1 // SPDX-License-Identifier: GPL-2.0-only 2 /** 3 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. 4 * 5 * @File cthw20k2.c 6 * 7 * @Brief 8 * This file contains the implementation of hardware access method for 20k2. 9 * 10 * @Author Liu Chun 11 * @Date May 14 2008 12 */ 13 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/pci.h> 17 #include <linux/io.h> 18 #include <linux/string.h> 19 #include <linux/kernel.h> 20 #include <linux/interrupt.h> 21 #include <linux/delay.h> 22 #include "cthw20k2.h" 23 #include "ct20k2reg.h" 24 25 struct hw20k2 { 26 struct hw hw; 27 /* for i2c */ 28 unsigned char dev_id; 29 unsigned char addr_size; 30 unsigned char data_size; 31 32 int mic_source; 33 }; 34 35 static u32 hw_read_20kx(struct hw *hw, u32 reg); 36 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data); 37 38 /* 39 * Type definition block. 40 * The layout of control structures can be directly applied on 20k2 chip. 41 */ 42 43 /* 44 * SRC control block definitions. 45 */ 46 47 /* SRC resource control block */ 48 #define SRCCTL_STATE 0x00000007 49 #define SRCCTL_BM 0x00000008 50 #define SRCCTL_RSR 0x00000030 51 #define SRCCTL_SF 0x000001C0 52 #define SRCCTL_WR 0x00000200 53 #define SRCCTL_PM 0x00000400 54 #define SRCCTL_ROM 0x00001800 55 #define SRCCTL_VO 0x00002000 56 #define SRCCTL_ST 0x00004000 57 #define SRCCTL_IE 0x00008000 58 #define SRCCTL_ILSZ 0x000F0000 59 #define SRCCTL_BP 0x00100000 60 61 #define SRCCCR_CISZ 0x000007FF 62 #define SRCCCR_CWA 0x001FF800 63 #define SRCCCR_D 0x00200000 64 #define SRCCCR_RS 0x01C00000 65 #define SRCCCR_NAL 0x3E000000 66 #define SRCCCR_RA 0xC0000000 67 68 #define SRCCA_CA 0x0FFFFFFF 69 #define SRCCA_RS 0xE0000000 70 71 #define SRCSA_SA 0x0FFFFFFF 72 73 #define SRCLA_LA 0x0FFFFFFF 74 75 /* Mixer Parameter Ring ram Low and Hight register. 76 * Fixed-point value in 8.24 format for parameter channel */ 77 #define MPRLH_PITCH 0xFFFFFFFF 78 79 /* SRC resource register dirty flags */ 80 union src_dirty { 81 struct { 82 u16 ctl:1; 83 u16 ccr:1; 84 u16 sa:1; 85 u16 la:1; 86 u16 ca:1; 87 u16 mpr:1; 88 u16 czbfs:1; /* Clear Z-Buffers */ 89 u16 rsv:9; 90 } bf; 91 u16 data; 92 }; 93 94 struct src_rsc_ctrl_blk { 95 unsigned int ctl; 96 unsigned int ccr; 97 unsigned int ca; 98 unsigned int sa; 99 unsigned int la; 100 unsigned int mpr; 101 union src_dirty dirty; 102 }; 103 104 /* SRC manager control block */ 105 union src_mgr_dirty { 106 struct { 107 u16 enb0:1; 108 u16 enb1:1; 109 u16 enb2:1; 110 u16 enb3:1; 111 u16 enb4:1; 112 u16 enb5:1; 113 u16 enb6:1; 114 u16 enb7:1; 115 u16 enbsa:1; 116 u16 rsv:7; 117 } bf; 118 u16 data; 119 }; 120 121 struct src_mgr_ctrl_blk { 122 unsigned int enbsa; 123 unsigned int enb[8]; 124 union src_mgr_dirty dirty; 125 }; 126 127 /* SRCIMP manager control block */ 128 #define SRCAIM_ARC 0x00000FFF 129 #define SRCAIM_NXT 0x00FF0000 130 #define SRCAIM_SRC 0xFF000000 131 132 struct srcimap { 133 unsigned int srcaim; 134 unsigned int idx; 135 }; 136 137 /* SRCIMP manager register dirty flags */ 138 union srcimp_mgr_dirty { 139 struct { 140 u16 srcimap:1; 141 u16 rsv:15; 142 } bf; 143 u16 data; 144 }; 145 146 struct srcimp_mgr_ctrl_blk { 147 struct srcimap srcimap; 148 union srcimp_mgr_dirty dirty; 149 }; 150 151 /* 152 * Function implementation block. 153 */ 154 155 static int src_get_rsc_ctrl_blk(void **rblk) 156 { 157 struct src_rsc_ctrl_blk *blk; 158 159 *rblk = NULL; 160 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 161 if (!blk) 162 return -ENOMEM; 163 164 *rblk = blk; 165 166 return 0; 167 } 168 169 static int src_put_rsc_ctrl_blk(void *blk) 170 { 171 kfree(blk); 172 173 return 0; 174 } 175 176 static int src_set_state(void *blk, unsigned int state) 177 { 178 struct src_rsc_ctrl_blk *ctl = blk; 179 180 set_field(&ctl->ctl, SRCCTL_STATE, state); 181 ctl->dirty.bf.ctl = 1; 182 return 0; 183 } 184 185 static int src_set_bm(void *blk, unsigned int bm) 186 { 187 struct src_rsc_ctrl_blk *ctl = blk; 188 189 set_field(&ctl->ctl, SRCCTL_BM, bm); 190 ctl->dirty.bf.ctl = 1; 191 return 0; 192 } 193 194 static int src_set_rsr(void *blk, unsigned int rsr) 195 { 196 struct src_rsc_ctrl_blk *ctl = blk; 197 198 set_field(&ctl->ctl, SRCCTL_RSR, rsr); 199 ctl->dirty.bf.ctl = 1; 200 return 0; 201 } 202 203 static int src_set_sf(void *blk, unsigned int sf) 204 { 205 struct src_rsc_ctrl_blk *ctl = blk; 206 207 set_field(&ctl->ctl, SRCCTL_SF, sf); 208 ctl->dirty.bf.ctl = 1; 209 return 0; 210 } 211 212 static int src_set_wr(void *blk, unsigned int wr) 213 { 214 struct src_rsc_ctrl_blk *ctl = blk; 215 216 set_field(&ctl->ctl, SRCCTL_WR, wr); 217 ctl->dirty.bf.ctl = 1; 218 return 0; 219 } 220 221 static int src_set_pm(void *blk, unsigned int pm) 222 { 223 struct src_rsc_ctrl_blk *ctl = blk; 224 225 set_field(&ctl->ctl, SRCCTL_PM, pm); 226 ctl->dirty.bf.ctl = 1; 227 return 0; 228 } 229 230 static int src_set_rom(void *blk, unsigned int rom) 231 { 232 struct src_rsc_ctrl_blk *ctl = blk; 233 234 set_field(&ctl->ctl, SRCCTL_ROM, rom); 235 ctl->dirty.bf.ctl = 1; 236 return 0; 237 } 238 239 static int src_set_vo(void *blk, unsigned int vo) 240 { 241 struct src_rsc_ctrl_blk *ctl = blk; 242 243 set_field(&ctl->ctl, SRCCTL_VO, vo); 244 ctl->dirty.bf.ctl = 1; 245 return 0; 246 } 247 248 static int src_set_st(void *blk, unsigned int st) 249 { 250 struct src_rsc_ctrl_blk *ctl = blk; 251 252 set_field(&ctl->ctl, SRCCTL_ST, st); 253 ctl->dirty.bf.ctl = 1; 254 return 0; 255 } 256 257 static int src_set_ie(void *blk, unsigned int ie) 258 { 259 struct src_rsc_ctrl_blk *ctl = blk; 260 261 set_field(&ctl->ctl, SRCCTL_IE, ie); 262 ctl->dirty.bf.ctl = 1; 263 return 0; 264 } 265 266 static int src_set_ilsz(void *blk, unsigned int ilsz) 267 { 268 struct src_rsc_ctrl_blk *ctl = blk; 269 270 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz); 271 ctl->dirty.bf.ctl = 1; 272 return 0; 273 } 274 275 static int src_set_bp(void *blk, unsigned int bp) 276 { 277 struct src_rsc_ctrl_blk *ctl = blk; 278 279 set_field(&ctl->ctl, SRCCTL_BP, bp); 280 ctl->dirty.bf.ctl = 1; 281 return 0; 282 } 283 284 static int src_set_cisz(void *blk, unsigned int cisz) 285 { 286 struct src_rsc_ctrl_blk *ctl = blk; 287 288 set_field(&ctl->ccr, SRCCCR_CISZ, cisz); 289 ctl->dirty.bf.ccr = 1; 290 return 0; 291 } 292 293 static int src_set_ca(void *blk, unsigned int ca) 294 { 295 struct src_rsc_ctrl_blk *ctl = blk; 296 297 set_field(&ctl->ca, SRCCA_CA, ca); 298 ctl->dirty.bf.ca = 1; 299 return 0; 300 } 301 302 static int src_set_sa(void *blk, unsigned int sa) 303 { 304 struct src_rsc_ctrl_blk *ctl = blk; 305 306 set_field(&ctl->sa, SRCSA_SA, sa); 307 ctl->dirty.bf.sa = 1; 308 return 0; 309 } 310 311 static int src_set_la(void *blk, unsigned int la) 312 { 313 struct src_rsc_ctrl_blk *ctl = blk; 314 315 set_field(&ctl->la, SRCLA_LA, la); 316 ctl->dirty.bf.la = 1; 317 return 0; 318 } 319 320 static int src_set_pitch(void *blk, unsigned int pitch) 321 { 322 struct src_rsc_ctrl_blk *ctl = blk; 323 324 set_field(&ctl->mpr, MPRLH_PITCH, pitch); 325 ctl->dirty.bf.mpr = 1; 326 return 0; 327 } 328 329 static int src_set_clear_zbufs(void *blk, unsigned int clear) 330 { 331 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0); 332 return 0; 333 } 334 335 static int src_set_dirty(void *blk, unsigned int flags) 336 { 337 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 338 return 0; 339 } 340 341 static int src_set_dirty_all(void *blk) 342 { 343 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 344 return 0; 345 } 346 347 #define AR_SLOT_SIZE 4096 348 #define AR_SLOT_BLOCK_SIZE 16 349 #define AR_PTS_PITCH 6 350 #define AR_PARAM_SRC_OFFSET 0x60 351 352 static unsigned int src_param_pitch_mixer(unsigned int src_idx) 353 { 354 