xref: /openbmc/linux/sound/pci/ctxfi/cthw20k2.c (revision 1edd0337)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
4  *
5  * @File	cthw20k2.c
6  *
7  * @Brief
8  * This file contains the implementation of hardware access method for 20k2.
9  *
10  * @Author	Liu Chun
11  * @Date 	May 14 2008
12  */
13 
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/pci.h>
17 #include <linux/io.h>
18 #include <linux/string.h>
19 #include <linux/kernel.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include "cthw20k2.h"
23 #include "ct20k2reg.h"
24 
25 struct hw20k2 {
26 	struct hw hw;
27 	/* for i2c */
28 	unsigned char dev_id;
29 	unsigned char addr_size;
30 	unsigned char data_size;
31 
32 	int mic_source;
33 };
34 
35 static u32 hw_read_20kx(struct hw *hw, u32 reg);
36 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data);
37 
38 /*
39  * Type definition block.
40  * The layout of control structures can be directly applied on 20k2 chip.
41  */
42 
43 /*
44  * SRC control block definitions.
45  */
46 
47 /* SRC resource control block */
48 #define SRCCTL_STATE	0x00000007
49 #define SRCCTL_BM	0x00000008
50 #define SRCCTL_RSR	0x00000030
51 #define SRCCTL_SF	0x000001C0
52 #define SRCCTL_WR	0x00000200
53 #define SRCCTL_PM	0x00000400
54 #define SRCCTL_ROM	0x00001800
55 #define SRCCTL_VO	0x00002000
56 #define SRCCTL_ST	0x00004000
57 #define SRCCTL_IE	0x00008000
58 #define SRCCTL_ILSZ	0x000F0000
59 #define SRCCTL_BP	0x00100000
60 
61 #define SRCCCR_CISZ	0x000007FF
62 #define SRCCCR_CWA	0x001FF800
63 #define SRCCCR_D	0x00200000
64 #define SRCCCR_RS	0x01C00000
65 #define SRCCCR_NAL	0x3E000000
66 #define SRCCCR_RA	0xC0000000
67 
68 #define SRCCA_CA	0x0FFFFFFF
69 #define SRCCA_RS	0xE0000000
70 
71 #define SRCSA_SA	0x0FFFFFFF
72 
73 #define SRCLA_LA	0x0FFFFFFF
74 
75 /* Mixer Parameter Ring ram Low and Hight register.
76  * Fixed-point value in 8.24 format for parameter channel */
77 #define MPRLH_PITCH	0xFFFFFFFF
78 
79 /* SRC resource register dirty flags */
80 union src_dirty {
81 	struct {
82 		u16 ctl:1;
83 		u16 ccr:1;
84 		u16 sa:1;
85 		u16 la:1;
86 		u16 ca:1;
87 		u16 mpr:1;
88 		u16 czbfs:1;	/* Clear Z-Buffers */
89 		u16 rsv:9;
90 	} bf;
91 	u16 data;
92 };
93 
94 struct src_rsc_ctrl_blk {
95 	unsigned int	ctl;
96 	unsigned int 	ccr;
97 	unsigned int	ca;
98 	unsigned int	sa;
99 	unsigned int	la;
100 	unsigned int	mpr;
101 	union src_dirty	dirty;
102 };
103 
104 /* SRC manager control block */
105 union src_mgr_dirty {
106 	struct {
107 		u16 enb0:1;
108 		u16 enb1:1;
109 		u16 enb2:1;
110 		u16 enb3:1;
111 		u16 enb4:1;
112 		u16 enb5:1;
113 		u16 enb6:1;
114 		u16 enb7:1;
115 		u16 enbsa:1;
116 		u16 rsv:7;
117 	} bf;
118 	u16 data;
119 };
120 
121 struct src_mgr_ctrl_blk {
122 	unsigned int		enbsa;
123 	unsigned int		enb[8];
124 	union src_mgr_dirty	dirty;
125 };
126 
127 /* SRCIMP manager control block */
128 #define SRCAIM_ARC	0x00000FFF
129 #define SRCAIM_NXT	0x00FF0000
130 #define SRCAIM_SRC	0xFF000000
131 
132 struct srcimap {
133 	unsigned int srcaim;
134 	unsigned int idx;
135 };
136 
137 /* SRCIMP manager register dirty flags */
138 union srcimp_mgr_dirty {
139 	struct {
140 		u16 srcimap:1;
141 		u16 rsv:15;
142 	} bf;
143 	u16 data;
144 };
145 
146 struct srcimp_mgr_ctrl_blk {
147 	struct srcimap		srcimap;
148 	union srcimp_mgr_dirty	dirty;
149 };
150 
151 /*
152  * Function implementation block.
153  */
154 
155 static int src_get_rsc_ctrl_blk(void **rblk)
156 {
157 	struct src_rsc_ctrl_blk *blk;
158 
159 	*rblk = NULL;
160 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
161 	if (!blk)
162 		return -ENOMEM;
163 
164 	*rblk = blk;
165 
166 	return 0;
167 }
168 
169 static int src_put_rsc_ctrl_blk(void *blk)
170 {
171 	kfree(blk);
172 
173 	return 0;
174 }
175 
176 static int src_set_state(void *blk, unsigned int state)
177 {
178 	struct src_rsc_ctrl_blk *ctl = blk;
179 
180 	set_field(&ctl->ctl, SRCCTL_STATE, state);
181 	ctl->dirty.bf.ctl = 1;
182 	return 0;
183 }
184 
185 static int src_set_bm(void *blk, unsigned int bm)
186 {
187 	struct src_rsc_ctrl_blk *ctl = blk;
188 
189 	set_field(&ctl->ctl, SRCCTL_BM, bm);
190 	ctl->dirty.bf.ctl = 1;
191 	return 0;
192 }
193 
194 static int src_set_rsr(void *blk, unsigned int rsr)
195 {
196 	struct src_rsc_ctrl_blk *ctl = blk;
197 
198 	set_field(&ctl->ctl, SRCCTL_RSR, rsr);
199 	ctl->dirty.bf.ctl = 1;
200 	return 0;
201 }
202 
203 static int src_set_sf(void *blk, unsigned int sf)
204 {
205 	struct src_rsc_ctrl_blk *ctl = blk;
206 
207 	set_field(&ctl->ctl, SRCCTL_SF, sf);
208 	ctl->dirty.bf.ctl = 1;
209 	return 0;
210 }
211 
212 static int src_set_wr(void *blk, unsigned int wr)
213 {
214 	struct src_rsc_ctrl_blk *ctl = blk;
215 
216 	set_field(&ctl->ctl, SRCCTL_WR, wr);
217 	ctl->dirty.bf.ctl = 1;
218 	return 0;
219 }
220 
221 static int src_set_pm(void *blk, unsigned int pm)
222 {
223 	struct src_rsc_ctrl_blk *ctl = blk;
224 
225 	set_field(&ctl->ctl, SRCCTL_PM, pm);
226 	ctl->dirty.bf.ctl = 1;
227 	return 0;
228 }
229 
230 static int src_set_rom(void *blk, unsigned int rom)
231 {
232 	struct src_rsc_ctrl_blk *ctl = blk;
233 
234 	set_field(&ctl->ctl, SRCCTL_ROM, rom);
235 	ctl->dirty.bf.ctl = 1;
236 	return 0;
237 }
238 
239 static int src_set_vo(void *blk, unsigned int vo)
240 {
241 	struct src_rsc_ctrl_blk *ctl = blk;
242 
243 	set_field(&ctl->ctl, SRCCTL_VO, vo);
244 	ctl->dirty.bf.ctl = 1;
245 	return 0;
246 }
247 
248 static int src_set_st(void *blk, unsigned int st)
249 {
250 	struct src_rsc_ctrl_blk *ctl = blk;
251 
252 	set_field(&ctl->ctl, SRCCTL_ST, st);
253 	ctl->dirty.bf.ctl = 1;
254 	return 0;
255 }
256 
257 static int src_set_ie(void *blk, unsigned int ie)
258 {
259 	struct src_rsc_ctrl_blk *ctl = blk;
260 
261 	set_field(&ctl->ctl, SRCCTL_IE, ie);
262 	ctl->dirty.bf.ctl = 1;
263 	return 0;
264 }
265 
266 static int src_set_ilsz(void *blk, unsigned int ilsz)
267 {
268 	struct src_rsc_ctrl_blk *ctl = blk;
269 
270 	set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz);
271 	ctl->dirty.bf.ctl = 1;
272 	return 0;
273 }
274 
275 static int src_set_bp(void *blk, unsigned int bp)
276 {
277 	struct src_rsc_ctrl_blk *ctl = blk;
278 
279 	set_field(&ctl->ctl, SRCCTL_BP, bp);
280 	ctl->dirty.bf.ctl = 1;
281 	return 0;
282 }
283 
284 static int src_set_cisz(void *blk, unsigned int cisz)
285 {
286 	struct src_rsc_ctrl_blk *ctl = blk;
287 
288 	set_field(&ctl->ccr, SRCCCR_CISZ, cisz);
289 	ctl->dirty.bf.ccr = 1;
290 	return 0;
291 }
292 
293 static int src_set_ca(void *blk, unsigned int ca)
294 {
295 	struct src_rsc_ctrl_blk *ctl = blk;
296 
297 	set_field(&ctl->ca, SRCCA_CA, ca);
298 	ctl->dirty.bf.ca = 1;
299 	return 0;
300 }
301 
302 static int src_set_sa(void *blk, unsigned int sa)
303 {
304 	struct src_rsc_ctrl_blk *ctl = blk;
305 
306 	set_field(&ctl->sa, SRCSA_SA, sa);
307 	ctl->dirty.bf.sa = 1;
308 	return 0;
309 }
310 
311 static int src_set_la(void *blk, unsigned int la)
312 {
313 	struct src_rsc_ctrl_blk *ctl = blk;
314 
315 	set_field(&ctl->la, SRCLA_LA, la);
316 	ctl->dirty.bf.la = 1;
317 	return 0;
318 }
319 
320 static int src_set_pitch(void *blk, unsigned int pitch)
321 {
322 	struct src_rsc_ctrl_blk *ctl = blk;
323 
324 	set_field(&ctl->mpr, MPRLH_PITCH, pitch);
325 	ctl->dirty.bf.mpr = 1;
326 	return 0;
327 }
328 
329 static int src_set_clear_zbufs(void *blk, unsigned int clear)
330 {
331 	((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0);
332 	return 0;
333 }
334 
335 static int src_set_dirty(void *blk, unsigned int flags)
336 {
337 	((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
338 	return 0;
339 }
340 
341 static int src_set_dirty_all(void *blk)
342 {
343 	((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
344 	return 0;
345 }
346 
347 #define AR_SLOT_SIZE		4096
348 #define AR_SLOT_BLOCK_SIZE	16
349 #define AR_PTS_PITCH		6
350 #define AR_PARAM_SRC_OFFSET	0x60
351 
352 static unsigned int src_param_pitch_mixer(unsigned int src_idx)
353 {
354 	return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE
355 			- AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE;
356 
357 }
358 
359 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk)
360 {
361 	struct src_rsc_ctrl_blk *ctl = blk;
362 	int i;
363 
364 	if (ctl->dirty.bf.czbfs) {
365 		/* Clear Z-Buffer registers */
366 		for (i = 0; i < 8; i++)
367 			hw_write_20kx(hw, SRC_UPZ+idx*0x100+i*0x4, 0);
368 
369 		for (i = 0; i < 4; i++)
370 			hw_write_20kx(hw, SRC_DN0Z+idx*0x100+i*0x4, 0);
371 
372 		for (i = 0; i < 8; i++)
373 			hw_write_20kx(hw, SRC_DN1Z+idx*0x100+i*0x4, 0);
374 
