xref: /openbmc/linux/sound/pci/ctxfi/cthw20k2.c (revision 7a7686bd)
1 /**
2  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
3  *
4  * This source file is released under GPL v2 license (no other versions).
5  * See the COPYING file included in the main directory of this source
6  * distribution for the license terms and conditions.
7  *
8  * @File	cthw20k2.c
9  *
10  * @Brief
11  * This file contains the implementation of hardware access method for 20k2.
12  *
13  * @Author	Liu Chun
14  * @Date 	May 14 2008
15  *
16  */
17 
18 #include <linux/types.h>
19 #include <linux/slab.h>
20 #include <linux/pci.h>
21 #include <linux/io.h>
22 #include <linux/string.h>
23 #include <linux/kernel.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include "cthw20k2.h"
27 #include "ct20k2reg.h"
28 
29 #if BITS_PER_LONG == 32
30 #define CT_XFI_DMA_MASK		DMA_BIT_MASK(32) /* 32 bit PTE */
31 #else
32 #define CT_XFI_DMA_MASK		DMA_BIT_MASK(64) /* 64 bit PTE */
33 #endif
34 
35 struct hw20k2 {
36 	struct hw hw;
37 	/* for i2c */
38 	unsigned char dev_id;
39 	unsigned char addr_size;
40 	unsigned char data_size;
41 
42 	int mic_source;
43 };
44 
45 static u32 hw_read_20kx(struct hw *hw, u32 reg);
46 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
47 
48 /*
49  * Type definition block.
50  * The layout of control structures can be directly applied on 20k2 chip.
51  */
52 
53 /*
54  * SRC control block definitions.
55  */
56 
57 /* SRC resource control block */
58 #define SRCCTL_STATE	0x00000007
59 #define SRCCTL_BM	0x00000008
60 #define SRCCTL_RSR	0x00000030
61 #define SRCCTL_SF	0x000001C0
62 #define SRCCTL_WR	0x00000200
63 #define SRCCTL_PM	0x00000400
64 #define SRCCTL_ROM	0x00001800
65 #define SRCCTL_VO	0x00002000
66 #define SRCCTL_ST	0x00004000
67 #define SRCCTL_IE	0x00008000
68 #define SRCCTL_ILSZ	0x000F0000
69 #define SRCCTL_BP	0x00100000
70 
71 #define SRCCCR_CISZ	0x000007FF
72 #define SRCCCR_CWA	0x001FF800
73 #define SRCCCR_D	0x00200000
74 #define SRCCCR_RS	0x01C00000
75 #define SRCCCR_NAL	0x3E000000
76 #define SRCCCR_RA	0xC0000000
77 
78 #define SRCCA_CA	0x0FFFFFFF
79 #define SRCCA_RS	0xE0000000
80 
81 #define SRCSA_SA	0x0FFFFFFF
82 
83 #define SRCLA_LA	0x0FFFFFFF
84 
85 /* Mixer Parameter Ring ram Low and Hight register.
86  * Fixed-point value in 8.24 format for parameter channel */
87 #define MPRLH_PITCH	0xFFFFFFFF
88 
89 /* SRC resource register dirty flags */
90 union src_dirty {
91 	struct {
92 		u16 ctl:1;
93 		u16 ccr:1;
94 		u16 sa:1;
95 		u16 la:1;
96 		u16 ca:1;
97 		u16 mpr:1;
98 		u16 czbfs:1;	/* Clear Z-Buffers */
99 		u16 rsv:9;
100 	} bf;
101 	u16 data;
102 };
103 
104 struct src_rsc_ctrl_blk {
105 	unsigned int	ctl;
106 	unsigned int 	ccr;
107 	unsigned int	ca;
108 	unsigned int	sa;
109 	unsigned int	la;
110 	unsigned int	mpr;
111 	union src_dirty	dirty;
112 };
113 
114 /* SRC manager control block */
115 union src_mgr_dirty {
116 	struct {
117 		u16 enb0:1;
118 		u16 enb1:1;
119 		u16 enb2:1;
120 		u16 enb3:1;
121 		u16 enb4:1;
122 		u16 enb5:1;
123 		u16 enb6:1;
124 		u16 enb7:1;
125 		u16 enbsa:1;
126 		u16 rsv:7;
127 	} bf;
128 	u16 data;
129 };
130 
131 struct src_mgr_ctrl_blk {
132 	unsigned int		enbsa;
133 	unsigned int		enb[8];
134 	union src_mgr_dirty	dirty;
135 };
136 
137 /* SRCIMP manager control block */
138 #define SRCAIM_ARC	0x00000FFF
139 #define SRCAIM_NXT	0x00FF0000
140 #define SRCAIM_SRC	0xFF000000
141 
142 struct srcimap {
143 	unsigned int srcaim;
144 	unsigned int idx;
145 };
146 
147 /* SRCIMP manager register dirty flags */
148 union srcimp_mgr_dirty {
149 	struct {
150 		u16 srcimap:1;
151 		u16 rsv:15;
152 	} bf;
153 	u16 data;
154 };
155 
156 struct srcimp_mgr_ctrl_blk {
157 	struct srcimap		srcimap;
158 	union srcimp_mgr_dirty	dirty;
159 };
160 
161 /*
162  * Function implementation block.
163  */
164 
165 static int src_get_rsc_ctrl_blk(void **rblk)
166 {
167 	struct src_rsc_ctrl_blk *blk;
168 
169 	*rblk = NULL;
170 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
171 	if (!blk)
172 		return -ENOMEM;
173 
174 	*rblk = blk;
175 
176 	return 0;
177 }
178 
179 static int src_put_rsc_ctrl_blk(void *blk)
180 {
181 	kfree(blk);
182 
183 	return 0;
184 }
185 
186 static int src_set_state(void *blk, unsigned int state)
187 {
188 	struct src_rsc_ctrl_blk *ctl = blk;
189 
190 	set_field(&ctl->ctl, SRCCTL_STATE, state);
191 	ctl->dirty.bf.ctl = 1;
192 	return 0;
193 }
194 
195 static int src_set_bm(void *blk, unsigned int bm)
196 {
197 	struct src_rsc_ctrl_blk *ctl = blk;
198 
199 	set_field(&ctl->ctl, SRCCTL_BM, bm);
200 	ctl->dirty.bf.ctl = 1;
201 	return 0;
202 }
203 
204 static int src_set_rsr(void *blk, unsigned int rsr)
205 {
206 	struct src_rsc_ctrl_blk *ctl = blk;
207 
208 	set_field(&ctl->ctl, SRCCTL_RSR, rsr);
209 	ctl->dirty.bf.ctl = 1;
210 	return 0;
211 }
212 
213 static int src_set_sf(void *blk, unsigned int sf)
214 {
215 	struct src_rsc_ctrl_blk *ctl = blk;
216 
217 	set_field(&ctl->ctl, SRCCTL_SF, sf);
218 	ctl->dirty.bf.ctl = 1;
219 	return 0;
220 }
221 
222 static int src_set_wr(void *blk, unsigned int wr)
223 {
224 	struct src_rsc_ctrl_blk *ctl = blk;
225 
226 	set_field(&ctl->ctl, SRCCTL_WR, wr);
227 	ctl->dirty.bf.ctl = 1;
228 	return 0;
229 }
230 
231 static int src_set_pm(void *blk, unsigned int pm)
232 {
233 	struct src_rsc_ctrl_blk *ctl = blk;
234 
235 	set_field(&ctl->ctl, SRCCTL_PM, pm);
236 	ctl->dirty.bf.ctl = 1;
237 	return 0;
238 }
239 
240 static int src_set_rom(void *blk, unsigned int rom)
241 {
242 	struct src_rsc_ctrl_blk *ctl = blk;
243 
244 	set_field(&ctl->ctl, SRCCTL_ROM, rom);
245 	ctl->dirty.bf.ctl = 1;
246 	return 0;
247 }
248 
249 static int src_set_vo(void *blk, unsigned int vo)
250 {
251 	struct src_rsc_ctrl_blk *ctl = blk;
252 
253 	set_field(&ctl->ctl, SRCCTL_VO, vo);
254 	ctl->dirty.bf.ctl = 1;
255 	return 0;
256 }
257 
258 static int src_set_st(void *blk, unsigned int st)
259 {
260 	struct src_rsc_ctrl_blk *ctl = blk;
261 
262 	set_field(&ctl->ctl, SRCCTL_ST, st);
263 	ctl->dirty.bf.ctl = 1;
264 	return 0;
265 }
266 
267 static int src_set_ie(void *blk, unsigned int ie)
268 {
269 	struct src_rsc_ctrl_blk *ctl = blk;
270 
271 	set_field(&ctl->ctl, SRCCTL_IE, ie);
272 	ctl->dirty.bf.ctl = 1;
273 	return 0;
274 }
275 
276 static int src_set_ilsz(void *blk, unsigned int ilsz)
277 {
278 	struct src_rsc_ctrl_blk *ctl = blk;
279 
280 	set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
281 	ctl->dirty.bf.ctl = 1;
282 	return 0;
283 }
284 
285 static int src_set_bp(void *blk, unsigned int bp)
286 {
287 	struct src_rsc_ctrl_blk *ctl = blk;
288 
289 	set_field(&ctl->ctl, SRCCTL_BP, bp);
290 	ctl->dirty.bf.ctl = 1;
291 	return 0;
292 }
293 
294 static int src_set_cisz(void *blk, unsigned int cisz)
295 {
296 	struct src_rsc_ctrl_blk *ctl = blk;
297 
298 	set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
299 	ctl->dirty.bf.ccr = 1;
300 	return 0;
301 }
302 
303 static int src_set_ca(void *blk, unsigned int ca)
304 {
305 	struct src_rsc_ctrl_blk *ctl = blk;
306 
307 	set_field(&ctl->ca, SRCCA_CA, ca);
308 	ctl->dirty.bf.ca = 1;
