1 /** 2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. 3 * 4 * This source file is released under GPL v2 license (no other versions). 5 * See the COPYING file included in the main directory of this source 6 * distribution for the license terms and conditions. 7 * 8 * @File cthw20k2.c 9 * 10 * @Brief 11 * This file contains the implementation of hardware access method for 20k2. 12 * 13 * @Author Liu Chun 14 * @Date May 14 2008 15 * 16 */ 17 18 #include <linux/types.h> 19 #include <linux/slab.h> 20 #include <linux/pci.h> 21 #include <linux/io.h> 22 #include <linux/string.h> 23 #include <linux/kernel.h> 24 #include <linux/interrupt.h> 25 #include <linux/delay.h> 26 #include "cthw20k2.h" 27 #include "ct20k2reg.h" 28 29 #if BITS_PER_LONG == 32 30 #define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */ 31 #else 32 #define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */ 33 #endif 34 35 struct hw20k2 { 36 struct hw hw; 37 /* for i2c */ 38 unsigned char dev_id; 39 unsigned char addr_size; 40 unsigned char data_size; 41 42 int mic_source; 43 }; 44 45 static u32 hw_read_20kx(struct hw *hw, u32 reg); 46 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data); 47 48 /* 49 * Type definition block. 50 * The layout of control structures can be directly applied on 20k2 chip. 51 */ 52 53 /* 54 * SRC control block definitions. 55 */ 56 57 /* SRC resource control block */ 58 #define SRCCTL_STATE 0x00000007 59 #define SRCCTL_BM 0x00000008 60 #define SRCCTL_RSR 0x00000030 61 #define SRCCTL_SF 0x000001C0 62 #define SRCCTL_WR 0x00000200 63 #define SRCCTL_PM 0x00000400 64 #define SRCCTL_ROM 0x00001800 65 #define SRCCTL_VO 0x00002000 66 #define SRCCTL_ST 0x00004000 67 #define SRCCTL_IE 0x00008000 68 #define SRCCTL_ILSZ 0x000F0000 69 #define SRCCTL_BP 0x00100000 70 71 #define SRCCCR_CISZ 0x000007FF 72 #define SRCCCR_CWA 0x001FF800 73 #define SRCCCR_D 0x00200000 74 #define SRCCCR_RS 0x01C00000 75 #define SRCCCR_NAL 0x3E000000 76 #define SRCCCR_RA 0xC0000000 77 78 #define SRCCA_CA 0x0FFFFFFF 79 #define SRCCA_RS 0xE0000000 80 81 #define SRCSA_SA 0x0FFFFFFF 82 83 #define SRCLA_LA 0x0FFFFFFF 84 85 /* Mixer Parameter Ring ram Low and Hight register. 86 * Fixed-point value in 8.24 format for parameter channel */ 87 #define MPRLH_PITCH 0xFFFFFFFF 88 89 /* SRC resource register dirty flags */ 90 union src_dirty { 91 struct { 92 u16 ctl:1; 93 u16 ccr:1; 94 u16 sa:1; 95 u16 la:1; 96 u16 ca:1; 97 u16 mpr:1; 98 u16 czbfs:1; /* Clear Z-Buffers */ 99 u16 rsv:9; 100 } bf; 101 u16 data; 102 }; 103 104 struct src_rsc_ctrl_blk { 105 unsigned int ctl; 106 unsigned int ccr; 107 unsigned int ca; 108 unsigned int sa; 109 unsigned int la; 110 unsigned int mpr; 111 union src_dirty dirty; 112 }; 113 114 /* SRC manager control block */ 115 union src_mgr_dirty { 116 struct { 117 u16 enb0:1; 118 u16 enb1:1; 119 u16 enb2:1; 120 u16 enb3:1; 121 u16 enb4:1; 122 u16 enb5:1; 123 u16 enb6:1; 124 u16 enb7:1; 125 u16 enbsa:1; 126 u16 rsv:7; 127 } bf; 128 u16 data; 129 }; 130 131 struct src_mgr_ctrl_blk { 132 unsigned int enbsa; 133 unsigned int enb[8]; 134 union src_mgr_dirty dirty; 135 }; 136 137 /* SRCIMP manager control block */ 138 #define SRCAIM_ARC 0x00000FFF 139 #define SRCAIM_NXT 0x00FF0000 140 #define SRCAIM_SRC 0xFF000000 141 142 struct srcimap { 143 unsigned int srcaim; 144 unsigned int idx; 145 }; 146 147 /* SRCIMP manager register dirty flags */ 148 union srcimp_mgr_dirty { 149 struct { 150 u16 srcimap:1; 151 u16 rsv:15; 152 } bf; 153 u16 data; 154 }; 155 156 struct srcimp_mgr_ctrl_blk { 157 struct srcimap srcimap; 158 union srcimp_mgr_dirty dirty; 159 }; 160 161 /* 162 * Function implementation block. 163 */ 164 165 static int src_get_rsc_ctrl_blk(void **rblk) 166 { 167 struct src_rsc_ctrl_blk *blk; 168 169 *rblk = NULL; 170 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 171 if (!blk) 172 return -ENOMEM; 173 174 *rblk = blk; 175 176 return 0; 177 } 178 179 static int src_put_rsc_ctrl_blk(void *blk) 180 { 181 kfree(blk); 182 183 return 0; 184 } 185 186 static int src_set_state(void *blk, unsigned int state) 187 { 188 struct src_rsc_ctrl_blk *ctl = blk; 189 190 set_field(&ctl->ctl, SRCCTL_STATE, state); 191 ctl->dirty.bf.ctl = 1; 192 return 0; 193 } 194 195 static int src_set_bm(void *blk, unsigned int bm) 196 { 197 struct src_rsc_ctrl_blk *ctl = blk; 198 199 set_field(&ctl->ctl, SRCCTL_BM, bm); 200 ctl->dirty.bf.ctl = 1; 201 return 0; 202 } 203 204 static int src_set_rsr(void *blk, unsigned int rsr) 205 { 206 struct src_rsc_ctrl_blk *ctl = blk; 207 208 set_field(&ctl->ctl, SRCCTL_RSR, rsr); 209 ctl->dirty.bf.ctl = 1; 210 return 0; 211 } 212 213 static int src_set_sf(void *blk, unsigned int sf) 214 { 215 struct src_rsc_ctrl_blk *ctl = blk; 216 217 set_field(&ctl->ctl, SRCCTL_SF, sf); 218 ctl->dirty.bf.ctl = 1; 219 return 0; 220 } 221 222 static int src_set_wr(void *blk, unsigned int wr) 223 { 224 struct src_rsc_ctrl_blk *ctl = blk; 225 226 set_field(&ctl->ctl, SRCCTL_WR, wr); 227 ctl->dirty.bf.ctl = 1; 228 return 0; 229 } 230 231 static int src_set_pm(void *blk, unsigned int pm) 232 { 233 struct src_rsc_ctrl_blk *ctl = blk; 234 235 set_field(&ctl->ctl, SRCCTL_PM, pm); 236 ctl->dirty.bf.ctl = 1; 237 return 0; 238 } 239 240 static int src_set_rom(void *blk, unsigned int rom) 241 { 242 struct src_rsc_ctrl_blk *ctl = blk; 243 244 set_field(&ctl->ctl, SRCCTL_ROM, rom); 245 ctl->dirty.bf.ctl = 1; 246 return 0; 247 } 248 249 static int src_set_vo(void *blk, unsigned int vo) 250 { 251 struct src_rsc_ctrl_blk *ctl = blk; 252 253 set_field(&ctl->ctl, SRCCTL_VO, vo); 254 ctl->dirty.bf.ctl = 1; 255 return 0; 256 } 257 258 static int src_set_st(void *blk, unsigned int st) 259 { 260 struct src_rsc_ctrl_blk *ctl = blk; 261 262 set_field(&ctl->ctl, SRCCTL_ST, st); 263 ctl->dirty.bf.ctl = 1; 264 return 0; 265 } 266 267 static int src_set_ie(void *blk, unsigned int ie) 268 { 269 struct src_rsc_ctrl_blk *ctl = blk; 270 271 set_field(&ctl->ctl, SRCCTL_IE, ie); 272 ctl->dirty.bf.ctl = 1; 273 return 0; 274 } 275 276 static int src_set_ilsz(void *blk, unsigned int ilsz) 277 { 278 struct src_rsc_ctrl_blk *ctl = blk; 279 280 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz); 281 ctl->dirty.bf.ctl = 1; 282 return 0; 283 } 284 285 static int src_set_bp(void *blk, unsigned int bp) 286 { 287 struct src_rsc_ctrl_blk *ctl = blk; 288 289 set_field(&ctl->ctl, SRCCTL_BP, bp); 290 ctl->dirty.bf.ctl = 1; 291 return 0; 292 } 293 294 static int src_set_cisz(void *blk, unsigned int cisz) 295 { 296 struct src_rsc_ctrl_blk *ctl = blk; 297 298 set_field(&ctl->ccr, SRCCCR_CISZ, cisz); 299 ctl->dirty.bf.ccr = 1; 300 return 0; 301 } 302 303 static int src_set_ca(void *blk, unsigned int ca) 304 { 305 struct src_rsc_ctrl_blk *ctl = blk; 306 307 set_field(&ctl->ca, SRCCA_CA, ca); 308 ctl->dirty.bf.ca = 1; 309 return 0; 310 } 311 312 static int src_set_sa(void *blk, unsigned int sa) 313 { 314 struct src_rsc_ctrl_blk *ctl = blk; 315 316 set_field(&ctl->sa, SRCSA_SA, sa); 317 ctl->dirty.bf.sa = 1; 318 return 0; 319 } 320 321 static int src_set_la(void *blk, unsigned int la) 322 { 323 struct src_rsc_ctrl_blk *ctl = blk; 324 325 set_field(&ctl->la, SRCLA_LA, la); 326 ctl->dirty.bf.la = 1; 327 return 0; 328 } 329 330 static int src_set_pitch(void *blk, unsigned int pitch) 331 { 332 struct src_rsc_ctrl_blk *ctl = blk; 333 334 set_field(&ctl->mpr, MPRLH_PITCH, pitch); 335 ctl->dirty.bf.mpr = 1; 336 return 0; 337 } 338 339 static int src_set_clear_zbufs(void *blk, unsigned int clear) 340 { 341 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0); 342 return 0; 343 } 344 345 static int src_set_dirty(void *blk, unsigned int flags) 346 { 347 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 348 return 0; 349 } 350 351 static int