375 		ctl->dirty.bf.czbfs = 0;
376 	}
377 	if (ctl->dirty.bf.mpr) {
378 		/* Take the parameter mixer resource in the same group as that
379 		 * the idx src is in for simplicity. Unlike src, all conjugate
380 		 * parameter mixer resources must be programmed for
381 		 * corresponding conjugate src resources. */
382 		unsigned int pm_idx = src_param_pitch_mixer(idx);
383 		hw_write_20kx(hw, MIXER_PRING_LO_HI+4*pm_idx, ctl->mpr);
384 		hw_write_20kx(hw, MIXER_PMOPLO+8*pm_idx, 0x3);
385 		hw_write_20kx(hw, MIXER_PMOPHI+8*pm_idx, 0x0);
386 		ctl->dirty.bf.mpr = 0;
387 	}
388 	if (ctl->dirty.bf.sa) {
389 		hw_write_20kx(hw, SRC_SA+idx*0x100, ctl->sa);
390 		ctl->dirty.bf.sa = 0;
391 	}
392 	if (ctl->dirty.bf.la) {
393 		hw_write_20kx(hw, SRC_LA+idx*0x100, ctl->la);
394 		ctl->dirty.bf.la = 0;
395 	}
396 	if (ctl->dirty.bf.ca) {
397 		hw_write_20kx(hw, SRC_CA+idx*0x100, ctl->ca);
398 		ctl->dirty.bf.ca = 0;
399 	}
400 
401 	/* Write srccf register */
402 	hw_write_20kx(hw, SRC_CF+idx*0x100, 0x0);
403 
404 	if (ctl->dirty.bf.ccr) {
405 		hw_write_20kx(hw, SRC_CCR+idx*0x100, ctl->ccr);
406 		ctl->dirty.bf.ccr = 0;
407 	}
408 	if (ctl->dirty.bf.ctl) {
409 		hw_write_20kx(hw, SRC_CTL+idx*0x100, ctl->ctl);
410 		ctl->dirty.bf.ctl = 0;
411 	}
412 
413 	return 0;
414 }
415 
416 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk)
417 {
418 	struct src_rsc_ctrl_blk *ctl = blk;
419 
420 	ctl->ca = hw_read_20kx(hw, SRC_CA+idx*0x100);
421 	ctl->dirty.bf.ca = 0;
422 
423 	return get_field(ctl->ca, SRCCA_CA);
424 }
425 
426 static unsigned int src_get_dirty(void *blk)
427 {
428 	return ((struct src_rsc_ctrl_blk *)blk)->dirty.data;
429 }
430 
431 static unsigned int src_dirty_conj_mask(void)
432 {
433 	return 0x20;
434 }
435 
436 static int src_mgr_enbs_src(void *blk, unsigned int idx)
437 {
438 	((struct src_mgr_ctrl_blk *)blk)->enbsa |= (0x1 << ((idx%128)/4));
439 	((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1;
440 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
441 	return 0;
442 }
443 
444 static int src_mgr_enb_src(void *blk, unsigned int idx)
445 {
446 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32));
447 	((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
448 	return 0;
449 }
450 
451 static int src_mgr_dsb_src(void *blk, unsigned int idx)
452 {
453 	((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32));
454 	((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32));
455 	return 0;
456 }
457 
458 static int src_mgr_commit_write(struct hw *hw, void *blk)
459 {
460 	struct src_mgr_ctrl_blk *ctl = blk;
461 	int i;
462 	unsigned int ret;
463 
464 	if (ctl->dirty.bf.enbsa) {
465 		do {
466 			ret = hw_read_20kx(hw, SRC_ENBSTAT);
467 		} while (ret & 0x1);
468 		hw_write_20kx(hw, SRC_ENBSA, ctl->enbsa);
469 		ctl->dirty.bf.enbsa = 0;
470 	}
471 	for (i = 0; i < 8; i++) {
472 		if ((ctl->dirty.data & (0x1 << i))) {
473 			hw_write_20kx(hw, SRC_ENB+(i*0x100), ctl->enb[i]);
474 			ctl->dirty.data &= ~(0x1 << i);
475 		}
476 	}
477 
478 	return 0;
479 }
480 
481 static int src_mgr_get_ctrl_blk(void **rblk)
482 {
483 	struct src_mgr_ctrl_blk *blk;
484 
485 	*rblk = NULL;
486 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
487 	if (!blk)
488 		return -ENOMEM;
489 
490 	*rblk = blk;
491 
492 	return 0;
493 }
494 
495 static int src_mgr_put_ctrl_blk(void *blk)
496 {
497 	kfree(blk);
498 
499 	return 0;
500 }
501 
502 static int srcimp_mgr_get_ctrl_blk(void **rblk)
503 {
504 	struct srcimp_mgr_ctrl_blk *blk;
505 
506 	*rblk = NULL;
507 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
508 	if (!blk)
509 		return -ENOMEM;
510 
511 	*rblk = blk;
512 
513 	return 0;
514 }
515 
516 static int srcimp_mgr_put_ctrl_blk(void *blk)
517 {
518 	kfree(blk);
519 
520 	return 0;
521 }
522 
523 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot)
524 {
525 	struct srcimp_mgr_ctrl_blk *ctl = blk;
526 
527 	set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot);
528 	ctl->dirty.bf.srcimap = 1;
529 	return 0;
530 }
531 
532 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user)
533 {
534 	struct srcimp_mgr_ctrl_blk *ctl = blk;
535 
536 	set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user);
537 	ctl->dirty.bf.srcimap = 1;
538 	return 0;
539 }
540 
541 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next)
542 {
543 	struct srcimp_mgr_ctrl_blk *ctl = blk;
544 
545 	set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next);
546 	ctl->dirty.bf.srcimap = 1;
547 	return 0;
548 }
549 
550 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr)
551 {
552 	((struct srcimp_mgr_ctrl_blk *)blk)->srcimap.idx = addr;
553 	((struct srcimp_mgr_ctrl_blk *)blk)->dirty.bf.srcimap = 1;
554 	return 0;
555 }
556 
557 static int srcimp_mgr_commit_write(struct hw *hw, void *blk)
558 {
559 	struct srcimp_mgr_ctrl_blk *ctl = blk;
560 
561 	if (ctl->dirty.bf.srcimap) {
562 		hw_write_20kx(hw, SRC_IMAP+ctl->srcimap.idx*0x100,
563 						ctl->srcimap.srcaim);
564 		ctl->dirty.bf.srcimap = 0;
565 	}
566 
567 	return 0;
568 }
569 
570 /*
571  * AMIXER control block definitions.
572  */
573 
574 #define AMOPLO_M	0x00000003
575 #define AMOPLO_IV	0x00000004
576 #define AMOPLO_X	0x0003FFF0
577 #define AMOPLO_Y	0xFFFC0000
578 
579 #define AMOPHI_SADR	0x000000FF
580 #define AMOPHI_SE	0x80000000
581 
582 /* AMIXER resource register dirty flags */
583 union amixer_dirty {
584 	struct {
585 		u16 amoplo:1;
586 		u16 amophi:1;
587 		u16 rsv:14;
588 	} bf;
589 	u16 data;
590 };
591 
592 /* AMIXER resource control block */
593 struct amixer_rsc_ctrl_blk {
594 	unsigned int		amoplo;
595 	unsigned int		amophi;
596 	union amixer_dirty	dirty;
597 };
598 
599 static int amixer_set_mode(void *blk, unsigned int mode)
600 {
601 	struct amixer_rsc_ctrl_blk *ctl = blk;
602 
603 	set_field(&ctl->amoplo, AMOPLO_M, mode);
604 	ctl->dirty.bf.amoplo = 1;
605 	return 0;
606 }
607 
608 static int amixer_set_iv(void *blk, unsigned int iv)
609 {
610 	struct amixer_rsc_ctrl_blk *ctl = blk;
611 
612 	set_field(&ctl->amoplo, AMOPLO_IV, iv);
613 	ctl->dirty.bf.amoplo = 1;
614 	return 0;
615 }
616 
617 static int amixer_set_x(void *blk, unsigned int x)
618 {
619 	struct amixer_rsc_ctrl_blk *ctl = blk;
620 
621 	set_field(&ctl->amoplo, AMOPLO_X, x);
622 	ctl->dirty.bf.amoplo = 1;
623 	return 0;
624 }
625 
626 static int amixer_set_y(void *blk, unsigned int y)
627 {
628 	struct amixer_rsc_ctrl_blk *ctl = blk;
629 
630 	set_field(&ctl->amoplo, AMOPLO_Y, y);
631 	ctl->dirty.bf.amoplo = 1;
632 	return 0;
633 }
634 
635 static int amixer_set_sadr(void *blk, unsigned int sadr)
636 {
637 	struct amixer_rsc_ctrl_blk *ctl = blk;
638 
639 	set_field(&ctl->amophi, AMOPHI_SADR, sadr);
640 	ctl->dirty.bf.amophi = 1;
641 	return 0;
642 }
643 
644 static int amixer_set_se(void *blk, unsigned int se)
645 {
646 	struct amixer_rsc_ctrl_blk *ctl = blk;
647 
648 	set_field(&ctl->amophi, AMOPHI_SE, se);
649 	ctl->dirty.bf.amophi = 1;
650 	return 0;
651 }
652 
653 static int amixer_set_dirty(void *blk, unsigned int flags)
654 {
655 	((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff);
656 	return 0;
657 }
658 
659 static int amixer_set_dirty_all(void *blk)
660 {
661 	((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0);
662 	return 0;
663 }
664 
665 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk)
666 {
667 	struct amixer_rsc_ctrl_blk *ctl = blk;
668 
669 	if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) {
670 		hw_write_20kx(hw, MIXER_AMOPLO+idx*8, ctl->amoplo);
671 		ctl->dirty.bf.amoplo = 0;
672 		hw_write_20kx(hw, MIXER_AMOPHI+idx*8, ctl->amophi);
673 		ctl->dirty.bf.amophi = 0;
674 	}
675 
676 	return 0;
677 }
678 
679 static int amixer_get_y(void *blk)
680 {
681 	struct amixer_rsc_ctrl_blk *ctl = blk;
682 
683 	return get_field(ctl->amoplo, AMOPLO_Y);
684 }
685 
686 static unsigned int amixer_get_dirty(void *blk)
687 {
688 	return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data;
689 }
690 
691 static int amixer_rsc_get_ctrl_blk(void **rblk)
692 {
693 	struct amixer_rsc_ctrl_blk *blk;
694 
695 	*rblk = NULL;
696 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
697 	if (!blk)
698 		return -ENOMEM;
699 
700 	*rblk = blk;
701 
702 	return 0;
703 }
704 
705 static int amixer_rsc_put_ctrl_blk(void *blk)
706 {
707 	kfree(blk);
708 
709 	return 0;
710 }
711 
712 static int amixer_mgr_get_ctrl_blk(void **rblk)
713 {
714 	*rblk = NULL;
715 
716 	return 0;
717 }
718 
719 static int amixer_mgr_put_ctrl_blk(void *blk)
720 {
721 	return 0;
722 }
723 
724 /*
725  * DAIO control block definitions.
