1 // SPDX-License-Identifier: GPL-2.0-only 2 /** 3 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. 4 * 5 * @File cthw20k1.c 6 * 7 * @Brief 8 * This file contains the implementation of hardware access methord for 20k1. 9 * 10 * @Author Liu Chun 11 * @Date Jun 24 2008 12 */ 13 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/pci.h> 17 #include <linux/io.h> 18 #include <linux/string.h> 19 #include <linux/spinlock.h> 20 #include <linux/kernel.h> 21 #include <linux/interrupt.h> 22 #include <linux/delay.h> 23 #include "cthw20k1.h" 24 #include "ct20k1reg.h" 25 26 struct hw20k1 { 27 struct hw hw; 28 spinlock_t reg_20k1_lock; 29 spinlock_t reg_pci_lock; 30 }; 31 32 static u32 hw_read_20kx(struct hw *hw, u32 reg); 33 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data); 34 static u32 hw_read_pci(struct hw *hw, u32 reg); 35 static void hw_write_pci(struct hw *hw, u32 reg, u32 data); 36 37 /* 38 * Type definition block. 39 * The layout of control structures can be directly applied on 20k2 chip. 40 */ 41 42 /* 43 * SRC control block definitions. 44 */ 45 46 /* SRC resource control block */ 47 #define SRCCTL_STATE 0x00000007 48 #define SRCCTL_BM 0x00000008 49 #define SRCCTL_RSR 0x00000030 50 #define SRCCTL_SF 0x000001C0 51 #define SRCCTL_WR 0x00000200 52 #define SRCCTL_PM 0x00000400 53 #define SRCCTL_ROM 0x00001800 54 #define SRCCTL_VO 0x00002000 55 #define SRCCTL_ST 0x00004000 56 #define SRCCTL_IE 0x00008000 57 #define SRCCTL_ILSZ 0x000F0000 58 #define SRCCTL_BP 0x00100000 59 60 #define SRCCCR_CISZ 0x000007FF 61 #define SRCCCR_CWA 0x001FF800 62 #define SRCCCR_D 0x00200000 63 #define SRCCCR_RS 0x01C00000 64 #define SRCCCR_NAL 0x3E000000 65 #define SRCCCR_RA 0xC0000000 66 67 #define SRCCA_CA 0x03FFFFFF 68 #define SRCCA_RS 0x1C000000 69 #define SRCCA_NAL 0xE0000000 70 71 #define SRCSA_SA 0x03FFFFFF 72 73 #define SRCLA_LA 0x03FFFFFF 74 75 /* Mixer Parameter Ring ram Low and Hight register. 76 * Fixed-point value in 8.24 format for parameter channel */ 77 #define MPRLH_PITCH 0xFFFFFFFF 78 79 /* SRC resource register dirty flags */ 80 union src_dirty { 81 struct { 82 u16 ctl:1; 83 u16 ccr:1; 84 u16 sa:1; 85 u16 la:1; 86 u16 ca:1; 87 u16 mpr:1; 88 u16 czbfs:1; /* Clear Z-Buffers */ 89 u16 rsv:9; 90 } bf; 91 u16 data; 92 }; 93 94 struct src_rsc_ctrl_blk { 95 unsigned int ctl; 96 unsigned int ccr; 97 unsigned int ca; 98 unsigned int sa; 99 unsigned int la; 100 unsigned int mpr; 101 union src_dirty dirty; 102 }; 103 104 /* SRC manager control block */ 105 union src_mgr_dirty { 106 struct { 107 u16 enb0:1; 108 u16 enb1:1; 109 u16 enb2:1; 110 u16 enb3:1; 111 u16 enb4:1; 112 u16 enb5:1; 113 u16 enb6:1; 114 u16 enb7:1; 115 u16 enbsa:1; 116 u16 rsv:7; 117 } bf; 118 u16 data; 119 }; 120 121 struct src_mgr_ctrl_blk { 122 unsigned int enbsa; 123 unsigned int enb[8]; 124 union src_mgr_dirty dirty; 125 }; 126 127 /* SRCIMP manager control block */ 128 #define SRCAIM_ARC 0x00000FFF 129 #define SRCAIM_NXT 0x00FF0000 130 #define SRCAIM_SRC 0xFF000000 131 132 struct srcimap { 133 unsigned int srcaim; 134 unsigned int idx; 135 }; 136 137 /* SRCIMP manager register dirty flags */ 138 union srcimp_mgr_dirty { 139 struct { 140 u16 srcimap:1; 141 u16 rsv:15; 142 } bf; 143 u16 data; 144 }; 145 146 struct srcimp_mgr_ctrl_blk { 147 struct srcimap srcimap; 148 union srcimp_mgr_dirty dirty; 149 }; 150 151 /* 152 * Function implementation block. 153 */ 154 155 static int src_get_rsc_ctrl_blk(void **rblk) 156 { 157 struct src_rsc_ctrl_blk *blk; 158 159 *rblk = NULL; 160 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 161 if (!blk) 162 return -ENOMEM; 163 164 *rblk = blk; 165 166 return 0; 167 } 168 169 static int src_put_rsc_ctrl_blk(void *blk) 170 { 171 kfree((struct src_rsc_ctrl_blk *)blk); 172 173 return 0; 174 } 175 176 static int src_set_state(void *blk, unsigned int state) 177 { 178 struct src_rsc_ctrl_blk *ctl = blk; 179 180 set_field(&ctl->ctl, SRCCTL_STATE, state); 181 ctl->dirty.bf.ctl = 1; 182 return 0; 183 } 184 185 static int src_set_bm(void *blk, unsigned int bm) 186 { 187 struct src_rsc_ctrl_blk *ctl = blk; 188 189 set_field(&ctl->ctl, SRCCTL_BM, bm); 190 ctl->dirty.bf.ctl = 1; 191 return 0; 192 } 193 194 static int src_set_rsr(void *blk, unsigned int rsr) 195 { 196 struct src_rsc_ctrl_blk *ctl = blk; 197 198 set_field(&ctl->ctl, SRCCTL_RSR, rsr); 199 ctl->dirty.bf.ctl = 1; 200 return 0; 201 } 202 203 static int src_set_sf(void *blk, unsigned int sf) 204 { 205 struct src_rsc_ctrl_blk *ctl = blk; 206 207 set_field(&ctl->ctl, SRCCTL_SF, sf); 208 ctl->dirty.bf.ctl = 1; 209 return 0; 210 } 211 212 static int src_set_wr(void *blk, unsigned int wr) 213 { 214 struct src_rsc_ctrl_blk *ctl = blk; 215 216 set_field(&ctl->ctl, SRCCTL_WR, wr); 217 ctl->dirty.bf.ctl = 1; 218 return 0; 219 } 220 221 static int src_set_pm(void *blk, unsigned int pm) 222 { 223 struct src_rsc_ctrl_blk *ctl = blk; 224 225 set_field(&ctl->ctl, SRCCTL_PM, pm); 226 ctl->dirty.bf.ctl = 1; 227 return 0; 228 } 229 230 static int src_set_rom(void *blk, unsigned int rom) 231 { 232 struct src_rsc_ctrl_blk *ctl = blk; 233 234 set_field(&ctl->ctl, SRCCTL_ROM, rom); 235 ctl->dirty.bf.ctl = 1; 236 return 0; 237 } 238 239 static int src_set_vo(void *blk, unsigned int vo) 240 { 241 struct src_rsc_ctrl_blk *ctl = blk; 242 243 set_field(&ctl->ctl, SRCCTL_VO, vo); 244 ctl->dirty.bf.ctl = 1; 245 return 0; 246 } 247 248 static int src_set_st(void *blk, unsigned int st) 249 { 250 struct src_rsc_ctrl_blk *ctl = blk; 251 252 set_field(&ctl->ctl, SRCCTL_ST, st); 253 ctl->dirty.bf.ctl = 1; 254 return 0; 255 } 256 257 static int src_set_ie(void *blk, unsigned int ie) 258 { 259 struct src_rsc_ctrl_blk *ctl = blk; 260 261 set_field(&ctl->ctl, SRCCTL_IE, ie); 262 ctl->dirty.bf.ctl = 1; 263 return 0; 264 } 265 266 static int src_set_ilsz(void *blk, unsigned int ilsz) 267 { 268 struct src_rsc_ctrl_blk *ctl = blk; 269 270 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz); 271 ctl->dirty.bf.ctl = 1; 272 return 0; 273 } 274 275 static int src_set_bp(void *blk, unsigned int bp) 276 { 277 struct src_rsc_ctrl_blk *ctl = blk; 278 279 set_field(&ctl->ctl, SRCCTL_BP, bp); 280 ctl->dirty.bf.ctl = 1; 281 return 0; 282 } 283 284 static int src_set_cisz(void *blk, unsigned int cisz) 285 { 286 struct src_rsc_ctrl_blk *ctl = blk; 287 288 set_field(&ctl->ccr, SRCCCR_CISZ, cisz); 289 ctl->dirty.bf.ccr = 1; 290 return 0; 291 } 292 293 static int src_set_ca(void *blk, unsigned int ca) 294 { 295 struct src_rsc_ctrl_blk *ctl = blk; 296 297 set_field(&ctl->ca, SRCCA_CA, ca); 298 ctl->dirty.bf.ca = 1; 299 return 0; 300 } 301 302 static int src_set_sa(void *blk, unsigned int sa) 303 { 304 struct src_rsc_ctrl_blk *ctl = blk; 305 306 set_field(&ctl->sa, SRCSA_SA, sa); 307 ctl->dirty.bf.sa = 1; 308 return 0; 309 } 310 311 static int src_set_la(void *blk, unsigned int la) 312 { 313 struct src_rsc_ctrl_blk *ctl = blk; 314 315 set_field(&ctl->la, SRCLA_LA, la); 316 ctl->dirty.bf.la = 1; 317 return 0; 318 } 319 320 static int src_set_pitch(void *blk, unsigned int pitch) 321 { 322 struct src_rsc_ctrl_blk *ctl = blk; 323 324 set_field(&ctl->mpr, MPRLH_PITCH, pitch); 325 ctl->dirty.bf.mpr = 1; 326 return 0; 327 } 328 329 static int src_set_clear_zbufs(void *blk, unsigned int clear) 330 { 331 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0); 332 return 0; 333 } 334 335 static int src_set_dirty(void *blk, unsigned int flags) 336 { 337 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 338 return 0; 339 } 340 341 static int src_set_dirty_all(void *blk) 342 { 343 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 344 return 0; 345 } 346 347 #define AR_SLOT_SIZE 4096 348 #define AR_SLOT_BLOCK_SIZE 16 349 #define AR_PTS_PITCH 6 350 #define AR_PARAM_SRC_OFFSET 0x60 351 352 static unsigned int src_param_pitch_mixer(unsigned int src_idx) 353 { 354 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE 355 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE; 356 357 } 358 359 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk) 360 { 361 struct src_rsc_ctrl_blk *ctl = blk; 362 int i; 363 364 if (ctl->dirty.bf.czbfs) { 365 /* Clear Z-Buffer registers */ 366 for (i = 0; i < 8; i++) 367 hw_write_20kx(hw, SRCUPZ+idx*0x100+i*0x4, 0); 368 369 for (i = 0; i < 4; i++) 370 hw_write_20kx(hw, SRCDN0Z+idx*0x100+i*0x4, 0); 371 372 for (i = 0; i < 8; i++) 373 hw_write_20kx(hw, SRCDN1Z+idx*0x100+i*0x4, 0); 374 375 ctl->dirty.bf.czbfs = 0; 376 } 377 if (ctl->dirty.bf.mpr) { 378 /* Take the parameter mixer resource in the same group as that 379 * the idx src is in for simplicity. Unlike src, all conjugate 380 * parameter mixer resources must be programmed for 381 * corresponding conjugate src resources. */ 382 unsigned int pm_idx = src_param_pitch_mixer(idx); 383 hw_write_20kx(hw, PRING_LO_HI+4*pm_idx, ctl->mpr); 384 hw_write_20kx(hw, PMOPLO+8*pm_idx, 0x3); 385 hw_write_20kx(hw, PMOPHI+8*pm_idx, 0x0); 386 ctl->dirty.bf.mpr = 0; 387 } 388 if (ctl->dirty.bf.sa) { 389 hw_write_20kx(hw, SRCSA+idx*0x100, ctl->sa); 390 ctl->dirty.bf.sa = 0; 391 } 392 if (ctl->dirty.bf.la) { 393 hw_write_20kx(hw, SRCLA+idx*0x100, ctl->la); 394 ctl->dirty.bf.la = 0; 395 } 396 if (ctl->dirty.bf.ca) { 397 hw_write_20kx(hw, SRCCA+idx*0x100, ctl->ca); 398 ctl->dirty.bf.ca = 0; 399 } 400 401 /* Write srccf register */ 402 hw_write_20kx(hw, SRCCF+idx*0x100, 0x0); 403 404 if (ctl->dirty.bf.ccr) { 405 hw_write_20kx(hw, SRCCCR+idx*0x100, ctl->ccr); 406 ctl->dirty.bf.ccr = 0; 407 } 408 if (ctl->dirty.bf.ctl) { 409 hw_write_20kx(hw, SRCCTL+idx*0x100, ctl->ctl); 410 ctl->dirty.bf.ctl = 0; 411 } 412 413 return 0; 414 } 415 416 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk) 