigned int data;
2090 
2091 	/* disable transport bus master and queueing of request */
2092 	hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2093 
2094 	/* disable pll */
2095 	data = hw_read_20kx(hw, PLL_ENB);
2096 	hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2097 
2098 	/* TODO: Disable interrupt and so on... */
2099 	return 0;
2100 }
2101 
2102 static int hw_card_shutdown(struct hw *hw)
2103 {
2104 	if (hw->irq >= 0)
2105 		free_irq(hw->irq, hw);
2106 
2107 	hw->irq	= -1;
2108 
2109 	if (hw->mem_base)
2110 		iounmap((void *)hw->mem_base);
2111 
2112 	hw->mem_base = (unsigned long)NULL;
2113 
2114 	if (hw->io_base)
2115 		pci_release_regions(hw->pci);
2116 
2117 	hw->io_base = 0;
2118 
2119 	pci_disable_device(hw->pci);
2120 
2121 	return 0;
2122 }
2123 
2124 static int hw_card_init(struct hw *hw, struct card_conf *info)
2125 {
2126 	int err;
2127 	unsigned int gctl;
2128 	u32 data = 0;
2129 	struct dac_conf dac_info = {0};
2130 	struct adc_conf adc_info = {0};
2131 	struct daio_conf daio_info = {0};
2132 	struct trn_conf trn_info = {0};
2133 
2134 	/* Get PCI io port/memory base address and
2135 	 * do 20kx core switch if needed. */
2136 	err = hw_card_start(hw);
2137 	if (err)
2138 		return err;
2139 
2140 	/* PLL init */
2141 	err = hw_pll_init(hw, info->rsr);
2142 	if (err < 0)
2143 		return err;
2144 
2145 	/* kick off auto-init */
2146 	err = hw_auto_init(hw);
2147 	if (err < 0)
2148 		return err;
2149 
2150 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2151 	set_field(&gctl, GCTL_DBP, 1);
2152 	set_field(&gctl, GCTL_TBP, 1);
2153 	set_field(&gctl, GCTL_FBP, 1);
2154 	set_field(&gctl, GCTL_DPC, 0);
2155 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2156 
2157 	/* Reset all global pending interrupts */
2158 	hw_write_20kx(hw, GIE, 0);
2159 	/* Reset all SRC pending interrupts */
2160 	hw_write_20kx(hw, SRC_IP, 0);
2161 
2162 	if (hw->model != CTSB1270) {
2163 		/* TODO: detect the card ID and configure GPIO accordingly. */
2164 		/* Configures GPIO (0xD802 0x98028) */
2165 		/*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2166 		/* Configures GPIO (SB0880) */
2167 		/*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2168 		hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2169 	} else {
2170 		hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2171 	}
2172 	/* Enable audio ring */
2173 	hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2174 
2175 	trn_info.vm_pgt_phys = info->vm_pgt_phys;
2176 	err = hw_trn_init(hw, &trn_info);
2177 	if (err < 0)
2178 		return err;
2179 
2180 	daio_info.msr = info->msr;
2181 	err = hw_daio_init(hw, &daio_info);
2182 	if (err < 0)
2183 		return err;
2184 
2185 	dac_info.msr = info->msr;
2186 	err = hw_dac_init(hw, &dac_info);
2187 	if (err < 0)
2188 		return err;
2189 
2190 	adc_info.msr = info->msr;
2191 	adc_info.input = ADC_LINEIN;
2192 	adc_info.mic20db = 0;
2193 	err = hw_adc_init(hw, &adc_info);
2194 	if (err < 0)
2195 		return err;
2196 
2197 	data = hw_read_20kx(hw, SRC_MCTL);
2198 	data |= 0x1; /* Enables input from the audio ring */
2199 	hw_write_20kx(hw, SRC_MCTL, data);
2200 
2201 	return 0;
2202 }
2203 
2204 #ifdef CONFIG_PM_SLEEP
2205 static int hw_suspend(struct hw *hw)
2206 {
2207 	struct pci_dev *pci = hw->pci;
2208 
2209 	hw_card_stop(hw);
2210 
2211 	pci_disable_device(pci);
2212 	pci_save_state(pci);
2213 	pci_set_power_state(pci, PCI_D3hot);
2214 
2215 	return 0;
2216 }
2217 
2218 static int hw_resume(struct hw *hw, struct card_conf *info)
2219 {
2220 	struct pci_dev *pci = hw->pci;
2221 
2222 	pci_set_power_state(pci, PCI_D0);
2223 	pci_restore_state(pci);
2224 
2225 	/* Re-initialize card hardware. */
2226 	return hw_card_init(hw, info);
2227 }
2228 #endif
2229 
2230 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2231 {
2232 	return readl((void *)(hw->mem_base + reg));
2233 }
2234 
2235 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2236 {
2237 	writel(data, (void *)(hw->mem_base + reg));
2238 }
2239 
2240 static struct hw ct20k2_preset = {
2241 	.irq = -1,
2242 
2243 	.card_init = hw_card_init,
2244 	.card_stop = hw_card_stop,
2245 	.pll_init = hw_pll_init,
2246 	.is_adc_source_selected = hw_is_adc_input_selected,
2247 	.select_adc_source = hw_adc_input_select,
2248 	.capabilities = hw_capabilities,
2249 	.output_switch_get = hw_output_switch_get,
2250 	.output_switch_put = hw_output_switch_put,
2251 	.mic_source_switch_get = hw_mic_source_switch_get,