726  */
727 
728 /* Receiver Sample Rate Tracker Control register */
729 #define SRTCTL_SRCO	0x000000FF
730 #define SRTCTL_SRCM	0x0000FF00
731 #define SRTCTL_RSR	0x00030000
732 #define SRTCTL_DRAT	0x00300000
733 #define SRTCTL_EC	0x01000000
734 #define SRTCTL_ET	0x10000000
735 
736 /* DAIO Receiver register dirty flags */
737 union dai_dirty {
738 	struct {
739 		u16 srt:1;
740 		u16 rsv:15;
741 	} bf;
742 	u16 data;
743 };
744 
745 /* DAIO Receiver control block */
746 struct dai_ctrl_blk {
747 	unsigned int	srt;
748 	union dai_dirty	dirty;
749 };
750 
751 /* Audio Input Mapper RAM */
752 #define AIM_ARC		0x00000FFF
753 #define AIM_NXT		0x007F0000
754 
755 struct daoimap {
756 	unsigned int aim;
757 	unsigned int idx;
758 };
759 
760 /* Audio Transmitter Control and Status register */
761 #define ATXCTL_EN	0x00000001
762 #define ATXCTL_MODE	0x00000010
763 #define ATXCTL_CD	0x00000020
764 #define ATXCTL_RAW	0x00000100
765 #define ATXCTL_MT	0x00000200
766 #define ATXCTL_NUC	0x00003000
767 #define ATXCTL_BEN	0x00010000
768 #define ATXCTL_BMUX	0x00700000
769 #define ATXCTL_B24	0x01000000
770 #define ATXCTL_CPF	0x02000000
771 #define ATXCTL_RIV	0x10000000
772 #define ATXCTL_LIV	0x20000000
773 #define ATXCTL_RSAT	0x40000000
774 #define ATXCTL_LSAT	0x80000000
775 
776 /* XDIF Transmitter register dirty flags */
777 union dao_dirty {
778 	struct {
779 		u16 atxcsl:1;
780 		u16 rsv:15;
781 	} bf;
782 	u16 data;
783 };
784 
785 /* XDIF Transmitter control block */
786 struct dao_ctrl_blk {
787 	/* XDIF Transmitter Channel Status Low Register */
788 	unsigned int	atxcsl;
789 	union dao_dirty	dirty;
790 };
791 
792 /* Audio Receiver Control register */
793 #define ARXCTL_EN	0x00000001
794 
795 /* DAIO manager register dirty flags */
796 union daio_mgr_dirty {
797 	struct {
798 		u32 atxctl:8;
799 		u32 arxctl:8;
800 		u32 daoimap:1;
801 		u32 rsv:15;
802 	} bf;
803 	u32 data;
804 };
805 
806 /* DAIO manager control block */
807 struct daio_mgr_ctrl_blk {
808 	struct daoimap		daoimap;
809 	unsigned int		txctl[8];
810 	unsigned int		rxctl[8];
811 	union daio_mgr_dirty	dirty;
812 };
813 
814 static int dai_srt_set_srco(void *blk, unsigned int src)
815 {
816 	struct dai_ctrl_blk *ctl = blk;
817 
818 	set_field(&ctl->srt, SRTCTL_SRCO, src);
819 	ctl->dirty.bf.srt = 1;
820 	return 0;
821 }
822 
823 static int dai_srt_set_srcm(void *blk, unsigned int src)
824 {
825 	struct dai_ctrl_blk *ctl = blk;
826 
827 	set_field(&ctl->srt, SRTCTL_SRCM, src);
828 	ctl->dirty.bf.srt = 1;
829 	return 0;
830 }
831 
832 static int dai_srt_set_rsr(void *blk, unsigned int rsr)
833 {
834 	struct dai_ctrl_blk *ctl = blk;
835 
836 	set_field(&ctl->srt, SRTCTL_RSR, rsr);
837 	ctl->dirty.bf.srt = 1;
838 	return 0;
839 }
840 
841 static int dai_srt_set_drat(void *blk, unsigned int drat)
842 {
843 	struct dai_ctrl_blk *ctl = blk;
844 
845 	set_field(&ctl->srt, SRTCTL_DRAT, drat);
846 	ctl->dirty.bf.srt = 1;
847 	return 0;
848 }
849 
850 static int dai_srt_set_ec(void *blk, unsigned int ec)
851 {
852 	struct dai_ctrl_blk *ctl = blk;
853 
854 	set_field(&ctl->srt, SRTCTL_EC, ec ? 1 : 0);
855 	ctl->dirty.bf.srt = 1;
856 	return 0;
857 }
858 
859 static int dai_srt_set_et(void *blk, unsigned int et)
860 {
861 	struct dai_ctrl_blk *ctl = blk;
862 
863 	set_field(&ctl->srt, SRTCTL_ET, et ? 1 : 0);
864 	ctl->dirty.bf.srt = 1;
865 	return 0;
866 }
867 
868 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk)
869 {
870 	struct dai_ctrl_blk *ctl = blk;
871 
872 	if (ctl->dirty.bf.srt) {
873 		hw_write_20kx(hw, AUDIO_IO_RX_SRT_CTL+0x40*idx, ctl->srt);
874 		ctl->dirty.bf.srt = 0;
875 	}
876 
877 	return 0;
878 }
879 
880 static int dai_get_ctrl_blk(void **rblk)
881 {
882 	struct dai_ctrl_blk *blk;
883 
884 	*rblk = NULL;
885 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
886 	if (!blk)
887 		return -ENOMEM;
888 
889 	*rblk = blk;
890 
891 	return 0;
892 }
893 
894 static int dai_put_ctrl_blk(void *blk)
895 {
896 	kfree(blk);
897 
898 	return 0;
899 }
900 
901 static int dao_set_spos(void *blk, unsigned int spos)
902 {
903 	((struct dao_ctrl_blk *)blk)->atxcsl = spos;
904 	((struct dao_ctrl_blk *)blk)->dirty.bf.atxcsl = 1;
905 	return 0;
906 }
907 
908 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk)
909 {
910 	struct dao_ctrl_blk *ctl = blk;
911 
912 	if (ctl->dirty.bf.atxcsl) {
913 		if (idx < 4) {
914 			/* S/PDIF SPOSx */
915 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+0x40*idx,
916 							ctl->atxcsl);
917 		}
918 		ctl->dirty.bf.atxcsl = 0;
919 	}
920 
921 	return 0;
922 }
923 
924 static int dao_get_spos(void *blk, unsigned int *spos)
925 {
926 	*spos = ((struct dao_ctrl_blk *)blk)->atxcsl;
927 	return 0;
928 }
929 
930 static int dao_get_ctrl_blk(void **rblk)
931 {
932 	struct dao_ctrl_blk *blk;
933 
934 	*rblk = NULL;
935 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
936 	if (!blk)
937 		return -ENOMEM;
938 
939 	*rblk = blk;
940 
941 	return 0;
942 }
943 
944 static int dao_put_ctrl_blk(void *blk)
945 {
946 	kfree(blk);
947 
948 	return 0;
949 }
950 
951 static int daio_mgr_enb_dai(void *blk, unsigned int idx)
952 {
953 	struct daio_mgr_ctrl_blk *ctl = blk;
954 
955 	set_field(&ctl->rxctl[idx], ARXCTL_EN, 1);
956 	ctl->dirty.bf.arxctl |= (0x1 << idx);
957 	return 0;
958 }
959 
960 static int daio_mgr_dsb_dai(void *blk, unsigned int idx)
961 {
962 	struct daio_mgr_ctrl_blk *ctl = blk;
963 
964 	set_field(&ctl->rxctl[idx], ARXCTL_EN, 0);
965 
966 	ctl->dirty.bf.arxctl |= (0x1 << idx);
967 	return 0;
968 }
969 
970 static int daio_mgr_enb_dao(void *blk, unsigned int idx)
971 {
972 	struct daio_mgr_ctrl_blk *ctl = blk;
973 
974 	set_field(&ctl->txctl[idx], ATXCTL_EN, 1);
975 	ctl->dirty.bf.atxctl |= (0x1 << idx);
976 	return 0;
977 }
978 
979 static int daio_mgr_dsb_dao(void *blk, unsigned int idx)
980 {
981 	struct daio_mgr_ctrl_blk *ctl = blk;
982 
983 	set_field(&ctl->txctl[idx], ATXCTL_EN, 0);
984 	ctl->dirty.bf.atxctl |= (0x1 << idx);
985 	return 0;
986 }
987 
988 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf)
989 {
990 	struct daio_mgr_ctrl_blk *ctl = blk;
991 
992 	if (idx < 4) {
993 		/* S/PDIF output */
994 		switch ((conf & 0xf)) {
995 		case 1:
996 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 0);
997 			break;
998 		case 2:
999 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 1);
1000 			break;
1001 		case 4:
1002 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 2);
1003 			break;
1004 		case 8:
1005 			set_field(&ctl->txctl[idx], ATXCTL_NUC, 3);
1006 			break;
1007 		default:
1008 			break;
1009 		}
1010 		/* CDIF */
1011 		set_field(&ctl->txctl[idx], ATXCTL_CD, (!(conf & 0x7)));
1012 		/* Non-audio */
1013 		set_field(&ctl->txctl[idx], ATXCTL_LIV, (conf >> 4) & 0x1);
1014 		/* Non-audio */
1015 		set_field(&ctl->txctl[idx], ATXCTL_RIV, (conf >> 4) & 0x1);
1016 		set_field(&ctl->txctl[idx], ATXCTL_RAW,
1017 			  ((conf >> 3) & 0x1) ? 0 : 0);
1018 		ctl->dirty.bf.atxctl |= (0x1 << idx);
1019 	} else {
1020 		/* I2S output */
1021 		/*idx %= 4; */
1022 	}
1023 	return 0;
1024 }
1025 
1026 static int daio_mgr_set_imaparc(void *blk, unsigned int slot)
1027 {
1028 	struct daio_mgr_ctrl_blk *ctl = blk;
1029 
1030 	set_field(&ctl->daoimap.aim, AIM_ARC, slot);
1031 	ctl->dirty.bf.daoimap = 1;
1032 	return 0;
1033 }
1034 
1035 static int daio_mgr_set_imapnxt(void *blk, unsigned int next)
1036 {
1037 	struct daio_mgr_ctrl_blk *ctl = blk;
1038 
1039 	set_field(&ctl->daoimap.aim, AIM_NXT, next);
1040 	ctl->dirty.bf.daoimap = 1;
1041 	return 0;
1042 }
1043 
1044 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr)
1045 {
1046 	((struct daio_mgr_ctrl_blk *)blk)->daoimap.idx = addr;
1047 	((struct daio_mgr_ctrl_blk *)blk)->dirty.bf.daoimap = 1;