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE 355 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE; 356 357 } 358 359 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk) 360 { 361 struct src_rsc_ctrl_blk *ctl = blk; 362 int i; 363 364 if (ctl->dirty.bf.czbfs) { 365 /* Clear Z-Buffer registers */ 366 for (i = 0; i < 8; i++) 367 hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0); 368 369 for (i = 0; i < 4; i++) 370 hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0); 371 372 for (i = 0; i < 8; i++) 373 hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0); 374 375 ctl->dirty.bf.czbfs = 0; 376 } 377 if (ctl->dirty.bf.mpr) { 378 /* Take the parameter mixer resource in the same group as that 379 * the idx src is in for simplicity. Unlike src, all conjugate 380 * parameter mixer resources must be programmed for 381 * corresponding conjugate src resources. */ 382 unsigned int pm_idx = src_param_pitch_mixer(idx); 383 hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr); 384 hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3); 385 hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0); 386 ctl->dirty.bf.mpr = 0; 387 } 388 if (ctl->dirty.bf.sa) { 389 hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa); 390 ctl->dirty.bf.sa = 0; 391 } 392 if (ctl->dirty.bf.la) { 393 hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la); 394 ctl->dirty.bf.la = 0; 395 } 396 if (ctl->dirty.bf.ca) { 397 hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca); 398 ctl->dirty.bf.ca = 0; 399 } 400 401 /* Write srccf register */ 402 hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0); 403 404 if (ctl->dirty.bf.ccr) { 405 hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr); 406 ctl->dirty.bf.ccr = 0; 407 } 408 if (ctl->dirty.bf.ctl) { 409 hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl); 410 ctl->dirty.bf.ctl = 0; 411 } 412 413 return 0; 414 } 415 416 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk) 417 { 418 struct src_rsc_ctrl_blk *ctl = blk; 419 420 ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100); 421 ctl->dirty.bf.ca = 0; 422 423 return get_field(ctl->ca, SRCCA_CA); 424 } 425 426 static unsigned int src_get_dirty(void *blk) 427 { 428 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data; 429 } 430 431 static unsigned int src_dirty_conj_mask(void) 432 { 433 return 0x20; 434 } 435 436 static int src_mgr_enbs_src(void *blk, unsigned int idx) 437 { 438 ((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4)); 439 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1; 440 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 441 return 0; 442 } 443 444 static int src_mgr_enb_src(void *blk, unsigned int idx) 445 { 446 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 447 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 448 return 0; 449 } 450 451 static int src_mgr_dsb_src(void *blk, unsigned int idx) 452 { 453 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32)); 454 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 455 return 0; 456 } 457 458 static int src_mgr_commit_write(struct hw *hw, void *blk) 459 { 460 struct src_mgr_ctrl_blk *ctl = blk; 461 int i; 462 unsigned int ret; 463 464 if (ctl->dirty.bf.enbsa) { 465 do { 466 ret = hw_read_20kx(hw, SRC_ENBSTAT); 467 } while (ret & 0x1); 468 hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa); 469 ctl->dirty.bf.enbsa = 0; 470 } 471 for (i = 0; i < 8; i++) { 472 if ((ctl->dirty.data & (0x1 << i))) { 473 hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]); 474 ctl->dirty.data &= ~(0x1 << i); 475 } 476 } 477 478 return 0; 479 } 480 481 static int src_mgr_get_ctrl_blk(void **rblk) 482 { 483 struct src_mgr_ctrl_blk *blk; 484 485 *rblk = NULL; 486 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 487 if (!blk) 488 return -ENOMEM; 489 490 *rblk = blk; 491 492 return 0; 493 } 494 495 static int src_mgr_put_ctrl_blk(void *blk) 496 { 497 kfree(blk); 498 499 return 0; 500 } 501 502 static int srcimp_mgr_get_ctrl_blk(void **rblk) 503 { 504 struct srcimp_mgr_ctrl_blk *blk; 505 506 *rblk = NULL; 507 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 508 if (!blk) 509 return -ENOMEM; 510 511 *rblk = blk; 512 513 return 0; 514 } 515 516 static int srcimp_mgr_put_ctrl_blk(void *blk) 517 { 518 kfree(blk); 519 520 return 0; 521 } 522 523 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot) 524 { 525 struct srcimp_mgr_ctrl_blk *ctl = blk; 526 527 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot); 528 ctl->dirty.bf.srcimap = 1; 529 return 0; 530 } 531 532 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user) 533 { 534 struct srcimp_mgr_ctrl_blk *ctl = blk; 535 536 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user); 537 ctl->dirty.bf.srcimap = 1; 538 return 0; 539 } 540 541 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next) 542 { 543 struct srcimp_mgr_ctrl_blk *ctl = blk; 544 545 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next); 546 ctl->dirty.bf.srcimap = 1; 547 return 0; 548 } 549 550 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr) 551 { 552 ((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr; 553 ((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1; 554 return 0; 555 } 556 557 static int srcimp_mgr_commit_write(struct hw *hw, void *blk) 558 { 559 struct srcimp_mgr_ctrl_blk *ctl = blk; 560 561 if (ctl->dirty.bf.srcimap) { 562 hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100, 563 ctl->srcimap.srcaim); 564 ctl->dirty.bf.srcimap = 0; 565 } 566 567 return 0; 568 } 569 570 /* 571 * AMIXER control block definitions. 572 */ 573 574 #define AMOPLO_M 0x00000003 575 #define AMOPLO_IV 0x00000004 576 #define AMOPLO_X 0x0003FFF0 577 #define AMOPLO_Y 0xFFFC0000 578 579 #define AMOPHI_SADR 0x000000FF 580 #define AMOPHI_SE 0x80000000 581 582 /* AMIXER resource register dirty flags */ 583 union amixer_dirty { 584 struct { 585 u16 amoplo:1; 586 u16 amophi:1; 587 u16 rsv:14; 588 } bf; 589 u16 data; 590 }; 591 592 /* AMIXER resource control block */ 593 struct amixer_rsc_ctrl_blk { 594 unsigned int amoplo; 595 unsigned int amophi; 596 union amixer_dirty dirty; 597 }; 598 599 static int amixer_set_mode(void *blk, unsigned int mode) 600 { 601 struct amixer_rsc_ctrl_blk *ctl = blk; 602 603 set_field(&ctl->amoplo, AMOPLO_M, mode); 604 ctl->dirty.bf.amoplo = 1; 605 return 0; 606 } 607 608 static int amixer_set_iv(void *blk, unsigned int iv) 609 { 610 struct amixer_rsc_ctrl_blk *ctl = blk; 611 612 set_field(&ctl->amoplo, AMOPLO_IV, iv); 613 ctl->dirty.bf.amoplo = 1; 614 return 0; 615 } 616 617 static int amixer_set_x(void *blk, unsigned int x) 618 { 619 struct amixer_rsc_ctrl_blk *ctl = blk; 620 621 set_field(&ctl->amoplo, AMOPLO_X, x); 622 ctl->dirty.bf.amoplo = 1; 623 return 0; 624 } 625 626 static int amixer_set_y(void *blk, unsigned int y) 627 { 628 struct amixer_rsc_ctrl_blk *ctl = blk; 629 630 set_field(&ctl->amoplo, AMOPLO_Y, y); 631 ctl->dirty.bf.amoplo = 1; 632 return 0; 633 } 634 635 static int amixer_set_sadr(void *blk, unsigned int sadr) 636 { 637 struct amixer_rsc_ctrl_blk *ctl = blk; 638 639 set_field(&ctl->amophi, AMOPHI_SADR, sadr); 640 ctl->dirty.bf.amophi = 1; 641 return 0; 642 } 643 644 static int amixer_set_se(void *blk, unsigned int se) 645 { 646 struct amixer_rsc_ctrl_blk *ctl = blk; 647 648 set_field(&ctl->amophi, AMOPHI_SE, se); 649 ctl->dirty.bf.amophi = 1; 650 return 0; 651 } 652 653 static int amixer_set_dirty(void *blk, unsigned int flags) 654 { 655 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 656 return 0; 657 } 658 659 static int amixer_set_dirty_all(void *blk) 660 { 661 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 662 return 0; 663 } 664 665 