src_set_dirty_all(void *blk) 352 { 353 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 354 return 0; 355 } 356 357 #define AR_SLOT_SIZE 4096 358 #define AR_SLOT_BLOCK_SIZE 16 359 #define AR_PTS_PITCH 6 360 #define AR_PARAM_SRC_OFFSET 0x60 361 362 static unsigned int src_param_pitch_mixer(unsigned int src_idx) 363 { 364 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE 365 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE; 366 367 } 368 369 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk) 370 { 371 struct src_rsc_ctrl_blk *ctl = blk; 372 int i; 373 374 if (ctl->dirty.bf.czbfs) { 375 /* Clear Z-Buffer registers */ 376 for (i = 0; i < 8; i++) 377 hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0); 378 379 for (i = 0; i < 4; i++) 380 hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0); 381 382 for (i = 0; i < 8; i++) 383 hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0); 384 385 ctl->dirty.bf.czbfs = 0; 386 } 387 if (ctl->dirty.bf.mpr) { 388 /* Take the parameter mixer resource in the same group as that 389 * the idx src is in for simplicity. Unlike src, all conjugate 390 * parameter mixer resources must be programmed for 391 * corresponding conjugate src resources. */ 392 unsigned int pm_idx = src_param_pitch_mixer(idx); 393 hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr); 394 hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3); 395 hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0); 396 ctl->dirty.bf.mpr = 0; 397 } 398 if (ctl->dirty.bf.sa) { 399 hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa); 400 ctl->dirty.bf.sa = 0; 401 } 402 if (ctl->dirty.bf.la) { 403 hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la); 404 ctl->dirty.bf.la = 0; 405 } 406 if (ctl->dirty.bf.ca) { 407 hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca); 408 ctl->dirty.bf.ca = 0; 409 } 410 411 /* Write srccf register */ 412 hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0); 413 414 if (ctl->dirty.bf.ccr) { 415 hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr); 416 ctl->dirty.bf.ccr = 0; 417 } 418 if (ctl->dirty.bf.ctl) { 419 hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl); 420 ctl->dirty.bf.ctl = 0; 421 } 422 423 return 0; 424 } 425 426 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk) 427 { 428 struct src_rsc_ctrl_blk *ctl = blk; 429 430 ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100); 431 ctl->dirty.bf.ca = 0; 432 433 return get_field(ctl->ca, SRCCA_CA); 434 } 435 436 static unsigned int src_get_dirty(void *blk) 437 { 438 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data; 439 } 440 441 static unsigned int src_dirty_conj_mask(void) 442 { 443 return 0x20; 444 } 445 446 static int src_mgr_enbs_src(void *blk, unsigned int idx) 447 { 448 ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4)); 449 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1; 450 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 451 return 0; 452 } 453 454 static int src_mgr_enb_src(void *blk, unsigned int idx) 455 { 456 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 457 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 458 return 0; 459 } 460 461 static int src_mgr_dsb_src(void *blk, unsigned int idx) 462 { 463 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32)); 464 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 465 return 0; 466 } 467 468 static int src_mgr_commit_write(struct hw *hw, void *blk) 469 { 470 struct src_mgr_ctrl_blk *ctl = blk; 471 int i; 472 unsigned int ret; 473 474 if (ctl->dirty.bf.enbsa) { 475 do { 476 ret = hw_read_20kx(hw, SRC_ENBSTAT); 477 } while (ret & 0x1); 478 hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa); 479 ctl->dirty.bf.enbsa = 0; 480 } 481 for (i = 0; i < 8; i++) { 482 if ((ctl->dirty.data & (0x1 << i))) { 483 hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]); 484 ctl->dirty.data &= ~(0x1 << i); 485 } 486 } 487 488 return 0; 489 } 490 491 static int src_mgr_get_ctrl_blk(void **rblk) 492 { 493 struct src_mgr_ctrl_blk *blk; 494 495 *rblk = NULL; 496 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 497 if (!blk) 498 return -ENOMEM; 499 500 *rblk = blk; 501 502 return 0; 503 } 504 505 static int src_mgr_put_ctrl_blk(void *blk) 506 { 507 kfree(blk); 508 509 return 0; 510 } 511 512 static int srcimp_mgr_get_ctrl_blk(void **rblk) 513 { 514 struct srcimp_mgr_ctrl_blk *blk; 515 516 *rblk = NULL; 517 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 518 if (!blk) 519 return -ENOMEM; 520 521 *rblk = blk; 522 523 return 0; 524 } 525 526 static int srcimp_mgr_put_ctrl_blk(void *blk) 527 { 528 kfree(blk); 529 530 return 0; 531 } 532 533 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot) 534 { 535 struct srcimp_mgr_ctrl_blk *ctl = blk; 536 537 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot); 538 ctl->dirty.bf.srcimap = 1; 539 return 0; 540 } 541 542 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user) 543 { 544 struct srcimp_mgr_ctrl_blk *ctl = blk; 545 546 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user); 547 ctl->dirty.bf.srcimap = 1; 548 return 0; 549 } 550 551 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next) 552 { 553 struct srcimp_mgr_ctrl_blk *ctl = blk; 554 555 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next); 556 ctl->dirty.bf.srcimap = 1; 557 return 0; 558 } 559 560 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr) 561 { 562 ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr; 563 ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1; 564 return 0; 565 } 566 567 static int srcimp_mgr_commit_write(struct hw *hw, void *blk) 568 { 569 struct srcimp_mgr_ctrl_blk *ctl = blk; 570 571 if (ctl->dirty.bf.srcimap) { 572 hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100, 573 ctl->srcimap.srcaim); 574 ctl->dirty.bf.srcimap = 0; 575 } 576 577 return 0; 578 } 579 580 /* 581 * AMIXER control block definitions. 582 */ 583 584 #define AMOPLO_M 0x00000003 585 #define AMOPLO_IV 0x00000004 586 #define AMOPLO_X 0x0003FFF0 587 #define AMOPLO_Y 0xFFFC0000 588 589 #define AMOPHI_SADR 0x000000FF 590 #define AMOPHI_SE 0x80000000 591 592 /* AMIXER resource register dirty flags */ 593 union amixer_dirty { 594 struct { 595 u16 amoplo:1; 596 u16 amophi:1; 597 u16 rsv:14; 598 } bf; 599 u16 data; 600 }; 601 602 /* AMIXER resource control block */ 603 struct amixer_rsc_ctrl_blk { 604 unsigned int amoplo; 605 unsigned int amophi; 606 union amixer_dirty dirty; 607 }; 608 609 static int amixer_set_mode(void *blk, unsigned int mode) 610 { 611 struct amixer_rsc_ctrl_blk *ctl = blk; 612 613 set_field(&ctl->amoplo, AMOPLO_M, mode); 614 ctl->dirty.bf.amoplo = 1; 615 return 0; 616 } 617 618 static int amixer_set_iv(void *blk, unsigned int iv) 619 { 620 struct amixer_rsc_ctrl_blk *ctl = blk; 621 622 set_field(&ctl->amoplo, AMOPLO_IV, iv); 623 ctl->dirty.bf.amoplo = 1; 624 return 0; 625 } 626 627 static int amixer_set_x(void *blk, unsigned int x) 628 { 629 struct amixer_rsc_ctrl_blk *ctl = blk; 630 631 set_field(&ctl->amoplo, AMOPLO_X, x); 632 ctl->dirty.bf.amoplo = 1; 633 return 0; 634 } 635 636 static int amixer_set_y(void *blk, unsigned int y) 637 { 638 struct amixer_rsc_ctrl_blk *ctl = blk; 639 640 set_field(&ctl->amoplo, AMOPLO_Y, y); 641 ctl->dirty.bf.amoplo = 1; 642 return 0; 643 } 644 645 static int amixer_set_sadr(void *blk, unsigned int sadr) 646 { 647 struct amixer_rsc_ctrl_blk *ctl = blk; 648 649 set_field(&ctl->amophi, AMOPHI_SADR, sadr); 650 ctl->dirty.bf.amophi = 1; 651 return 0; 652 } 653 654 static int amixer_set_se(void *blk, unsigned int se) 655 { 656 struct amixer_rsc_ctrl_blk *ctl = blk; 657 658 set_field(&ctl->amophi, AMOPHI_SE, se); 659 ctl->dirty.bf.amophi = 1; 660 return 0; 661 } 662 663 static int amixer_set_dirty(void *blk, unsigned int flags) 664 { 665 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 666 return 0; 667 } 668 669 static int amixer_set_dirty_all(void *blk) 670 { 671 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 672 return 0; 673 } 674 675 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk) 676 { 677 struct amixer_rsc_ctrl_blk *ctl = blk; 678 679 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) { 680 hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo); 681 ctl->dirty.bf.amoplo = 0; 682 hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi); 683 ctl->dirty.bf.amophi = 0; 684 } 685 686 return 0; 687 } 688 689 static int amixer_get_y(void *blk) 690 { 691 struct amixer_rsc_ctrl_blk *ctl = blk; 692 693 return get_field(ctl->amoplo, AMOPLO_Y); 694 } 695 696 static unsigned int amixer_get_dirty(void *blk) 697 { 698 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data; 699 } 700 701 static int amixer_rsc_get_ctrl_blk(void **rblk) 702 { 703 struct amixer_rsc_ctrl_blk *blk; 704 705 *rblk = NULL; 706 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 707 if (!blk) 708 return -ENOMEM; 709 710 *rblk = blk; 711 712 return 0; 713 } 714 715 static int amixer_rsc_put_ctrl_blk(void *blk) 716 { 717 kfree(blk); 718 719 return 0; 720 } 721 722 static int amixer_mgr_get_ctrl_blk(void **rblk) 723 { 724 *rblk = NULL; 725 726 return 0; 727 } 728 729 static int amixer_mgr_put_ctrl_blk(void *blk) 730 { 731 return 0; 732 } 733 734 /* 735 * DAIO control block definitions. 736 */ 737 738 /* Receiver Sample Rate Tracker Control register */ 739 #define SRTCTL_SRCO 0x000000FF 740 #define SRTCTL_SRCM 0x0000FF00 741 #define SRTCTL_RSR 0x00030000 742 #define SRTCTL_DRAT 0x00300000 743 #define SRTCTL_EC 0x01000000 744 #define SRTCTL_ET 0x10000000 745 746 /* DAIO Receiver register dirty flags */ 747 union dai_dirty { 748 struct { 749 u16 srt:1; 750 u16 rsv:15; 751 } bf; 752 u16 data; 753 }; 754 755 /* DAIO Receiver control block */ 756 struct dai_ctrl_blk { 757 unsigned int srt; 758 union dai_dirty dirty; 759 }; 760 761 /* Audio Input Mapper RAM */ 762 #define AIM_ARC 0x00000FFF 763 #define AIM_NXT 0x007F0000 764 765 struct daoimap { 766 unsigned int aim; 767 unsigned int idx; 768 }; 769 770 /* Audio Transmitter Control and Status register */ 771 #define ATXCTL_EN 0x00000001 772 #define ATXCTL_MODE 0x00000010 773 #define ATXCTL_CD 0x00000020 774 #define ATXCTL_RAW 0x00000100 775 #define ATXCTL_MT 0x00000200 776 #define ATXCTL_NUC 0x00003000 777 #define ATXCTL_BEN 0x00010000 778 #define ATXCTL_BMUX 0x00700000 779 #define ATXCTL_B24 0x01000000 780 #define ATXCTL_CPF 0x02000000 781 #define ATXCTL_RIV 0x10000000 782 #define ATXCTL_LIV 0x20000000 783 #define ATXCTL_RSAT 0x40000000 784 #define ATXCTL_LSAT 0x80000000 785 786 /* XDIF Transmitter register dirty flags */ 787 union dao_dirty { 788 struct { 789 u16 atxcsl:1; 790 u16 rsv:15; 791 } bf; 792 u16 data; 793 }; 794 795 /* XDIF Transmitter control block */ 796 struct dao_ctrl_blk { 797 /* XDIF Transmitter Channel Status Low Register */ 798 unsigned int atxcsl; 799 union dao_dirty dirty; 800 }; 801 802 /* Audio Receiver Control register */ 803 #define ARXCTL_EN 0x00000001 804 805 /* DAIO manager register dirty flags */ 806 union daio_mgr_dirty { 807 struct { 808 u32 atxctl:8; 809 u32 arxctl:8; 810 u32 daoimap:1; 811 u32 rsv:15; 812 } bf; 813 u32 data; 814 }; 815 816 /* DAIO manager control block */ 817 struct daio_mgr_ctrl_blk { 818 struct daoimap daoimap; 819 unsigned int txctl[8]; 820 unsigned int rxctl[8]; 821 union daio_mgr_dirty dirty; 822 }; 823 824 static int dai_srt_set_srco(void *blk, unsigned int src) 825 { 826 struct dai_ctrl_blk *ctl = blk; 827 828 set_field(&ctl->srt, SRTCTL_SRCO, src); 829 ctl->dirty.bf.srt = 1; 830 return 0; 831 } 832 833 static int dai_srt_set_srcm(void *blk, unsigned int src) 834 { 835 struct dai_ctrl_blk *ctl = blk; 836 837 set_field(&ctl->srt, SRTCTL_SRCM, src); 838 ctl->dirty.bf.srt = 1; 839 return 0; 840 } 841 842 static int dai_srt_set_rsr(void *blk, unsigned int rsr) 843 { 844 struct dai_ctrl_blk *ctl = blk; 845 846 set_field(&ctl->srt, SRTCTL_RSR, rsr); 847 ctl->dirty.bf.srt = 1; 848 return 0; 849 } 850 851 static int dai_srt_set_drat(void *blk, unsigned int drat) 852 { 853 struct dai_ctrl_blk *ctl = blk; 854 855 set_field(&ctl->srt, SRTCTL_DRAT, drat); 856 ctl->dirty.bf.srt = 1; 857 return 0; 858 } 859 860 static int dai_srt_set_ec(void *blk, unsigned int ec) 861 { 862 struct dai_ctrl_blk *ctl = blk; 863 864 set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0); 865 ctl->dirty.bf.srt = 1; 866 return 0; 867 } 868 869 static int dai_srt_set_et(void *blk, unsigned int et) 870 { 871 struct dai_ctrl_blk *ctl = blk; 872 873 set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0); 874 ctl->dirty.bf.srt = 1; 875 return 0; 876 } 877 878 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk) 879 { 880 struct dai_ctrl_blk *ctl = blk; 881 882 if (ctl->dirty.bf.srt) { 883 hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt); 884 ctl->dirty.bf.srt = 0; 885 } 886 887 return 0; 888 } 889 890 static int dai_get_ctrl_blk(void **rblk) 891 { 892 struct dai_ctrl_blk *blk; 893 894 *rblk = NULL; 895 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 896 if (!blk) 897 return -ENOMEM; 898 899 *rblk = blk; 900 901 return 0; 902 } 903 904 static int dai_put_ctrl_blk(void *blk) 905 { 906 kfree(blk); 907 908 return 0; 909 } 910 911 static int dao_set_spos(void *blk, unsigned int spos) 912 { 913 ((struct dao_ctrl_blk *)blk)->atxcsl = spos; 914 ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1; 915 return 0; 916 } 917 918 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk) 919 { 920 struct dao_ctrl_blk *ctl = blk; 921 922 if (ctl->dirty.bf.atxcsl) { 923 if (idx < 4) { 924 /* S/PDIF SPOSx */ 925 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx, 926 ctl->atxcsl); 927 } 928 ctl->dirty.bf.atxcsl = 0; 929 } 930 931 return 0; 932 } 933 934 static int dao_get_spos(void *blk, unsigned int *spos) 935 { 936 *spos = ((struct dao_ctrl_blk *)blk)->atxcsl; 937 return 0; 938 } 939 940 static int dao_get_ctrl_blk(void **rblk) 941 { 942 struct dao_ctrl_blk *blk; 943 944 *rblk = NULL; 945 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 946 if (!blk) 947 return -ENOMEM; 948 949 *rblk = blk; 950 951 return 0; 952 } 953 954 static int dao_put_ctrl_blk(void *blk) 955 { 956 kfree(blk); 957 958 return 0; 959 } 960 961 static int daio_mgr_enb_dai(void *blk, unsigned int idx) 962 { 963 struct daio_mgr_ctrl_blk *ctl = blk; 964 965 set_field(&ctl->rxctl[idx], ARXCTL_EN, 1); 966 ctl->dirty.bf.arxctl |= (0x1 << idx); 967 return 0; 968 } 969 970 static int daio_mgr_dsb_dai(void *blk, unsigned int idx) 971 { 972 struct daio_mgr_ctrl_blk *ctl = blk; 973 974 set_field(&ctl->rxctl[idx], ARXCTL_EN, 0); 975 976 ctl->dirty.bf.arxctl |= (0x1 << idx); 977 return 0; 978 } 979 980 static int daio_mgr_enb_dao(void *blk, unsigned int idx) 981 { 982 struct daio_mgr_ctrl_blk *ctl = blk; 983 984 set_field(&ctl->txctl[idx], ATXCTL_EN, 1); 985 ctl->dirty.bf.atxctl |= (0x1 << idx); 986 return 0; 987 } 988 989 static int daio_mgr_dsb_dao(void *blk, unsigned int idx) 990 { 991 struct daio_mgr_ctrl_blk *ctl = blk; 992 993 set_field(&ctl->txctl[idx], ATXCTL_EN, 0); 994 ctl->dirty.bf.atxctl |= (0x1 << idx); 995 return 0; 996 } 997 998 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf) 999 { 1000 struct daio_mgr_ctrl_blk *ctl = blk; 1001 1002 if (idx < 4) { 1003 /* S/PDIF output */ 1004 switch ((conf & 0x7)) { 1005 case 1: 1006 set_field(&ctl->txctl[idx], ATXCTL_NUC, 0); 1007 break; 1008 case 2: 1009 set_field(&ctl->txctl[idx], ATXCTL_NUC, 1); 1010 break; 1011 case 4: 1012 set_field(&ctl->txctl[idx], ATXCTL_NUC, 2); 1013 break; 1014 case 8: 1015 set_field(&ctl->txctl[idx], ATXCTL_NUC, 3); 1016 break; 1017 default: 1018 break; 1019 } 1020 /* CDIF */ 1021 set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7))); 1022 /* Non-audio */ 1023 set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1); 1024 /* Non-audio */ 1025 set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1); 1026 set_field(&ctl->txctl[idx], ATXCTL_RAW, 1027 ((conf >> 3) & 0x1) ? 