1048 	return 0;
1049 }
1050 
1051 static int daio_mgr_commit_write(struct hw *hw, void *blk)
1052 {
1053 	struct daio_mgr_ctrl_blk *ctl = blk;
1054 	unsigned int data;
1055 	int i;
1056 
1057 	for (i = 0; i < 8; i++) {
1058 		if ((ctl->dirty.bf.atxctl & (0x1 << i))) {
1059 			data = ctl->txctl[i];
1060 			hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1061 			ctl->dirty.bf.atxctl &= ~(0x1 << i);
1062 			mdelay(1);
1063 		}
1064 		if ((ctl->dirty.bf.arxctl & (0x1 << i))) {
1065 			data = ctl->rxctl[i];
1066 			hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1067 			ctl->dirty.bf.arxctl &= ~(0x1 << i);
1068 			mdelay(1);
1069 		}
1070 	}
1071 	if (ctl->dirty.bf.daoimap) {
1072 		hw_write_20kx(hw, AUDIO_IO_AIM+ctl->daoimap.idx*4,
1073 						ctl->daoimap.aim);
1074 		ctl->dirty.bf.daoimap = 0;
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk)
1081 {
1082 	struct daio_mgr_ctrl_blk *blk;
1083 	int i;
1084 
1085 	*rblk = NULL;
1086 	blk = kzalloc(sizeof(*blk), GFP_KERNEL);
1087 	if (!blk)
1088 		return -ENOMEM;
1089 
1090 	for (i = 0; i < 8; i++) {
1091 		blk->txctl[i] = hw_read_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i));
1092 		blk->rxctl[i] = hw_read_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i));
1093 	}
1094 
1095 	*rblk = blk;
1096 
1097 	return 0;
1098 }
1099 
1100 static int daio_mgr_put_ctrl_blk(void *blk)
1101 {
1102 	kfree(blk);
1103 
1104 	return 0;
1105 }
1106 
1107 /* Timer interrupt */
1108 static int set_timer_irq(struct hw *hw, int enable)
1109 {
1110 	hw_write_20kx(hw, GIE, enable ? IT_INT : 0);
1111 	return 0;
1112 }
1113 
1114 static int set_timer_tick(struct hw *hw, unsigned int ticks)
1115 {
1116 	if (ticks)
1117 		ticks |= TIMR_IE | TIMR_IP;
1118 	hw_write_20kx(hw, TIMR, ticks);
1119 	return 0;
1120 }
1121 
1122 static unsigned int get_wc(struct hw *hw)
1123 {
1124 	return hw_read_20kx(hw, WC);
1125 }
1126 
1127 /* Card hardware initialization block */
1128 struct dac_conf {
1129 	unsigned int msr; /* master sample rate in rsrs */
1130 };
1131 
1132 struct adc_conf {
1133 	unsigned int msr; 	/* master sample rate in rsrs */
1134 	unsigned char input; 	/* the input source of ADC */
1135 	unsigned char mic20db; 	/* boost mic by 20db if input is microphone */
1136 };
1137 
1138 struct daio_conf {
1139 	unsigned int msr; /* master sample rate in rsrs */
1140 };
1141 
1142 struct trn_conf {
1143 	unsigned long vm_pgt_phys;
1144 };
1145 
1146 static int hw_daio_init(struct hw *hw, const struct daio_conf *info)
1147 {
1148 	u32 data;
1149 	int i;
1150 
1151 	/* Program I2S with proper sample rate and enable the correct I2S
1152 	 * channel. ED(0/8/16/24): Enable all I2S/I2X master clock output */
1153 	if (1 == info->msr) {
1154 		hw_write_20kx(hw, AUDIO_IO_MCLK, 0x01010101);
1155 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x01010101);
1156 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1157 	} else if (2 == info->msr) {
1158 		if (hw->model != CTSB1270) {
1159 			hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11111111);
1160 		} else {
1161 			/* PCM4220 on Titanium HD is different. */
1162 			hw_write_20kx(hw, AUDIO_IO_MCLK, 0x11011111);
1163 		}
1164 		/* Specify all playing 96khz
1165 		 * EA [0]	- Enabled
1166 		 * RTA [4:5]	- 96kHz
1167 		 * EB [8]	- Enabled
1168 		 * RTB [12:13]	- 96kHz
1169 		 * EC [16]	- Enabled
1170 		 * RTC [20:21]	- 96kHz
1171 		 * ED [24]	- Enabled
1172 		 * RTD [28:29]	- 96kHz */
1173 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x11111111);
1174 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1175 	} else if ((4 == info->msr) && (hw->model == CTSB1270)) {
1176 		hw_write_20kx(hw, AUDIO_IO_MCLK, 0x21011111);
1177 		hw_write_20kx(hw, AUDIO_IO_TX_BLRCLK, 0x21212121);
1178 		hw_write_20kx(hw, AUDIO_IO_RX_BLRCLK, 0);
1179 	} else {
1180 		dev_alert(hw->card->dev,
1181 			  "ERROR!!! Invalid sampling rate!!!\n");
1182 		return -EINVAL;
1183 	}
1184 
1185 	for (i = 0; i < 8; i++) {
1186 		if (i <= 3) {
1187 			/* This comment looks wrong since loop is over 4  */
1188 			/* channels and emu20k2 supports 4 spdif IOs.     */
1189 			/* 1st 3 channels are SPDIFs (SB0960) */
1190 			if (i == 3)
1191 				data = 0x1001001;
1192 			else
1193 				data = 0x1000001;
1194 
1195 			hw_write_20kx(hw, (AUDIO_IO_TX_CTL+(0x40*i)), data);
1196 			hw_write_20kx(hw, (AUDIO_IO_RX_CTL+(0x40*i)), data);
1197 
1198 			/* Initialize the SPDIF Out Channel status registers.
1199 			 * The value specified here is based on the typical
1200 			 * values provided in the specification, namely: Clock
1201 			 * Accuracy of 1000ppm, Sample Rate of 48KHz,
1202 			 * unspecified source number, Generation status = 1,
1203 			 * Category code = 0x12 (Digital Signal Mixer),
1204 			 * Mode = 0, Emph = 0, Copy Permitted, AN = 0
1205 			 * (indicating that we're transmitting digital audio,
1206 			 * and the Professional Use bit is 0. */
1207 
1208 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_L+(0x40*i),
1209 					0x02109204); /* Default to 48kHz */
1210 
1211 			hw_write_20kx(hw, AUDIO_IO_TX_CSTAT_H+(0x40*i), 0x0B);
1212 		} else {
1213 			/* Again, loop is over 4 channels not 5. */
1214 			/* Next 5 channels are I2S (SB0960) */
1215 			data = 0x11;
1216 			hw_write_20kx(hw, AUDIO_IO_RX_CTL+(0x40*i), data);
1217 			if (2 == info->msr) {
1218 				/* Four channels per sample period */
1219 				data |= 0x1000;
1220 			} else if (4 == info->msr) {
1221 				/* FIXME: check this against the chip spec */
1222 				data |= 0x2000;
1223 			}
1224 			hw_write_20kx(hw, AUDIO_IO_TX_CTL+(0x40*i), data);
1225 		}
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /* TRANSPORT operations */
1232 static int hw_trn_init(struct hw *hw, const struct trn_conf *info)
1233 {
1234 	u32 vmctl, data;
1235 	u32 ptp_phys_low, ptp_phys_high;
1236 	int i;
1237 
1238 	/* Set up device page table */
1239 	if ((~0UL) == info->vm_pgt_phys) {
1240 		dev_alert(hw->card->dev,
1241 			  "Wrong device page table page address!!!\n");
1242 		return -1;
1243 	}
1244 
1245 	vmctl = 0x80000C0F;  /* 32-bit, 4k-size page */
1246 	ptp_phys_low = (u32)info->vm_pgt_phys;
1247 	ptp_phys_high = upper_32_bits(info->vm_pgt_phys);
1248 	if (sizeof(void *) == 8) /* 64bit address */
1249 		vmctl |= (3 << 8);
1250 	/* Write page table physical address to all PTPAL registers */
1251 	for (i = 0; i < 64; i++) {
1252 		hw_write_20kx(hw, VMEM_PTPAL+(16*i), ptp_phys_low);
1253 		hw_write_20kx(hw, VMEM_PTPAH+(16*i), ptp_phys_high);
1254 	}
1255 	/* Enable virtual memory transfer */
1256 	hw_write_20kx(hw, VMEM_CTL, vmctl);
1257 	/* Enable transport bus master and queueing of request */
1258 	hw_write_20kx(hw, TRANSPORT_CTL, 0x03);
1259 	hw_write_20kx(hw, TRANSPORT_INT, 0x200c01);
1260 	/* Enable transport ring */
1261 	data = hw_read_20kx(hw, TRANSPORT_ENB);
1262 	hw_write_20kx(hw, TRANSPORT_ENB, (data | 0x03));
1263 
1264 	return 0;
1265 }
1266 
1267 /* Card initialization */
1268 #define GCTL_AIE	0x00000001
1269 #define GCTL_UAA	0x00000002
1270 #define GCTL_DPC	0x00000004
1271 #define GCTL_DBP	0x00000008
1272 #define GCTL_ABP	0x00000010
1273 #define GCTL_TBP	0x00000020
1274 #define GCTL_SBP	0x00000040
1275 #define GCTL_FBP	0x00000080
1276 #define GCTL_ME		0x00000100
1277 #define GCTL_AID	0x00001000
1278 
1279 #define PLLCTL_SRC	0x00000007
1280 #define PLLCTL_SPE	0x00000008
1281 #define PLLCTL_RD	0x000000F0
1282 #define PLLCTL_FD	0x0001FF00
1283 #define PLLCTL_OD	0x00060000
1284 #define PLLCTL_B	0x00080000
1285 #define PLLCTL_AS	0x00100000
1286 #define PLLCTL_LF	0x03E00000
1287 #define PLLCTL_SPS	0x1C000000
1288 #define PLLCTL_AD	0x60000000
1289 
1290 #define PLLSTAT_CCS	0x00000007
1291 #define PLLSTAT_SPL	0x00000008