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk) 666 { 667 struct amixer_rsc_ctrl_blk *ctl = blk; 668 669 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) { 670 hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo); 671 ctl->dirty.bf.amoplo = 0; 672 hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi); 673 ctl->dirty.bf.amophi = 0; 674 } 675 676 return 0; 677 } 678 679 static int amixer_get_y(void *blk) 680 { 681 struct amixer_rsc_ctrl_blk *ctl = blk; 682 683 return get_field(ctl->amoplo, AMOPLO_Y); 684 } 685 686 static unsigned int amixer_get_dirty(void *blk) 687 { 688 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data; 689 } 690 691 static int amixer_rsc_get_ctrl_blk(void **rblk) 692 { 693 struct amixer_rsc_ctrl_blk *blk; 694 695 *rblk = NULL; 696 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 697 if (!blk) 698 return -ENOMEM; 699 700 *rblk = blk; 701 702 return 0; 703 } 704 705 static int amixer_rsc_put_ctrl_blk(void *blk) 706 { 707 kfree(blk); 708 709 return 0; 710 } 711 712 static int amixer_mgr_get_ctrl_blk(void **rblk) 713 { 714 *rblk = NULL; 715 716 return 0; 717 } 718 719 static int amixer_mgr_put_ctrl_blk(void *blk) 720 { 721 return 0; 722 } 723 724 /* 725 * DAIO control block definitions. 726 */ 727 728 /* Receiver Sample Rate Tracker Control register */ 729 #define SRTCTL_SRCO 0x000000FF 730 #define SRTCTL_SRCM 0x0000FF00 731 #define SRTCTL_RSR 0x00030000 732 #define SRTCTL_DRAT 0x00300000 733 #define SRTCTL_EC 0x01000000 734 #define SRTCTL_ET 0x10000000 735 736 /* DAIO Receiver register dirty flags */ 737 union dai_dirty { 738 struct { 739 u16 srt:1; 740 u16 rsv:15; 741 } bf; 742 u16 data; 743 }; 744 745 /* DAIO Receiver control block */ 746 struct dai_ctrl_blk { 747 unsigned int srt; 748 union dai_dirty dirty; 749 }; 750 751 /* Audio Input Mapper RAM */ 752 #define AIM_ARC 0x00000FFF 753 #define AIM_NXT 0x007F0000 754 755 struct daoimap { 756 unsigned int aim; 757 unsigned int idx; 758 }; 759 760 /* Audio Transmitter Control and Status register */ 761 #define ATXCTL_EN 0x00000001 762 #define ATXCTL_MODE 0x00000010 763 #define ATXCTL_CD 0x00000020 764 #define ATXCTL_RAW 0x00000100 765 #define ATXCTL_MT 0x00000200 766 #define ATXCTL_NUC 0x00003000 767 #define ATXCTL_BEN 0x00010000 768 #define ATXCTL_BMUX 0x00700000 769 #define ATXCTL_B24 0x01000000 770 #define ATXCTL_CPF 0x02000000 771 #define ATXCTL_RIV 0x10000000 772 #define ATXCTL_LIV 0x20000000 773 #define ATXCTL_RSAT 0x40000000 774 #define ATXCTL_LSAT 0x80000000 775 776 /* XDIF Transmitter register dirty flags */ 777 union dao_dirty { 778 struct { 779 u16 atxcsl:1; 780 u16 rsv:15; 781 } bf; 782 u16 data; 783 }; 784 785 /* XDIF Transmitter control block */ 786 struct dao_ctrl_blk { 787 /* XDIF Transmitter Channel Status Low Register */ 788 unsigned int atxcsl; 789 union dao_dirty dirty; 790 }; 791 792 /* Audio Receiver Control register */ 793 #define ARXCTL_EN 0x00000001 794 795 /* DAIO manager register dirty flags */ 796 union daio_mgr_dirty { 797 struct { 798 u32 atxctl:8; 799 u32 arxctl:8; 800 u32 daoimap:1; 801 u32 rsv:15; 802 } bf; 803 u32 data; 804 }; 805 806 /* DAIO manager control block */ 807 struct daio_mgr_ctrl_blk { 808 struct daoimap daoimap; 809 unsigned int txctl[8]; 810 unsigned int rxctl[8]; 811 union daio_mgr_dirty dirty; 812 }; 813 814 static int dai_srt_set_srco(void *blk, unsigned int src) 815 { 816 struct dai_ctrl_blk *ctl = blk; 817 818 set_field(&ctl->srt, SRTCTL_SRCO, src); 819 ctl->dirty.bf.srt = 1; 820 return 0; 821 } 822 823 static int dai_srt_set_srcm(void *blk, unsigned int src) 824 { 825 struct dai_ctrl_blk *ctl = blk; 826 827 set_field(&ctl->srt, SRTCTL_SRCM, src); 828 ctl->dirty.bf.srt = 1; 829 return 0; 830 } 831 832 static int dai_srt_set_rsr(void *blk, unsigned int rsr) 833 { 834 struct dai_ctrl_blk *ctl = blk; 835 836 set_field(&ctl->srt, SRTCTL_RSR, rsr); 837 ctl->dirty.bf.srt = 1; 838 return 0; 839 } 840 841 static int dai_srt_set_drat(void *blk, unsigned int drat) 842 { 843 struct dai_ctrl_blk *ctl = blk; 844 845 set_field(&ctl->srt, SRTCTL_DRAT, drat); 846 ctl->dirty.bf.srt = 1; 847 return 0; 848 } 849 850 static int dai_srt_set_ec(void *blk, unsigned int ec) 851 { 852 struct dai_ctrl_blk *ctl = blk; 853 854 set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0); 855 ctl->dirty.bf.srt = 1; 856 return 0; 857 } 858 859 static int dai_srt_set_et(void *blk, unsigned int et) 860 { 861 struct dai_ctrl_blk *ctl = blk; 862 863 set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0); 864 ctl->dirty.bf.srt = 1; 865 return 0; 866 } 867 868 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk) 869 { 870 struct dai_ctrl_blk *ctl = blk; 871 872 if (ctl->dirty.bf.srt) { 873 hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt); 874 ctl->dirty.bf.srt = 0; 875 } 876 877 return 0; 878 } 879 880 static int dai_get_ctrl_blk(void **rblk) 881 { 882 struct dai_ctrl_blk *blk; 883 884 *rblk = NULL; 885 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 886 if (!blk) 887 return -ENOMEM; 888 889 *rblk = blk; 890 891 return 0; 892 } 893 894 static int dai_put_ctrl_blk(void *blk) 895 { 896 kfree(blk); 897 898 return 0; 899 } 900 901 static int dao_set_spos(void *blk, unsigned int spos) 902 { 903 ((struct dao_ctrl_blk *)blk)->atxcsl = spos; 904 ((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1; 905 return 0; 906 } 907 908 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk) 909 { 910 struct dao_ctrl_blk *ctl = blk; 911 912 if (ctl->dirty.bf.atxcsl) { 913 if (idx < 4) { 914 /* S/PDIF SPOSx */ 915 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx, 916 ctl->atxcsl); 917 } 918 ctl->dirty.bf.atxcsl = 0; 919 } 920 921 return 0; 922 } 923 924 static int dao_get_spos(void *blk, unsigned int *spos) 925 { 926 *spos = ((struct dao_ctrl_blk *)blk)->atxcsl; 927 return 0; 928 } 929 930 static int dao_get_ctrl_blk(void **rblk) 931 { 932 struct dao_ctrl_blk *blk; 933 934 *rblk = NULL; 935 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 936 if (!blk) 937 return -ENOMEM; 938 939 *rblk = blk; 940 941 return 0; 942 } 943 944 static int dao_put_ctrl_blk(void *blk) 945 { 946 kfree(blk); 947 948 return 0; 949 } 950 951 static int daio_mgr_enb_dai(void *blk, unsigned int idx) 952 { 953 struct daio_mgr_ctrl_blk *ctl = blk; 954 955 set_field(&ctl->rxctl[idx], ARXCTL_EN, 1); 956 ctl->dirty.bf.arxctl |= (0x1 << idx); 957 return 0; 958 } 959 960 static int daio_mgr_dsb_dai(void *blk, unsigned int idx) 961 { 962 struct daio_mgr_ctrl_blk *ctl = blk; 963 964 set_field(&ctl->rxctl[idx], ARXCTL_EN, 0); 965 966 ctl->dirty.bf.arxctl |= (0x1 << idx); 967 return 0; 968 } 969 970 static int daio_mgr_enb_dao(void *blk, unsigned int idx) 971 { 972 struct daio_mgr_ctrl_blk *ctl = blk; 973 974 set_field(&ctl->txctl[idx], ATXCTL_EN, 1); 975 ctl->dirty.bf.atxctl |= (0x1 << idx); 976 return 0; 977 } 978 979 static int daio_mgr_dsb_dao(void *blk, unsigned int idx) 980 { 981 struct daio_mgr_ctrl_blk *ctl = blk; 982 983 set_field(&ctl->txctl[idx], ATXCTL_EN, 0); 984 ctl->dirty.bf.atxctl |= (0x1 << idx); 985 return 0; 986 } 987 988 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf) 989 { 990 struct daio_mgr_ctrl_blk *ctl = blk; 991 992 if (idx < 4) { 993 /* S/PDIF output */ 994 switch ((conf & 0x7)) { 995 case 1: 996 set_field(&ctl->txctl[idx], ATXCTL_NUC, 0); 997 break; 998 case 2: 999 set_field(&ctl->txctl[idx], ATXCTL_NUC, 1); 1000 break; 1001 case 4: 1002 set_field(&ctl->txctl[idx], ATXCTL_NUC, 2); 1003 break; 1004 case 8: 1005 set_field(&ctl->txctl[idx], ATXCTL_NUC, 3); 1006 break; 1007 default: 1008 break; 1009 } 1010 /* CDIF */ 1011 set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7))); 1012 /* Non-audio */ 1013 set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1); 1014 /* Non-audio */ 1015 set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1); 1016 set_field(&ctl->txctl[idx], ATXCTL_RAW, 1017 ((conf >> 3) & 0x1) ? 