417 { 418 struct src_rsc_ctrl_blk *ctl = blk; 419 420 ctl->ca = hw_read_20kx(hw, SRCCA+idx*0x100); 421 ctl->dirty.bf.ca = 0; 422 423 return get_field(ctl->ca, SRCCA_CA); 424 } 425 426 static unsigned int src_get_dirty(void *blk) 427 { 428 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data; 429 } 430 431 static unsigned int src_dirty_conj_mask(void) 432 { 433 return 0x20; 434 } 435 436 static int src_mgr_enbs_src(void *blk, unsigned int idx) 437 { 438 ((struct src_mgr_ctrl_blk *)blk)->enbsa = ~(0x0); 439 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1; 440 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 441 return 0; 442 } 443 444 static int src_mgr_enb_src(void *blk, unsigned int idx) 445 { 446 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 447 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 448 return 0; 449 } 450 451 static int src_mgr_dsb_src(void *blk, unsigned int idx) 452 { 453 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32)); 454 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 455 return 0; 456 } 457 458 static int src_mgr_commit_write(struct hw *hw, void *blk) 459 { 460 struct src_mgr_ctrl_blk *ctl = blk; 461 int i; 462 unsigned int ret; 463 464 if (ctl->dirty.bf.enbsa) { 465 do { 466 ret = hw_read_20kx(hw, SRCENBSTAT); 467 } while (ret & 0x1); 468 hw_write_20kx(hw, SRCENBS, ctl->enbsa); 469 ctl->dirty.bf.enbsa = 0; 470 } 471 for (i = 0; i < 8; i++) { 472 if ((ctl->dirty.data & (0x1 << i))) { 473 hw_write_20kx(hw, SRCENB+(i*0x100), ctl->enb[i]); 474 ctl->dirty.data &= ~(0x1 << i); 475 } 476 } 477 478 return 0; 479 } 480 481 static int src_mgr_get_ctrl_blk(void **rblk) 482 { 483 struct src_mgr_ctrl_blk *blk; 484 485 *rblk = NULL; 486 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 487 if (!blk) 488 return -ENOMEM; 489 490 *rblk = blk; 491 492 return 0; 493 } 494 495 static int src_mgr_put_ctrl_blk(void *blk) 496 { 497 kfree((struct src_mgr_ctrl_blk *)blk); 498 499 return 0; 500 } 501 502 static int srcimp_mgr_get_ctrl_blk(void **rblk) 503 { 504 struct srcimp_mgr_ctrl_blk *blk; 505 506 *rblk = NULL; 507 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 508 if (!blk) 509 return -ENOMEM; 510 511 *rblk = blk; 512 513 return 0; 514 } 515 516 static int srcimp_mgr_put_ctrl_blk(void *blk) 517 { 518 kfree((struct srcimp_mgr_ctrl_blk *)blk); 519 520 return 0; 521 } 522 523 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot) 524 { 525 struct srcimp_mgr_ctrl_blk *ctl = blk; 526 527 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot); 528 ctl->dirty.bf.srcimap = 1; 529 return 0; 530 } 531 532 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user) 533 { 534 struct srcimp_mgr_ctrl_blk *ctl = blk; 535 536 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user); 537 ctl->dirty.bf.srcimap = 1; 538 return 0; 539 } 540 541 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next) 542 { 543 struct srcimp_mgr_ctrl_blk *ctl = blk; 544 545 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next); 546 ctl->dirty.bf.srcimap = 1; 547 return 0; 548 } 549 550 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr) 551 { 552 struct srcimp_mgr_ctrl_blk *ctl = blk; 553 554 ctl->srcimap.idx = addr; 555 ctl->dirty.bf.srcimap = 1; 556 return 0; 557 } 558 559 static int srcimp_mgr_commit_write(struct hw *hw, void *blk) 560 { 561 struct srcimp_mgr_ctrl_blk *ctl = blk; 562 563 if (ctl->dirty.bf.srcimap) { 564 hw_write_20kx(hw, SRCIMAP+ctl->srcimap.idx*0x100, 565 ctl->srcimap.srcaim); 566 ctl->dirty.bf.srcimap = 0; 567 } 568 569 return 0; 570 } 571 572 /* 573 * AMIXER control block definitions. 574 */ 575 576 #define AMOPLO_M 0x00000003 577 #define AMOPLO_X 0x0003FFF0 578 #define AMOPLO_Y 0xFFFC0000 579 580 #define AMOPHI_SADR 0x000000FF 581 #define AMOPHI_SE 0x80000000 582 583 /* AMIXER resource register dirty flags */ 584 union amixer_dirty { 585 struct { 586 u16 amoplo:1; 587 u16 amophi:1; 588 u16 rsv:14; 589 } bf; 590 u16 data; 591 }; 592 593 /* AMIXER resource control block */ 594 struct amixer_rsc_ctrl_blk { 595 unsigned int amoplo; 596 unsigned int amophi; 597 union amixer_dirty dirty; 598 }; 599 600 static int amixer_set_mode(void *blk, unsigned int mode) 601 { 602 struct amixer_rsc_ctrl_blk *ctl = blk; 603 604 set_field(&ctl->amoplo, AMOPLO_M, mode); 605 ctl->dirty.bf.amoplo = 1; 606 return 0; 607 } 608 609 static int amixer_set_iv(void *blk, unsigned int iv) 610 { 611 /* 20k1 amixer does not have this field */ 612 return 0; 613 } 614 615 static int amixer_set_x(void *blk, unsigned int x) 616 { 617 struct amixer_rsc_ctrl_blk *ctl = blk; 618 619 set_field(&ctl->amoplo, AMOPLO_X, x); 620 ctl->dirty.bf.amoplo = 1; 621 return 0; 622 } 623 624 static int amixer_set_y(void *blk, unsigned int y) 625 { 626 struct amixer_rsc_ctrl_blk *ctl = blk; 627 628 set_field(&ctl->amoplo, AMOPLO_Y, y); 629 ctl->dirty.bf.amoplo = 1; 630 return 0; 631 } 632 633 static int amixer_set_sadr(void *blk, unsigned int sadr) 634 { 635 struct amixer_rsc_ctrl_blk *ctl = blk; 636 637 set_field(&ctl->amophi, AMOPHI_SADR, sadr); 638 ctl->dirty.bf.amophi = 1; 639 return 0; 640 } 641 642 static int amixer_set_se(void *blk, unsigned int se) 643 { 644 struct amixer_rsc_ctrl_blk *ctl = blk; 645 646 set_field(&ctl->amophi, AMOPHI_SE, se); 647 ctl->dirty.bf.amophi = 1; 648 return 0; 649 } 650 651 static int amixer_set_dirty(void *blk, unsigned int flags) 652 { 653 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 654 return 0; 655 } 656 657 static int amixer_set_dirty_all(void *blk) 658 { 659 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 660 return 0; 661 } 662 663 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk) 664 { 665 struct amixer_rsc_ctrl_blk *ctl = blk; 666 667 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) { 668 hw_write_20kx(hw, AMOPLO+idx*8, ctl->amoplo); 669 ctl->dirty.bf.amoplo = 0; 670 hw_write_20kx(hw, AMOPHI+idx*8, ctl->amophi); 671 ctl->dirty.bf.amophi = 0; 672 } 673 674 return 0; 675 } 676 677 static int amixer_get_y(void *blk) 678 { 679 struct amixer_rsc_ctrl_blk *ctl = blk; 680 681 return get_field(ctl->amoplo, AMOPLO_Y); 682 } 683 684 static unsigned int amixer_get_dirty(void *blk) 685 { 686 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data; 687 } 688 689 static int amixer_rsc_get_ctrl_blk(void **rblk) 690 { 691 struct amixer_rsc_ctrl_blk *blk; 692 693 *rblk = NULL; 694 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 695 if (!blk) 696 return -ENOMEM; 697 698 *rblk = blk; 699 700 return 0; 701 } 702 703 static int amixer_rsc_put_ctrl_blk(void *blk) 704 { 705 kfree((struct amixer_rsc_ctrl_blk *)blk); 706 707 return 0; 708 } 709 710 static int amixer_mgr_get_ctrl_blk(void **rblk) 711 { 712 /*amixer_mgr_ctrl_blk_t *blk;*/ 713 714 *rblk = NULL; 715 /*blk = kzalloc(sizeof(*blk), GFP_KERNEL); 716 if (!blk) 717 return -ENOMEM; 718 719 *rblk = blk;*/ 720 721 return 0; 722 } 723 724 static int amixer_mgr_put_ctrl_blk(void *blk) 725 { 726 /*kfree((amixer_mgr_ctrl_blk_t *)blk);*/ 727 728 return 0; 729 } 730 731 /* 732 * DAIO control block definitions. 733 */ 734 735 /* Receiver Sample Rate Tracker Control register */ 736 #define SRTCTL_SRCR 0x000000FF 737 #define SRTCTL_SRCL 0x0000FF00 738 #define SRTCTL_RSR 0x00030000 739 #define SRTCTL_DRAT 0x000C0000 740 #define SRTCTL_RLE 0x10000000 741 #define SRTCTL_RLP 0x20000000 742 #define SRTCTL_EC 0x40000000 743 #define SRTCTL_ET 0x80000000 744 745 /* DAIO Receiver register dirty flags */ 746 union dai_dirty { 747 struct { 748 u16 srtctl:1; 749 u16 rsv:15; 750 } bf; 751 u16 data; 752 }; 753 754 /* DAIO Receiver control block */ 755 struct dai_ctrl_blk { 756 unsigned int srtctl; 757 union dai_dirty dirty; 758 }; 759 760 /* S/PDIF Transmitter register dirty flags */ 761 union dao_dirty { 762 struct { 763 u16 spos:1; 764 u16 rsv:15; 765 } bf; 766 u16 data; 767 }; 768 769 /* S/PDIF Transmitter control block */ 770 struct dao_ctrl_blk { 771 unsigned int spos; /* S/PDIF Output Channel Status Register */ 772 union dao_dirty dirty; 773 }; 774 775 /* Audio Input Mapper RAM */ 776 #define AIM_ARC 0x00000FFF 777 #define AIM_NXT 0x007F0000 778 779 struct daoimap { 780 unsigned int aim; 781 unsigned int idx; 782 }; 783 784 /* I2S Transmitter/Receiver Control register */ 785 #define I2SCTL_EA 0x00000004 786 #define I2SCTL_EI 0x00000010 787 788 /* S/PDIF Transmitter Control register */ 789 #define SPOCTL_OE 0x00000001 790 #define SPOCTL_OS 0x0000000E 791 #define SPOCTL_RIV 0x00000010 792 #define SPOCTL_LIV 0x00000020 793 #define SPOCTL_SR 0x000000C0 794 795 /* S/PDIF Receiver Control register */ 796 #define SPICTL_EN 0x00000001 797 #define SPICTL_I24 0x00000002 798 #define SPICTL_IB 0x00000004 799 #define SPICTL_SM 0x00000008 800 #define SPICTL_VM 0x00000010 801 802 /* DAIO manager register dirty flags */ 803 union daio_mgr_dirty { 804 struct { 805 u32 i2soctl:4; 806 u32 i2sictl:4; 807 u32 spoctl:4; 808 u32 spictl:4; 809 u32 daoimap:1; 810 u32 rsv:15; 811 } bf; 812 u32 data; 813 }; 814 815 /* DAIO manager control block */ 816 struct daio_mgr_ctrl_blk { 817 unsigned int i2sctl; 818 unsigned int spoctl; 819 unsigned int spictl; 820 struct daoimap daoimap; 821 union daio_mgr_dirty dirty; 822 }; 823 824 static int dai_srt_set_srcr(void *blk, unsigned int src) 825 { 826 struct dai_ctrl_blk *ctl = blk; 827 828 set_field(&ctl->srtctl, SRTCTL_SRCR, src); 829 ctl->dirty.bf.srtctl = 1; 830 return 0; 831 } 832 833 static int dai_srt_set_srcl(void *blk, unsigned int src) 834 { 835 struct dai_ctrl_blk *ctl = blk; 836 837 set_field(&ctl->srtctl, SRTCTL_SRCL, src); 838 ctl->dirty.bf.srtctl = 1; 839 return 0; 840 } 841 842 static int dai_srt_set_rsr(void *blk, unsigned int rsr) 843 { 844 struct dai_ctrl_blk *ctl = blk; 845 846 set_field(&ctl->srtctl, SRTCTL_RSR, rsr); 847 ctl->dirty.bf.srtctl = 1; 848 return 0; 849 } 850 851 static int dai_srt_set_drat(void *blk, unsigned int drat) 852 { 853 struct dai_ctrl_blk *ctl = blk; 854 855 set_field(&ctl->srtctl, SRTCTL_DRAT, drat); 856 ctl->dirty.bf.srtctl = 1; 857 return 0; 858 } 859 860 static int dai_srt_set_ec(void *blk, unsigned int ec) 861 { 862 struct dai_ctrl_blk *ctl = blk; 863 864 set_field(&ctl->srtctl, SRTCTL_EC, ec ? 