309 	return 0;
310 }
311 
312 static int src_set_sa(void *blk, unsigned int sa)
313 {
314 	struct src_rsc_ctrl_blk *ctl = blk;
315 
316 	set_field(&ctl->sa, SRCSA_SA, sa);
317 	ctl->dirty.bf.sa = 1;
318 	return 0;
319 }
320 
321 static int src_set_la(void *blk, unsigned int la)
322 {
323 	struct src_rsc_ctrl_blk *ctl = blk;
324 
325 	set_field(&ctl->la, SRCLA_LA, la);
326 	ctl->dirty.bf.la = 1;
327 	return 0;
328 }
329 
330 static int src_set_pitch(void *blk, unsigned int pitch)
331 {
332 	struct src_rsc_ctrl_blk *ctl = blk;
333 
334 	set_field(&ctl->mpr, MPRLH_PITCH, pitch);
335 	ctl->dirty.bf.mpr = 1;
336 	return 0;
337 }
338 
339 static int src_set_clear_zbufs(void *blk, unsigned int clear)
340 {
341 	((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
342 	return 0;
343 }
344 
345 static int src_set_dirty(void *blk, unsigned int flags)
346 {
347 	((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
348 	return 0;
349 }
350 
351 static int src_set_dirty_all(void *blk)
352 {
353 	((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
354 	return 0;
355 }
356 
357 #define AR_SLOT_SIZE		4096
358 #define AR_SLOT_BLOCK_SIZE	16
359 #define AR_PTS_PITCH		6
360 #define AR_PARAM_SRC_OFFSET	0x60
361 
362 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
363 {
364 	return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
365 			- AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
366 
367 }
368 
369 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
370 {
371 	struct src_rsc_ctrl_blk *ctl = blk;
372 	int i;
373 
374 	if (ctl->dirty.bf.czbfs) {
375 		/* Clear Z-Buffer registers */
376 		for (i = 0; i < 8; i++)
377 			hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
378 
379 		for (i = 0; i < 4; i++)
380 			hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
381 
382 		for (i = 0; i < 8; i++)
383 			hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
384 
385 		ctl->dirty.bf.czbfs = 0;
386 	}
387 	if (ctl->dirty.bf.mpr) {
388 		/* Take the parameter mixer resource in the same group as that
389 		 * the idx src is in for simplicity. Unlike src, all conjugate
390 		 * parameter mixer resources must be programmed for
391 		 * corresponding conjugate src resources. */
392 		unsigned int pm_idx = src_param_pitch_mixer(idx);
393 		hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
394 		hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
395 		hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
396 		ctl->dirty.bf.mpr = 0;
397 	}
398 	if (ctl->dirty.bf.sa) {
399 		hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
400 		ctl->dirty.bf.sa = 0;
401 	}
402 	if (ctl->dirty.bf.la) {
403 		hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
404 		ctl->dirty.bf.la = 0;
405 	}
406 	if (ctl->dirty.bf.ca) {
407 		hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
408 		ctl->dirty.bf.ca = 0;
409 	}
410 
411 	/* Write srccf register */
412 	hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
413 
414 	if (ctl->dirty.bf.ccr) {
415 		hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
416 		ctl->dirty.bf.ccr = 0;
417 	}
418 	if (ctl->dirty.bf.ctl) {
419 		hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
420 		ctl->dirty.bf.ctl = 0;
421 	}
422 
423 	return 0;
424 }
425 
426 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
427 {
428 	struct src_rsc_ctrl_blk *ctl = blk;
429 
430 	ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
431 	ctl->dirty.bf.ca = 0;
432 
433 	return get_field(ctl->ca, SRCCA_CA);
434 }
435 
436 static unsigned int src_get_dirty(void *blk)
437 {
438 	return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
439 }
440 
441 static unsigned int src_dirty_conj_mask(void)
442 {
443 	return 0x20;
444 }
445 
446 static int src_mgr_enbs_src(void *blk, unsigned int idx)
447 {
448 	((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
449 	((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
450 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
451 	return 0;
452 }
453 
454 static int src_mgr_enb_src(void *blk, unsigned int idx)
455 {
456 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
457 	((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
458 	return 0;
459 }
460 
461 static int src_mgr_dsb_src(void *blk, unsigned int idx)
462 {
463 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
464 	((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
465 	return 0;
466 }
467 
468 static int src_mgr_commit_write(struct hw *hw, void *blk)
469 {
470 	struct src_mgr_ctrl_blk *ctl = blk;
471 	int i;
472 	unsigned int ret;
473 
474 	if (ctl->dirty.bf.enbsa) {
475 		do {
476 			ret = hw_read_20kx(hw, SRC_ENBSTAT);
477 		} while (ret & 0x1);
478 		hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
479 		ctl->dirty.bf.enbsa = 0;
480 	}
481 	for (i = 0; i < 8; i++) {
482 		if ((ctl->dirty.data & (0x1 << i))) {
483 			hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
484 			ctl->dirty.data &= ~(0x1 << i);
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 static int src_mgr_get_ctrl_blk(void **rblk)
492 {
493 	struct src_mgr_ctrl_blk *blk;
494 
495 	*rblk = NULL;
496 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
497 	if (!blk)
498 		return -ENOMEM;
499 
500 	*rblk = blk;
501 
502 	return 0;
503 }
504 
505 static int src_mgr_put_ctrl_blk(void *blk)
506 {
507 	kfree(blk);
508 
509 	return 0;
510 }
511 
512 static int srcimp_mgr_get_ctrl_blk(void **rblk)
513 {
514 	struct srcimp_mgr_ctrl_blk *blk;
515 
516 	*rblk = NULL;
517 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
518 	if (!blk)
519 		return -ENOMEM;
520 
521 	*rblk = blk;
522 
523 	return 0;
524 }
525 
526 static int srcimp_mgr_put_ctrl_blk(void *blk)
527 {
528 	kfree(blk);
529 
530 	return 0;
531 }
532 
533 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
534 {
535 	struct srcimp_mgr_ctrl_blk *ctl = blk;
536 
537 	set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
538 	ctl->dirty.bf.srcimap = 1;
539 	return 0;
540 }
541 
542 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
543 {
544 	struct srcimp_mgr_ctrl_blk *ctl = blk;
545 
546 	set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
547 	ctl->dirty.bf.srcimap = 1;
548 	return 0;
549 }
550 
551 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
552 {
553 	struct srcimp_mgr_ctrl_blk *ctl = blk;
554 
555 	set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
556 	ctl->dirty.bf.srcimap = 1;
557 	return 0;
558 }
559 
560 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
561 {
562 	((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
563 	((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
564 	return 0;
565 }
566 
567 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
568 {
569 	struct srcimp_mgr_ctrl_blk *ctl = blk;
570 
571 	if (ctl->dirty.bf.srcimap) {
572 		hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
573 						ctl->srcimap.srcaim);
574 		ctl->dirty.bf.srcimap = 0;
575 	}
576 
577 	return 0;
578 }
579 
580 /*
581  * AMIXER control block definitions.