0 : 0); 1018 ctl->dirty.bf.atxctl |= (0x1 << idx); 1019 } else { 1020 /* I2S output */ 1021 /*idx %= 4; */ 1022 } 1023 return 0; 1024 } 1025 1026 static int daio_mgr_set_imaparc(void *blk, unsigned int slot) 1027 { 1028 struct daio_mgr_ctrl_blk *ctl = blk; 1029 1030 set_field(&ctl->daoimap.aim, AIM_ARC, slot); 1031 ctl->dirty.bf.daoimap = 1; 1032 return 0; 1033 } 1034 1035 static int daio_mgr_set_imapnxt(void *blk, unsigned int next) 1036 { 1037 struct daio_mgr_ctrl_blk *ctl = blk; 1038 1039 set_field(&ctl->daoimap.aim, AIM_NXT, next); 1040 ctl->dirty.bf.daoimap = 1; 1041 return 0; 1042 } 1043 1044 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr) 1045 { 1046 ((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr; 1047 ((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1; 1048 return 0; 1049 } 1050 1051 static int daio_mgr_commit_write(struct hw *hw, void *blk) 1052 { 1053 struct daio_mgr_ctrl_blk *ctl = blk; 1054 unsigned int data; 1055 int i; 1056 1057 for (i = 0; i < 8; i++) { 1058 if ((ctl->dirty.bf.atxctl & (0x1 << i))) { 1059 data = ctl->txctl[i]; 1060 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data); 1061 ctl->dirty.bf.atxctl &= ~(0x1 << i); 1062 mdelay(1); 1063 } 1064 if ((ctl->dirty.bf.arxctl & (0x1 << i))) { 1065 data = ctl->rxctl[i]; 1066 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data); 1067 ctl->dirty.bf.arxctl &= ~(0x1 << i); 1068 mdelay(1); 1069 } 1070 } 1071 if (ctl->dirty.bf.daoimap) { 1072 hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4, 1073 ctl->daoimap.aim); 1074 ctl->dirty.bf.daoimap = 0; 1075 } 1076 1077 return 0; 1078 } 1079 1080 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk) 1081 { 1082 struct daio_mgr_ctrl_blk *blk; 1083 int i; 1084 1085 *rblk = NULL; 1086 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 1087 if (!blk) 1088 return -ENOMEM; 1089 1090 for (i = 0; i < 8; i++) { 1091 blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i)); 1092 blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i)); 1093 } 1094 1095 *rblk = blk; 1096 1097 return 0; 1098 } 1099 1100 static int daio_mgr_put_ctrl_blk(void *blk) 1101 { 1102 kfree(blk); 1103 1104 return 0; 1105 } 1106 1107 /* Timer interrupt */ 1108 static int set_timer_irq(struct hw *hw, int enable) 1109 { 1110 hw_write_20kx(hw, GIE, enable ? IT_INT : 0); 1111 return 0; 1112 } 1113 1114 static int set_timer_tick(struct hw *hw, unsigned int ticks) 1115 { 1116 if (ticks) 1117 ticks |= TIMR_IE | TIMR_IP; 1118 hw_write_20kx(hw, TIMR, ticks); 1119 return 0; 1120 } 1121 1122 static unsigned int get_wc(struct hw *hw) 1123 { 1124 return hw_read_20kx(hw, WC); 1125 } 1126 1127 /* Card hardware initialization block */ 1128 struct dac_conf { 1129 unsigned int msr; /* master sample rate in rsrs */ 1130 }; 1131 1132 struct adc_conf { 1133 unsigned int msr; /* master sample rate in rsrs */ 1134 unsigned char input; /* the input source of ADC */ 1135 unsigned char mic20db; /* boost mic by 20db if input is microphone */ 1136 }; 1137 1138 struct daio_conf { 1139 unsigned int msr; /* master sample rate in rsrs */ 1140 }; 1141 1142 struct trn_conf { 1143 unsigned long vm_pgt_phys; 1144 }; 1145 1146 static int hw_daio_init(struct hw *hw, const struct daio_conf *info) 1147 { 1148 u32 data; 1149 int i; 1150 1151 /* Program I2S with proper sample rate and enable the correct I2S 1152 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */ 1153 if (1 == info->msr) { 1154 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101); 1155 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101); 1156 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); 1157 } else if (2 == info->msr) { 1158 if (hw->model != CTSB1270) { 1159 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111); 1160 } else { 1161 /* PCM4220 on Titanium HD is different. */ 1162 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111); 1163 } 1164 /* Specify all playing 96khz 1165 * EA [0] - Enabled 1166 * RTA [4:5] - 96kHz 1167 * EB [8] - Enabled 1168 * RTB [12:13] - 96kHz 1169 * EC [16] - Enabled 1170 * RTC [20:21] - 96kHz 1171 * ED [24] - Enabled 1172 * RTD [28:29] - 96kHz */ 1173 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111); 1174 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); 1175 } else if ((4 == info->msr) && (hw->model == CTSB1270)) { 1176 hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111); 1177 hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121); 1178 hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0); 1179 } else { 1180 dev_alert(hw->card->dev, 1181 "ERROR!!! Invalid sampling rate!!!\n"); 1182 return -EINVAL; 1183 } 1184 1185 for (i = 0; i < 8; i++) { 1186 if (i <= 3) { 1187 /* This comment looks wrong since loop is over 4 */ 1188 /* channels and emu20k2 supports 4 spdif IOs. */ 1189 /* 1st 3 channels are SPDIFs (SB0960) */ 1190 if (i == 3) 1191 data = 0x1001001; 1192 else 1193 data = 0x1000001; 1194 1195 hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data); 1196 hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data); 1197 1198 /* Initialize the SPDIF Out Channel status registers. 1199 * The value specified here is based on the typical 1200 * values provided in the specification, namely: Clock 1201 * Accuracy of 1000ppm, Sample Rate of 48KHz, 1202 * unspecified source number, Generation status = 1, 1203 * Category code = 0x12 (Digital Signal Mixer), 1204 * Mode = 0, Emph = 0, Copy Permitted, AN = 0 1205 * (indicating that we're transmitting digital audio, 1206 * and the Professional Use bit is 0. */ 1207 1208 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i), 1209 0x02109204); /* Default to 48kHz */ 1210 1211 hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B); 1212 } else { 1213 /* Again, loop is over 4 channels not 5. */ 1214 /* Next 5 channels are I2S (SB0960) */ 1215 data = 0x11; 1216 hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data); 1217 if (2 == info->msr) { 1218 /* Four channels per sample period */ 1219 data |= 0x1000; 1220 } else if (4 == info->msr) { 1221 /* FIXME: check this against the chip spec */ 1222 data |= 0x2000; 1223 } 1224 hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data); 1225 } 1226 } 1227 1228 return 0; 1229 } 1230 1231 /* TRANSPORT operations */ 1232 static int hw_trn_init(struct hw *hw, const struct trn_conf *info) 1233 { 1234 u32 vmctl, data; 1235 u32 ptp_phys_low, ptp_phys_high; 1236 int i; 1237 1238 /* Set up device page table */ 1239 if ((~0UL) == info->vm_pgt_phys) { 1240 dev_alert(hw->card->dev, 1241 "Wrong device page table page address!!!