1 : 0); 865 ctl->dirty.bf.srtctl = 1; 866 return 0; 867 } 868 869 static int dai_srt_set_et(void *blk, unsigned int et) 870 { 871 struct dai_ctrl_blk *ctl = blk; 872 873 set_field(&ctl->srtctl, SRTCTL_ET, et ? 1 : 0); 874 ctl->dirty.bf.srtctl = 1; 875 return 0; 876 } 877 878 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk) 879 { 880 struct dai_ctrl_blk *ctl = blk; 881 882 if (ctl->dirty.bf.srtctl) { 883 if (idx < 4) { 884 /* S/PDIF SRTs */ 885 hw_write_20kx(hw, SRTSCTL+0x4*idx, ctl->srtctl); 886 } else { 887 /* I2S SRT */ 888 hw_write_20kx(hw, SRTICTL, ctl->srtctl); 889 } 890 ctl->dirty.bf.srtctl = 0; 891 } 892 893 return 0; 894 } 895 896 static int dai_get_ctrl_blk(void **rblk) 897 { 898 struct dai_ctrl_blk *blk; 899 900 *rblk = NULL; 901 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 902 if (!blk) 903 return -ENOMEM; 904 905 *rblk = blk; 906 907 return 0; 908 } 909 910 static int dai_put_ctrl_blk(void *blk) 911 { 912 kfree((struct dai_ctrl_blk *)blk); 913 914 return 0; 915 } 916 917 static int dao_set_spos(void *blk, unsigned int spos) 918 { 919 ((struct dao_ctrl_blk *)blk)->spos = spos; 920 ((struct dao_ctrl_blk *)blk)->dirty.bf.spos = 1; 921 return 0; 922 } 923 924 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk) 925 { 926 struct dao_ctrl_blk *ctl = blk; 927 928 if (ctl->dirty.bf.spos) { 929 if (idx < 4) { 930 /* S/PDIF SPOSx */ 931 hw_write_20kx(hw, SPOS+0x4*idx, ctl->spos); 932 } 933 ctl->dirty.bf.spos = 0; 934 } 935 936 return 0; 937 } 938 939 static int dao_get_spos(void *blk, unsigned int *spos) 940 { 941 *spos = ((struct dao_ctrl_blk *)blk)->spos; 942 return 0; 943 } 944 945 static int dao_get_ctrl_blk(void **rblk) 946 { 947 struct dao_ctrl_blk *blk; 948 949 *rblk = NULL; 950 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 951 if (!blk) 952 return -ENOMEM; 953 954 *rblk = blk; 955 956 return 0; 957 } 958 959 static int dao_put_ctrl_blk(void *blk) 960 { 961 kfree((struct dao_ctrl_blk *)blk); 962 963 return 0; 964 } 965 966 static int daio_mgr_enb_dai(void *blk, unsigned int idx) 967 { 968 struct daio_mgr_ctrl_blk *ctl = blk; 969 970 if (idx < 4) { 971 /* S/PDIF input */ 972 set_field(&ctl->spictl, SPICTL_EN << (idx*8), 1); 973 ctl->dirty.bf.spictl |= (0x1 << idx); 974 } else { 975 /* I2S input */ 976 idx %= 4; 977 set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 1); 978 ctl->dirty.bf.i2sictl |= (0x1 << idx); 979 } 980 return 0; 981 } 982 983 static int daio_mgr_dsb_dai(void *blk, unsigned int idx) 984 { 985 struct daio_mgr_ctrl_blk *ctl = blk; 986 987 if (idx < 4) { 988 /* S/PDIF input */ 989 set_field(&ctl->spictl, SPICTL_EN << (idx*8), 0); 990 ctl->dirty.bf.spictl |= (0x1 << idx); 991 } else { 992 /* I2S input */ 993 idx %= 4; 994 set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 0); 995 ctl->dirty.bf.i2sictl |= (0x1 << idx); 996 } 997 return 0; 998 } 999 1000 static int daio_mgr_enb_dao(void *blk, unsigned int idx) 1001 { 1002 struct daio_mgr_ctrl_blk *ctl = blk; 1003 1004 if (idx < 4) { 1005 /* S/PDIF output */ 1006 set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 1); 1007 ctl->dirty.bf.spoctl |= (0x1 << idx); 1008 } else { 1009 /* I2S output */ 1010 idx %= 4; 1011 set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 1); 1012 ctl->dirty.bf.i2soctl |= (0x1 << idx); 1013 } 1014 return 0; 1015 } 1016 1017 static int daio_mgr_dsb_dao(void *blk, unsigned int idx) 1018 { 1019 struct daio_mgr_ctrl_blk *ctl = blk; 1020 1021 if (idx < 4) { 1022 /* S/PDIF output */ 1023 set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 0); 1024 ctl->dirty.bf.spoctl |= (0x1 << idx); 1025 } else { 1026 /* I2S output */ 1027 idx %= 4; 1028 set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 0); 1029 ctl->dirty.bf.i2soctl |= (0x1 << idx); 1030 } 1031 return 0; 1032 } 1033 1034 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf) 1035 { 1036 struct daio_mgr_ctrl_blk *ctl = blk; 1037 1038 if (idx < 4) { 1039 /* S/PDIF output */ 1040 switch ((conf & 0x7)) { 1041 case 0: 1042 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 3); 1043 break; /* CDIF */ 1044 case 1: 1045 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 0); 1046 break; 1047 case 2: 1048 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 1); 1049 break; 1050 case 4: 1051 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 2); 1052 break; 1053 default: 1054 break; 1055 } 1056 set_field(&ctl->spoctl, SPOCTL_LIV << (idx*8), 1057 (conf >> 4) & 0x1); /* Non-audio */ 1058 set_field(&ctl->spoctl, SPOCTL_RIV << (idx*8), 1059 (conf >> 4) & 0x1); /* Non-audio */ 1060 set_field(&ctl->spoctl, SPOCTL_OS << (idx*8), 1061 ((conf >> 3) & 0x1) ? 