0 : 0); 1028 ctl->dirty.bf.atxctl |= (0x1 << idx); 1029 } else { 1030 /* I2S output */ 1031 /*idx %= 4; */ 1032 } 1033 return 0; 1034 } 1035 1036 static int daio_mgr_set_imaparc(void *blk, unsigned int slot) 1037 { 1038 struct daio_mgr_ctrl_blk *ctl = blk; 1039 1040 set_field(&ctl->daoimap.aim, AIM_ARC, slot); 1041 ctl->dirty.bf.daoimap = 1; 1042 return 0; 1043 } 1044 1045 static int daio_mgr_set_imapnxt(void *blk, unsigned int next) 1046 { 1047 struct daio_mgr_ctrl_blk *ctl = blk; 1048 1049 set_field(&ctl->daoimap.aim, AIM_NXT, next); 1050 ctl->dirty.bf.daoimap = 1; 1051 return 0; 1052 } 1053 1054 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr) 1055 { 1056 ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr; 1057 ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1; 1058 return 0; 1059 } 1060 1061 static int daio_mgr_commit_write(struct hw *hw, void *blk) 1062 { 1063 struct daio_mgr_ctrl_blk *ctl = blk; 1064 unsigned int data; 1065 int i; 1066 1067 for (i = 0; i < 8; i++) { 1068 if ((ctl->dirty.bf.atxctl & (0x1 << i))) { 1069 data = ctl->txctl[i]; 1070 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data); 1071 ctl->dirty.bf.atxctl &= ~(0x1 << i); 1072 mdelay(1); 1073 } 1074 if ((ctl->dirty.bf.arxctl & (0x1 << i))) { 1075 data = ctl->rxctl[i]; 1076 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data); 1077 ctl->dirty.bf.arxctl &= ~(0x1 << i); 1078 mdelay(1); 1079 } 1080 } 1081 if (ctl->dirty.bf.daoimap) { 1082 hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4, 1083 ctl->daoimap.aim); 1084 ctl->dirty.bf.daoimap = 0; 1085 } 1086 1087 return 0; 1088 } 1089 1090 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk) 1091 { 1092 struct daio_mgr_ctrl_blk *blk; 1093 int i; 1094 1095 *rblk = NULL; 1096 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 1097 if (!blk) 1098 return -ENOMEM; 1099 1100 for (i = 0; i < 8; i++) { 1101 blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i)); 1102 blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i)); 1103 } 1104 1105 *rblk = blk; 1106 1107 return 0; 1108 } 1109 1110 static int daio_mgr_put_ctrl_blk(void *blk) 1111 { 1112 kfree(blk); 1113 1114 return 0; 1115 } 1116 1117 /* Timer interrupt */ 1118 static int set_timer_irq(struct hw *hw, int enable) 1119 { 1120 hw_write_20kx(hw, GIE, enable ? IT_INT : 0); 1121 return 0; 1122 } 1123 1124 static int set_timer_tick(struct hw *hw, unsigned int ticks) 1125 { 1126 if (ticks) 1127 ticks |= TIMR_IE | TIMR_IP; 1128 hw_write_20kx(hw, TIMR, ticks); 1129 return 0; 1130 } 1131 1132 static unsigned int get_wc(struct hw *hw) 1133 { 1134 return hw_read_20kx(hw, WC); 1135 } 1136 1137 /* Card hardware initialization block */ 1138 struct dac_conf { 1139 unsigned int msr; /* master sample rate in rsrs */ 1140 }; 1141 1142 struct adc_conf { 1143 unsigned int msr; /* master sample rate in rsrs */ 1144 unsigned char input; /* the input source of ADC */ 1145 unsigned char mic20db; /* boost mic by 20db if input is microphone */ 1146 }; 1147 1148 struct daio_conf { 1149 unsigned int msr; /* master sample rate in rsrs */ 1150 }; 1151 1152 struct trn_conf { 1153 unsigned long vm_pgt_phys; 1154 }; 1155 1156 static int hw_daio_init(struct hw *hw, const struct daio_conf *info) 1157 { 1158 u32 data; 1159 int i; 1160 1161 /* Program I2S with proper sample rate and enable the correct I2S 1162 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */ 1163 if (1 == info->msr) { 1164 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101); 1165 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101); 1166 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); 1167 } else if (2 == info->msr) { 1168 if (hw->model != CTSB1270) { 1169 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111); 1170 } else { 1171 /* PCM4220 on Titanium HD is different. */ 1172 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111); 1173 } 1174 /* Specify all playing 96khz 1175 * EA [0] - Enabled 1176 * RTA [4:5] - 96kHz 1177 * EB [8] - Enabled 1178 * RTB [12:13] - 96kHz 1179 * EC [16] - Enabled 1180 * RTC [20:21] - 96kHz 1181 * ED [24] - Enabled 1182 * RTD [28:29] - 96kHz */ 1183 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111); 1184 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); 1185 } else if ((4 == info->msr) && (hw->model == CTSB1270)) { 1186 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111); 1187 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121); 1188 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); 1189 } else { 1190 dev_alert(hw->card->dev, 1191 "ERROR!!! Invalid sampling rate!!!\n"); 1192 return -EINVAL; 1193 } 1194 1195 for (i = 0; i < 8; i++) { 1196 if (i <= 3) { 1197 /* This comment looks wrong since loop is over 4 */ 1198 /* channels and emu20k2 supports 4 spdif IOs. */ 1199 /* 1st 3 channels are SPDIFs (SB0960) */ 1200 if (i == 3) 1201 data = 0x1001001; 1202 else 1203 data = 0x1000001; 1204 1205 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data); 1206 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data); 1207 1208 /* Initialize the SPDIF Out Channel status registers. 1209 * The value specified here is based on the typical 1210 * values provided in the specification, namely: Clock 1211 * Accuracy of 1000ppm, Sample Rate of 48KHz, 1212 * unspecified source number, Generation status = 1, 1213 * Category code = 0x12 (Digital Signal Mixer), 1214 * Mode = 0, Emph = 0, Copy Permitted, AN = 0 1215 * (indicating that we're transmitting digital audio, 1216 * and the Professional Use bit is 0. */ 1217 1218 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i), 1219 0x02109204); /* Default to 48kHz */ 1220 1221 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B); 1222 } else { 1223 /* Again, loop is over 4 channels not 5. */ 1224 /* Next 5 channels are I2S (SB0960) */ 1225 data = 0x11; 1226 hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data); 1227 if (2 == info->msr) { 1228 /* Four channels per sample period */ 1229 data |= 0x1000; 1230 } else if (4 == info->msr) { 1231 /* FIXME: check this against the chip spec */ 1232 data |= 0x2000; 1233 } 1234 hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data); 1235 } 1236 } 1237 1238 return 0; 1239 } 1240 1241 /* TRANSPORT operations */ 1242 static int hw_trn_init(struct hw *hw, const struct trn_conf *info) 1243 { 1244 u32 vmctl, data; 1245 u32 ptp_phys_low, ptp_phys_high; 1246 int i; 1247 1248 /* Set up device page table */ 1249 if ((~0UL) == info->vm_pgt_phys) { 1250 dev_alert(hw->card->dev, 1251 "Wrong device page table page address!!!