582  */
583 
584 #define AMOPLO_M	0x00000003
585 #define AMOPLO_IV	0x00000004
586 #define AMOPLO_X	0x0003FFF0
587 #define AMOPLO_Y	0xFFFC0000
588 
589 #define AMOPHI_SADR	0x000000FF
590 #define AMOPHI_SE	0x80000000
591 
592 /* AMIXER resource register dirty flags */
593 union amixer_dirty {
594 	struct {
595 		u16 amoplo:1;
596 		u16 amophi:1;
597 		u16 rsv:14;
598 	} bf;
599 	u16 data;
600 };
601 
602 /* AMIXER resource control block */
603 struct amixer_rsc_ctrl_blk {
604 	unsigned int		amoplo;
605 	unsigned int		amophi;
606 	union amixer_dirty	dirty;
607 };
608 
609 static int amixer_set_mode(void *blk, unsigned int mode)
610 {
611 	struct amixer_rsc_ctrl_blk *ctl = blk;
612 
613 	set_field(&ctl->amoplo, AMOPLO_M, mode);
614 	ctl->dirty.bf.amoplo = 1;
615 	return 0;
616 }
617 
618 static int amixer_set_iv(void *blk, unsigned int iv)
619 {
620 	struct amixer_rsc_ctrl_blk *ctl = blk;
621 
622 	set_field(&ctl->amoplo, AMOPLO_IV, iv);
623 	ctl->dirty.bf.amoplo = 1;
624 	return 0;
625 }
626 
627 static int amixer_set_x(void *blk, unsigned int x)
628 {
629 	struct amixer_rsc_ctrl_blk *ctl = blk;
630 
631 	set_field(&ctl->amoplo, AMOPLO_X, x);
632 	ctl->dirty.bf.amoplo = 1;
633 	return 0;
634 }
635 
636 static int amixer_set_y(void *blk, unsigned int y)
637 {
638 	struct amixer_rsc_ctrl_blk *ctl = blk;
639 
640 	set_field(&ctl->amoplo, AMOPLO_Y, y);
641 	ctl->dirty.bf.amoplo = 1;
642 	return 0;
643 }
644 
645 static int amixer_set_sadr(void *blk, unsigned int sadr)
646 {
647 	struct amixer_rsc_ctrl_blk *ctl = blk;
648 
649 	set_field(&ctl->amophi, AMOPHI_SADR, sadr);
650 	ctl->dirty.bf.amophi = 1;
651 	return 0;
652 }
653 
654 static int amixer_set_se(void *blk, unsigned int se)
655 {
656 	struct amixer_rsc_ctrl_blk *ctl = blk;
657 
658 	set_field(&ctl->amophi, AMOPHI_SE, se);
659 	ctl->dirty.bf.amophi = 1;
660 	return 0;
661 }
662 
663 static int amixer_set_dirty(void *blk, unsigned int flags)
664 {
665 	((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
666 	return 0;
667 }
668 
669 static int amixer_set_dirty_all(void *blk)
670 {
671 	((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
672 	return 0;
673 }
674 
675 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
676 {
677 	struct amixer_rsc_ctrl_blk *ctl = blk;
678 
679 	if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
680 		hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
681 		ctl->dirty.bf.amoplo = 0;
682 		hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
683 		ctl->dirty.bf.amophi = 0;
684 	}
685 
686 	return 0;
687 }
688 
689 static int amixer_get_y(void *blk)
690 {
691 	struct amixer_rsc_ctrl_blk *ctl = blk;
692 
693 	return get_field(ctl->amoplo, AMOPLO_Y);
694 }
695 
696 static unsigned int amixer_get_dirty(void *blk)
697 {
698 	return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
699 }
700 
701 static int amixer_rsc_get_ctrl_blk(void **rblk)
702 {
703 	struct amixer_rsc_ctrl_blk *blk;
704 
705 	*rblk = NULL;
706 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
707 	if (!blk)
708 		return -ENOMEM;
709 
710 	*rblk = blk;
711 
712 	return 0;
713 }
714 
715 static int amixer_rsc_put_ctrl_blk(void *blk)
716 {
717 	kfree(blk);
718 
719 	return 0;
720 }
721 
722 static int amixer_mgr_get_ctrl_blk(void **rblk)
723 {
724 	*rblk = NULL;
725 
726 	return 0;
727 }
728 
729 static int amixer_mgr_put_ctrl_blk(void *blk)
730 {
731 	return 0;
732 }
733 
734 /*
735  * DAIO control block definitions.
736  */
737 
738 /* Receiver Sample Rate Tracker Control register */
739 #define SRTCTL_SRCO	0x000000FF
740 #define SRTCTL_SRCM	0x0000FF00
741 #define SRTCTL_RSR	0x00030000
742 #define SRTCTL_DRAT	0x00300000
743 #define SRTCTL_EC	0x01000000
744 #define SRTCTL_ET	0x10000000
745 
746 /* DAIO Receiver register dirty flags */
747 union dai_dirty {
748 	struct {
749 		u16 srt:1;
750 		u16 rsv:15;
751 	} bf;
752 	u16 data;
753 };
754 
755 /* DAIO Receiver control block */
756 struct dai_ctrl_blk {
757 	unsigned int	srt;
758 	union dai_dirty	dirty;
759 };
760 
761 /* Audio Input Mapper RAM */
762 #define AIM_ARC		0x00000FFF
763 #define AIM_NXT		0x007F0000
764 
765 struct daoimap {
766 	unsigned int aim;
767 	unsigned int idx;
768 };
769 
770 /* Audio Transmitter Control and Status register */
771 #define ATXCTL_EN	0x00000001
772 #define ATXCTL_MODE	0x00000010
773 #define ATXCTL_CD	0x00000020
774 #define ATXCTL_RAW	0x00000100
775 #define ATXCTL_MT	0x00000200
776 #define ATXCTL_NUC	0x00003000
777 #define ATXCTL_BEN	0x00010000
778 #define ATXCTL_BMUX	0x00700000
779 #define ATXCTL_B24	0x01000000
780 #define ATXCTL_CPF	0x02000000
781 #define ATXCTL_RIV	0x10000000
782 #define ATXCTL_LIV	0x20000000
783 #define ATXCTL_RSAT	0x40000000
784 #define ATXCTL_LSAT	0x80000000
785 
786 /* XDIF Transmitter register dirty flags */
787 union dao_dirty {
788 	struct {
789 		u16 atxcsl:1;
790 		u16 rsv:15;
791 	} bf;
792 	u16 data;
793 };
794 
795 /* XDIF Transmitter control block */
796 struct dao_ctrl_blk {
797 	/* XDIF Transmitter Channel Status Low Register */
798 	unsigned int	atxcsl;
799 	union dao_dirty	dirty;
800 };
801 
802 /* Audio Receiver Control register */
803 #define ARXCTL_EN	0x00000001
804 
805 /* DAIO manager register dirty flags */
806 union daio_mgr_dirty {
807 	struct {
808 		u32 atxctl:8;
809 		u32 arxctl:8;
810 		u32 daoimap:1;
811 		u32 rsv:15;
812 	} bf;
813 	u32 data;
814 };
815 
816 /* DAIO manager control block */
817 struct daio_mgr_ctrl_blk {
818 	struct daoimap		daoimap;
819 	unsigned int		txctl[8];
820 	unsigned int		rxctl[8];
821 	union daio_mgr_dirty	dirty;
822 };
823 
824 static int dai_srt_set_srco(void *blk, unsigned int src)
825 {
826 	struct dai_ctrl_blk *ctl = blk;
827 
828 	set_field(&ctl->srt, SRTCTL_SRCO, src);
829 	ctl->dirty.bf.srt = 1;
830 	return 0;
831 }
832 
833 static int dai_srt_set_srcm(void *blk, unsigned int src)
834 {
835 	struct dai_ctrl_blk *ctl = blk;
836 
837 	set_field(&ctl->srt, SRTCTL_SRCM, src);
838 	ctl->dirty.bf.srt = 1;
839 	return 0;
840 }
841 
842 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
843 {
844 	struct dai_ctrl_blk *ctl = blk;
845 
846 	set_field(&ctl->srt, SRTCTL_RSR, rsr);
847 	ctl->dirty.bf.srt = 1;
848 	return 0;
849 }
850 
851 static int dai_srt_set_drat(void *blk, unsigned int drat)
852 {
853 	struct dai_ctrl_blk *ctl = blk;
854 
855 	set_field(&ctl->srt, SRTCTL_DRAT, drat);
856 	ctl->dirty.bf.srt = 1;
857 	return 0;
858 }
859 
860 static int dai_srt_set_ec(void *blk, unsigned int ec)
861 {
862 	struct dai_ctrl_blk *ctl = blk;
863 
864 	set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
865 	ctl->dirty.bf.srt = 1;
866 	return 0;
867 }
868 
869 static int dai_srt_set_et(void *blk, unsigned int et)
870 {
871 	struct dai_ctrl_blk *ctl = blk;
872 
873 	set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
874 	ctl->dirty.bf.srt = 1;
875 	return 0;
876 }
877 
878 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
879 {
880 	struct dai_ctrl_blk *ctl = blk;
881 
882 	if (ctl->dirty.bf.srt) {
883 		hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
884 		ctl->dirty.bf.srt = 0;
885 	}
886 
887 	return 0;
888 }
889 
890 static int dai_get_ctrl_blk(void **rblk)
891 {
892 	struct dai_ctrl_blk *blk;
893 
894 	*rblk = NULL;
895 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
896 	if (!blk)
897 		return -ENOMEM;
898 
899 	*rblk = blk;
900 
901 	return 0;
902 }
903 
904 static int dai_put_ctrl_blk(void *blk)
905 {
906 	kfree(blk);
907 
908 	return 0;
909 }
910 
911 static int dao_set_spos(void *blk, unsigned int spos)
912 {
913 	((struct dao_ctrl_blk *)blk)->atxcsl = spos;
914 	((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
915 	return 0;
916 }
917 
918 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
919 {
920 	struct dao_ctrl_blk *ctl = blk;
921 
922 	if (ctl->dirty.bf.atxcsl) {
923 		if (idx < 4) {