2 : 2); /* Raw */ 1062 1063 ctl->dirty.bf.spoctl |= (0x1 << idx); 1064 } else { 1065 /* I2S output */ 1066 /*idx %= 4; */ 1067 } 1068 return 0; 1069 } 1070 1071 static int daio_mgr_set_imaparc(void *blk, unsigned int slot) 1072 { 1073 struct daio_mgr_ctrl_blk *ctl = blk; 1074 1075 set_field(&ctl->daoimap.aim, AIM_ARC, slot); 1076 ctl->dirty.bf.daoimap = 1; 1077 return 0; 1078 } 1079 1080 static int daio_mgr_set_imapnxt(void *blk, unsigned int next) 1081 { 1082 struct daio_mgr_ctrl_blk *ctl = blk; 1083 1084 set_field(&ctl->daoimap.aim, AIM_NXT, next); 1085 ctl->dirty.bf.daoimap = 1; 1086 return 0; 1087 } 1088 1089 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr) 1090 { 1091 struct daio_mgr_ctrl_blk *ctl = blk; 1092 1093 ctl->daoimap.idx = addr; 1094 ctl->dirty.bf.daoimap = 1; 1095 return 0; 1096 } 1097 1098 static int daio_mgr_commit_write(struct hw *hw, void *blk) 1099 { 1100 struct daio_mgr_ctrl_blk *ctl = blk; 1101 int i; 1102 1103 if (ctl->dirty.bf.i2sictl || ctl->dirty.bf.i2soctl) { 1104 for (i = 0; i < 4; i++) { 1105 if ((ctl->dirty.bf.i2sictl & (0x1 << i))) 1106 ctl->dirty.bf.i2sictl &= ~(0x1 << i); 1107 1108 if ((ctl->dirty.bf.i2soctl & (0x1 << i))) 1109 ctl->dirty.bf.i2soctl &= ~(0x1 << i); 1110 } 1111 hw_write_20kx(hw, I2SCTL, ctl->i2sctl); 1112 mdelay(1); 1113 } 1114 if (ctl->dirty.bf.spoctl) { 1115 for (i = 0; i < 4; i++) { 1116 if ((ctl->dirty.bf.spoctl & (0x1 << i))) 1117 ctl->dirty.bf.spoctl &= ~(0x1 << i); 1118 } 1119 hw_write_20kx(hw, SPOCTL, ctl->spoctl); 1120 mdelay(1); 1121 } 1122 if (ctl->dirty.bf.spictl) { 1123 for (i = 0; i < 4; i++) { 1124 if ((ctl->dirty.bf.spictl & (0x1 << i))) 1125 ctl->dirty.bf.spictl &= ~(0x1 << i); 1126 } 1127 hw_write_20kx(hw, SPICTL, ctl->spictl); 1128 mdelay(1); 1129 } 1130 if (ctl->dirty.bf.daoimap) { 1131 hw_write_20kx(hw, DAOIMAP+ctl->daoimap.idx*4, 1132 ctl->daoimap.aim); 1133 ctl->dirty.bf.daoimap = 0; 1134 } 1135 1136 return 0; 1137 } 1138 1139 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk) 1140 { 1141 struct daio_mgr_ctrl_blk *blk; 1142 1143 *rblk = NULL; 1144 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 1145 if (!blk) 1146 return -ENOMEM; 1147 1148 blk->i2sctl = hw_read_20kx(hw, I2SCTL); 1149 blk->spoctl = hw_read_20kx(hw, SPOCTL); 1150 blk->spictl = hw_read_20kx(hw, SPICTL); 1151 1152 *rblk = blk; 1153 1154 return 0; 1155 } 1156 1157 static int daio_mgr_put_ctrl_blk(void *blk) 1158 { 1159 kfree((struct daio_mgr_ctrl_blk *)blk); 1160 1161 return 0; 1162 } 1163 1164 /* Timer interrupt */ 1165 static int set_timer_irq(struct hw *hw, int enable) 1166 { 1167 hw_write_20kx(hw, GIE, enable ? IT_INT : 0); 1168 return 0; 1169 } 1170 1171 static int set_timer_tick(struct hw *hw, unsigned int ticks) 1172 { 1173 if (ticks) 1174 ticks |= TIMR_IE | TIMR_IP; 1175 hw_write_20kx(hw, TIMR, ticks); 1176 return 0; 1177 } 1178 1179 static unsigned int get_wc(struct hw *hw) 1180 { 1181 return hw_read_20kx(hw, WC); 1182 } 1183 1184 /* Card hardware initialization block */ 1185 struct dac_conf { 1186 unsigned int msr; /* master sample rate in rsrs */ 1187 }; 1188 1189 struct adc_conf { 1190 unsigned int msr; /* master sample rate in rsrs */ 1191 unsigned char input; /* the input source of ADC */ 1192 unsigned char mic20db; /* boost mic by 20db if input is microphone */ 1193 }; 1194 1195 struct daio_conf { 1196 unsigned int msr; /* master sample rate in rsrs */ 1197 }; 1198 1199 struct trn_conf { 1200 unsigned long vm_pgt_phys; 1201 }; 1202 1203 static int hw_daio_init(struct hw *hw, const struct daio_conf *info) 1204 { 1205 u32 i2sorg; 1206 u32 spdorg; 1207 1208 /* Read I2S CTL. Keep original value. */ 1209 /*i2sorg = hw_read_20kx(hw, I2SCTL);*/ 1210 i2sorg = 0x94040404; /* enable all audio out and I2S-D input */ 1211 /* Program I2S with proper master sample rate and enable 1212 * the correct I2S channel. */ 1213 i2sorg &= 0xfffffffc; 1214 1215 /* Enable S/PDIF-out-A in fixed 24-bit data 1216 * format and default to 48kHz. */ 1217 /* Disable all before doing any changes. */ 1218 hw_write_20kx(hw, SPOCTL, 0x0); 1219 spdorg = 0x05; 1220 1221 switch (info->msr) { 1222 case 1: 1223 i2sorg |= 1; 1224 spdorg |= (0x0 << 6); 1225 break; 1226 case 2: 1227 i2sorg |= 2; 1228 spdorg |= (0x1 << 6); 1229 break; 1230 case 4: 1231 i2sorg |= 3; 1232 spdorg |= (0x2 << 6); 1233 break; 1234 default: 1235 i2sorg |= 1; 1236 break; 1237 } 1238 1239 hw_write_20kx(hw, I2SCTL, i2sorg); 1240 hw_write_20kx(hw, SPOCTL, spdorg); 1241 1242 /* Enable S/PDIF-in-A in fixed 24-bit data format. */ 1243 /* Disable all before doing any changes. */ 1244 hw_write_20kx(hw, SPICTL, 0x0); 1245 mdelay(1); 1246 spdorg = 0x0a0a0a0a; 1247 hw_write_20kx(hw, SPICTL, spdorg); 1248 mdelay(1); 1249 1250 return 0; 1251 } 1252 1253 /* TRANSPORT operations */ 1254 static int hw_trn_init(struct hw *hw, const struct trn_conf *info) 1255 { 1256 u32 trnctl; 1257 u32 ptp_phys_low, ptp_phys_high; 1258 1259 /* Set up device page table */ 1260 if ((~0UL) == info->vm_pgt_phys) { 1261 dev_err(hw->card->dev, 1262 "Wrong device page table page address!