1292 #define PLLSTAT_CRD	0x000000F0
1293 #define PLLSTAT_CFD	0x0001FF00
1294 #define PLLSTAT_SL	0x00020000
1295 #define PLLSTAT_FAS	0x00040000
1296 #define PLLSTAT_B	0x00080000
1297 #define PLLSTAT_PD	0x00100000
1298 #define PLLSTAT_OCA	0x00200000
1299 #define PLLSTAT_NCA	0x00400000
1300 
1301 static int hw_pll_init(struct hw *hw, unsigned int rsr)
1302 {
1303 	unsigned int pllenb;
1304 	unsigned int pllctl;
1305 	unsigned int pllstat;
1306 	int i;
1307 
1308 	pllenb = 0xB;
1309 	hw_write_20kx(hw, PLL_ENB, pllenb);
1310 	pllctl = 0x20C00000;
1311 	set_field(&pllctl, PLLCTL_B, 0);
1312 	set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 4 : 147 - 4);
1313 	set_field(&pllctl, PLLCTL_RD, 48000 == rsr ? 1 - 1 : 10 - 1);
1314 	hw_write_20kx(hw, PLL_CTL, pllctl);
1315 	msleep(40);
1316 
1317 	pllctl = hw_read_20kx(hw, PLL_CTL);
1318 	set_field(&pllctl, PLLCTL_FD, 48000 == rsr ? 16 - 2 : 147 - 2);
1319 	hw_write_20kx(hw, PLL_CTL, pllctl);
1320 	msleep(40);
1321 
1322 	for (i = 0; i < 1000; i++) {
1323 		pllstat = hw_read_20kx(hw, PLL_STAT);
1324 		if (get_field(pllstat, PLLSTAT_PD))
1325 			continue;
1326 
1327 		if (get_field(pllstat, PLLSTAT_B) !=
1328 					get_field(pllctl, PLLCTL_B))
1329 			continue;
1330 
1331 		if (get_field(pllstat, PLLSTAT_CCS) !=
1332 					get_field(pllctl, PLLCTL_SRC))
1333 			continue;
1334 
1335 		if (get_field(pllstat, PLLSTAT_CRD) !=
1336 					get_field(pllctl, PLLCTL_RD))
1337 			continue;
1338 
1339 		if (get_field(pllstat, PLLSTAT_CFD) !=
1340 					get_field(pllctl, PLLCTL_FD))
1341 			continue;
1342 
1343 		break;
1344 	}
1345 	if (i >= 1000) {
1346 		dev_alert(hw->card->dev,
1347 			  "PLL initialization failed!!!\n");
1348 		return -EBUSY;
1349 	}
1350 
1351 	return 0;
1352 }
1353 
1354 static int hw_auto_init(struct hw *hw)
1355 {
1356 	unsigned int gctl;
1357 	int i;
1358 
1359 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1360 	set_field(&gctl, GCTL_AIE, 0);
1361 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1362 	set_field(&gctl, GCTL_AIE, 1);
1363 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
1364 	mdelay(10);
1365 	for (i = 0; i < 400000; i++) {
1366 		gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
1367 		if (get_field(gctl, GCTL_AID))
1368 			break;
1369 	}
1370 	if (!get_field(gctl, GCTL_AID)) {
1371 		dev_alert(hw->card->dev, "Card Auto-init failed!!!\n");
1372 		return -EBUSY;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 /* DAC operations */
1379 
1380 #define CS4382_MC1 		0x1
1381 #define CS4382_MC2 		0x2
1382 #define CS4382_MC3		0x3
1383 #define CS4382_FC		0x4
1384 #define CS4382_IC		0x5
1385 #define CS4382_XC1		0x6
1386 #define CS4382_VCA1 		0x7
1387 #define CS4382_VCB1 		0x8
1388 #define CS4382_XC2		0x9
1389 #define CS4382_VCA2 		0xA
1390 #define CS4382_VCB2 		0xB
1391 #define CS4382_XC3		0xC
1392 #define CS4382_VCA3		0xD
1393 #define CS4382_VCB3		0xE
1394 #define CS4382_XC4 		0xF
1395 #define CS4382_VCA4 		0x10
1396 #define CS4382_VCB4 		0x11
1397 #define CS4382_CREV 		0x12
1398 
1399 /* I2C status */
1400 #define STATE_LOCKED		0x00
1401 #define STATE_UNLOCKED		0xAA
1402 #define DATA_READY		0x800000    /* Used with I2C_IF_STATUS */
1403 #define DATA_ABORT		0x10000     /* Used with I2C_IF_STATUS */
1404 
1405 #define I2C_STATUS_DCM	0x00000001
1406 #define I2C_STATUS_BC	0x00000006
1407 #define I2C_STATUS_APD	0x00000008
1408 #define I2C_STATUS_AB	0x00010000
1409 #define I2C_STATUS_DR	0x00800000
1410 
1411 #define I2C_ADDRESS_PTAD	0x0000FFFF
1412 #define I2C_ADDRESS_SLAD	0x007F0000
1413 
1414 struct regs_cs4382 {
1415 	u32 mode_control_1;
1416 	u32 mode_control_2;
1417 	u32 mode_control_3;
1418 
1419 	u32 filter_control;
1420 	u32 invert_control;
1421 
1422 	u32 mix_control_P1;
1423 	u32 vol_control_A1;
1424 	u32 vol_control_B1;
1425 
1426 	u32 mix_control_P2;
1427 	u32 vol_control_A2;
1428 	u32 vol_control_B2;
1429 
1430 	u32 mix_control_P3;
1431 	u32 vol_control_A3;
1432 	u32 vol_control_B3;
1433 
1434 	u32 mix_control_P4;
1435 	u32 vol_control_A4;
1436 	u32 vol_control_B4;
1437 };
1438 
1439 static int hw20k2_i2c_unlock_full_access(struct hw *hw)
1440 {
1441 	u8 UnlockKeySequence_FLASH_FULLACCESS_MODE[2] =  {0xB3, 0xD4};
1442 
1443 	/* Send keys for forced BIOS mode */
1444 	hw_write_20kx(hw, I2C_IF_WLOCK,
1445 			UnlockKeySequence_FLASH_FULLACCESS_MODE[0]);
1446 	hw_write_20kx(hw, I2C_IF_WLOCK,
1447 			UnlockKeySequence_FLASH_FULLACCESS_MODE[1]);
1448 	/* Check whether the chip is unlocked */
1449 	if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_UNLOCKED)
1450 		return 0;
1451 
1452 	return -1;
1453 }
1454 
1455 static int hw20k2_i2c_lock_chip(struct hw *hw)
1456 {
1457 	/* Write twice */
1458 	hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1459 	hw_write_20kx(hw, I2C_IF_WLOCK, STATE_LOCKED);
1460 	if (hw_read_20kx(hw, I2C_IF_WLOCK) == STATE_LOCKED)
1461 		return 0;
1462 
1463 	return -1;
1464 }
1465 
1466 static int hw20k2_i2c_init(struct hw *hw, u8 dev_id, u8 addr_size, u8 data_size)
1467 {
1468 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1469 	int err;
1470 	unsigned int i2c_status;
1471 	unsigned int i2c_addr;
1472 
1473 	err = hw20k2_i2c_unlock_full_access(hw);
1474 	if (err < 0)
1475 		return err;
1476 
1477 	hw20k2->addr_size = addr_size;
1478 	hw20k2->data_size = data_size;
1479 	hw20k2->dev_id = dev_id;
1480 
1481 	i2c_addr = 0;
1482 	set_field(&i2c_addr, I2C_ADDRESS_SLAD, dev_id);
1483 
1484 	hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1485 
1486 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1487 
1488 	set_field(&i2c_status, I2C_STATUS_DCM, 1); /* Direct control mode */
1489 
1490 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1491 
1492 	return 0;
1493 }
1494 
1495 static int hw20k2_i2c_uninit(struct hw *hw)
1496 {
1497 	unsigned int i2c_status;
1498 	unsigned int i2c_addr;
1499 
1500 	i2c_addr = 0;
1501 	set_field(&i2c_addr, I2C_ADDRESS_SLAD, 0x57); /* I2C id */
1502 
1503 	hw_write_20kx(hw, I2C_IF_ADDRESS, i2c_addr);
1504 
1505 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1506 
1507 	set_field(&i2c_status, I2C_STATUS_DCM, 0); /* I2C mode */
1508 
1509 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1510 
1511 	return hw20k2_i2c_lock_chip(hw);
1512 }
1513 
1514 static int hw20k2_i2c_wait_data_ready(struct hw *hw)
1515 {
1516 	int i = 0x400000;
1517 	unsigned int ret;
1518 
1519 	do {
1520 		ret = hw_read_20kx(hw, I2C_IF_STATUS);
1521 	} while ((!(ret & DATA_READY)) && --i);
1522 
1523 	return i;
1524 }
1525 
1526 static int hw20k2_i2c_read(struct hw *hw, u16 addr, u32 *datap)
1527 {
1528 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1529 	unsigned int i2c_status;
1530 
1531 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1532 	set_field(&i2c_status, I2C_STATUS_BC,
1533 		  (4 == hw20k2->addr_size) ? 0 : hw20k2->addr_size);
1534 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1535 	if (!hw20k2_i2c_wait_data_ready(hw))
1536 		return -1;
1537 
1538 	hw_write_20kx(hw, I2C_IF_WDATA, addr);
1539 	if (!hw20k2_i2c_wait_data_ready(hw))
1540 		return -1;
1541 
1542 	/* Force a read operation */
1543 	hw_write_20kx(hw, I2C_IF_RDATA, 0);
1544 	if (!hw20k2_i2c_wait_data_ready(hw))
1545 		return -1;
1546 
1547 	*datap = hw_read_20kx(hw, I2C_IF_RDATA);
1548 
1549 	return 0;
1550 }
1551 
1552 static int hw20k2_i2c_write(struct hw *hw, u16 addr, u32 data)
1553 {
1554 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1555 	unsigned int i2c_data = (data << (hw20k2->addr_size * 8)) | addr;
1556 	unsigned int i2c_status;
1557 
1558 	i2c_status = hw_read_20kx(hw, I2C_IF_STATUS);
1559 
1560 	set_field(&i2c_status, I2C_STATUS_BC,
1561 		  (4 == (hw20k2->addr_size + hw20k2->data_size)) ?