924 			/* S/PDIF SPOSx */
925 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
926 							ctl->atxcsl);
927 		}
928 		ctl->dirty.bf.atxcsl = 0;
929 	}
930 
931 	return 0;
932 }
933 
934 static int dao_get_spos(void *blk, unsigned int *spos)
935 {
936 	*spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
937 	return 0;
938 }
939 
940 static int dao_get_ctrl_blk(void **rblk)
941 {
942 	struct dao_ctrl_blk *blk;
943 
944 	*rblk = NULL;
945 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
946 	if (!blk)
947 		return -ENOMEM;
948 
949 	*rblk = blk;
950 
951 	return 0;
952 }
953 
954 static int dao_put_ctrl_blk(void *blk)
955 {
956 	kfree(blk);
957 
958 	return 0;
959 }
960 
961 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
962 {
963 	struct daio_mgr_ctrl_blk *ctl = blk;
964 
965 	set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
966 	ctl->dirty.bf.arxctl |= (0x1 << idx);
967 	return 0;
968 }
969 
970 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
971 {
972 	struct daio_mgr_ctrl_blk *ctl = blk;
973 
974 	set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
975 
976 	ctl->dirty.bf.arxctl |= (0x1 << idx);
977 	return 0;
978 }
979 
980 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
981 {
982 	struct daio_mgr_ctrl_blk *ctl = blk;
983 
984 	set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
985 	ctl->dirty.bf.atxctl |= (0x1 << idx);
986 	return 0;
987 }
988 
989 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
990 {
991 	struct daio_mgr_ctrl_blk *ctl = blk;
992 
993 	set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
994 	ctl->dirty.bf.atxctl |= (0x1 << idx);
995 	return 0;
996 }
997 
998 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
999 {
1000 	struct daio_mgr_ctrl_blk *ctl = blk;
1001 
1002 	if (idx < 4) {
1003 		/* S/PDIF output */
1004 		switch ((conf & 0x7)) {
1005 		case 1:
1006 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
1007 			break;
1008 		case 2:
1009 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1010 			break;
1011 		case 4:
1012 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1013 			break;
1014 		case 8:
1015 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1016 			break;
1017 		default:
1018 			break;
1019 		}
1020 		/* CDIF */
1021 		set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1022 		/* Non-audio */
1023 		set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1024 		/* Non-audio */
1025 		set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1026 		set_field(&ctl->txctl[idx], ATXCTL_RAW,
1027 			  ((conf >> 3) & 0x1) ? 0 : 0);
1028 		ctl->dirty.bf.atxctl |= (0x1 << idx);
1029 	} else {
1030 		/* I2S output */
1031 		/*idx %= 4; */
1032 	}
1033 	return 0;
1034 }
1035 
1036 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1037 {
1038 	struct daio_mgr_ctrl_blk *ctl = blk;
1039 
1040 	set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1041 	ctl->dirty.bf.daoimap = 1;
1042 	return 0;
1043 }
1044 
1045 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1046 {
1047 	struct daio_mgr_ctrl_blk *ctl = blk;
1048 
1049 	set_field(&ctl->daoimap.aim, AIM_NXT, next);
1050 	ctl->dirty.bf.daoimap = 1;
1051 	return 0;
1052 }
1053 
1054 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1055 {
1056 	((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1057 	((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1058 	return 0;
1059 }
1060 
1061 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1062 {
1063 	struct daio_mgr_ctrl_blk *ctl = blk;
1064 	unsigned int data;
1065 	int i;
1066 
1067 	for (i = 0; i < 8; i++) {
1068 		if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1069 			data = ctl->txctl[i];
1070 			hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1071 			ctl->dirty.bf.atxctl &= ~(0x1 << i);
1072 			mdelay(1);
1073 		}
1074 		if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1075 			data = ctl->rxctl[i];
1076 			hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1077 			ctl->dirty.bf.arxctl &= ~(0x1 << i);
1078 			mdelay(1);
1079 		}
1080 	}
1081 	if (ctl->dirty.bf.daoimap) {
1082 		hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1083 						ctl->daoimap.aim);
1084 		ctl->dirty.bf.daoimap = 0;
1085 	}
1086 
1087 	return 0;
1088 }
1089 
1090 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1091 {
1092 	struct daio_mgr_ctrl_blk *blk;
1093 	int i;
1094 
1095 	*rblk = NULL;
1096 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1097 	if (!blk)
1098 		return -ENOMEM;
1099 
1100 	for (i = 0; i < 8; i++) {
1101 		blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1102 		blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1103 	}
1104 
1105 	*rblk = blk;
1106 
1107 	return 0;
1108 }
1109 
1110 static int daio_mgr_put_ctrl_blk(void *blk)
1111 {
1112 	kfree(blk);
1113 
1114 	return 0;
1115 }
1116 
1117 /* Timer interrupt */
1118 static int set_timer_irq(struct hw *hw, int enable)
1119 {
1120 	hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1121 	return 0;
1122 }
1123 
1124 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1125 {
1126 	if (ticks)
1127 		ticks |= TIMR_IE | TIMR_IP;
1128 	hw_write_20kx(hw, TIMR, ticks);
1129 	return 0;
1130 }
1131 
1132 static unsigned int get_wc(struct hw *hw)
1133 {
1134 	return hw_read_20kx(hw, WC);
1135 }
1136 
1137 /* Card hardware initialization block */
1138 struct dac_conf {
1139 	unsigned int msr; /* master sample rate in rsrs */
1140 };
1141 
1142 struct adc_conf {
1143 	unsigned int msr; 	/* master sample rate in rsrs */
1144 	unsigned char input; 	/* the input source of ADC */
1145 	unsigned char mic20db; 	/* boost mic by 20db if input is microphone */
1146 };
1147 
1148 struct daio_conf {
1149 	unsigned int msr; /* master sample rate in rsrs */
1150 };
1151 
1152 struct trn_conf {
1153 	unsigned long vm_pgt_phys;
1154 };
1155 
1156 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1157 {
1158 	u32 data;
1159 	int i;
1160 
1161 	/* Program I2S with proper sample rate and enable the correct I2S
1162 	 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1163 	if (1 == info->msr) {
1164 		hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1165 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1166 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1167 	} else if (2 == info->msr) {
1168 		if (hw->model != CTSB1270) {
1169 			hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1170 		} else {
1171 			/* PCM4220 on Titanium HD is different. */
1172 			hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1173 		}
1174 		/* Specify all playing 96khz
1175 		 * EA [0]	- Enabled
1176 		 * RTA [4:5]	- 96kHz
1177 		 * EB [8]	- Enabled
1178 		 * RTB [12:13]	- 96kHz
1179 		 * EC [16]	- Enabled
1180 		 * RTC [20:21]	- 96kHz
1181 		 * ED [24]	- Enabled
1182 		 * RTD [28:29]	- 96kHz */
1183 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1184 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1185 	} else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1186 		hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1187 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1188 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1189 	} else {
1190 		pr_alert("ctxfi: ERROR!!! Invalid sampling rate!!!\n");
1191 		return -EINVAL;
1192 	}
1193 
1194 	for (i = 0; i < 8; i++) {
1195 		if (i <= 3) {
1196 			/* This comment looks wrong since loop is over 4  */
1197 			/* channels and emu20k2 supports 4 spdif IOs.     */
1198 			/* 1st 3 channels are SPDIFs (SB0960) */
1199 			if (i == 3)
1200 				data = 0x1001001;
1201 			else
1202 				data = 0x1000001;
1203 
1204 			hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1205 			hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1206 
1207 			/* Initialize the SPDIF Out Channel status registers.