\n"); 1263 return -1; 1264 } 1265 1266 trnctl = 0x13; /* 32-bit, 4k-size page */ 1267 ptp_phys_low = (u32)info->vm_pgt_phys; 1268 ptp_phys_high = upper_32_bits(info->vm_pgt_phys); 1269 if (sizeof(void *) == 8) /* 64bit address */ 1270 trnctl |= (1 << 2); 1271 #if 0 /* Only 4k h/w pages for simplicitiy */ 1272 #if PAGE_SIZE == 8192 1273 trnctl |= (1<<5); 1274 #endif 1275 #endif 1276 hw_write_20kx(hw, PTPALX, ptp_phys_low); 1277 hw_write_20kx(hw, PTPAHX, ptp_phys_high); 1278 hw_write_20kx(hw, TRNCTL, trnctl); 1279 hw_write_20kx(hw, TRNIS, 0x200c01); /* really needed? */ 1280 1281 return 0; 1282 } 1283 1284 /* Card initialization */ 1285 #define GCTL_EAC 0x00000001 1286 #define GCTL_EAI 0x00000002 1287 #define GCTL_BEP 0x00000004 1288 #define GCTL_BES 0x00000008 1289 #define GCTL_DSP 0x00000010 1290 #define GCTL_DBP 0x00000020 1291 #define GCTL_ABP 0x00000040 1292 #define GCTL_TBP 0x00000080 1293 #define GCTL_SBP 0x00000100 1294 #define GCTL_FBP 0x00000200 1295 #define GCTL_XA 0x00000400 1296 #define GCTL_ET 0x00000800 1297 #define GCTL_PR 0x00001000 1298 #define GCTL_MRL 0x00002000 1299 #define GCTL_SDE 0x00004000 1300 #define GCTL_SDI 0x00008000 1301 #define GCTL_SM 0x00010000 1302 #define GCTL_SR 0x00020000 1303 #define GCTL_SD 0x00040000 1304 #define GCTL_SE 0x00080000 1305 #define GCTL_AID 0x00100000 1306 1307 static int hw_pll_init(struct hw *hw, unsigned int rsr) 1308 { 1309 unsigned int pllctl; 1310 int i; 1311 1312 pllctl = (48000 == rsr) ? 0x1480a001 : 0x1480a731; 1313 for (i = 0; i < 3; i++) { 1314 if (hw_read_20kx(hw, PLLCTL) == pllctl) 1315 break; 1316 1317 hw_write_20kx(hw, PLLCTL, pllctl); 1318 msleep(40); 1319 } 1320 if (i >= 3) { 1321 dev_alert(hw->card->dev, "PLL initialization failed!!!\n"); 1322 return -EBUSY; 1323 } 1324 1325 return 0; 1326 } 1327 1328 static int hw_auto_init(struct hw *hw) 1329 { 1330 unsigned int gctl; 1331 int i; 1332 1333 gctl = hw_read_20kx(hw, GCTL); 1334 set_field(&gctl, GCTL_EAI, 0); 1335 hw_write_20kx(hw, GCTL, gctl); 1336 set_field(&gctl, GCTL_EAI, 1); 1337 hw_write_20kx(hw, GCTL, gctl); 1338 mdelay(10); 1339 for (i = 0; i < 400000; i++) { 1340 gctl = hw_read_20kx(hw, GCTL); 1341 if (get_field(gctl, GCTL_AID)) 1342 break; 1343 } 1344 if (!get_field(gctl, GCTL_AID)) { 1345 dev_alert(hw->card->dev, "Card Auto-init failed!!!\n"); 1346 return -EBUSY; 1347 } 1348 1349 return 0; 1350 } 1351 1352 static int i2c_unlock(struct hw *hw) 1353 { 1354 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) 1355 return 0; 1356 1357 hw_write_pci(hw, 0xcc, 0x8c); 1358 hw_write_pci(hw, 0xcc, 0x0e); 1359 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) 1360 return 0; 1361 1362 hw_write_pci(hw, 0xcc, 0xee); 1363 hw_write_pci(hw, 0xcc, 0xaa); 1364 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) 1365 return 0; 1366 1367 return -1; 1368 } 1369 1370 static void i2c_lock(struct hw *hw) 1371 { 1372 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) 1373 hw_write_pci(hw, 0xcc, 0x00); 1374 } 1375 1376 static void i2c_write(struct hw *hw, u32 device, u32 addr, u32 data) 1377 { 1378 unsigned int ret; 1379 1380 do { 1381 ret = hw_read_pci(hw, 0xEC); 1382 } while (!(ret & 0x800000)); 1383 hw_write_pci(hw, 0xE0, device); 1384 hw_write_pci(hw, 0xE4, (data << 8) | (addr & 0xff)); 1385 } 1386 1387 /* DAC operations */ 1388 1389 static int hw_reset_dac(struct hw *hw) 1390 { 1391 u32 i; 1392 u16 gpioorg; 1393 unsigned int ret; 1394 1395 if (i2c_unlock(hw)) 1396 return -1; 1397 1398 do { 1399 ret = hw_read_pci(hw, 0xEC); 1400 } while (!