1562 		  0 : (hw20k2->addr_size + hw20k2->data_size));
1563 
1564 	hw_write_20kx(hw, I2C_IF_STATUS, i2c_status);
1565 	hw20k2_i2c_wait_data_ready(hw);
1566 	/* Dummy write to trigger the write operation */
1567 	hw_write_20kx(hw, I2C_IF_WDATA, 0);
1568 	hw20k2_i2c_wait_data_ready(hw);
1569 
1570 	/* This is the real data */
1571 	hw_write_20kx(hw, I2C_IF_WDATA, i2c_data);
1572 	hw20k2_i2c_wait_data_ready(hw);
1573 
1574 	return 0;
1575 }
1576 
1577 static void hw_dac_stop(struct hw *hw)
1578 {
1579 	u32 data;
1580 	data = hw_read_20kx(hw, GPIO_DATA);
1581 	data &= 0xFFFFFFFD;
1582 	hw_write_20kx(hw, GPIO_DATA, data);
1583 	usleep_range(10000, 11000);
1584 }
1585 
1586 static void hw_dac_start(struct hw *hw)
1587 {
1588 	u32 data;
1589 	data = hw_read_20kx(hw, GPIO_DATA);
1590 	data |= 0x2;
1591 	hw_write_20kx(hw, GPIO_DATA, data);
1592 	msleep(50);
1593 }
1594 
1595 static void hw_dac_reset(struct hw *hw)
1596 {
1597 	hw_dac_stop(hw);
1598 	hw_dac_start(hw);
1599 }
1600 
1601 static int hw_dac_init(struct hw *hw, const struct dac_conf *info)
1602 {
1603 	int err;
1604 	u32 data;
1605 	int i;
1606 	struct regs_cs4382 cs_read = {0};
1607 	struct regs_cs4382 cs_def = {
1608 		.mode_control_1 = 0x00000001, /* Mode Control 1 */
1609 		.mode_control_2 = 0x00000000, /* Mode Control 2 */
1610 		.mode_control_3 = 0x00000084, /* Mode Control 3 */
1611 		.filter_control = 0x00000000, /* Filter Control */
1612 		.invert_control = 0x00000000, /* Invert Control */
1613 		.mix_control_P1 = 0x00000024, /* Mixing Control Pair 1 */
1614 		.vol_control_A1 = 0x00000000, /* Vol Control A1 */
1615 		.vol_control_B1 = 0x00000000, /* Vol Control B1 */
1616 		.mix_control_P2 = 0x00000024, /* Mixing Control Pair 2 */
1617 		.vol_control_A2 = 0x00000000, /* Vol Control A2 */
1618 		.vol_control_B2 = 0x00000000, /* Vol Control B2 */
1619 		.mix_control_P3 = 0x00000024, /* Mixing Control Pair 3 */
1620 		.vol_control_A3 = 0x00000000, /* Vol Control A3 */
1621 		.vol_control_B3 = 0x00000000, /* Vol Control B3 */
1622 		.mix_control_P4 = 0x00000024, /* Mixing Control Pair 4 */
1623 		.vol_control_A4 = 0x00000000, /* Vol Control A4 */
1624 		.vol_control_B4 = 0x00000000  /* Vol Control B4 */
1625 				 };
1626 
1627 	if (hw->model == CTSB1270) {
1628 		hw_dac_stop(hw);
1629 		data = hw_read_20kx(hw, GPIO_DATA);
1630 		data &= ~0x0600;
1631 		if (1 == info->msr)
1632 			data |= 0x0000; /* Single Speed Mode 0-50kHz */
1633 		else if (2 == info->msr)
1634 			data |= 0x0200; /* Double Speed Mode 50-100kHz */
1635 		else
1636 			data |= 0x0600; /* Quad Speed Mode 100-200kHz */
1637 		hw_write_20kx(hw, GPIO_DATA, data);
1638 		hw_dac_start(hw);
1639 		return 0;
1640 	}
1641 
1642 	/* Set DAC reset bit as output */
1643 	data = hw_read_20kx(hw, GPIO_CTRL);
1644 	data |= 0x02;
1645 	hw_write_20kx(hw, GPIO_CTRL, data);
1646 
1647 	err = hw20k2_i2c_init(hw, 0x18, 1, 1);
1648 	if (err < 0)
1649 		goto End;
1650 
1651 	for (i = 0; i < 2; i++) {
1652 		/* Reset DAC twice just in-case the chip
1653 		 * didn't initialized properly */
1654 		hw_dac_reset(hw);
1655 		hw_dac_reset(hw);
1656 
1657 		if (hw20k2_i2c_read(hw, CS4382_MC1,  &cs_read.mode_control_1))
1658 			continue;
1659 
1660 		if (hw20k2_i2c_read(hw, CS4382_MC2,  &cs_read.mode_control_2))
1661 			continue;
1662 
1663 		if (hw20k2_i2c_read(hw, CS4382_MC3,  &cs_read.mode_control_3))
1664 			continue;
1665 
1666 		if (hw20k2_i2c_read(hw, CS4382_FC,   &cs_read.filter_control))
1667 			continue;
1668 
1669 		if (hw20k2_i2c_read(hw, CS4382_IC,   &cs_read.invert_control))
1670 			continue;
1671 
1672 		if (hw20k2_i2c_read(hw, CS4382_XC1,  &cs_read.mix_control_P1))
1673 			continue;
1674 
1675 		if (hw20k2_i2c_read(hw, CS4382_VCA1, &cs_read.vol_control_A1))
1676 			continue;
1677 
1678 		if (hw20k2_i2c_read(hw, CS4382_VCB1, &cs_read.vol_control_B1))
1679 			continue;
1680 
1681 		if (hw20k2_i2c_read(hw, CS4382_XC2,  &cs_read.mix_control_P2))
1682 			continue;
1683 
1684 		if (hw20k2_i2c_read(hw, CS4382_VCA2, &cs_read.vol_control_A2))
1685 			continue;
1686 
1687 		if (hw20k2_i2c_read(hw, CS4382_VCB2, &cs_read.vol_control_B2))
1688 			continue;
1689 
1690 		if (hw20k2_i2c_read(hw, CS4382_XC3,  &cs_read.mix_control_P3))
1691 			continue;
1692 
1693 		if (hw20k2_i2c_read(hw, CS4382_VCA3, &cs_read.vol_control_A3))
1694 			continue;
1695 
1696 		if (hw20k2_i2c_read(hw, CS4382_VCB3, &cs_read.vol_control_B3))
1697 			continue;
1698 
1699 		if (hw20k2_i2c_read(hw, CS4382_XC4,  &cs_read.mix_control_P4))
1700 			continue;
1701 
1702 		if (hw20k2_i2c_read(hw, CS4382_VCA4, &cs_read.vol_control_A4))
1703 			continue;
1704 
1705 		if (hw20k2_i2c_read(hw, CS4382_VCB4, &cs_read.vol_control_B4))
1706 			continue;
1707 
1708 		if (memcmp(&cs_read, &cs_def, sizeof(cs_read)))
1709 			continue;
1710 		else
1711 			break;
1712 	}
1713 
1714 	if (i >= 2)
1715 		goto End;
1716 
1717 	/* Note: Every I2C write must have some delay.
1718 	 * This is not a requirement but the delay works here... */
1719 	hw20k2_i2c_write(hw, CS4382_MC1, 0x80);
1720 	hw20k2_i2c_write(hw, CS4382_MC2, 0x10);
1721 	if (1 == info->msr) {
1722 		hw20k2_i2c_write(hw, CS4382_XC1, 0x24);
1723 		hw20k2_i2c_write(hw, CS4382_XC2, 0x24);
1724 		hw20k2_i2c_write(hw, CS4382_XC3, 0x24);
1725 		hw20k2_i2c_write(hw, CS4382_XC4, 0x24);
1726 	} else if (2 == info->msr) {
1727 		hw20k2_i2c_write(hw, CS4382_XC1, 0x25);
1728 		hw20k2_i2c_write(hw, CS4382_XC2, 0x25);
1729 		hw20k2_i2c_write(hw, CS4382_XC3, 0x25);
1730 		hw20k2_i2c_write(hw, CS4382_XC4, 0x25);
1731 	} else {
1732 		hw20k2_i2c_write(hw, CS4382_XC1, 0x26);
1733 		hw20k2_i2c_write(hw, CS4382_XC2, 0x26);
1734 		hw20k2_i2c_write(hw, CS4382_XC3, 0x26);
1735 		hw20k2_i2c_write(hw, CS4382_XC4, 0x26);
1736 	}
1737 
1738 	return 0;
1739 End:
1740 
1741 	hw20k2_i2c_uninit(hw);
1742 	return -1;
1743 }
1744 
1745 /* ADC operations */
1746 #define MAKE_WM8775_ADDR(addr, data)	(u32)(((addr<<1)&0xFE)|((data>>8)&0x1))
1747 #define MAKE_WM8775_DATA(data)	(u32)(data&0xFF)
1748 
1749 #define WM8775_IC       0x0B
1750 #define WM8775_MMC      0x0C
1751 #define WM8775_AADCL    0x0E
1752 #define WM8775_AADCR    0x0F
1753 #define WM8775_ADCMC    0x15
1754 #define WM8775_RESET    0x17
1755 
1756 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type)
1757 {
1758 	u32 data;
1759 	if (hw->model == CTSB1270) {
1760 		/* Titanium HD has two ADC chips, one for line in and one */
1761 		/* for MIC. We don't need to switch the ADC input. */
1762 		return 1;
1763 	}
1764 	data = hw_read_20kx(hw, GPIO_DATA);
1765 	switch (type) {
1766 	case ADC_MICIN:
1767 		data = (data & (0x1 << 14)) ? 1 : 0;
1768 		break;
1769 	case ADC_LINEIN:
1770 		data = (data & (0x1 << 14)) ? 0 : 1;
1771 		break;
1772 	default:
1773 		data = 0;
1774 	}
1775 	return data;
1776 }
1777 
1778 #define MIC_BOOST_0DB 0xCF
1779 #define MIC_BOOST_STEPS_PER_DB 2
1780 
1781 static void hw_wm8775_input_select(struct hw *hw, u8 input, s8 gain_in_db)
1782 {
1783 	u32 adcmc, gain;
1784 
1785 	if (input > 3)
1786 		input = 3;
1787 
1788 	adcmc = ((u32)1 << input) | 0x100; /* Link L+R gain... */
1789 
1790 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_ADCMC, adcmc),
1791 				MAKE_WM8775_DATA(adcmc));
1792 
1793 	if (gain_in_db < -103)
1794 		gain_in_db = -103;
1795 	if (gain_in_db > 24)
1796 		gain_in_db = 24;
1797 
1798 	gain = gain_in_db * MIC_BOOST_STEPS_PER_DB + MIC_BOOST_0DB;
1799 
1800 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCL, gain),
1801 				MAKE_WM8775_DATA(gain));
1802 	/* ...so there should be no need for the following. */
1803 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_AADCR, gain),
1804 				MAKE_WM8775_DATA(gain));
1805 }
1806 
1807 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type)
1808 {
1809 	u32 data;
1810 	data = hw_read_20kx(hw, GPIO_DATA);
1811 	switch (type) {
1812 	case ADC_MICIN:
1813 		data |= (0x1 << 14);
1814 		hw_write_20kx(hw, GPIO_DATA, data);
1815 		hw_wm8775_input_select(hw, 0, 20); /* Mic, 20dB */
1816 		break;
1817 	case ADC_LINEIN:
1818 		data &= ~(0x1 << 14);
1819 		hw_write_20kx(hw, GPIO_DATA, data);
1820 		hw_wm8775_input_select(hw, 1, 0); /* Line-in, 0dB */
1821 		break;
1822 	default:
1823 		break;
1824 	}
1825 
1826 	return 0;
1827 }
1828 
1829 static int hw_adc_init(struct hw *hw, const struct adc_conf *info)
1830 {
1831 	int err;
1832 	u32 data, ctl;
1833 
1834 	/*  Set ADC reset bit as output */
1835 	data = hw_read_20kx(hw, GPIO_CTRL);
1836 	data |= (0x1 << 15);
1837 	hw_write_20kx(hw, GPIO_CTRL, data);
1838 
1839 	/* Initialize I2C */
1840 	err = hw20k2_i2c_init(hw, 0x1A, 1, 1);
1841 	if (err < 0) {
1842 		dev_alert(hw->card->dev, "Failure to acquire I2C!!!\n");
1843 		goto error;
1844 	}
1845 
1846 	/* Reset the ADC (reset is active low). */
1847 	data = hw_read_20kx(hw, GPIO_DATA);
1848 	data &= ~(0x1 << 15);
1849 	hw_write_20kx(hw, GPIO_DATA, data);
1850 
1851 	if (hw->model == CTSB1270) {
1852 		/* Set up the PCM4220 ADC on Titanium HD */
1853 		data &= ~0x0C;
1854 		if (1 == info->msr)
1855 			data |= 0x00; /* Single Speed Mode 32-50kHz */
1856 		else if (2 == info->msr)
1857 			data |= 0x08; /* Double Speed Mode 50-108kHz */
1858 		else
1859 			data |= 0x04; /* Quad Speed Mode 108kHz-216kHz */
1860 		hw_write_20kx(hw, GPIO_DATA, data);
1861 	}
1862 
1863 	usleep_range(10000, 11000);
1864 	/* Return the ADC to normal operation. */
1865 	data |= (0x1 << 15);
1866 	hw_write_20kx(hw, GPIO_DATA, data);
1867 	msleep(50);
1868 
1869 	/* I2C write to register offset 0x0B to set ADC LRCLK polarity */
1870 	/* invert bit, interface format to I2S, word length to 24-bit, */
1871 	/* enable ADC high pass filter. Fixes bug 5323?		*/
1872 	hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_IC, 0x26),
1873 			 MAKE_WM8775_DATA(0x26));
1874 
1875 	/* Set the master mode (256fs) */
1876 	if (1 == info->msr) {
1877 		/* slave mode, 128x oversampling 256fs */
1878 		hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x02),
1879 						MAKE_WM8775_DATA(0x02));
1880 	} else if ((2 == info->msr) || (4 == info->msr)) {
1881 		/* slave mode, 64x oversampling, 256fs */
1882 		hw20k2_i2c_write(hw, MAKE_WM8775_ADDR(WM8775_MMC, 0x0A),
1883 						MAKE_WM8775_DATA(0x0A));
1884 	} else {
1885 		dev_alert(hw->card->dev,
1886 			  "Invalid master sampling rate (msr %d)!!!\n",
1887 			  info->msr);
1888 		err = -EINVAL;
1889 		goto error;
1890 	}
1891 
1892 	if (hw->model != CTSB1270) {
1893 		/* Configure GPIO bit 14 change to line-in/mic-in */
1894 		ctl = hw_read_20kx(hw, GPIO_CTRL);
1895 		ctl |= 0x1 << 14;
1896 		hw_write_20kx(hw, GPIO_CTRL, ctl);
1897 		hw_adc_input_select(hw, ADC_LINEIN);
1898 	} else {
1899 		hw_wm8775_input_select(hw, 0, 0);
1900 	}
1901 
1902 	return 0;
1903 error:
1904 	hw20k2_i2c_uninit(hw);
1905 	return err;
1906 }
1907 
1908 static struct capabilities hw_capabilities(struct hw *hw)
1909 {
1910 	struct capabilities cap;
1911 
1912 	cap.digit_io_switch = 0;
1913 	cap.dedicated_mic = hw->model == CTSB1270;
1914 	cap.output_switch = hw->model == CTSB1270;
1915 	cap.mic_source_switch = hw->model == CTSB1270;
1916 
1917 	return cap;
1918 }
1919 
1920 static int hw_output_switch_get(struct hw *hw)
1921 {
1922 	u32 data = hw_read_20kx(hw, GPIO_EXT_DATA);
1923 
1924 	switch (data & 0x30) {
1925 	case 0x00:
1926 	     return 0;
1927 	case 0x10:
1928 	     return 1;
1929 	case 0x20:
1930 	     return 2;
1931 	default:
1932 	     return 3;
1933 	}
1934 }
1935 
1936 static int hw_output_switch_put(struct hw *hw, int position)
1937 {
1938 	u32 data;
1939 
1940 	if (position == hw_output_switch_get(hw))
1941 		return 0;
1942 
1943 	/* Mute line and headphones (intended for anti-pop). */
1944 	data = hw_read_20kx(hw, GPIO_DATA);
1945 	data |= (0x03 << 11);
1946 	hw_write_20kx(hw, GPIO_DATA, data);
1947 
1948 	data = hw_read_20kx(hw, GPIO_EXT_DATA) & ~0x30;
1949 	switch (position) {
1950 	case 0:
1951 		break;
1952 	case 1:
1953 		data |= 0x10;
1954 		break;
1955 	default:
1956 		data |= 0x20;
1957 	}
1958 	hw_write_20kx(hw, GPIO_EXT_DATA, data);
1959 
1960 	/* Unmute line and headphones. */
1961 	data = hw_read_20kx(hw, GPIO_DATA);
1962 	data &= ~(0x03 << 11);
1963 	hw_write_20kx(hw, GPIO_DATA, data);
1964 
1965 	return 1;
1966 }
1967 
1968 static int hw_mic_source_switch_get(struct hw *hw)
1969 {
1970 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1971 
1972 	return hw20k2->mic_source;
1973 }
1974 
1975 static int hw_mic_source_switch_put(struct hw *hw, int position)
1976 {
1977 	struct hw20k2 *hw20k2 = (struct hw20k2 *)hw;
1978 
1979 	if (position == hw20k2->mic_source)
1980 		return 0;
1981 
1982 	switch (position) {
1983 	case 0:
1984 		hw_wm8775_input_select(hw, 0, 0); /* Mic, 0dB */
1985 		break;
1986 	case 1:
1987 		hw_wm8775_input_select(hw, 1, 0); /* FP Mic, 0dB */
1988 		break;
1989 	case 2:
1990 		hw_wm8775_input_select(hw, 3, 0); /* Aux Ext, 0dB */
1991 		break;
1992 	default:
1993 		return 0;
1994 	}
1995 
1996 	hw20k2->mic_source = position;
1997 
1998 	return 1;
1999 }
2000 
2001 static irqreturn_t ct_20k2_interrupt(int irq, void *dev_id)
2002 {
2003 	struct hw *hw = dev_id;
2004 	unsigned int status;
2005 
2006 	status = hw_read_20kx(hw, GIP);
2007 	if (!status)
2008 		return IRQ_NONE;
2009 
2010 	if (hw->irq_callback)
2011 		hw->irq_callback(hw->irq_callback_data, status);
2012 
2013 	hw_write_20kx(hw, GIP, status);
2014 	return IRQ_HANDLED;
2015 }
2016 
2017 static int hw_card_start(struct hw *hw)
2018 {
2019 	int err = 0;
2020 	struct pci_dev *pci = hw->pci;
2021 	unsigned int gctl;
2022 	const unsigned int dma_bits = BITS_PER_LONG;
2023 
2024 	err = pci_enable_device(pci);
2025 	if (err < 0)
2026 		return err;
2027 
2028 	/* Set DMA transfer mask */
2029 	if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(dma_bits)))
2030 		dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32));
2031 
2032 	if (!hw->io_base) {
2033 		err = pci_request_regions(pci, "XFi");
2034 		if (err < 0)
2035 			goto error1;
2036 
2037 		hw->io_base = pci_resource_start(hw->pci, 2);
2038 		hw->mem_base = ioremap(hw->io_base,
2039 				       pci_resource_len(hw->pci, 2));
2040 		if (!hw->mem_base) {
2041 			err = -ENOENT;
2042 			goto error2;
2043 		}
2044 	}
2045 
2046 	/* Switch to 20k2 mode from UAA mode. */
2047 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2048 	set_field(&gctl, GCTL_UAA, 0);
2049 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2050 
2051 	if (hw->irq < 0) {
2052 		err = request_irq(pci->irq, ct_20k2_interrupt, IRQF_SHARED,
2053 				  KBUILD_MODNAME, hw);
2054 		if (err < 0) {
2055 			dev_err(hw->card->dev,
2056 				"XFi: Cannot get irq %d\n", pci->irq);
2057 			goto error2;
2058 		}
2059 		hw->irq = pci->irq;
2060 		hw->card->sync_irq = hw->irq;
2061 	}
2062 
2063 	pci_set_master(pci);
2064 
2065 	return 0;
2066 
2067 /*error3:
2068 	iounmap((void *)hw->mem_base);
2069 	hw->mem_base = (unsigned long)NULL;*/
2070 error2:
2071 	pci_release_regions(pci);
2072 	hw->io_base = 0;
2073 error1:
2074 	pci_disable_device(pci);
2075 	return err;
2076 }
2077 
2078 static int hw_card_stop(struct hw *hw)
2079 {
2080 	unsigned int data;
2081 
2082 	/* disable transport bus master and queueing of request */
2083 	hw_write_20kx(hw, TRANSPORT_CTL, 0x00);
2084 
2085 	/* disable pll */
2086 	data = hw_read_20kx(hw, PLL_ENB);
2087 	hw_write_20kx(hw, PLL_ENB, (data & (~0x07)));
2088 
2089 	/* TODO: Disable interrupt and so on... */
2090 	return 0;
2091 }
2092 
2093 static int hw_card_shutdown(struct hw *hw)
2094 {
2095 	if (hw->irq >= 0)
2096 		free_irq(hw->irq, hw);
2097 
2098 	hw->irq	= -1;
2099 	iounmap(hw->mem_base);
2100 	hw->mem_base = NULL;
2101 
2102 	if (hw->io_base)
2103 		pci_release_regions(hw->pci);