1208 			 * The value specified here is based on the typical
1209 			 * values provided in the specification, namely: Clock
1210 			 * Accuracy of 1000ppm, Sample Rate of 48KHz,
1211 			 * unspecified source number, Generation status = 1,
1212 			 * Category code = 0x12 (Digital Signal Mixer),
1213 			 * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1214 			 * (indicating that we're transmitting digital audio,
1215 			 * and the Professional Use bit is 0. */
1216 
1217 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1218 					0x02109204); /* Default to 48kHz */
1219 
1220 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1221 		} else {
1222 			/* Again, loop is over 4 channels not 5. */
1223 			/* Next 5 channels are I2S (SB0960) */
1224 			data = 0x11;
1225 			hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1226 			if (2 == info->msr) {
1227 				/* Four channels per sample period */
1228 				data |= 0x1000;
1229 			} else if (4 == info->msr) {
1230 				/* FIXME: check this against the chip spec */
1231 				data |= 0x2000;
1232 			}
1233 			hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1234 		}
1235 	}
1236 
1237 	return 0;
1238 }
1239 
1240 /* TRANSPORT operations */
1241 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1242 {
1243 	u32 vmctl, data;
1244 	u32 ptp_phys_low, ptp_phys_high;
1245 	int i;
1246 
1247 	/* Set up device page table */
1248 	if ((~0UL) == info->vm_pgt_phys) {
1249 		pr_alert("ctxfi: Wrong device page table page address!!!\n");
1250 		return -1;
1251 	}
1252 
1253 	vmctl = 0x80000C0F;  /* 32-bit, 4k-size page */
1254 	ptp_phys_low = (u32)info->vm_pgt_phys;
1255 	ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1256 	if (sizeof(void *) == 8) /* 64bit address */
1257 		vmctl |= (3 << 8);
1258 	/* Write page table physical address to all PTPAL registers */
1259 	for (i = 0; i < 64; i++) {
1260 		hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1261 		hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1262 	}
1263 	/* Enable virtual memory transfer */
1264 	hw_write_20kx(hw, VMEM_CTL, vmctl);
1265 	/* Enable transport bus master and queueing of request */
1266 	hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1267 	hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1268 	/* Enable transport ring */
1269 	data = hw_read_20kx(hw, TRANSPORT_ENB);
1270 	hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1271 
1272 	return 0;
1273 }
1274 
1275 /* Card initialization */
1276 #define GCTL_AIE	0x00000001
1277 #define GCTL_UAA	0x00000002
1278 #define GCTL_DPC	0x00000004
1279 #define GCTL_DBP	0x00000008
1280 #define GCTL_ABP	0x00000010
1281 #define GCTL_TBP	0x00000020
1282 #define GCTL_SBP	0x00000040
1283 #define GCTL_FBP	0x00000080
1284 #define GCTL_ME		0x00000100
1285 #define GCTL_AID	0x00001000
1286 
1287 #define PLLCTL_SRC	0x00000007
1288 #define PLLCTL_SPE	0x00000008
1289 #define PLLCTL_RD	0x000000F0
1290 #define PLLCTL_FD	0x0001FF00
1291 #define PLLCTL_OD	0x00060000
1292 #define PLLCTL_B	0x00080000
1293 #define PLLCTL_AS	0x00100000
1294 #define PLLCTL_LF	0x03E00000
1295 #define PLLCTL_SPS	0x1C000000
1296 #define PLLCTL_AD	0x60000000
1297 
1298 #define PLLSTAT_CCS	0x00000007
1299 #define PLLSTAT_SPL	0x00000008
1300 #define PLLSTAT_CRD	0x000000F0
1301 #define PLLSTAT_CFD	0x0001FF00
1302 #define PLLSTAT_SL	0x00020000
1303 #define PLLSTAT_FAS	0x00040000
1304 #define PLLSTAT_B	0x00080000
1305 #define PLLSTAT_PD	0x00100000
1306 #define PLLSTAT_OCA	0x00200000
1307 #define PLLSTAT_NCA	0x00400000
1308 
1309 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1310 {
1311 	unsigned int pllenb;
1312 	unsigned int pllctl;
1313 	unsigned int pllstat;
1314 	int i;
1315 
1316 	pllenb = 0xB;
1317 	hw_write_20kx(hw, PLL_ENB, pllenb);
1318 	pllctl = 0x20C00000;
1319 	set_field(&pllctl, PLLCTL_B, 0);
1320 	set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1321 	set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1322 	hw_write_20kx(hw, PLL_CTL, pllctl);
1323 	mdelay(40);
1324 
1325 	pllctl = hw_read_20kx(hw, PLL_CTL);
1326 	set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1327 	hw_write_20kx(hw, PLL_CTL, pllctl);
1328 	mdelay(40);
1329 
1330 	for (i = 0; i < 1000; i++) {
1331 		pllstat = hw_read_20kx(hw, PLL_STAT);
1332 		if (get_field(pllstat, PLLSTAT_PD))
1333 			continue;
1334 
1335 		if (get_field(pllstat, PLLSTAT_B) !=
1336 					get_field(pllctl, PLLCTL_B))
1337 			continue;
1338 
1339 		if (get_field(pllstat, PLLSTAT_CCS) !=
1340 					get_field(pllctl, PLLCTL_SRC))
1341 			continue;
1342 
1343 		if (get_field(pllstat, PLLSTAT_CRD) !=
1344 					get_field(pllctl, PLLCTL_RD))
1345 			continue;
1346 
1347 		if (get_field(pllstat, PLLSTAT_CFD) !=
1348 					get_field(pllctl, PLLCTL_FD))
1349 			continue;
1350 
1351 		break;
1352 	}
1353 	if (i >= 1000) {
1354 		pr_alert("ctxfi: PLL initialization failed!!!\n");
1355 		return -EBUSY;
1356 	}
1357 
1358 	return 0;
1359 }
1360 
1361 static int hw_auto_init(struct hw *hw)
1362 {
1363 	unsigned int gctl;
1364 	int i;
1365 
1366 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1367 	set_field(&gctl, GCTL_AIE, 0);
1368 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1369 	set_field(&gctl, GCTL_AIE, 1);
1370 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1371 	mdelay(10);
1372 	for (i = 0; i < 400000; i++) {
1373 		gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1374 		if (get_field(gctl, GCTL_AID))
1375 			break;
1376 	}
1377 	if (!get_field(gctl, GCTL_AID)) {
1378 		pr_alert("ctxfi: Card Auto-init failed!!!\n");
1379 		return -EBUSY;
1380 	}
1381 
1382 	return 0;
1383 }
1384 
1385 /* DAC operations */
1386 
1387 #define CS4382_MC1 		0x1
1388 #define CS4382_MC2 		0x2
1389 #define CS4382_MC3		0x3
1390 #define CS4382_FC		0x4
1391 #define CS4382_IC		0x5
1392 #define CS4382_XC1		0x6
1393 #define CS4382_VCA1 		0x7
1394 #define CS4382_VCB1 		0x8
1395 #define CS4382_XC2		0x9
1396 #define CS4382_VCA2 		0xA
1397 #define CS4382_VCB2 		0xB
1398 #define CS4382_XC3		0xC
1399 #define CS4382_VCA3		0xD
1400 #define CS4382_VCB3		0xE
1401 #define CS4382_XC4 		0xF
1402 #define CS4382_VCA4 		0x10
1403 #define CS4382_VCB4 		0x11
1404 #define CS4382_CREV 		0x12
1405 
1406 /* I2C status */
1407 #define STATE_LOCKED		0x00
1408 #define STATE_UNLOCKED		0xAA
1409 #define DATA_READY		0x800000    /* Used with I2C_IF_STATUS */
1410 #define DATA_ABORT		0x10000     /* Used with I2C_IF_STATUS */
1411 
1412 #define I2C_STATUS_DCM	0x00000001
1413 #define I2C_STATUS_BC	0x00000006
1414 #define I2C_STATUS_APD	0x00000008
1415 #define I2C_STATUS_AB	0x00010000
1416 #define I2C_STATUS_DR	0x00800000
1417 
1418 #define I2C_ADDRESS_PTAD	0x0000FFFF
1419 #define I2C_ADDRESS_SLAD	0x007F0000
1420 
1421 struct regs_cs4382 {
1422 	u32 mode_control_1;
1423 	u32 mode_control_2;
1424 	u32 mode_control_3;
1425 
1426 	u32 filter_control;
1427 	u32 invert_control;
1428 
1429 	u32 mix_control_P1;
1430 	u32 vol_control_A1;
1431 	u32 vol_control_B1;
1432 
1433 	u32 mix_control_P2;
1434 	u32 vol_control_A2;
1435 	u32 vol_control_B2;
1436 
1437 	u32 mix_control_P3;
1438 	u32 vol_control_A3;
1439 	u32 vol_control_B3;
1440 
1441 	u32 mix_control_P4;
1442 	u32 vol_control_A4;
1443 	u32 vol_control_B4;
1444 };
1445 
1446 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1447 {
1448 	u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] =  {0xB3, 0xD4};
1449 
1450 	/* Send keys for forced BIOS mode */
1451 	hw_write_20kx(hw, I2C_IF_WLOCK,
1452 			UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1453 	hw_write_20kx(hw, I2C_IF_WLOCK,
1454 			UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1455 	/* Check whether the chip is unlocked */
1456 	if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1457 		return 0;
1458 
1459 	return -1;
1460 }
1461 
1462 static int hw20k2_i2c_lock_chip(struct hw *hw)
1463 {
1464 	/* Write twice */
1465 	hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1466 	hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1467 	if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1468 		return 0;
1469 
1470 	return -1;
1471 }
1472 
1473 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1474 {
1475 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1476 	int err;
1477 	unsigned int i2c_status;
1478 	unsigned int i2c_addr;
1479 
1480 	err = hw20k2_i2c_unlock_full_access(hw);
1481 	if (err < 0)
1482 		return err;
1483 
1484 	hw20k2->addr_size = addr_size;
1485 	hw20k2->data_size = data_size;
1486 	hw20k2->dev_id = dev_id;
1487 
1488 	i2c_addr = 0;
1489 	set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1490 
1491 	hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1492 