\n"); 1242 return -1; 1243 } 1244 1245 vmctl = 0x80000C0F; /* 32-bit, 4k-size page */ 1246 ptp_phys_low = (u32)info->vm_pgt_phys; 1247 ptp_phys_high = upper_32_bits(info->vm_pgt_phys); 1248 if (sizeof(void *) == 8) /* 64bit address */ 1249 vmctl |= (3 << 8); 1250 /* Write page table physical address to all PTPAL registers */ 1251 for (i = 0; i < 64; i++) { 1252 hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low); 1253 hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high); 1254 } 1255 /* Enable virtual memory transfer */ 1256 hw_write_20kx(hw, VMEM_CTL, vmctl); 1257 /* Enable transport bus master and queueing of request */ 1258 hw_write_20kx(hw, TRANSPORT_CTL, 0x03); 1259 hw_write_20kx(hw, TRANSPORT_INT, 0x200c01); 1260 /* Enable transport ring */ 1261 data = hw_read_20kx(hw, TRANSPORT_ENB); 1262 hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03)); 1263 1264 return 0; 1265 } 1266 1267 /* Card initialization */ 1268 #define GCTL_AIE 0x00000001 1269 #define GCTL_UAA 0x00000002 1270 #define GCTL_DPC 0x00000004 1271 #define GCTL_DBP 0x00000008 1272 #define GCTL_ABP 0x00000010 1273 #define GCTL_TBP 0x00000020 1274 #define GCTL_SBP 0x00000040 1275 #define GCTL_FBP 0x00000080 1276 #define GCTL_ME 0x00000100 1277 #define GCTL_AID 0x00001000 1278 1279 #define PLLCTL_SRC 0x00000007 1280 #define PLLCTL_SPE 0x00000008 1281 #define PLLCTL_RD 0x000000F0 1282 #define PLLCTL_FD 0x0001FF00 1283 #define PLLCTL_OD 0x00060000 1284 #define PLLCTL_B 0x00080000 1285 #define PLLCTL_AS 0x00100000 1286 #define PLLCTL_LF 0x03E00000 1287 #define PLLCTL_SPS 0x1C000000 1288 #define PLLCTL_AD 0x60000000 1289 1290 #define PLLSTAT_CCS 0x00000007 1291 #define PLLSTAT_SPL 0x00000008 1292 #define PLLSTAT_CRD 0x000000F0 1293 #define PLLSTAT_CFD 0x0001FF00 1294 #define PLLSTAT_SL 0x00020000 1295 #define PLLSTAT_FAS 0x00040000 1296 #define PLLSTAT_B 0x00080000 1297 #define PLLSTAT_PD 0x00100000 1298 #define PLLSTAT_OCA 0x00200000 1299 #define PLLSTAT_NCA 0x00400000 1300 1301 static int hw_pll_init(struct hw *hw, unsigned int rsr) 1302 { 1303 unsigned int pllenb; 1304 unsigned int pllctl; 1305 unsigned int pllstat; 1306 int i; 1307 1308 pllenb = 0xB; 1309 hw_write_20kx(hw, PLL_ENB, pllenb); 1310 pllctl = 0x20C00000; 1311 set_field(&pllctl, PLLCTL_B, 0); 1312 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4); 1313 set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1); 1314 hw_write_20kx(hw, PLL_CTL, pllctl); 1315 msleep(40); 1316 1317 pllctl = hw_read_20kx(hw, PLL_CTL); 1318 set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2); 1319 hw_write_20kx(hw, PLL_CTL, pllctl); 1320 msleep(40); 1321 1322 for (i = 0; i < 1000; i++) { 1323 pllstat = hw_read_20kx(hw, PLL_STAT); 1324 if (get_field(pllstat, PLLSTAT_PD)) 1325 continue; 1326 1327 if (get_field(pllstat, PLLSTAT_B) != 1328 get_field(pllctl, PLLCTL_B)) 1329 continue; 1330 1331 if (get_field(pllstat, PLLSTAT_CCS) != 1332 get_field(pllctl, PLLCTL_SRC)) 1333 continue; 1334 1335 if (get_field(pllstat, PLLSTAT_CRD) != 1336 get_field(pllctl, PLLCTL_RD)) 1337 continue; 1338 1339 if (get_field(pllstat, PLLSTAT_CFD) != 1340 get_field(pllctl, PLLCTL_FD)) 1341 continue; 1342 1343 break; 1344 } 1345 if (i >= 1000) { 1346 dev_alert(hw->card->dev, 1347 "PLL initialization failed!!!\n"); 1348 return -EBUSY; 1349 } 1350 1351 return 0; 1352 } 1353 1354 static int hw_auto_init(struct hw *hw) 1355 { 1356 unsigned int gctl; 1357 int i; 1358 1359 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 1360 set_field(&gctl, GCTL_AIE, 0); 1361 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 1362 set_field(&gctl, GCTL_AIE, 1); 1363 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 1364 mdelay(10); 1365 for (i = 0; i < 400000; i++) { 1366 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 1367 if (get_field(gctl, GCTL_AID)) 1368 break; 1369 } 1370 if (!get_field(gctl, GCTL_AID)) { 1371 dev_alert(hw->card->dev, "Card Auto-init failed!!!\n"); 1372 return -EBUSY; 1373 } 1374 1375 return 0; 1376 } 1377 1378 /* DAC operations */ 1379 1380 #define CS4382_MC1 0x1 1381 #define CS4382_MC2 0x2 1382 #define CS4382_MC3 0x3 1383 #define CS4382_FC 0x4 1384 #define CS4382_IC 0x5 1385 #define CS4382_XC1 0x6 1386 #define CS4382_VCA1 0x7 1387 #define CS4382_VCB1 0x8 1388 #define CS4382_XC2 0x9 1389 #define CS4382_VCA2 0xA 1390 #define CS4382_VCB2 0xB 1391 #define CS4382_XC3 0xC 1392 #define CS4382_VCA3 0xD 1393 #define CS4382_VCB3 0xE 1394 #define CS4382_XC4 0xF 1395 #define CS4382_VCA4 0x10 1396 #define CS4382_VCB4 0x11 1397 #define CS4382_CREV 0x12 1398 1399 /* I2C status */ 1400 #define STATE_LOCKED 0x00 1401 #define STATE_UNLOCKED 0xAA 1402 #define DATA_READY 0x800000 /* Used with I2C_IF_STATUS */ 1403 #define DATA_ABORT 0x10000 /* Used with I2C_IF_STATUS */ 1404 1405 #define I2C_STATUS_DCM 0x00000001 1406 #define I2C_STATUS_BC 0x00000006 1407 #define I2C_STATUS_APD 0x00000008 1408 #define I2C_STATUS_AB 0x00010000 1409 #define I2C_STATUS_DR 0x00800000 1410 1411 #define I2C_ADDRESS_PTAD 0x0000FFFF 1412 #define I2C_ADDRESS_SLAD 0x007F0000 1413 1414 struct regs_cs4382 { 1415 u32 mode_control_1; 1416 u32 mode_control_2; 1417 u32 mode_control_3; 1418 1419 u32 filter_control; 1420 u32 invert_control; 1421 1422 u32 mix_control_P1; 1423 u32 vol_control_A1; 1424 u32 vol_control_B1; 1425 1426 u32 mix_control_P2; 1427 u32 vol_control_A2; 1428 u32 vol_control_B2; 1429 1430 u32 mix_control_P3; 1431 u32 vol_control_A3; 1432 u32 vol_control_B3; 1433 1434 u32 mix_control_P4; 1435 u32 vol_control_A4; 1436 u32 vol_control_B4; 1437 }; 1438 1439 static int hw20k2_i2c_unlock_full_access(struct hw *hw) 1440 { 1441 u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] = {0xB3, 0xD4}; 1442 1443 /* Send keys for forced BIOS mode */ 1444 hw_write_20kx(hw, I2C_IF_WLOCK, 1445 UnlockKeySequence_FLASH_FULLACCESS_MODE[0]); 1446 hw_write_20kx(hw, I2C_IF_WLOCK, 1447 UnlockKeySequence_FLASH_FULLACCESS_MODE[1]); 1448 /* Check whether the chip is unlocked */ 1449 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED) 1450 return 0; 1451 1452 return -1; 1453 } 1454 1455 static int hw20k2_i2c_lock_chip(struct hw *hw) 1456 { 1457 /* Write twice */ 1458 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED); 1459 hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED); 1460 if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED) 1461 return 0; 1462 1463 return -1; 1464 } 1465 1466 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size) 1467 { 1468 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1469 int err; 1470 unsigned int i2c_status; 1471 unsigned int i2c_addr; 1472 1473 err = hw20k2_i2c_unlock_full_access(hw); 1474 if (err < 0) 1475 return err; 1476 1477 hw20k2->addr_size = addr_size; 1478 hw20k2->data_size = data_size; 1479 hw20k2->dev_id = dev_id; 1480 1481 i2c_addr = 0; 1482 set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id); 1483 1484 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr); 1485 1486 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1487 1488 set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */ 1489 1490 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1491 1492 return 0; 1493 } 1494 1495 static int hw20k2_i2c_uninit(struct hw *hw) 1496 { 1497 unsigned int i2c_status; 1498 unsigned int i2c_addr; 1499 1500 i2c_addr = 0; 1501 set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */ 1502 1503 hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr); 1504 1505 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1506 1507 set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */ 1508 1509 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1510 1511 return hw20k2_i2c_lock_chip(hw); 1512 } 1513 1514 static int hw20k2_i2c_wait_data_ready(struct hw *hw) 1515 { 1516 int i = 0x400000; 1517 unsigned int ret; 1518 1519 do { 1520 ret = hw_read_20kx(hw, I2C_IF_STATUS); 1521 } while ((!(ret & DATA_READY)) && --i); 1522 1523 return i; 1524 } 1525 1526 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap) 1527 { 1528 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1529 unsigned int i2c_status; 1530 1531 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1532 set_field(&i2c_status, I2C_STATUS_BC, 1533 (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size); 1534 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1535 if (!hw20k2_i2c_wait_data_ready(hw)) 1536 return -1; 1537 1538 hw_write_20kx(hw, I2C_IF_WDATA, addr); 1539 if (!hw20k2_i2c_wait_data_ready(hw)) 1540 return -1; 1541 1542 /* Force a read operation */ 1543 hw_write_20kx(hw, I2C_IF_RDATA, 0); 1544 if (!hw20k2_i2c_wait_data_ready(hw)) 1545 return -1; 1546 1547 *datap = hw_read_20kx(hw, I2C_IF_RDATA); 1548 1549 return 0; 1550 } 1551 1552 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data) 1553 { 1554 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1555 unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr; 1556 unsigned int i2c_status; 1557 1558 i2c_status = hw_read_20kx(hw, I2C_IF_STATUS); 1559 1560 set_field(&i2c_status, I2C_STATUS_BC, 1561 (4 == (hw20k2->addr_size + hw20k2->data_size)) ? 