\n"); 1252 return -1; 1253 } 1254 1255 vmctl = 0x80000C0F; /* 32-bit, 4k-size page */ 1256 ptp_phys_low = (u32)info->vm_pgt_phys; 1257 ptp_phys_high = upper_32_bits(info->vm_pgt_phys); 1258 if (sizeof(void *) == 8) /* 64bit address */ 1259 vmctl |= (3 << 8); 1260 /* Write page table physical address to all PTPAL registers */ 1261 for (i = 0; i < 64; i++) { 1262 hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low); 1263 hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high); 1264 } 1265 /* Enable virtual memory transfer */ 1266 hw_write_20kx(hw, VMEM_CTL, vmctl); 1267 /* Enable transport bus master and queueing of request */ 1268 hw_write_20kx(hw, TRANSPORT_CTL, 0x03); 1269 hw_write_20kx(hw, TRANSPORT_INT, 0x200c01); 1270 /* Enable transport ring */ 1271 data = hw_read_20kx(hw, TRANSPORT_ENB); 1272 hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03)); 1273 1274 return 0; 1275 } 1276 1277 /* Card initialization */ 1278 #define GCTL_AIE 0x00000001 1279 #define GCTL_UAA 0x00000002 1280 #define GCTL_DPC 0x00000004 1281 #define GCTL_DBP 0x00000008 1282 #define GCTL_ABP 0x00000010 1283 #define GCTL_TBP 0x00000020 1284 #define GCTL_SBP 0x00000040 1285 #define GCTL_FBP 0x00000080 1286 #define GCTL_ME 0x00000100 1287 #define GCTL_AID 0x00001000 1288 1289 #define PLLCTL_SRC 0x00000007 1290 #define PLLCTL_SPE 0x00000008 1291 #define PLLCTL_RD 0x000000F0 1292 #define PLLCTL_FD 0x0001FF00 1293 #define PLLCTL_OD 0x00060000 1294 #define PLLCTL_B 0x00080000 1295 #define PLLCTL_AS 0x00100000 1296 #define PLLCTL_LF 0x03E00000 1297 #define PLLCTL_SPS 0x1C000000 1298 #define PLLCTL_AD 0x60000000 1299 1300 #define PLLSTAT_CCS 0x00000007 1301 #define PLLSTAT_SPL 0x00000008 1302 #define PLLSTAT_CRD 0x000000F0 1303 #define PLLSTAT_CFD 0x0001FF00 1304 #define PLLSTAT_SL 0x00020000 1305 #define PLLSTAT_FAS 0x00040000 1306 #define PLLSTAT_B 0x00080000 1307 #define PLLSTAT_PD 0x00100000 1308 #define PLLSTAT_OCA 0x00200000 1309 #define PLLSTAT_NCA 0x00400000 1310 1311 static int hw_pll_init(struct hw *hw, unsigned int rsr) 1312 { 1313 unsigned int pllenb; 1314 unsigned int pllctl; 1315 unsigned int pllstat; 1316 int i; 1317 1318 pllenb = 0xB; 1319 hw_write_20kx(hw, PLL_ENB, pllenb); 1320 pllctl = 0x20C00000; 1321 set_field(&pllctl, PLLCTL_B, 0); 1322 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4); 1323 set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1); 1324 hw_write_20kx(hw, PLL_CTL, pllctl); 1325 mdelay(40); 1326 1327 pllctl = hw_read_20kx(hw, PLL_CTL); 1328 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2); 1329 hw_write_20kx(hw, PLL_CTL, pllctl); 1330 mdelay(40); 1331 1332 for (i = 0; i < 1000; i++) { 1333 pllstat = hw_read_20kx(hw, PLL_STAT); 1334 if (get_field(pllstat, PLLSTAT_PD)) 1335 continue; 1336 1337 if (get_field(pllstat, PLLSTAT_B) != 1338 get_field(pllctl, PLLCTL_B)) 1339 continue; 1340 1341 if (get_field(pllstat, PLLSTAT_CCS) != 1342 get_field(pllctl, PLLCTL_SRC)) 1343 continue; 1344 1345 if (get_field(pllstat, PLLSTAT_CRD) != 1346 get_field(pllctl, PLLCTL_RD)) 1347 continue; 1348 1349 if (get_field(pllstat, PLLSTAT_CFD) != 1350 get_field(pllctl, PLLCTL_FD)) 1351 continue; 1352 1353 break; 1354 } 1355 if (i >= 1000) { 1356 dev_alert(hw->card->dev, 1357 "PLL initialization failed!!!\n"); 1358 return -EBUSY; 1359 } 1360 1361 return 0; 1362 } 1363 1364 static int hw_auto_init(struct hw *hw) 1365 { 1366 unsigned int gctl; 1367 int i; 1368 1369 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 1370 set_field(&gctl, GCTL_AIE, 0); 1371 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 1372 set_field(&gctl, GCTL_AIE, 1); 1373 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 1374 mdelay(10); 1375 for (i = 0; i < 400000; i++) { 1376 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 1377 if (get_field(gctl, GCTL_AID)) 1378 break; 1379 } 1380 if (!get_field(gctl, GCTL_AID)) { 1381 dev_alert(hw->card->dev, "Card Auto-init failed!!!\n"); 1382 return -EBUSY; 1383 } 1384 1385 return 0; 1386 } 1387 1388 /* DAC operations */ 1389 1390 #define CS4382_MC1 0x1 1391 #define CS4382_MC2 0x2 1392 #define CS4382_MC3 0x3 1393 #define CS4382_FC 0x4 1394 #define CS4382_IC 0x5 1395 #define CS4382_XC1 0x6 1396 #define CS4382_VCA1 0x7 1397 #define CS4382_VCB1 0x8 1398 #define CS4382_XC2 0x9 1399 #define CS4382_VCA2 0xA 1400 #define CS4382_VCB2 0xB 1401 #define CS4382_XC3 0xC 1402 #define CS4382_VCA3 0xD 1403 #define CS4382_VCB3 0xE 1404 #define CS4382_XC4 0xF 1405 #define CS4382_VCA4 0x10 1406 #define CS4382_VCB4 0x11 1407 #define CS4382_CREV 0x12 1408 1409 /* I2C status */ 1410 #define STATE_LOCKED 0x00 1411 #define STATE_UNLOCKED 0xAA 1412 #define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */ 1413 #define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */ 1414 1415 #define I2C_STATUS_DCM 0x00000001 1416 #define I2C_STATUS_BC 0x00000006 1417 #define I2C_STATUS_APD 0x00000008 1418 #define I2C_STATUS_AB 0x00010000 1419 #define I2C_STATUS_DR 0x00800000 1420 1421 #define I2C_ADDRESS_PTAD 0x0000FFFF 1422 #define I2C_ADDRESS_SLAD 0x007F0000 1423 1424 struct regs_cs4382 { 1425 u32 mode_control_1; 1426 u32 mode_control_2; 1427 u32 mode_control_3; 1428 1429 u32 filter_control; 1430 u32 invert_control; 1431 1432 u32 mix_control_P1; 1433 u32 vol_control_A1; 1434 u32 vol_control_B1; 1435 1436 u32 mix_control_P2; 1437 u32 vol_control_A2; 1438 u32 vol_control_B2; 1439 1440 u32 mix_control_P3; 1441 u32 vol_control_A3; 1442 u32 vol_control_B3; 1443 1444 u32 mix_control_P4; 1445 u32 vol_control_A4; 1446 u32 vol_control_B4; 1447 }; 1448 1449 static int hw20k2_i2c_unlock_full_access(struct hw *hw) 1450 { 1451 u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4}; 1452 1453 /* Send keys for forced BIOS mode */ 1454 hw_write_20kx(hw, I2C_IF_WLOCK, 1455 UnlockKeySequence_FLASH_FULLACCESS_MODE[0]); 1456 hw_write_20kx(hw, I2C_IF_WLOCK, 1457 UnlockKeySequence_FLASH_FULLACCESS_MODE[1]); 1458 /* Check whether the chip is unlocked */ 1459 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED) 1460 return 0; 1461 1462 return -1; 1463 } 1464 1465 static int hw20k2_i2c_lock_chip(struct hw *hw) 1466 { 1467 /* Write twice */ 1468 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED); 1469 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED); 1470 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED) 1471 return 0; 1472 1473 return -1; 1474 } 1475 1476 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size) 1477 { 1478 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1479 int err; 1480 unsigned int i2c_status; 1481 unsigned int i2c_addr; 1482 1483 err = hw20k2_i2c_unlock_full_access(hw); 1484 if (err < 0) 1485 return err; 1486 1487 hw20k2->addr_size = addr_size; 1488 hw20k2->data_size = data_size; 1489 hw20k2->dev_id = dev_id; 1490 1491 i2c_addr = 0; 1492 set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id); 1493 1494 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr); 1495 1496 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1497 1498 set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */ 1499 1500 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1501 1502 return 0; 1503 } 1504 1505 static int hw20k2_i2c_uninit(struct hw *hw) 1506 { 1507 unsigned int i2c_status; 1508 unsigned int i2c_addr; 1509 1510 i2c_addr = 0; 1511 set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */ 1512 1513 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr); 1514 1515 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1516 1517 set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */ 1518 1519 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1520 1521 return hw20k2_i2c_lock_chip(hw); 1522 } 1523 1524 static int hw20k2_i2c_wait_data_ready(struct hw *hw) 1525 { 1526 int i = 0x400000; 1527 unsigned int ret; 1528 1529 do { 1530 ret = hw_read_20kx(hw, I2C_IF_STATUS); 1531 } while ((!