1493 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1494 
1495 	set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1496 
1497 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1498 
1499 	return 0;
1500 }
1501 
1502 static int hw20k2_i2c_uninit(struct hw *hw)
1503 {
1504 	unsigned int i2c_status;
1505 	unsigned int i2c_addr;
1506 
1507 	i2c_addr = 0;
1508 	set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1509 
1510 	hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1511 
1512 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1513 
1514 	set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1515 
1516 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1517 
1518 	return hw20k2_i2c_lock_chip(hw);
1519 }
1520 
1521 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1522 {
1523 	int i = 0x400000;
1524 	unsigned int ret;
1525 
1526 	do {
1527 		ret = hw_read_20kx(hw, I2C_IF_STATUS);
1528 	} while ((!(ret & DATA_READY)) && --i);
1529 
1530 	return i;
1531 }
1532 
1533 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1534 {
1535 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1536 	unsigned int i2c_status;
1537 
1538 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1539 	set_field(&i2c_status, I2C_STATUS_BC,
1540 		  (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1541 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1542 	if (!hw20k2_i2c_wait_data_ready(hw))
1543 		return -1;
1544 
1545 	hw_write_20kx(hw, I2C_IF_WDATA, addr);
1546 	if (!hw20k2_i2c_wait_data_ready(hw))
1547 		return -1;
1548 
1549 	/* Force a read operation */
1550 	hw_write_20kx(hw, I2C_IF_RDATA, 0);
1551 	if (!hw20k2_i2c_wait_data_ready(hw))
1552 		return -1;
1553 
1554 	*datap = hw_read_20kx(hw, I2C_IF_RDATA);
1555 
1556 	return 0;
1557 }
1558 
1559 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1560 {
1561 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1562 	unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1563 	unsigned int i2c_status;
1564 
1565 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1566 
1567 	set_field(&i2c_status, I2C_STATUS_BC,
1568 		  (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1569 		  0 : (hw20k2->addr_size + hw20k2->data_size));
1570 
1571 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1572 	hw20k2_i2c_wait_data_ready(hw);
1573 	/* Dummy write to trigger the write operation */
1574 	hw_write_20kx(hw, I2C_IF_WDATA, 0);
1575 	hw20k2_i2c_wait_data_ready(hw);
1576 
1577 	/* This is the real data */
1578 	hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1579 	hw20k2_i2c_wait_data_ready(hw);
1580 
1581 	return 0;
1582 }
1583 
1584 static void hw_dac_stop(struct hw *hw)
1585 {
1586 	u32 data;
1587 	data = hw_read_20kx(hw, GPIO_DATA);
1588 	data &= 0xFFFFFFFD;
1589 	hw_write_20kx(hw, GPIO_DATA, data);
1590 	mdelay(10);
1591 }
1592 
1593 static void hw_dac_start(struct hw *hw)
1594 {
1595 	u32 data;
1596 	data = hw_read_20kx(hw, GPIO_DATA);
1597 	data |= 0x2;
1598 	hw_write_20kx(hw, GPIO_DATA, data);
1599 	mdelay(50);
1600 }
1601 
1602 static void hw_dac_reset(struct hw *hw)
1603 {
1604 	hw_dac_stop(hw);
1605 	hw_dac_start(hw);
1606 }
1607 
1608 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1609 {
1610 	int err;
1611 	u32 data;
1612 	int i;
1613 	struct regs_cs4382 cs_read = {0};
1614 	struct regs_cs4382 cs_def = {
1615 				   0x00000001,  /* Mode Control 1 */
1616 				   0x00000000,  /* Mode Control 2 */
1617 				   0x00000084,  /* Mode Control 3 */
1618 				   0x00000000,  /* Filter Control */
1619 				   0x00000000,  /* Invert Control */
1620 				   0x00000024,  /* Mixing Control Pair 1 */
1621 				   0x00000000,  /* Vol Control A1 */
1622 				   0x00000000,  /* Vol Control B1 */
1623 				   0x00000024,  /* Mixing Control Pair 2 */
1624 				   0x00000000,  /* Vol Control A2 */
1625 				   0x00000000,  /* Vol Control B2 */
1626 				   0x00000024,  /* Mixing Control Pair 3 */
1627 				   0x00000000,  /* Vol Control A3 */
1628 				   0x00000000,  /* Vol Control B3 */
1629 				   0x00000024,  /* Mixing Control Pair 4 */
1630 				   0x00000000,  /* Vol Control A4 */
1631 				   0x00000000   /* Vol Control B4 */
1632 				 };
1633 
1634 	if (hw->model == CTSB1270) {
1635 		hw_dac_stop(hw);
1636 		data = hw_read_20kx(hw, GPIO_DATA);
1637 		data &= ~0x0600;
1638 		if (1 == info->msr)
1639 			data |= 0x0000; /* Single Speed Mode 0-50kHz */
1640 		else if (2 == info->msr)
1641 			data |= 0x0200; /* Double Speed Mode 50-100kHz */
1642 		else
1643 			data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1644 		hw_write_20kx(hw, GPIO_DATA, data);
1645 		hw_dac_start(hw);
1646 		return 0;
1647 	}
1648 
1649 	/* Set DAC reset bit as output */
1650 	data = hw_read_20kx(hw, GPIO_CTRL);
1651 	data |= 0x02;
1652 	hw_write_20kx(hw, GPIO_CTRL, data);
1653 
1654 	err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1655 	if (err < 0)
1656 		goto End;
1657 
1658 	for (i = 0; i < 2; i++) {
1659 		/* Reset DAC twice just in-case the chip
1660 		 * didn't initialized properly */
1661 		hw_dac_reset(hw);
1662 		hw_dac_reset(hw);
1663 
1664 		if (hw20k2_i2c_read(hw, CS4382_MC1,  &cs_read.mode_control_1))
1665 			continue;
1666 
1667 		if (hw20k2_i2c_read(hw, CS4382_MC2,  &cs_read.mode_control_2))
1668 			continue;
1669 
1670 		if (hw20k2_i2c_read(hw, CS4382_MC3,  &cs_read.mode_control_3))
1671 			continue;
1672 
1673 		if (hw20k2_i2c_read(hw, CS4382_FC,   &cs_read.filter_control))
1674 			continue;
1675 
1676 		if (hw20k2_i2c_read(hw, CS4382_IC,   &cs_read.invert_control))
1677 			continue;
1678 
1679 		if (hw20k2_i2c_read(hw, CS4382_XC1,  &cs_read.mix_control_P1))
1680 			continue;
1681 
1682 		if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1683 			continue;
1684 
1685 		if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1686 			continue;
1687 
1688 		if (hw20k2_i2c_read(hw, CS4382_XC2,  &cs_read.mix_control_P2))
1689 			continue;
1690 
1691 		if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1692 			continue;
1693 
1694 		if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1695 			continue;
1696 
1697 		if (hw20k2_i2c_read(hw, CS4382_XC3,  &cs_read.mix_control_P3))
1698 			continue;
1699 
1700 		if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1701 			continue;
1702 
1703 		if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1704 			continue;
1705 
1706 		if (hw20k2_i2c_read(hw, CS4382_XC4,  &cs_read.mix_control_P4))
1707 			continue;
1708 
1709 		if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1710 			continue;
1711 
1712 		if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1713 			continue;
1714 
1715 		if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1716 			continue;
1717 		else
1718 			break;
1719 	}
1720 
1721 	if (i >= 2)
1722 		goto End;
1723 
1724 	/* Note: Every I2C write must have some delay.
1725 	 * This is not a requirement but the delay works here... */
1726 	hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1727 	hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1728 	if (1 == info->msr) {
1729 		hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1730 		hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1731 		hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1732 		hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1733 	} else if (2 == info->msr) {
1734 		hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1735 		hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1736 		hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1737 		hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1738 	} else {
1739 		hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1740 		hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1741 		hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1742 		hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1743 	}
1744 
1745 	return 0;
1746 End:
1747 
1748 	hw20k2_i2c_uninit(hw);
1749 	return -1;
1750 }
1751 
1752 /* ADC operations */
1753 #define MAKE_WM8775_ADDR(addr, data)	(u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1754 #define MAKE_WM8775_DATA(data)	(u32)(data&0xFF)
1755 
1756 #define WM8775_IC       0x0B
1757 #define WM8775_MMC      0x0C
1758 #define WM8775_AADCL    0x0E
1759 #define WM8775_AADCR    0x0F
1760 #define WM8775_ADCMC    0x15
1761 #define WM8775_RESET    0x17
1762 
1763 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1764 {
1765 	u32 data;
1766 	if (hw->model == CTSB1270) {
1767 		/* Titanium HD has two ADC chips, one for line in and one */
1768 		/* for MIC. We don't need to switch the ADC input. */
1769 		return 1;
1770 	}
1771 	data = hw_read_20kx(hw, GPIO_DATA);