1562 0 : (hw20k2->addr_size + hw20k2->data_size)); 1563 1564 hw_write_20kx(hw, I2C_IF_STATUS, i2c_status); 1565 hw20k2_i2c_wait_data_ready(hw); 1566 /* Dummy write to trigger the write operation */ 1567 hw_write_20kx(hw, I2C_IF_WDATA, 0); 1568 hw20k2_i2c_wait_data_ready(hw); 1569 1570 /* This is the real data */ 1571 hw_write_20kx(hw, I2C_IF_WDATA, i2c_data); 1572 hw20k2_i2c_wait_data_ready(hw); 1573 1574 return 0; 1575 } 1576 1577 static void hw_dac_stop(struct hw *hw) 1578 { 1579 u32 data; 1580 data = hw_read_20kx(hw, GPIO_DATA); 1581 data &= 0xFFFFFFFD; 1582 hw_write_20kx(hw, GPIO_DATA, data); 1583 usleep_range(10000, 11000); 1584 } 1585 1586 static void hw_dac_start(struct hw *hw) 1587 { 1588 u32 data; 1589 data = hw_read_20kx(hw, GPIO_DATA); 1590 data |= 0x2; 1591 hw_write_20kx(hw, GPIO_DATA, data); 1592 msleep(50); 1593 } 1594 1595 static void hw_dac_reset(struct hw *hw) 1596 { 1597 hw_dac_stop(hw); 1598 hw_dac_start(hw); 1599 } 1600 1601 static int hw_dac_init(struct hw *hw, const struct dac_conf *info) 1602 { 1603 int err; 1604 u32 data; 1605 int i; 1606 struct regs_cs4382 cs_read = {0}; 1607 struct regs_cs4382 cs_def = { 1608 .mode_control_1 = 0x00000001, /* Mode Control 1 */ 1609 .mode_control_2 = 0x00000000, /* Mode Control 2 */ 1610 .mode_control_3 = 0x00000084, /* Mode Control 3 */ 1611 .filter_control = 0x00000000, /* Filter Control */ 1612 .invert_control = 0x00000000, /* Invert Control */ 1613 .mix_control_P1 = 0x00000024, /* Mixing Control Pair 1 */ 1614 .vol_control_A1 = 0x00000000, /* Vol Control A1 */ 1615 .vol_control_B1 = 0x00000000, /* Vol Control B1 */ 1616 .mix_control_P2 = 0x00000024, /* Mixing Control Pair 2 */ 1617 .vol_control_A2 = 0x00000000, /* Vol Control A2 */ 1618 .vol_control_B2 = 0x00000000, /* Vol Control B2 */ 1619 .mix_control_P3 = 0x00000024, /* Mixing Control Pair 3 */ 1620 .vol_control_A3 = 0x00000000, /* Vol Control A3 */ 1621 .vol_control_B3 = 0x00000000, /* Vol Control B3 */ 1622 .mix_control_P4 = 0x00000024, /* Mixing Control Pair 4 */ 1623 .vol_control_A4 = 0x00000000, /* Vol Control A4 */ 1624 .vol_control_B4 = 0x00000000 /* Vol Control B4 */ 1625 }; 1626 1627 if (hw->model == CTSB1270) { 1628 hw_dac_stop(hw); 1629 data = hw_read_20kx(hw, GPIO_DATA); 1630 data &= ~0x0600; 1631 if (1 == info->msr) 1632 data |= 0x0000; /* Single Speed Mode 0-50kHz */ 1633 else if (2 == info->msr) 1634 data |= 0x0200; /* Double Speed Mode 50-100kHz */ 1635 else 1636 data |= 0x0600; /* Quad Speed Mode 100-200kHz */ 1637 hw_write_20kx(hw, GPIO_DATA, data); 1638 hw_dac_start(hw); 1639 return 0; 1640 } 1641 1642 /* Set DAC reset bit as output */ 1643 data = hw_read_20kx(hw, GPIO_CTRL); 1644 data |= 0x02; 1645 hw_write_20kx(hw, GPIO_CTRL, data); 1646 1647 err = hw20k2_i2c_init(hw, 0x18, 1, 1); 1648 if (err < 0) 1649 goto End; 1650 1651 for (i = 0; i < 2; i++) { 1652 /* Reset DAC twice just in-case the chip 1653 * didn't initialized properly */ 1654 hw_dac_reset(hw); 1655 hw_dac_reset(hw); 1656 1657 if (hw20k2_i2c_read(hw, CS4382_MC1, &cs_read.mode_control_1)) 1658 continue; 1659 1660 if (hw20k2_i2c_read(hw, CS4382_MC2, &cs_read.mode_control_2)) 1661 continue; 1662 1663 if (hw20k2_i2c_read(hw, CS4382_MC3, &cs_read.mode_control_3)) 1664 continue; 1665 1666 if (hw20k2_i2c_read(hw, CS4382_FC, &cs_read.filter_control)) 1667 continue; 1668 1669 if (hw20k2_i2c_read(hw, CS4382_IC, &cs_read.invert_control)) 1670 continue; 1671 1672 if (hw20k2_i2c_read(hw, CS4382_XC1, &cs_read.mix_control_P1)) 1673 continue; 1674 1675 if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1)) 1676 continue; 1677 1678 if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1)) 1679 continue; 1680 1681 if (hw20k2_i2c_read(hw, CS4382_XC2, &cs_read.mix_control_P2)) 1682 continue; 1683 1684 if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2)) 1685 continue; 1686 1687 if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2)) 1688 continue; 1689 1690 if (hw20k2_i2c_read(hw, CS4382_XC3, &cs_read.mix_control_P3)) 1691 continue; 1692 1693 if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3)) 1694 continue; 1695 1696 if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3)) 1697 continue; 1698 1699 if (hw20k2_i2c_read(hw, CS4382_XC4, &cs_read.mix_control_P4)) 1700 continue; 1701 1702 if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4)) 1703 continue; 1704 1705 if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4)) 1706 continue; 1707 1708 if (memcmp(&cs_read, &cs_def, sizeof(cs_read))) 1709 continue; 1710 else 1711 break; 1712 } 1713 1714 if (i >= 2) 1715 goto End; 1716 1717 /* Note: Every I2C write must have some delay. 1718 * This is not a requirement but the delay works here... */ 1719 hw20k2_i2c_write(hw, CS4382_MC1, 0x80); 1720 hw20k2_i2c_write(hw, CS4382_MC2, 0x10); 1721 if (1 == info->msr) { 1722 hw20k2_i2c_write(hw, CS4382_XC1, 0x24); 1723 hw20k2_i2c_write(hw, CS4382_XC2, 0x24); 1724 hw20k2_i2c_write(hw, CS4382_XC3, 0x24); 1725 hw20k2_i2c_write(hw, CS4382_XC4, 0x24); 1726 } else if (2 == info->msr) { 1727 hw20k2_i2c_write(hw, CS4382_XC1, 0x25); 1728 hw20k2_i2c_write(hw, CS4382_XC2, 0x25); 1729 hw20k2_i2c_write(hw, CS4382_XC3, 0x25); 1730 hw20k2_i2c_write(hw, CS4382_XC4, 0x25); 1731 } else { 1732 hw20k2_i2c_write(hw, CS4382_XC1, 0x26); 1733 hw20k2_i2c_write(hw, CS4382_XC2, 0x26); 1734 hw20k2_i2c_write(hw, CS4382_XC3, 0x26); 1735 hw20k2_i2c_write(hw, CS4382_XC4, 0x26); 1736 } 1737 1738 return 0; 1739 End: 1740 1741 hw20k2_i2c_uninit(hw); 1742 return -1; 1743 } 1744 1745 /* ADC operations */ 1746 #define MAKE_WM8775_ADDR(addr, data) (u32)(((addr<<1)&0xFE)|((data>>8)&0x1)) 1747 #define MAKE_WM8775_DATA(data) (u32)(data&0xFF) 1748 1749 #define WM8775_IC 0x0B 1750 #define WM8775_MMC 0x0C 1751 #define WM8775_AADCL 0x0E 1752 #define WM8775_AADCR 0x0F 1753 #define WM8775_ADCMC 0x15 1754 #define WM8775_RESET 0x17 1755 1756 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type) 1757 { 1758 u32 data; 1759 if (hw->model == CTSB1270) { 1760 /* Titanium HD has two ADC chips, one for line in and one */ 1761 /* for MIC. We don't need to switch the ADC input. */ 1762 return 1; 1763 } 1764 data = hw_read_20kx(hw, GPIO_DATA); 1765 switch (type) { 1766 case ADC_MICIN: 1767 data = (data & (0x1 << 14)) ? 1 : 0; 1768 break; 1769 case ADC_LINEIN: 1770 data = (data & (0x1 << 14)) ? 