2104 
2105 	hw->io_base = 0;
2106 
2107 	pci_disable_device(hw->pci);
2108 
2109 	return 0;
2110 }
2111 
2112 static int hw_card_init(struct hw *hw, struct card_conf *info)
2113 {
2114 	int err;
2115 	unsigned int gctl;
2116 	u32 data = 0;
2117 	struct dac_conf dac_info = {0};
2118 	struct adc_conf adc_info = {0};
2119 	struct daio_conf daio_info = {0};
2120 	struct trn_conf trn_info = {0};
2121 
2122 	/* Get PCI io port/memory base address and
2123 	 * do 20kx core switch if needed. */
2124 	err = hw_card_start(hw);
2125 	if (err)
2126 		return err;
2127 
2128 	/* PLL init */
2129 	err = hw_pll_init(hw, info->rsr);
2130 	if (err < 0)
2131 		return err;
2132 
2133 	/* kick off auto-init */
2134 	err = hw_auto_init(hw);
2135 	if (err < 0)
2136 		return err;
2137 
2138 	gctl = hw_read_20kx(hw, GLOBAL_CNTL_GCTL);
2139 	set_field(&gctl, GCTL_DBP, 1);
2140 	set_field(&gctl, GCTL_TBP, 1);
2141 	set_field(&gctl, GCTL_FBP, 1);
2142 	set_field(&gctl, GCTL_DPC, 0);
2143 	hw_write_20kx(hw, GLOBAL_CNTL_GCTL, gctl);
2144 
2145 	/* Reset all global pending interrupts */
2146 	hw_write_20kx(hw, GIE, 0);
2147 	/* Reset all SRC pending interrupts */
2148 	hw_write_20kx(hw, SRC_IP, 0);
2149 
2150 	if (hw->model != CTSB1270) {
2151 		/* TODO: detect the card ID and configure GPIO accordingly. */
2152 		/* Configures GPIO (0xD802 0x98028) */
2153 		/*hw_write_20kx(hw, GPIO_CTRL, 0x7F07);*/
2154 		/* Configures GPIO (SB0880) */
2155 		/*hw_write_20kx(hw, GPIO_CTRL, 0xFF07);*/
2156 		hw_write_20kx(hw, GPIO_CTRL, 0xD802);
2157 	} else {
2158 		hw_write_20kx(hw, GPIO_CTRL, 0x9E5F);
2159 	}
2160 	/* Enable audio ring */
2161 	hw_write_20kx(hw, MIXER_AR_ENABLE, 0x01);
2162 
2163 	trn_info.vm_pgt_phys = info->vm_pgt_phys;
2164 	err = hw_trn_init(hw, &trn_info);
2165 	if (err < 0)
2166 		return err;
2167 
2168 	daio_info.msr = info->msr;
2169 	err = hw_daio_init(hw, &daio_info);
2170 	if (err < 0)
2171 		return err;
2172 
2173 	dac_info.msr = info->msr;
2174 	err = hw_dac_init(hw, &dac_info);
2175 	if (err < 0)
2176 		return err;
2177 
2178 	adc_info.msr = info->msr;
2179 	adc_info.input = ADC_LINEIN;
2180 	adc_info.mic20db = 0;
2181 	err = hw_adc_init(hw, &adc_info);
2182 	if (err < 0)
2183 		return err;
2184 
2185 	data = hw_read_20kx(hw, SRC_MCTL);
2186 	data |= 0x1; /* Enables input from the audio ring */
2187 	hw_write_20kx(hw, SRC_MCTL, data);
2188 
2189 	return 0;
2190 }
2191 
2192 #ifdef CONFIG_PM_SLEEP
2193 static int hw_suspend(struct hw *hw)
2194 {
2195 	hw_card_stop(hw);
2196 	return 0;
2197 }
2198 
2199 static int hw_resume(struct hw *hw, struct card_conf *info)
2200 {
2201 	/* Re-initialize card hardware. */
2202 	return hw_card_init(hw, info);
2203 }
2204 #endif
2205 
2206 static u32 hw_read_20kx(struct hw *hw, u32 reg)
2207 {
2208 	return readl(hw->mem_base + reg);
2209 }
2210 
2211 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data)
2212 {
2213 	writel(data, hw->mem_base + reg);
2214 }
2215 
2216 static const struct hw ct20k2_preset = {
2217 	.irq = -1,
2218 
2219 	.card_init = hw_card_init,
2220 	.card_stop = hw_card_stop,
2221 	.pll_init = hw_pll_init,
2222 	.is_adc_source_selected = hw_is_adc_input_selected,
2223 	.select_adc_source = hw_adc_input_select,
2224 	.capabilities = hw_capabilities,
2225 	.output_switch_get = hw_output_switch_get,
2226 	.output_switch_put = hw_output_switch_put,
2227 	.mic_source_switch_get = hw_mic_source_switch_get,
2228 	.mic_source_switch_put = hw_mic_source_switch_put,
2229 #ifdef CONFIG_PM_SLEEP
2230 	.suspend = hw_suspend,
2231 	.resume = hw_resume,
2232 #endif
2233 
2234 	.src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk,
2235 	.src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk,
2236 	.src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk,
2237 	.src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk,
2238 	.src_set_state = src_set_state,
2239 	.src_set_bm = src_set_bm,
2240 	.src_set_rsr = src_set_rsr,
2241 	.src_set_sf = src_set_sf,
2242 	.src_set_wr = src_set_wr,
2243 	.src_set_pm = src_set_pm,
2244 	.src_set_rom = src_set_rom,
2245 	.src_set_vo = src_set_vo,
2246 	.src_set_st = src_set_st,
2247 	.src_set_ie = src_set_ie,
2248 	.src_set_ilsz = src_set_ilsz,
2249 	.src_set_bp = src_set_bp,
2250 	.src_set_cisz = src_set_cisz,
2251 	.src_set_ca = src_set_ca,
2252 	.src_set_sa = src_set_sa,
2253 	.src_set_la = src_set_la,
2254 	.src_set_pitch = src_set_pitch,
2255 	.src_set_dirty = src_set_dirty,
2256 	.src_set_clear_zbufs = src_set_clear_zbufs,
2257 	.src_set_dirty_all = src_set_dirty_all,
2258 	.src_commit_write = src_commit_write,
2259 	.src_get_ca = src_get_ca,
2260 	.src_get_dirty = src_get_dirty,
2261 	.src_dirty_conj_mask = src_dirty_conj_mask,
2262 	.src_mgr_enbs_src = src_mgr_enbs_src,
2263 	.src_mgr_enb_src = src_mgr_enb_src,
2264 	.src_mgr_dsb_src = src_mgr_dsb_src,
2265 	.src_mgr_commit_write = src_mgr_commit_write,
2266 
2267 	.srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk,
2268 	.srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk,
2269 	.srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc,
2270 	.srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser,
2271 	.srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt,
2272 	.srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr,
2273 	.srcimp_mgr_commit_write = srcimp_mgr_commit_write,
2274 
2275 	.amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk,
2276 	.amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk,
2277 	.amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk,
2278 	.amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk,
2279 	.amixer_set_mode = amixer_set_mode,
2280 	.amixer_set_iv = amixer_set_iv,
2281 	.amixer_set_x = amixer_set_x,
2282 	.amixer_set_y = amixer_set_y,
2283 	.amixer_set_sadr = amixer_set_sadr,
2284 	.amixer_set_se = amixer_set_se,
2285 	.amixer_set_dirty = amixer_set_dirty,
2286 	.amixer_set_dirty_all = amixer_set_dirty_all,
2287 	.amixer_commit_write = amixer_commit_write,
2288 	.amixer_get_y = amixer_get_y,
2289 	.amixer_get_dirty = amixer_get_dirty,
2290 
2291 	.dai_get_ctrl_blk = dai_get_ctrl_blk,
2292 	.dai_put_ctrl_blk = dai_put_ctrl_blk,
2293 	.dai_srt_set_srco = dai_srt_set_srco,
2294 	.dai_srt_set_srcm = dai_srt_set_srcm,
2295 	.dai_srt_set_rsr = dai_srt_set_rsr,
2296 	.dai_srt_set_drat = dai_srt_set_drat,
2297 	.dai_srt_set_ec = dai_srt_set_ec,
2298 	.dai_srt_set_et = dai_srt_set_et,
2299 	.dai_commit_write = dai_commit_write,
2300 
2301 	.dao_get_ctrl_blk = dao_get_ctrl_blk,
2302 	.dao_put_ctrl_blk = dao_put_ctrl_blk,
2303 	.dao_set_spos = dao_set_spos,
2304 	.dao_commit_write = dao_commit_write,
2305 	.dao_get_spos = dao_get_spos,
2306 
2307 	.daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk,
2308 	.daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk,
2309 	.daio_mgr_enb_dai = daio_mgr_enb_dai,
2310 	.daio_mgr_dsb_dai = daio_mgr_dsb_dai,
2311 	.daio_mgr_enb_dao = daio_mgr_enb_dao,
2312 	.daio_mgr_dsb_dao = daio_mgr_dsb_dao,
2313 	.daio_mgr_dao_init = daio_mgr_dao_init,
2314 	.daio_mgr_set_imaparc = daio_mgr_set_imaparc,
2315 	.daio_mgr_set_imapnxt = daio_mgr_set_imapnxt,
2316 	.daio_mgr_set_imapaddr = daio_mgr_set_imapaddr,
2317 	.daio_mgr_commit_write = daio_mgr_commit_write,
2318 
2319 	.set_timer_irq = set_timer_irq,
2320 	.set_timer_tick = set_timer_tick,
2321 	.get_wc = get_wc,
2322 };
2323 
2324 int create_20k2_hw_obj(struct hw **rhw)
2325 {
2326 	struct hw20k2 *hw20k2;
2327 
2328 	*rhw = NULL;
2329 	hw20k2 = kzalloc(sizeof(*hw20k2), GFP_KERNEL);
2330 	if (!hw20k2)
2331 		return -ENOMEM;
2332 
2333 	hw20k2->hw = ct20k2_preset;
2334 	*rhw = &hw20k2->hw;
2335 
2336 	return 0;
2337 }
2338 
2339 int destroy_20k2_hw_obj(struct hw *hw)
2340 {
2341 	if (hw->io_base)
2342 		hw_card_shutdown(hw);
2343 
2344 	kfree(hw);
2345 	return 0;
2346 }
2347