1772 	switch (type) {
1773 	case ADC_MICIN:
1774 		data = (data & (0x1 << 14)) ? 1 : 0;
1775 		break;
1776 	case ADC_LINEIN:
1777 		data = (data & (0x1 << 14)) ? 0 : 1;
1778 		break;
1779 	default:
1780 		data = 0;
1781 	}
1782 	return data;
1783 }
1784 
1785 #define MIC_BOOST_0DB 0xCF
1786 #define MIC_BOOST_STEPS_PER_DB 2
1787 
1788 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1789 {
1790 	u32 adcmc, gain;
1791 
1792 	if (input > 3)
1793 		input = 3;
1794 
1795 	adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1796 
1797 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1798 				MAKE_WM8775_DATA(adcmc));
1799 
1800 	if (gain_in_db < -103)
1801 		gain_in_db = -103;
1802 	if (gain_in_db > 24)
1803 		gain_in_db = 24;
1804 
1805 	gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1806 
1807 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1808 				MAKE_WM8775_DATA(gain));
1809 	/* ...so there should be no need for the following. */
1810 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1811 				MAKE_WM8775_DATA(gain));
1812 }
1813 
1814 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1815 {
1816 	u32 data;
1817 	data = hw_read_20kx(hw, GPIO_DATA);
1818 	switch (type) {
1819 	case ADC_MICIN:
1820 		data |= (0x1 << 14);
1821 		hw_write_20kx(hw, GPIO_DATA, data);
1822 		hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1823 		break;
1824 	case ADC_LINEIN:
1825 		data &= ~(0x1 << 14);
1826 		hw_write_20kx(hw, GPIO_DATA, data);
1827 		hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1828 		break;
1829 	default:
1830 		break;
1831 	}
1832 
1833 	return 0;
1834 }
1835 
1836 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1837 {
1838 	int err;
1839 	u32 data, ctl;
1840 
1841 	/*  Set ADC reset bit as output */
1842 	data = hw_read_20kx(hw, GPIO_CTRL);
1843 	data |= (0x1 << 15);
1844 	hw_write_20kx(hw, GPIO_CTRL, data);
1845 
1846 	/* Initialize I2C */
1847 	err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1848 	if (err < 0) {
1849 		pr_alert("ctxfi: Failure to acquire I2C!!!\n");
1850 		goto error;
1851 	}
1852 
1853 	/* Reset the ADC (reset is active low). */
1854 	data = hw_read_20kx(hw, GPIO_DATA);
1855 	data &= ~(0x1 << 15);
1856 	hw_write_20kx(hw, GPIO_DATA, data);
1857 
1858 	if (hw->model == CTSB1270) {
1859 		/* Set up the PCM4220 ADC on Titanium HD */
1860 		data &= ~0x0C;
1861 		if (1 == info->msr)
1862 			data |= 0x00; /* Single Speed Mode 32-50kHz */
1863 		else if (2 == info->msr)
1864 			data |= 0x08; /* Double Speed Mode 50-108kHz */
1865 		else
1866 			data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1867 		hw_write_20kx(hw, GPIO_DATA, data);
1868 	}
1869 
1870 	mdelay(10);
1871 	/* Return the ADC to normal operation. */
1872 	data |= (0x1 << 15);
1873 	hw_write_20kx(hw, GPIO_DATA, data);
1874 	mdelay(50);
1875 
1876 	/* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1877 	/* invert bit, interface format to I2S, word length to 24-bit, */
1878 	/* enable ADC high pass filter. Fixes bug 5323?		*/
1879 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1880 			 MAKE_WM8775_DATA(0x26));
1881 
1882 	/* Set the master mode (256fs) */
1883 	if (1 == info->msr) {
1884 		/* slave mode, 128x oversampling 256fs */
1885 		hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1886 						MAKE_WM8775_DATA(0x02));
1887 	} else if ((2 == info->msr) || (4 == info->msr)) {
1888 		/* slave mode, 64x oversampling, 256fs */
1889 		hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1890 						MAKE_WM8775_DATA(0x0A));
1891 	} else {
1892 		pr_alert("ctxfi: Invalid master sampling rate (msr %d)!!!\n",
1893 			info->msr);
1894 		err = -EINVAL;
1895 		goto error;
1896 	}
1897 
1898 	if (hw->model != CTSB1270) {
1899 		/* Configure GPIO bit 14 change to line-in/mic-in */
1900 		ctl = hw_read_20kx(hw, GPIO_CTRL);
1901 		ctl |= 0x1 << 14;
1902 		hw_write_20kx(hw, GPIO_CTRL, ctl);
1903 		hw_adc_input_select(hw, ADC_LINEIN);
1904 	} else {
1905 		hw_wm8775_input_select(hw, 0, 0);
1906 	}
1907 
1908 	return 0;
1909 error:
1910 	hw20k2_i2c_uninit(hw);
1911 	return err;
1912 }
1913 
1914 static struct capabilities hw_capabilities(struct hw *hw)
1915 {
1916 	struct capabilities cap;
1917 
1918 	cap.digit_io_switch = 0;
1919 	cap.dedicated_mic = hw->model == CTSB1270;
1920 	cap.output_switch = hw->model == CTSB1270;
1921 	cap.mic_source_switch = hw->model == CTSB1270;
1922 
1923 	return cap;
1924 }
1925 
1926 static int hw_output_switch_get(struct hw *hw)
1927 {
1928 	u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1929 
1930 	switch (data & 0x30) {
1931 	case 0x00:
1932 	     return 0;
1933 	case 0x10:
1934 	     return 1;
1935 	case 0x20:
1936 	     return 2;
1937 	default:
1938 	     return 3;
1939 	}
1940 }
1941 
1942 static int hw_output_switch_put(struct hw *hw, int position)
1943 {
1944 	u32 data;
1945 
1946 	if (position == hw_output_switch_get(hw))
1947 		return 0;
1948 
1949 	/* Mute line and headphones (intended for anti-pop). */
1950 	data = hw_read_20kx(hw, GPIO_DATA);
1951 	data |= (0x03 << 11);
1952 	hw_write_20kx(hw, GPIO_DATA, data);
1953 
1954 	data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1955 	switch (position) {
1956 	case 0:
1957 		break;
1958 	case 1:
1959 		data |= 0x10;
1960 		break;
1961 	default:
1962 		data |= 0x20;
1963 	}
1964 	hw_write_20kx(hw, GPIO_EXT_DATA, data);
1965 
1966 	/* Unmute line and headphones. */
1967 	data = hw_read_20kx(hw, GPIO_DATA);
1968 	data &= ~(0x03 << 11);
1969 	hw_write_20kx(hw, GPIO_DATA, data);
1970 
1971 	return 1;
1972 }
1973 
1974 static int hw_mic_source_switch_get(struct hw *hw)
1975 {
1976 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1977 
1978 	return hw20k2->mic_source;
1979 }
1980 
1981 static int hw_mic_source_switch_put(struct hw *hw, int position)
1982 {
1983 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1984 
1985 	if (position == hw20k2->mic_source)
1986 		return 0;
1987 
1988 	switch (position) {
1989 	case 0:
1990 		hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1991 		break;
1992 	case 1:
1993 		hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1994 		break;
1995 	case 2:
1996 		hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
1997 		break;
1998 	default:
1999 		return 0;
2000 	}
2001 
2002 	hw20k2->mic_source = position;
2003 
2004 	return 1;
2005 }
2006 
2007 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2008 {
2009 	struct hw *hw = dev_id;
2010 	unsigned int status;
2011 
2012 	status = hw_read_20kx(hw, GIP);
2013 	if (!status)
2014 		return IRQ_NONE;
2015 
2016 	if (hw->irq_callback)
2017 		hw->irq_callback(hw->irq_callback_data, status);
2018 
2019 	hw_write_20kx(hw, GIP, status);
2020 	return IRQ_HANDLED;
2021 }
2022 
2023 static int hw_card_start(struct hw *hw)
2024 {
2025 	int err = 0;
2026 	struct pci_dev *pci = hw->pci;
2027 	unsigned int gctl;
2028 
2029 	err = pci_enable_device(pci);
2030 	if (err < 0)
2031 		return err;
2032 
2033 	/* Set DMA transfer mask */
2034 	if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 ||
2035 	    pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) {
2036 		pr_err("ctxfi: architecture does not support PCI busmaster DMA with mask 0x%llx\n",
2037 			CT_XFI_DMA_MASK);
2038 		err = -ENXIO;
2039 		goto error1;
2040 	}
2041 
2042 	if (!hw->io_base) {
2043 		err = pci_request_regions(pci, "XFi");
2044 		if (err < 0)
2045 			goto error1;
2046 
2047 		hw->io_base = pci_resource_start(hw->pci, 2);
2048 		hw->mem_base = ioremap(hw->io_base,
2049 				       pci_resource_len(hw->pci, 2));
2050 		if (!hw->mem_base) {
2051 			err = -ENOENT;
2052 			goto error2;
2053 		}
2054 	}
2055 
2056 	/* Switch to 20k2 mode from UAA mode. */
2057 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2058 	set_field(&gctl, GCTL_UAA, 0);
2059 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2060 
2061 	if (hw->irq < 0) {
2062 		err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2063 				  KBUILD_MODNAME, hw);
2064 		if (err < 0) {
2065 			pr_err("XFi: Cannot get irq %d\n", pci->irq);
2066 			goto error2;
2067 		}
2068 		hw->irq = pci->irq;
2069 	}
2070 
2071 	pci_set_master(pci);
2072 
2073 	return 0;
2074 
2075 /*error3:
2076 	iounmap((void *)hw->mem_base);
2077 	hw->mem_base = (unsigned long)NULL;*/
2078 error2:
2079 	pci_release_regions(pci);
2080 	hw->io_base = 0;
2081 error1:
2082 	pci_disable_device(pci);
2083 	return err;
2084 }
2085 
2086 static int hw_card_stop(struct hw *hw)
2087 {
2088 	unsigned int data;
2089 
2090 	/* disable transport bus master and queueing of request */
2091 	hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2092 
2093 	/* disable pll */