(ret & DATA_READY)) && --i); 1532 1533 return i; 1534 } 1535 1536 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap) 1537 { 1538 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1539 unsigned int i2c_status; 1540 1541 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1542 set_field(&i2c_status, I2C_STATUS_BC, 1543 (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size); 1544 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1545 if (!hw20k2_i2c_wait_data_ready(hw)) 1546 return -1; 1547 1548 hw_write_20kx(hw, I2C_IF_WDATA, addr); 1549 if (!hw20k2_i2c_wait_data_ready(hw)) 1550 return -1; 1551 1552 /* Force a read operation */ 1553 hw_write_20kx(hw, I2C_IF_RDATA, 0); 1554 if (!hw20k2_i2c_wait_data_ready(hw)) 1555 return -1; 1556 1557 *datap = hw_read_20kx(hw, I2C_IF_RDATA); 1558 1559 return 0; 1560 } 1561 1562 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data) 1563 { 1564 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1565 unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr; 1566 unsigned int i2c_status; 1567 1568 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1569 1570 set_field(&i2c_status, I2C_STATUS_BC, 1571 (4 == (hw20k2->addr_size + hw20k2->data_size)) ? 1572 0 : (hw20k2->addr_size + hw20k2->data_size)); 1573 1574 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1575 hw20k2_i2c_wait_data_ready(hw); 1576 /* Dummy write to trigger the write operation */ 1577 hw_write_20kx(hw, I2C_IF_WDATA, 0); 1578 hw20k2_i2c_wait_data_ready(hw); 1579 1580 /* This is the real data */ 1581 hw_write_20kx(hw, I2C_IF_WDATA, i2c_data); 1582 hw20k2_i2c_wait_data_ready(hw); 1583 1584 return 0; 1585 } 1586 1587 static void hw_dac_stop(struct hw *hw) 1588 { 1589 u32 data; 1590 data = hw_read_20kx(hw, GPIO_DATA); 1591 data &= 0xFFFFFFFD; 1592 hw_write_20kx(hw, GPIO_DATA, data); 1593 mdelay(10); 1594 } 1595 1596 static void hw_dac_start(struct hw *hw) 1597 { 1598 u32 data; 1599 data = hw_read_20kx(hw, GPIO_DATA); 1600 data |= 0x2; 1601 hw_write_20kx(hw, GPIO_DATA, data); 1602 mdelay(50); 1603 } 1604 1605 static void hw_dac_reset(struct hw *hw) 1606 { 1607 hw_dac_stop(hw); 1608 hw_dac_start(hw); 1609 } 1610 1611 static int hw_dac_init(struct hw *hw, const struct dac_conf *info) 1612 { 1613 int err; 1614 u32 data; 1615 int i; 1616 struct regs_cs4382 cs_read = {0}; 1617 struct regs_cs4382 cs_def = { 1618 .mode_control_1 = 0x00000001, /* Mode Control 1 */ 1619 .mode_control_2 = 0x00000000, /* Mode Control 2 */ 1620 .mode_control_3 = 0x00000084, /* Mode Control 3 */ 1621 .filter_control = 0x00000000, /* Filter Control */ 1622 .invert_control = 0x00000000, /* Invert Control */ 1623 .mix_control_P1 = 0x00000024, /* Mixing Control Pair 1 */ 1624 .vol_control_A1 = 0x00000000, /* Vol Control A1 */ 1625 .vol_control_B1 = 0x00000000, /* Vol Control B1 */ 1626 .mix_control_P2 = 0x00000024, /* Mixing Control Pair 2 */ 1627 .vol_control_A2 = 0x00000000, /* Vol Control A2 */ 1628 .vol_control_B2 = 0x00000000, /* Vol Control B2 */ 1629 .mix_control_P3 = 0x00000024, /* Mixing Control Pair 3 */ 1630 .vol_control_A3 = 0x00000000, /* Vol Control A3 */ 1631 .vol_control_B3 = 0x00000000, /* Vol Control B3 */ 1632 .mix_control_P4 = 0x00000024, /* Mixing Control Pair 4 */ 1633 .vol_control_A4 = 0x00000000, /* Vol Control A4 */ 1634 .vol_control_B4 = 0x00000000 /* Vol Control B4 */ 1635 }; 1636 1637 if (hw->model == CTSB1270) { 1638 hw_dac_stop(hw); 1639 data = hw_read_20kx(hw, GPIO_DATA); 1640 data &= ~0x0600; 1641 if (1 == info->msr) 1642 data |= 0x0000; /* Single Speed Mode 0-50kHz */ 1643 else if (2 == info->msr) 1644 data |= 0x0200; /* Double Speed Mode 50-100kHz */ 1645 else 1646 data |= 0x0600; /* Quad Speed Mode 100-200kHz */ 1647 hw_write_20kx(hw, GPIO_DATA, data); 1648 hw_dac_start(hw); 1649 return 0; 1650 } 1651 1652 /* Set DAC reset bit as output */ 1653 data = hw_read_20kx(hw, GPIO_CTRL); 1654 data |= 0x02; 1655 hw_write_20kx(hw, GPIO_CTRL, data); 1656 1657 err = hw20k2_i2c_init(hw, 0x18, 1, 1); 1658 if (err < 0) 1659 goto End; 1660 1661 for (i = 0; i < 2; i++) { 1662 /* Reset DAC twice just in-case the chip 1663 * didn't initialized properly */ 1664 hw_dac_reset(hw); 1665 hw_dac_reset(hw); 1666 1667 if (hw20k2_i2c_read(hw, CS4382_MC1, &cs_read.mode_control_1)) 1668 continue; 1669 1670 if (hw20k2_i2c_read(hw, CS4382_MC2, &cs_read.mode_control_2)) 1671 continue; 1672 1673 if (hw20k2_i2c_read(hw, CS4382_MC3, &cs_read.mode_control_3)) 1674 continue; 1675 1676 if (hw20k2_i2c_read(hw, CS4382_FC, &cs_read.filter_control)) 1677 continue; 1678 1679 if (hw20k2_i2c_read(hw, CS4382_IC, &cs_read.invert_control)) 1680 continue; 1681 1682 if (hw20k2_i2c_read(hw, CS4382_XC1, &cs_read.mix_control_P1)) 1683 continue; 1684 1685 if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1)) 1686 continue; 1687 1688 if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1)) 1689 continue; 1690 1691 if (hw20k2_i2c_read(hw, CS4382_XC2, &cs_read.mix_control_P2)) 1692 continue; 1693 1694 if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2)) 1695 continue; 1696 1697 if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2)) 1698 continue; 1699 1700 if (hw20k2_i2c_read(hw, CS4382_XC3, &cs_read.mix_control_P3)) 1701 continue; 1702 1703 if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3)) 1704 continue; 1705 1706 if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3)) 1707 continue; 1708 1709 if (hw20k2_i2c_read(hw, CS4382_XC4, &cs_read.mix_control_P4)) 1710 continue; 1711 1712 if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4)) 1713 continue; 1714 1715 if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4)) 1716 continue; 1717 1718 if (memcmp(&cs_read, &cs_def, sizeof(cs_read))) 1719 continue; 1720 else 1721 break; 1722 } 1723 1724 if (i >= 2) 1725 goto End; 1726 1727 /* Note: Every I2C write must have some delay. 1728 * This is not a requirement but the delay works here... */ 1729 hw20k2_i2c_write(hw, CS4382_MC1, 0x80); 1730 hw20k2_i2c_write(hw, CS4382_MC2, 0x10); 1731 if (1 == info->msr) { 1732 hw20k2_i2c_write(hw, CS4382_XC1, 0x24); 1733 hw20k2_i2c_write(hw, CS4382_XC2, 0x24); 1734 hw20k2_i2c_write(hw, CS4382_XC3, 0x24); 1735 hw20k2_i2c_write(hw, CS4382_XC4, 0x24); 1736 } else if (2 == info->msr) { 1737 hw20k2_i2c_write(hw, CS4382_XC1, 0x25); 1738 hw20k2_i2c_write(hw, CS4382_XC2, 0x25); 1739 hw20k2_i2c_write(hw, CS4382_XC3, 0x25); 1740 hw20k2_i2c_write(hw, CS4382_XC4, 0x25); 1741 } else { 1742 hw20k2_i2c_write(hw, CS4382_XC1, 0x26); 1743 hw20k2_i2c_write(hw, CS4382_XC2, 0x26); 1744 hw20k2_i2c_write(hw, CS4382_XC3, 0x26); 1745 hw20k2_i2c_write(hw, CS4382_XC4, 0x26); 1746 } 1747 1748 return 0; 1749 End: 1750 1751 hw20k2_i2c_uninit(hw); 1752 return -1; 1753 } 1754 1755 /* ADC operations */ 1756 #define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1)) 1757 #define MAKE_WM8775_DATA(data) (u32)(data&0xFF) 1758 1759 #define WM8775_IC 0x0B 1760 #define WM8775_MMC 0x0C 1761 #define WM8775_AADCL 0x0E 1762 #define WM8775_AADCR 0x0F 1763 #define WM8775_ADCMC 0x15 1764 #define WM8775_RESET 0x17 1765 1766 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type) 1767 { 1768 u32 data; 1769 if (hw->model == CTSB1270) { 1770 /* Titanium HD has two ADC chips, one for line in and one */ 1771 /* for MIC. We don't need to switch the ADC input. */ 1772 return 1; 1773 } 1774 data = hw_read_20kx(hw, GPIO_DATA); 1775 switch (type) { 1776 case ADC_MICIN: 1777 data = (data & (0x1 << 14)) ? 1 : 0; 1778 break; 1779 case ADC_LINEIN: 1780 data = (data & (0x1 << 14)) ? 