2252 	.mic_source_switch_put = hw_mic_source_switch_put,
2253 #ifdef CONFIG_PM_SLEEP
2254 	.suspend = hw_suspend,
2255 	.resume = hw_resume,
2256 #endif
2257 
2258 	.src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2259 	.src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2260 	.src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2261 	.src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2262 	.src_set_state = src_set_state,
2263 	.src_set_bm = src_set_bm,
2264 	.src_set_rsr = src_set_rsr,
2265 	.src_set_sf = src_set_sf,
2266 	.src_set_wr = src_set_wr,
2267 	.src_set_pm = src_set_pm,
2268 	.src_set_rom = src_set_rom,
2269 	.src_set_vo = src_set_vo,
2270 	.src_set_st = src_set_st,
2271 	.src_set_ie = src_set_ie,
2272 	.src_set_ilsz = src_set_ilsz,
2273 	.src_set_bp = src_set_bp,
2274 	.src_set_cisz = src_set_cisz,
2275 	.src_set_ca = src_set_ca,
2276 	.src_set_sa = src_set_sa,
2277 	.src_set_la = src_set_la,
2278 	.src_set_pitch = src_set_pitch,
2279 	.src_set_dirty = src_set_dirty,
2280 	.src_set_clear_zbufs = src_set_clear_zbufs,
2281 	.src_set_dirty_all = src_set_dirty_all,
2282 	.src_commit_write = src_commit_write,
2283 	.src_get_ca = src_get_ca,
2284 	.src_get_dirty = src_get_dirty,
2285 	.src_dirty_conj_mask = src_dirty_conj_mask,
2286 	.src_mgr_enbs_src = src_mgr_enbs_src,
2287 	.src_mgr_enb_src = src_mgr_enb_src,
2288 	.src_mgr_dsb_src = src_mgr_dsb_src,
2289 	.src_mgr_commit_write = src_mgr_commit_write,
2290 
2291 	.srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2292 	.srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2293 	.srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2294 	.srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2295 	.srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2296 	.srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2297 	.srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2298 
2299 	.amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2300 	.amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2301 	.amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2302 	.amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2303 	.amixer_set_mode = amixer_set_mode,
2304 	.amixer_set_iv = amixer_set_iv,
2305 	.amixer_set_x = amixer_set_x,
2306 	.amixer_set_y = amixer_set_y,
2307 	.amixer_set_sadr = amixer_set_sadr,
2308 	.amixer_set_se = amixer_set_se,
2309 	.amixer_set_dirty = amixer_set_dirty,
2310 	.amixer_set_dirty_all = amixer_set_dirty_all,
2311 	.amixer_commit_write = amixer_commit_write,
2312 	.amixer_get_y = amixer_get_y,
2313 	.amixer_get_dirty = amixer_get_dirty,
2314 
2315 	.dai_get_ctrl_blk = dai_get_ctrl_blk,
2316 	.dai_put_ctrl_blk = dai_put_ctrl_blk,
2317 	.dai_srt_set_srco = dai_srt_set_srco,
2318 	.dai_srt_set_srcm = dai_srt_set_srcm,
2319 	.dai_srt_set_rsr = dai_srt_set_rsr,
2320 	.dai_srt_set_drat = dai_srt_set_drat,
2321 	.dai_srt_set_ec = dai_srt_set_ec,
2322 	.dai_srt_set_et = dai_srt_set_et,
2323 	.dai_commit_write = dai_commit_write,
2324 
2325 	.dao_get_ctrl_blk = dao_get_ctrl_blk,
2326 	.dao_put_ctrl_blk = dao_put_ctrl_blk,
2327 	.dao_set_spos = dao_set_spos,
2328 	.dao_commit_write = dao_commit_write,
2329 	.dao_get_spos = dao_get_spos,
2330 
2331 	.daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2332 	.daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2333 	.daio_mgr_enb_dai = daio_mgr_enb_dai,
2334 	.daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2335 	.daio_mgr_enb_dao = daio_mgr_enb_dao,
2336 	.daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2337 	.daio_mgr_dao_init = daio_mgr_dao_init,
2338 	.daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2339 	.daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2340 	.daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2341 	.daio_mgr_commit_write = daio_mgr_commit_write,
2342 
2343 	.set_timer_irq = set_timer_irq,
2344 	.set_timer_tick = set_timer_tick,
2345 	.get_wc = get_wc,
2346 };
2347 
2348 int create_20k2_hw_obj(struct hw **rhw)
2349 {
2350 	struct hw20k2 *hw20k2;
2351 
2352 	*rhw = NULL;
2353 	hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2354 	if (!hw20k2)
2355 		return -ENOMEM;
2356 
2357 	hw20k2->hw = ct20k2_preset;
2358 	*rhw = &hw20k2->hw;
2359 
2360 	return 0;
2361 }
2362 
2363 int destroy_20k2_hw_obj(struct hw *hw)
2364 {
2365 	if (hw->io_base)
2366 		hw_card_shutdown(hw);
2367 
2368 	kfree(hw);
2369 	return 0;
2370 }
2371