2094 	data = hw_read_20kx(hw, PLL_ENB);
2095 	hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2096 
2097 	/* TODO: Disable interrupt and so on... */
2098 	return 0;
2099 }
2100 
2101 static int hw_card_shutdown(struct hw *hw)
2102 {
2103 	if (hw->irq >= 0)
2104 		free_irq(hw->irq, hw);
2105 
2106 	hw->irq	= -1;
2107 
2108 	if (hw->mem_base)
2109 		iounmap(hw->mem_base);
2110 
2111 	hw->mem_base = NULL;
2112 
2113 	if (hw->io_base)
2114 		pci_release_regions(hw->pci);
2115 
2116 	hw->io_base = 0;
2117 
2118 	pci_disable_device(hw->pci);
2119 
2120 	return 0;
2121 }
2122 
2123 static int hw_card_init(struct hw *hw, struct card_conf *info)
2124 {
2125 	int err;
2126 	unsigned int gctl;
2127 	u32 data = 0;
2128 	struct dac_conf dac_info = {0};
2129 	struct adc_conf adc_info = {0};
2130 	struct daio_conf daio_info = {0};
2131 	struct trn_conf trn_info = {0};
2132 
2133 	/* Get PCI io port/memory base address and
2134 	 * do 20kx core switch if needed. */
2135 	err = hw_card_start(hw);
2136 	if (err)
2137 		return err;
2138 
2139 	/* PLL init */
2140 	err = hw_pll_init(hw, info->rsr);
2141 	if (err < 0)
2142 		return err;
2143 
2144 	/* kick off auto-init */
2145 	err = hw_auto_init(hw);
2146 	if (err < 0)
2147 		return err;
2148 
2149 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2150 	set_field(&gctl, GCTL_DBP, 1);
2151 	set_field(&gctl, GCTL_TBP, 1);
2152 	set_field(&gctl, GCTL_FBP, 1);
2153 	set_field(&gctl, GCTL_DPC, 0);
2154 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2155 
2156 	/* Reset all global pending interrupts */
2157 	hw_write_20kx(hw, GIE, 0);
2158 	/* Reset all SRC pending interrupts */
2159 	hw_write_20kx(hw, SRC_IP, 0);
2160 
2161 	if (hw->model != CTSB1270) {
2162 		/* TODO: detect the card ID and configure GPIO accordingly. */
2163 		/* Configures GPIO (0xD802 0x98028) */
2164 		/*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2165 		/* Configures GPIO (SB0880) */
2166 		/*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2167 		hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2168 	} else {
2169 		hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2170 	}
2171 	/* Enable audio ring */
2172 	hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2173 
2174 	trn_info.vm_pgt_phys = info->vm_pgt_phys;
2175 	err = hw_trn_init(hw, &trn_info);
2176 	if (err < 0)
2177 		return err;
2178 
2179 	daio_info.msr = info->msr;
2180 	err = hw_daio_init(hw, &daio_info);
2181 	if (err < 0)
2182 		return err;
2183 
2184 	dac_info.msr = info->msr;
2185 	err = hw_dac_init(hw, &dac_info);
2186 	if (err < 0)
2187 		return err;
2188 
2189 	adc_info.msr = info->msr;
2190 	adc_info.input = ADC_LINEIN;
2191 	adc_info.mic20db = 0;
2192 	err = hw_adc_init(hw, &adc_info);
2193 	if (err < 0)
2194 		return err;
2195 
2196 	data = hw_read_20kx(hw, SRC_MCTL);
2197 	data |= 0x1; /* Enables input from the audio ring */
2198 	hw_write_20kx(hw, SRC_MCTL, data);
2199 
2200 	return 0;
2201 }
2202 
2203 #ifdef CONFIG_PM_SLEEP
2204 static int hw_suspend(struct hw *hw)
2205 {
2206 	struct pci_dev *pci = hw->pci;
2207 
2208 	hw_card_stop(hw);
2209 
2210 	pci_disable_device(pci);
2211 	pci_save_state(pci);
2212 	pci_set_power_state(pci, PCI_D3hot);
2213 
2214 	return 0;
2215 }
2216 
2217 static int hw_resume(struct hw *hw, struct card_conf *info)
2218 {
2219 	struct pci_dev *pci = hw->pci;
2220 
2221 	pci_set_power_state(pci, PCI_D0);
2222 	pci_restore_state(pci);
2223 
2224 	/* Re-initialize card hardware. */
2225 	return hw_card_init(hw, info);
2226 }
2227 #endif
2228 
2229 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2230 {
2231 	return readl(hw->mem_base + reg);
2232 }
2233 
2234 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2235 {
2236 	writel(data, hw->mem_base + reg);
2237 }
2238 
2239 static struct hw ct20k2_preset = {
2240 	.irq = -1,
2241 
2242 	.card_init = hw_card_init,
2243 	.card_stop = hw_card_stop,
2244 	.pll_init = hw_pll_init,
2245 	.is_adc_source_selected = hw_is_adc_input_selected,
2246 	.select_adc_source = hw_adc_input_select,
2247 	.capabilities = hw_capabilities,
2248 	.output_switch_get = hw_output_switch_get,
2249 	.output_switch_put = hw_output_switch_put,
2250 	.mic_source_switch_get = hw_mic_source_switch_get,
2251 	.mic_source_switch_put = hw_mic_source_switch_put,
2252 #ifdef CONFIG_PM_SLEEP
2253 	.suspend = hw_suspend,
2254 	.resume = hw_resume,
2255 #endif
2256 
2257 	.src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2258 	.src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2259 	.src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2260 	.src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2261 	.src_set_state = src_set_state,
2262 	.src_set_bm = src_set_bm,
2263 	.src_set_rsr = src_set_rsr,
2264 	.src_set_sf = src_set_sf,
2265 	.src_set_wr = src_set_wr,
2266 	.src_set_pm = src_set_pm,
2267 	.src_set_rom = src_set_rom,
2268 	.src_set_vo = src_set_vo,
2269 	.src_set_st = src_set_st,
2270 	.src_set_ie = src_set_ie,
2271 	.src_set_ilsz = src_set_ilsz,
2272 	.src_set_bp = src_set_bp,
2273 	.src_set_cisz = src_set_cisz,
2274 	.src_set_ca = src_set_ca,
2275 	.src_set_sa = src_set_sa,
2276 	.src_set_la = src_set_la,
2277 	.src_set_pitch = src_set_pitch,
2278 	.src_set_dirty = src_set_dirty,
2279 	.src_set_clear_zbufs = src_set_clear_zbufs,
2280 	.src_set_dirty_all = src_set_dirty_all,
2281 	.src_commit_write = src_commit_write,
2282 	.src_get_ca = src_get_ca,
2283 	.src_get_dirty = src_get_dirty,
2284 	.src_dirty_conj_mask = src_dirty_conj_mask,
2285 	.src_mgr_enbs_src = src_mgr_enbs_src,
2286 	.src_mgr_enb_src = src_mgr_enb_src,
2287 	.src_mgr_dsb_src = src_mgr_dsb_src,
2288 	.src_mgr_commit_write = src_mgr_commit_write,
2289 
2290 	.srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2291 	.srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2292 	.srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2293 	.srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2294 	.srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2295 	.srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2296 	.srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2297 
2298 	.amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2299 	.amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2300 	.amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2301 	.amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2302 	.amixer_set_mode = amixer_set_mode,
2303 	.amixer_set_iv = amixer_set_iv,
2304 	.amixer_set_x = amixer_set_x,
2305 	.amixer_set_y = amixer_set_y,
2306 	.amixer_set_sadr = amixer_set_sadr,
2307 	.amixer_set_se = amixer_set_se,
2308 	.amixer_set_dirty = amixer_set_dirty,
2309 	.amixer_set_dirty_all = amixer_set_dirty_all,
2310 	.amixer_commit_write = amixer_commit_write,
2311 	.amixer_get_y = amixer_get_y,
2312 	.amixer_get_dirty = amixer_get_dirty,
2313 
2314 	.dai_get_ctrl_blk = dai_get_ctrl_blk,
2315 	.dai_put_ctrl_blk = dai_put_ctrl_blk,
2316 	.dai_srt_set_srco = dai_srt_set_srco,
2317 	.dai_srt_set_srcm = dai_srt_set_srcm,
2318 	.dai_srt_set_rsr = dai_srt_set_rsr,
2319 	.dai_srt_set_drat = dai_srt_set_drat,
2320 	.dai_srt_set_ec = dai_srt_set_ec,
2321 	.dai_srt_set_et = dai_srt_set_et,
2322 	.dai_commit_write = dai_commit_write,
2323 
2324 	.dao_get_ctrl_blk = dao_get_ctrl_blk,
2325 	.dao_put_ctrl_blk = dao_put_ctrl_blk,
2326 	.dao_set_spos = dao_set_spos,
2327 	.dao_commit_write = dao_commit_write,
2328 	.dao_get_spos = dao_get_spos,
2329 
2330 	.daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2331 	.daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2332 	.daio_mgr_enb_dai = daio_mgr_enb_dai,
2333 	.daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2334 	.daio_mgr_enb_dao = daio_mgr_enb_dao,
2335 	.daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2336 	.daio_mgr_dao_init = daio_mgr_dao_init,
2337 	.daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2338 	.daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2339 	.daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2340 	.daio_mgr_commit_write = daio_mgr_commit_write,
2341 
2342 	.set_timer_irq = set_timer_irq,
2343 	.set_timer_tick = set_timer_tick,
2344 	.get_wc = get_wc,
2345 };
2346 
2347 int create_20k2_hw_obj(struct hw **rhw)
2348 {
2349 	struct hw20k2 *hw20k2;
2350 
2351 	*rhw = NULL;
2352 	hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2353 	if (!hw20k2)
2354 		return -ENOMEM;
2355 
2356 	hw20k2->hw = ct20k2_preset;
2357 	*rhw = &hw20k2->hw;
2358 
2359 	return 0;
2360 }
2361 
2362 int destroy_20k2_hw_obj(struct hw *hw)
2363 {
2364 	if (hw->io_base)
2365 		hw_card_shutdown(hw);
2366 
2367 	kfree(hw);
2368 	return 0;
2369 }
2370