0 : 1; 1781 break; 1782 default: 1783 data = 0; 1784 } 1785 return data; 1786 } 1787 1788 #define MIC_BOOST_0DB 0xCF 1789 #define MIC_BOOST_STEPS_PER_DB 2 1790 1791 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db) 1792 { 1793 u32 adcmc, gain; 1794 1795 if (input > 3) 1796 input = 3; 1797 1798 adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */ 1799 1800 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc), 1801 MAKE_WM8775_DATA(adcmc)); 1802 1803 if (gain_in_db < -103) 1804 gain_in_db = -103; 1805 if (gain_in_db > 24) 1806 gain_in_db = 24; 1807 1808 gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB; 1809 1810 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain), 1811 MAKE_WM8775_DATA(gain)); 1812 /* ...so there should be no need for the following. */ 1813 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain), 1814 MAKE_WM8775_DATA(gain)); 1815 } 1816 1817 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type) 1818 { 1819 u32 data; 1820 data = hw_read_20kx(hw, GPIO_DATA); 1821 switch (type) { 1822 case ADC_MICIN: 1823 data |= (0x1 << 14); 1824 hw_write_20kx(hw, GPIO_DATA, data); 1825 hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */ 1826 break; 1827 case ADC_LINEIN: 1828 data &= ~(0x1 << 14); 1829 hw_write_20kx(hw, GPIO_DATA, data); 1830 hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */ 1831 break; 1832 default: 1833 break; 1834 } 1835 1836 return 0; 1837 } 1838 1839 static int hw_adc_init(struct hw *hw, const struct adc_conf *info) 1840 { 1841 int err; 1842 u32 data, ctl; 1843 1844 /* Set ADC reset bit as output */ 1845 data = hw_read_20kx(hw, GPIO_CTRL); 1846 data |= (0x1 << 15); 1847 hw_write_20kx(hw, GPIO_CTRL, data); 1848 1849 /* Initialize I2C */ 1850 err = hw20k2_i2c_init(hw, 0x1A, 1, 1); 1851 if (err < 0) { 1852 dev_alert(hw->card->dev, "Failure to acquire I2C!!!\n"); 1853 goto error; 1854 } 1855 1856 /* Reset the ADC (reset is active low). */ 1857 data = hw_read_20kx(hw, GPIO_DATA); 1858 data &= ~(0x1 << 15); 1859 hw_write_20kx(hw, GPIO_DATA, data); 1860 1861 if (hw->model == CTSB1270) { 1862 /* Set up the PCM4220 ADC on Titanium HD */ 1863 data &= ~0x0C; 1864 if (1 == info->msr) 1865 data |= 0x00; /* Single Speed Mode 32-50kHz */ 1866 else if (2 == info->msr) 1867 data |= 0x08; /* Double Speed Mode 50-108kHz */ 1868 else 1869 data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */ 1870 hw_write_20kx(hw, GPIO_DATA, data); 1871 } 1872 1873 mdelay(10); 1874 /* Return the ADC to normal operation. */ 1875 data |= (0x1 << 15); 1876 hw_write_20kx(hw, GPIO_DATA, data); 1877 mdelay(50); 1878 1879 /* I2C write to register offset 0x0B to set ADC LRCLK polarity */ 1880 /* invert bit, interface format to I2S, word length to 24-bit, */ 1881 /* enable ADC high pass filter. Fixes bug 5323? */ 1882 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26), 1883 MAKE_WM8775_DATA(0x26)); 1884 1885 /* Set the master mode (256fs) */ 1886 if (1 == info->msr) { 1887 /* slave mode, 128x oversampling 256fs */ 1888 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02), 1889 MAKE_WM8775_DATA(0x02)); 1890 } else if ((2 == info->msr) || (4 == info->msr)) { 1891 /* slave mode, 64x oversampling, 256fs */ 1892 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A), 1893 MAKE_WM8775_DATA(0x0A)); 1894 } else { 1895 dev_alert(hw->card->dev, 1896 "Invalid master sampling rate (msr %d)!!!\n", 1897 info->msr); 1898 err = -EINVAL; 1899 goto error; 1900 } 1901 1902 if (hw->model != CTSB1270) { 1903 /* Configure GPIO bit 14 change to line-in/mic-in */ 1904 ctl = hw_read_20kx(hw, GPIO_CTRL); 1905 ctl |= 0x1 << 14; 1906 hw_write_20kx(hw, GPIO_CTRL, ctl); 1907 hw_adc_input_select(hw, ADC_LINEIN); 1908 } else { 1909 hw_wm8775_input_select(hw, 0, 0); 1910 } 1911 1912 return 0; 1913 error: 1914 hw20k2_i2c_uninit(hw); 1915 return err; 1916 } 1917 1918 static struct capabilities hw_capabilities(struct hw *hw) 1919 { 1920 struct capabilities cap; 1921 1922 cap.digit_io_switch = 0; 1923 cap.dedicated_mic = hw->model == CTSB1270; 1924 cap.output_switch = hw->model == CTSB1270; 1925 cap.mic_source_switch = hw->model == CTSB1270; 1926 1927 return cap; 1928 } 1929 1930 static int hw_output_switch_get(struct hw *hw) 1931 { 1932 u32 data = hw_read_20kx(hw, GPIO_EXT_DATA); 1933 1934 switch (data & 0x30) { 1935 case 0x00: 1936 return 0; 1937 case 0x10: 1938 return 1; 1939 case 0x20: 1940 return 2; 1941 default: 1942 return 3; 1943 } 1944 } 1945 1946 static int hw_output_switch_put(struct hw *hw, int position) 1947 { 1948 u32 data; 1949 1950 if (position == hw_output_switch_get(hw)) 1951 return 0; 1952 1953 /* Mute line and headphones (intended for anti-pop). */ 1954 data = hw_read_20kx(hw, GPIO_DATA); 1955 data |= (0x03 << 11); 1956 hw_write_20kx(hw, GPIO_DATA, data); 1957 1958 data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30; 1959 switch (position) { 1960 case 0: 1961 break; 1962 case 1: 1963 data |= 0x10; 1964 break; 1965 default: 1966 data |= 0x20; 1967 } 1968 hw_write_20kx(hw, GPIO_EXT_DATA, data); 1969 1970 /* Unmute line and headphones. */ 1971 data = hw_read_20kx(hw, GPIO_DATA); 1972 data &= ~(0x03 << 11); 1973 hw_write_20kx(hw, GPIO_DATA, data); 1974 1975 return 1; 1976 } 1977 1978 static int hw_mic_source_switch_get(struct hw *hw) 1979 { 1980 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1981 1982 return hw20k2->mic_source; 1983 } 1984 1985 static int hw_mic_source_switch_put(struct hw *hw, int position) 1986 { 1987 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1988 1989 if (position == hw20k2->mic_source) 1990 return 0; 1991 1992 switch (position) { 1993 case 0: 1994 hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */ 1995 break; 1996 case 1: 1997 hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */ 1998 break; 1999 case 2: 2000 hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */ 2001 break; 2002 default: 2003 return 0; 2004 } 2005 2006 hw20k2->mic_source = position; 2007 2008 return 1; 2009 } 2010 2011 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id) 2012 { 2013 struct hw *hw = dev_id; 2014 unsigned int status; 2015 2016 status = hw_read_20kx(hw, GIP); 2017 if (!status) 2018 return IRQ_NONE; 2019 2020 if (hw->irq_callback) 2021 hw->irq_callback(hw->irq_callback_data, status); 2022 2023 hw_write_20kx(hw, GIP, status); 2024 return IRQ_HANDLED; 2025 } 2026 2027 static int hw_card_start(struct hw *hw) 2028 { 2029 int err = 0; 2030 struct pci_dev *pci = hw->pci; 2031 unsigned int gctl; 2032 2033 err = pci_enable_device(pci); 2034 if (err < 0) 2035 return err; 2036 2037 /* Set DMA transfer mask */ 2038 if (dma_set_mask(&pci->dev, CT_XFI_DMA_MASK) < 0 || 2039 dma_set_coherent_mask(&pci->dev, CT_XFI_DMA_MASK) < 0) { 2040 dev_err(hw->card->dev, 2041 "architecture does not support PCI busmaster DMA with mask 0x%llx\n", 2042 CT_XFI_DMA_MASK); 2043 err = -ENXIO; 2044 goto error1; 2045 } 2046 2047 if (!hw->io_base) { 2048 err = pci_request_regions(pci, "XFi"); 2049 if (err < 0) 2050 goto error1; 2051 2052 hw->io_base = pci_resource_start(hw->pci, 2); 2053 hw->mem_base = ioremap(hw->io_base, 2054 pci_resource_len(hw->pci, 2)); 2055 if (!hw->mem_base) { 2056 err = -ENOENT; 2057 goto error2; 2058 } 2059 } 2060 2061 /* Switch to 20k2 mode from UAA mode. */ 2062 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 2063 set_field(&gctl, GCTL_UAA, 0); 2064 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 2065 2066 if (hw->irq < 0) { 2067 err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED, 2068 KBUILD_MODNAME, hw); 2069 if (err < 0) { 2070 dev_err(hw->card->dev, 2071 "XFi: Cannot get irq %d\n", pci->irq); 2072 goto error2; 2073 } 2074 hw->irq = pci->irq; 2075 } 2076 2077 pci_set_master(pci); 2078 2079 return 0; 2080 2081 /*error3: 2082 iounmap((void *)hw->mem_base); 2083 hw->mem_base = (unsigned long)NULL;*/ 2084 error2: 2085 pci_release_regions(pci); 2086 hw->io_base = 0; 2087 error1: 2088 pci_disable_device(pci); 2089 return err; 2090 } 2091 2092 static int hw_card_stop(struct hw *hw) 2093 { 2094 unsigned int data; 2095 2096 /* disable transport bus master and queueing of request */ 2097 hw_write_20kx(hw, TRANSPORT_CTL, 0x00); 2098 2099 /* disable pll */ 2100 data = hw_read_20kx(hw, PLL_ENB); 2101 hw_write_20kx(hw, PLL_ENB, (data & (~0x07))); 2102 2103 /* TODO: Disable interrupt and so on... */ 2104 return 0; 2105 } 2106 2107 static int hw_card_shutdown(struct hw *hw) 2108 { 2109 if (hw->irq >= 0) 2110 free_irq(hw->irq, hw); 2111 2112 hw->irq = -1; 2113 