0 : 1; 1771 break; 1772 default: 1773 data = 0; 1774 } 1775 return data; 1776 } 1777 1778 #define MIC_BOOST_0DB 0xCF 1779 #define MIC_BOOST_STEPS_PER_DB 2 1780 1781 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db) 1782 { 1783 u32 adcmc, gain; 1784 1785 if (input > 3) 1786 input = 3; 1787 1788 adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */ 1789 1790 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc), 1791 MAKE_WM8775_DATA(adcmc)); 1792 1793 if (gain_in_db < -103) 1794 gain_in_db = -103; 1795 if (gain_in_db > 24) 1796 gain_in_db = 24; 1797 1798 gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB; 1799 1800 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain), 1801 MAKE_WM8775_DATA(gain)); 1802 /* ...so there should be no need for the following. */ 1803 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain), 1804 MAKE_WM8775_DATA(gain)); 1805 } 1806 1807 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type) 1808 { 1809 u32 data; 1810 data = hw_read_20kx(hw, GPIO_DATA); 1811 switch (type) { 1812 case ADC_MICIN: 1813 data |= (0x1 << 14); 1814 hw_write_20kx(hw, GPIO_DATA, data); 1815 hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */ 1816 break; 1817 case ADC_LINEIN: 1818 data &= ~(0x1 << 14); 1819 hw_write_20kx(hw, GPIO_DATA, data); 1820 hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */ 1821 break; 1822 default: 1823 break; 1824 } 1825 1826 return 0; 1827 } 1828 1829 static int hw_adc_init(struct hw *hw, const struct adc_conf *info) 1830 { 1831 int err; 1832 u32 data, ctl; 1833 1834 /* Set ADC reset bit as output */ 1835 data = hw_read_20kx(hw, GPIO_CTRL); 1836 data |= (0x1 << 15); 1837 hw_write_20kx(hw, GPIO_CTRL, data); 1838 1839 /* Initialize I2C */ 1840 err = hw20k2_i2c_init(hw, 0x1A, 1, 1); 1841 if (err < 0) { 1842 dev_alert(hw->card->dev, "Failure to acquire I2C!!!\n"); 1843 goto error; 1844 } 1845 1846 /* Reset the ADC (reset is active low). */ 1847 data = hw_read_20kx(hw, GPIO_DATA); 1848 data &= ~(0x1 << 15); 1849 hw_write_20kx(hw, GPIO_DATA, data); 1850 1851 if (hw->model == CTSB1270) { 1852 /* Set up the PCM4220 ADC on Titanium HD */ 1853 data &= ~0x0C; 1854 if (1 == info->msr) 1855 data |= 0x00; /* Single Speed Mode 32-50kHz */ 1856 else if (2 == info->msr) 1857 data |= 0x08; /* Double Speed Mode 50-108kHz */ 1858 else 1859 data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */ 1860 hw_write_20kx(hw, GPIO_DATA, data); 1861 } 1862 1863 usleep_range(10000, 11000); 1864 /* Return the ADC to normal operation. */ 1865 data |= (0x1 << 15); 1866 hw_write_20kx(hw, GPIO_DATA, data); 1867 msleep(50); 1868 1869 /* I2C write to register offset 0x0B to set ADC LRCLK polarity */ 1870 /* invert bit, interface format to I2S, word length to 24-bit, */ 1871 /* enable ADC high pass filter. Fixes bug 5323? */ 1872 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26), 1873 MAKE_WM8775_DATA(0x26)); 1874 1875 /* Set the master mode (256fs) */ 1876 if (1 == info->msr) { 1877 /* slave mode, 128x oversampling 256fs */ 1878 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02), 1879 MAKE_WM8775_DATA(0x02)); 1880 } else if ((2 == info->msr) || (4 == info->msr)) { 1881 /* slave mode, 64x oversampling, 256fs */ 1882 hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A), 1883 MAKE_WM8775_DATA(0x0A)); 1884 } else { 1885 dev_alert(hw->card->dev, 1886 "Invalid master sampling rate (msr %d)!!!\n", 1887 info->msr); 1888 err = -EINVAL; 1889 goto error; 1890 } 1891 1892 if (hw->model != CTSB1270) { 1893 /* Configure GPIO bit 14 change to line-in/mic-in */ 1894 ctl = hw_read_20kx(hw, GPIO_CTRL); 1895 ctl |= 0x1 << 14; 1896 hw_write_20kx(hw, GPIO_CTRL, ctl); 1897 hw_adc_input_select(hw, ADC_LINEIN); 1898 } else { 1899 hw_wm8775_input_select(hw, 0, 0); 1900 } 1901 1902 return 0; 1903 error: 1904 hw20k2_i2c_uninit(hw); 1905 return err; 1906 } 1907 1908 static struct capabilities hw_capabilities(struct hw *hw) 1909 { 1910 struct capabilities cap; 1911 1912 cap.digit_io_switch = 0; 1913 cap.dedicated_mic = hw->model == CTSB1270; 1914 cap.output_switch = hw->model == CTSB1270; 1915 cap.mic_source_switch = hw->model == CTSB1270; 1916 1917 return cap; 1918 } 1919 1920 static int hw_output_switch_get(struct hw *hw) 1921 { 1922 u32 data = hw_read_20kx(hw, GPIO_EXT_DATA); 1923 1924 switch (data & 0x30) { 1925 case 0x00: 1926 return 0; 1927 case 0x10: 1928 return 1; 1929 case 0x20: 1930 return 2; 1931 default: 1932 return 3; 1933 } 1934 } 1935 1936 static int hw_output_switch_put(struct hw *hw, int position) 1937 { 1938 u32 data; 1939 1940 if (position == hw_output_switch_get(hw)) 1941 return 0; 1942 1943 /* Mute line and headphones (intended for anti-pop). */ 1944 data = hw_read_20kx(hw, GPIO_DATA); 1945 data |= (0x03 << 11); 1946 hw_write_20kx(hw, GPIO_DATA, data); 1947 1948 data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30; 1949 switch (position) { 1950 case 0: 1951 break; 1952 case 1: 1953 data |= 0x10; 1954 break; 1955 default: 1956 data |= 0x20; 1957 } 1958 hw_write_20kx(hw, GPIO_EXT_DATA, data); 1959 1960 /* Unmute line and headphones. */ 1961 data = hw_read_20kx(hw, GPIO_DATA); 1962 data &= ~(0x03 << 11); 1963 hw_write_20kx(hw, GPIO_DATA, data); 1964 1965 return 1; 1966 } 1967 1968 static int hw_mic_source_switch_get(struct hw *hw) 1969 { 1970 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1971 1972 return hw20k2->mic_source; 1973 } 1974 1975 static int hw_mic_source_switch_put(struct hw *hw, int position) 1976 { 1977 struct hw20k2 *hw20k2 = (struct hw20k2 *)hw; 1978 1979 if (position == hw20k2->mic_source) 1980 return 0; 1981 1982 switch (position) { 1983 case 0: 1984 hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */ 1985 break; 1986 case 1: 1987 hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */ 1988 break; 1989 case 2: 1990 hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */ 1991 break; 1992 default: 1993 return 0; 1994 } 1995 1996 hw20k2->mic_source = position; 1997 1998 return 1; 1999 } 2000 2001 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id) 2002 { 2003 struct hw *hw = dev_id; 2004 unsigned int status; 2005 2006 status = hw_read_20kx(hw, GIP); 2007 if (!status) 2008 return IRQ_NONE; 2009 2010 if (hw->irq_callback) 2011 hw->irq_callback(hw->irq_callback_data, status); 2012 2013 hw_write_20kx(hw, GIP, status); 2014 return IRQ_HANDLED; 2015 } 2016 2017 static int hw_card_start(struct hw *hw) 2018 { 2019 int err = 0; 2020 struct pci_dev *pci = hw->pci; 2021 unsigned int gctl; 2022 const unsigned int dma_bits = BITS_PER_LONG; 2023 2024 err = pci_enable_device(pci); 2025 if (err < 0) 2026 return err; 2027 2028 /* Set DMA transfer mask */ 2029 if (!dma_set_mask(&pci->dev, DMA_BIT_MASK(dma_bits))) { 2030 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(dma_bits)); 2031 } else { 2032 dma_set_mask(&pci->dev, DMA_BIT_MASK(32)); 2033 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(32)); 2034 } 2035 2036 if (!hw->io_base) { 2037 err = pci_request_regions(pci, "XFi"); 2038 if (err < 0) 2039 goto error1; 2040 2041 hw->io_base = pci_resource_start(hw->pci, 2); 2042 hw->mem_base = ioremap(hw->io_base, 2043 pci_resource_len(hw->pci, 2)); 2044 if (!hw->mem_base) { 2045 err = -ENOENT; 2046 goto error2; 2047 } 2048 } 2049 2050 /* Switch to 20k2 mode from UAA mode. */ 2051 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 2052 set_field(&gctl, GCTL_UAA, 0); 2053 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 2054 2055 if (hw->irq < 0) { 2056 err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED, 2057 KBUILD_MODNAME, hw); 2058 if (err < 0) { 2059 dev_err(hw->card->dev, 2060 "XFi: Cannot get irq %d\n", pci->irq); 2061 goto error2; 2062 } 2063 hw->irq = pci->irq; 2064 hw->card->sync_irq = hw->irq; 2065 } 2066 2067 pci_set_master(pci); 2068 2069 return 0; 2070 2071 /*error3: 2072 iounmap((void *)hw->mem_base); 2073 hw->mem_base = (unsigned long)NULL;*/ 2074 error2: 2075 pci_release_regions(pci); 2076 hw->io_base = 0; 2077 error1: 2078 pci_disable_device(pci); 2079 return err; 2080 } 2081 2082 static int hw_card_stop(struct hw *hw) 2083 { 2084 unsigned int data; 2085 2086 /* disable transport bus master and queueing of request */ 2087 hw_write_20kx(hw, TRANSPORT_CTL, 0x00); 2088 2089 /* disable pll */ 2090 data = hw_read_20kx(hw, PLL_ENB); 2091 hw_write_20kx(hw, PLL_ENB, (data & (~0x07))); 2092 2093 /* TODO: Disable interrupt and so on... */ 2094 return 0; 2095 } 2096 2097 static int hw_card_shutdown(struct hw *hw) 2098 { 2099 if (hw->irq >= 0) 2100 free_irq(hw->irq, hw); 2101 2102 hw->irq = -1; 2103 iounmap(hw->mem_base); 2104 hw->mem_base = NULL; 2105 