iounmap(hw->mem_base); 2114 hw->mem_base = NULL; 2115 2116 if (hw->io_base) 2117 pci_release_regions(hw->pci); 2118 2119 hw->io_base = 0; 2120 2121 pci_disable_device(hw->pci); 2122 2123 return 0; 2124 } 2125 2126 static int hw_card_init(struct hw *hw, struct card_conf *info) 2127 { 2128 int err; 2129 unsigned int gctl; 2130 u32 data = 0; 2131 struct dac_conf dac_info = {0}; 2132 struct adc_conf adc_info = {0}; 2133 struct daio_conf daio_info = {0}; 2134 struct trn_conf trn_info = {0}; 2135 2136 /* Get PCI io port/memory base address and 2137 * do 20kx core switch if needed. */ 2138 err = hw_card_start(hw); 2139 if (err) 2140 return err; 2141 2142 /* PLL init */ 2143 err = hw_pll_init(hw, info->rsr); 2144 if (err < 0) 2145 return err; 2146 2147 /* kick off auto-init */ 2148 err = hw_auto_init(hw); 2149 if (err < 0) 2150 return err; 2151 2152 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 2153 set_field(&gctl, GCTL_DBP, 1); 2154 set_field(&gctl, GCTL_TBP, 1); 2155 set_field(&gctl, GCTL_FBP, 1); 2156 set_field(&gctl, GCTL_DPC, 0); 2157 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 2158 2159 /* Reset all global pending interrupts */ 2160 hw_write_20kx(hw, GIE, 0); 2161 /* Reset all SRC pending interrupts */ 2162 hw_write_20kx(hw, SRC_IP, 0); 2163 2164 if (hw->model != CTSB1270) { 2165 /* TODO: detect the card ID and configure GPIO accordingly. */ 2166 /* Configures GPIO (0xD802 0x98028) */ 2167 /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/ 2168 /* Configures GPIO (SB0880) */ 2169 /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/ 2170 hw_write_20kx(hw, GPIO_CTRL, 0xD802); 2171 } else { 2172 hw_write_20kx(hw, GPIO_CTRL, 0x9E5F); 2173 } 2174 /* Enable audio ring */ 2175 hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01); 2176 2177 trn_info.vm_pgt_phys = info->vm_pgt_phys; 2178 err = hw_trn_init(hw, &trn_info); 2179 if (err < 0) 2180 return err; 2181 2182 daio_info.msr = info->msr; 2183 err = hw_daio_init(hw, &daio_info); 2184 if (err < 0) 2185 return err; 2186 2187 dac_info.msr = info->msr; 2188 err = hw_dac_init(hw, &dac_info); 2189 if (err < 0) 2190 return err; 2191 2192 adc_info.msr = info->msr; 2193 adc_info.input = ADC_LINEIN; 2194 adc_info.mic20db = 0; 2195 err = hw_adc_init(hw, &adc_info); 2196 if (err < 0) 2197 return err; 2198 2199 data = hw_read_20kx(hw, SRC_MCTL); 2200 data |= 0x1; /* Enables input from the audio ring */ 2201 hw_write_20kx(hw, SRC_MCTL, data); 2202 2203 return 0; 2204 } 2205 2206 #ifdef CONFIG_PM_SLEEP 2207 static int hw_suspend(struct hw *hw) 2208 { 2209 hw_card_stop(hw); 2210 return 0; 2211 } 2212 2213 static int hw_resume(struct hw *hw, struct card_conf *info) 2214 { 2215 /* Re-initialize card hardware. */ 2216 return hw_card_init(hw, info); 2217 } 2218 #endif 2219 2220 static u32 hw_read_20kx(struct hw *hw, u32 reg) 2221 { 2222 return readl(hw->mem_base + reg); 2223 } 2224 2225 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data) 2226 { 2227 writel(data, hw->mem_base + reg); 2228 } 2229 2230 static struct hw ct20k2_preset = { 2231 .irq = -1, 2232 2233 .card_init = hw_card_init, 2234 .card_stop = hw_card_stop, 2235 .pll_init = hw_pll_init, 2236 .is_adc_source_selected = hw_is_adc_input_selected, 2237 .select_adc_source = hw_adc_input_select, 2238 .capabilities = hw_capabilities, 2239 .output_switch_get = hw_output_switch_get, 2240 .output_switch_put = hw_output_switch_put, 2241 .mic_source_switch_get = hw_mic_source_switch_get, 2242 .mic_source_switch_put = hw_mic_source_switch_put, 2243 #ifdef CONFIG_PM_SLEEP 2244 .suspend = hw_suspend, 2245 .resume = hw_resume, 2246 #endif 2247 2248 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk, 2249 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk, 2250 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk, 2251 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk, 2252 .src_set_state = src_set_state, 2253 .src_set_bm = src_set_bm, 2254 .src_set_rsr = src_set_rsr, 2255 .src_set_sf = src_set_sf, 2256 .src_set_wr = src_set_wr, 2257 .src_set_pm = src_set_pm, 2258 .src_set_rom = src_set_rom, 2259 .src_set_vo = src_set_vo, 2260 .src_set_st = src_set_st, 2261 .src_set_ie = src_set_ie, 2262 .src_set_ilsz = src_set_ilsz, 2263 .src_set_bp = src_set_bp, 2264 .src_set_cisz = src_set_cisz, 2265 .src_set_ca = src_set_ca, 2266 .src_set_sa = src_set_sa, 2267 .src_set_la = src_set_la, 2268 .src_set_pitch = src_set_pitch, 2269 .src_set_dirty = src_set_dirty, 2270 .src_set_clear_zbufs = src_set_clear_zbufs, 2271 .src_set_dirty_all = src_set_dirty_all, 2272 .src_commit_write = src_commit_write, 2273 .src_get_ca = src_get_ca, 2274 .src_get_dirty = src_get_dirty, 2275 .src_dirty_conj_mask = src_dirty_conj_mask, 2276 .src_mgr_enbs_src = src_mgr_enbs_src, 2277 .src_mgr_enb_src = src_mgr_enb_src, 2278 .src_mgr_dsb_src = src_mgr_dsb_src, 2279 .src_mgr_commit_write = src_mgr_commit_write, 2280 2281 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk, 2282 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk, 2283 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc, 2284 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser, 2285 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt, 2286 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr, 2287 .srcimp_mgr_commit_write = srcimp_mgr_commit_write, 2288 2289 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk, 2290 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk, 2291 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk, 2292 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk, 2293 .amixer_set_mode = amixer_set_mode, 2294 .amixer_set_iv = amixer_set_iv, 2295 .amixer_set_x = amixer_set_x, 2296 .amixer_set_y = amixer_set_y, 2297 .amixer_set_sadr = amixer_set_sadr, 2298 .amixer_set_se = amixer_set_se, 2299 .amixer_set_dirty = amixer_set_dirty, 2300 .amixer_set_dirty_all = amixer_set_dirty_all, 2301 .amixer_commit_write = amixer_commit_write, 2302 .amixer_get_y = amixer_get_y, 2303 .amixer_get_dirty = amixer_get_dirty, 2304 2305 .dai_get_ctrl_blk = dai_get_ctrl_blk, 2306 .dai_put_ctrl_blk = dai_put_ctrl_blk, 2307 .dai_srt_set_srco = dai_srt_set_srco, 2308 .dai_srt_set_srcm = dai_srt_set_srcm, 2309 .dai_srt_set_rsr = dai_srt_set_rsr, 2310 .dai_srt_set_drat = dai_srt_set_drat, 2311 .dai_srt_set_ec = dai_srt_set_ec, 2312 .dai_srt_set_et = dai_srt_set_et, 2313 .dai_commit_write = dai_commit_write, 2314 2315 .dao_get_ctrl_blk = dao_get_ctrl_blk, 2316 .dao_put_ctrl_blk = dao_put_ctrl_blk, 2317 .dao_set_spos = dao_set_spos, 2318 .dao_commit_write = dao_commit_write, 2319 .dao_get_spos = dao_get_spos, 2320 2321 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk, 2322 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk, 2323 .daio_mgr_enb_dai = daio_mgr_enb_dai, 2324 .daio_mgr_dsb_dai = daio_mgr_dsb_dai, 2325 .daio_mgr_enb_dao = daio_mgr_enb_dao, 2326 .daio_mgr_dsb_dao = daio_mgr_dsb_dao, 2327 .daio_mgr_dao_init = daio_mgr_dao_init, 2328 .daio_mgr_set_imaparc = daio_mgr_set_imaparc, 2329 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt, 2330 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr, 2331 .daio_mgr_commit_write = daio_mgr_commit_write, 2332 2333 .set_timer_irq = set_timer_irq, 2334 .set_timer_tick = set_timer_tick, 2335 .get_wc = get_wc, 2336 }; 2337 2338 int create_20k2_hw_obj(struct hw **rhw) 2339 { 2340 struct hw20k2 *hw20k2; 2341 2342 *rhw = NULL; 2343 hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL); 2344 if (!hw20k2) 2345 return -ENOMEM; 2346 2347 hw20k2->hw = ct20k2_preset; 2348 *rhw = &hw20k2->hw; 2349 2350 return 0; 2351 } 2352 2353 int destroy_20k2_hw_obj(struct hw *hw) 2354 { 2355 if (hw->io_base) 2356 hw_card_shutdown(hw); 2357 2358 kfree(hw); 2359 return 0; 2360 } 2361