2106 if (hw->io_base) 2107 pci_release_regions(hw->pci); 2108 2109 hw->io_base = 0; 2110 2111 pci_disable_device(hw->pci); 2112 2113 return 0; 2114 } 2115 2116 static int hw_card_init(struct hw *hw, struct card_conf *info) 2117 { 2118 int err; 2119 unsigned int gctl; 2120 u32 data = 0; 2121 struct dac_conf dac_info = {0}; 2122 struct adc_conf adc_info = {0}; 2123 struct daio_conf daio_info = {0}; 2124 struct trn_conf trn_info = {0}; 2125 2126 /* Get PCI io port/memory base address and 2127 * do 20kx core switch if needed. */ 2128 err = hw_card_start(hw); 2129 if (err) 2130 return err; 2131 2132 /* PLL init */ 2133 err = hw_pll_init(hw, info->rsr); 2134 if (err < 0) 2135 return err; 2136 2137 /* kick off auto-init */ 2138 err = hw_auto_init(hw); 2139 if (err < 0) 2140 return err; 2141 2142 gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL); 2143 set_field(&gctl, GCTL_DBP, 1); 2144 set_field(&gctl, GCTL_TBP, 1); 2145 set_field(&gctl, GCTL_FBP, 1); 2146 set_field(&gctl, GCTL_DPC, 0); 2147 hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl); 2148 2149 /* Reset all global pending interrupts */ 2150 hw_write_20kx(hw, GIE, 0); 2151 /* Reset all SRC pending interrupts */ 2152 hw_write_20kx(hw, SRC_IP, 0); 2153 2154 if (hw->model != CTSB1270) { 2155 /* TODO: detect the card ID and configure GPIO accordingly. */ 2156 /* Configures GPIO (0xD802 0x98028) */ 2157 /*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/ 2158 /* Configures GPIO (SB0880) */ 2159 /*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/ 2160 hw_write_20kx(hw, GPIO_CTRL, 0xD802); 2161 } else { 2162 hw_write_20kx(hw, GPIO_CTRL, 0x9E5F); 2163 } 2164 /* Enable audio ring */ 2165 hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01); 2166 2167 trn_info.vm_pgt_phys = info->vm_pgt_phys; 2168 err = hw_trn_init(hw, &trn_info); 2169 if (err < 0) 2170 return err; 2171 2172 daio_info.msr = info->msr; 2173 err = hw_daio_init(hw, &daio_info); 2174 if (err < 0) 2175 return err; 2176 2177 dac_info.msr = info->msr; 2178 err = hw_dac_init(hw, &dac_info); 2179 if (err < 0) 2180 return err; 2181 2182 adc_info.msr = info->msr; 2183 adc_info.input = ADC_LINEIN; 2184 adc_info.mic20db = 0; 2185 err = hw_adc_init(hw, &adc_info); 2186 if (err < 0) 2187 return err; 2188 2189 data = hw_read_20kx(hw, SRC_MCTL); 2190 data |= 0x1; /* Enables input from the audio ring */ 2191 hw_write_20kx(hw, SRC_MCTL, data); 2192 2193 return 0; 2194 } 2195 2196 #ifdef CONFIG_PM_SLEEP 2197 static int hw_suspend(struct hw *hw) 2198 { 2199 hw_card_stop(hw); 2200 return 0; 2201 } 2202 2203 static int hw_resume(struct hw *hw, struct card_conf *info) 2204 { 2205 /* Re-initialize card hardware. */ 2206 return hw_card_init(hw, info); 2207 } 2208 #endif 2209 2210 static u32 hw_read_20kx(struct hw *hw, u32 reg) 2211 { 2212 return readl(hw->mem_base + reg); 2213 } 2214 2215 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data) 2216 { 2217 writel(data, hw->mem_base + reg); 2218 } 2219 2220 static const struct hw ct20k2_preset = { 2221 .irq = -1, 2222 2223 .card_init = hw_card_init, 2224 .card_stop = hw_card_stop, 2225 .pll_init = hw_pll_init, 2226 .is_adc_source_selected = hw_is_adc_input_selected, 2227 .select_adc_source = hw_adc_input_select, 2228 .capabilities = hw_capabilities, 2229 .output_switch_get = hw_output_switch_get, 2230 .output_switch_put = hw_output_switch_put, 2231 .mic_source_switch_get = hw_mic_source_switch_get, 2232 .mic_source_switch_put = hw_mic_source_switch_put, 2233 #ifdef CONFIG_PM_SLEEP 2234 .suspend = hw_suspend, 2235 .resume = hw_resume, 2236 #endif 2237 2238 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk, 2239 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk, 2240 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk, 2241 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk, 2242 .src_set_state = src_set_state, 2243 .src_set_bm = src_set_bm, 2244 .src_set_rsr = src_set_rsr, 2245 .src_set_sf = src_set_sf, 2246 .src_set_wr = src_set_wr, 2247 .src_set_pm = src_set_pm, 2248 .src_set_rom = src_set_rom, 2249 .src_set_vo = src_set_vo, 2250 .src_set_st = src_set_st, 2251 .src_set_ie = src_set_ie, 2252 .src_set_ilsz = src_set_ilsz, 2253 .src_set_bp = src_set_bp, 2254 .src_set_cisz = src_set_cisz, 2255 .src_set_ca = src_set_ca, 2256 .src_set_sa = src_set_sa, 2257 .src_set_la = src_set_la, 2258 .src_set_pitch = src_set_pitch, 2259 .src_set_dirty = src_set_dirty, 2260 .src_set_clear_zbufs = src_set_clear_zbufs, 2261 .src_set_dirty_all = src_set_dirty_all, 2262 .src_commit_write = src_commit_write, 2263 .src_get_ca = src_get_ca, 2264 .src_get_dirty = src_get_dirty, 2265 .src_dirty_conj_mask = src_dirty_conj_mask, 2266 .src_mgr_enbs_src = src_mgr_enbs_src, 2267 .src_mgr_enb_src = src_mgr_enb_src, 2268 .src_mgr_dsb_src = src_mgr_dsb_src, 2269 .src_mgr_commit_write = src_mgr_commit_write, 2270 2271 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk, 2272 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk, 2273 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc, 2274 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser, 2275 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt, 2276 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr, 2277 .srcimp_mgr_commit_write = srcimp_mgr_commit_write, 2278 2279 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk, 2280 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk, 2281 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk, 2282 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk, 2283 .amixer_set_mode = amixer_set_mode, 2284 .amixer_set_iv = amixer_set_iv, 2285 .amixer_set_x = amixer_set_x, 2286 .amixer_set_y = amixer_set_y, 2287 .amixer_set_sadr = amixer_set_sadr, 2288 .amixer_set_se = amixer_set_se, 2289 .amixer_set_dirty = amixer_set_dirty, 2290 .amixer_set_dirty_all = amixer_set_dirty_all, 2291 .amixer_commit_write = amixer_commit_write, 2292 .amixer_get_y = amixer_get_y, 2293 .amixer_get_dirty = amixer_get_dirty, 2294 2295 .dai_get_ctrl_blk = dai_get_ctrl_blk, 2296 .dai_put_ctrl_blk = dai_put_ctrl_blk, 2297 .dai_srt_set_srco = dai_srt_set_srco, 2298 .dai_srt_set_srcm = dai_srt_set_srcm, 2299 .dai_srt_set_rsr = dai_srt_set_rsr, 2300 .dai_srt_set_drat = dai_srt_set_drat, 2301 .dai_srt_set_ec = dai_srt_set_ec, 2302 .dai_srt_set_et = dai_srt_set_et, 2303 .dai_commit_write = dai_commit_write, 2304 2305 .dao_get_ctrl_blk = dao_get_ctrl_blk, 2306 .dao_put_ctrl_blk = dao_put_ctrl_blk, 2307 .dao_set_spos = dao_set_spos, 2308 .dao_commit_write = dao_commit_write, 2309 .dao_get_spos = dao_get_spos, 2310 2311 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk, 2312 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk, 2313 .daio_mgr_enb_dai = daio_mgr_enb_dai, 2314 .daio_mgr_dsb_dai = daio_mgr_dsb_dai, 2315 .daio_mgr_enb_dao = daio_mgr_enb_dao, 2316 .daio_mgr_dsb_dao = daio_mgr_dsb_dao, 2317 .daio_mgr_dao_init = daio_mgr_dao_init, 2318 .daio_mgr_set_imaparc = daio_mgr_set_imaparc, 2319 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt, 2320 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr, 2321 .daio_mgr_commit_write = daio_mgr_commit_write, 2322 2323 .set_timer_irq = set_timer_irq, 2324 .set_timer_tick = set_timer_tick, 2325 .get_wc = get_wc, 2326 }; 2327 2328 int create_20k2_hw_obj(struct hw **rhw) 2329 { 2330 struct hw20k2 *hw20k2; 2331 2332 *rhw = NULL; 2333 hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL); 2334 if (!hw20k2) 2335 return -ENOMEM; 2336 2337 hw20k2->hw = ct20k2_preset; 2338 *rhw = &hw20k2->hw; 2339 2340 return 0; 2341 } 2342 2343 int destroy_20k2_hw_obj(struct hw *hw) 2344 { 2345 if (hw->io_base) 2346 hw_card_shutdown(hw); 2347 2348 kfree(hw); 2349 return 0; 2350 } 2351