(ret & 0x800000)); 1401 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */ 1402 1403 /* To be effective, need to reset the DAC twice. */ 1404 for (i = 0; i < 2; i++) { 1405 /* set gpio */ 1406 msleep(100); 1407 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1408 gpioorg &= 0xfffd; 1409 hw_write_20kx(hw, GPIO, gpioorg); 1410 mdelay(1); 1411 hw_write_20kx(hw, GPIO, gpioorg | 0x2); 1412 } 1413 1414 i2c_write(hw, 0x00180080, 0x01, 0x80); 1415 i2c_write(hw, 0x00180080, 0x02, 0x10); 1416 1417 i2c_lock(hw); 1418 1419 return 0; 1420 } 1421 1422 static int hw_dac_init(struct hw *hw, const struct dac_conf *info) 1423 { 1424 u32 data; 1425 u16 gpioorg; 1426 unsigned int ret; 1427 1428 if (hw->model == CTSB055X) { 1429 /* SB055x, unmute outputs */ 1430 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1431 gpioorg &= 0xffbf; /* set GPIO6 to low */ 1432 gpioorg |= 2; /* set GPIO1 to high */ 1433 hw_write_20kx(hw, GPIO, gpioorg); 1434 return 0; 1435 } 1436 1437 /* mute outputs */ 1438 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1439 gpioorg &= 0xffbf; 1440 hw_write_20kx(hw, GPIO, gpioorg); 1441 1442 hw_reset_dac(hw); 1443 1444 if (i2c_unlock(hw)) 1445 return -1; 1446 1447 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */ 1448 do { 1449 ret = hw_read_pci(hw, 0xEC); 1450 } while (!(ret & 0x800000)); 1451 1452 switch (info->msr) { 1453 case 1: 1454 data = 0x24; 1455 break; 1456 case 2: 1457 data = 0x25; 1458 break; 1459 case 4: 1460 data = 0x26; 1461 break; 1462 default: 1463 data = 0x24; 1464 break; 1465 } 1466 1467 i2c_write(hw, 0x00180080, 0x06, data); 1468 i2c_write(hw, 0x00180080, 0x09, data); 1469 i2c_write(hw, 0x00180080, 0x0c, data); 1470 i2c_write(hw, 0x00180080, 0x0f, data); 1471 1472 i2c_lock(hw); 1473 1474 /* unmute outputs */ 1475 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1476 gpioorg = gpioorg | 0x40; 1477 hw_write_20kx(hw, GPIO, gpioorg); 1478 1479 return 0; 1480 } 1481 1482 /* ADC operations */ 1483 1484 static int is_adc_input_selected_SB055x(struct hw *hw, enum ADCSRC type) 1485 { 1486 return 0; 1487 } 1488 1489 static int is_adc_input_selected_SBx(struct hw *hw, enum ADCSRC type) 1490 { 1491 u32 data; 1492 1493 data = hw_read_20kx(hw, GPIO); 1494 switch (type) { 1495 case ADC_MICIN: 1496 data = ((data & (0x1<<7)) && (data & (0x1<<8))); 1497 break; 1498 case ADC_LINEIN: 1499 data = (!(data & (0x1<<7)) && (data & (0x1<<8))); 1500 break; 1501 case ADC_NONE: /* Digital I/O */ 1502 data = (!(data & (0x1<<8))); 1503 break; 1504 default: 1505 data = 0; 1506 } 1507 return data; 1508 } 1509 1510 static int is_adc_input_selected_hendrix(struct hw *hw, enum ADCSRC type) 1511 { 1512 u32 data; 1513 1514 data = hw_read_20kx(hw, GPIO); 1515 switch (type) { 1516 case ADC_MICIN: 1517 data = (data & (0x1 << 7)) ? 1 : 0; 1518 break; 1519 case ADC_LINEIN: 1520 data = (data & (0x1 << 7)) ? 0 : 1; 1521 break; 1522 default: 1523 data = 0; 1524 } 1525 return data; 1526 } 1527 1528 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type) 1529 { 1530 switch (hw->model) { 1531 case CTSB055X: 1532 return is_adc_input_selected_SB055x(hw, type); 1533 case CTSB073X: 1534 return is_adc_input_selected_hendrix(hw, type); 1535 case CTUAA: 1536 return is_adc_input_selected_hendrix(hw, type); 1537 default: 1538 return is_adc_input_selected_SBx(hw, type); 1539 } 1540 } 1541 1542 static int 1543 adc_input_select_SB055x(struct hw *hw, enum ADCSRC type, unsigned char boost) 1544 { 1545 u32 data; 1546 1547 /* 1548 * check and set the following GPIO bits accordingly 1549 * ADC_Gain = GPIO2 1550 * DRM_off = GPIO3 1551 * Mic_Pwr_on = GPIO7 1552 * Digital_IO_Sel = GPIO8 1553 * Mic_Sw = GPIO9 1554 * Aux/MicLine_Sw = GPIO12 1555 */ 1556 data = hw_read_20kx(hw, GPIO); 1557 data &= 0xec73; 1558 switch (type) { 1559 case ADC_MICIN: 1560 data |= (0x1<<7) | (0x1<<8) | (0x1<<9) ; 1561 data |= boost ? (0x1<<2) : 0; 1562 break; 1563 case ADC_LINEIN: 1564 data |= (0x1<<8); 1565 break; 1566 case ADC_AUX: 1567 data |= (0x1<<8) | (0x1<<12); 1568 break; 1569 case ADC_NONE: 1570 data |= (0x1<<12); /* set to digital */ 1571 break; 1572 default: 1573 return -1; 1574 } 1575 1576 hw_write_20kx(hw, GPIO, data); 1577 1578 return 0; 1579 } 1580 1581 1582 static int 1583 adc_input_select_SBx(struct hw *hw, enum ADCSRC type, unsigned char boost) 1584 { 1585 u32 data; 1586 u32 i2c_data; 1587 unsigned int ret; 1588 1589 if (i2c_unlock(hw)) 1590 return -1; 1591 1592 do { 1593 ret = hw_read_pci(hw, 0xEC); 1594 } while (!(ret & 0x800000)); /* i2c ready poll */ 1595 /* set i2c access mode as Direct Control */ 1596 hw_write_pci(hw, 0xEC, 0x05); 1597 1598 data = hw_read_20kx(hw, GPIO); 1599 switch (type) { 1600 case ADC_MICIN: 1601 data |= ((0x1 << 7) | (0x1 << 8)); 1602 i2c_data = 0x1; /* Mic-in */ 1603 break; 1604 case ADC_LINEIN: 1605 data &= ~(0x1 << 7); 1606 data |= (0x1 << 8); 1607 i2c_data = 0x2; /* Line-in */ 1608 break; 1609 case ADC_NONE: 1610 data &= ~(0x1 << 8); 1611 i2c_data = 0x0; /* set to Digital */ 1612 break; 1613 default: 1614 i2c_lock(hw); 1615 return -1; 1616 } 1617 hw_write_20kx(hw, GPIO, data); 1618 i2c_write(hw, 0x001a0080, 0x2a, i2c_data); 1619 if (boost) { 1620 i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */ 1621 i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */ 1622 } else { 1623 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */ 1624 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */ 1625 } 1626 1627 i2c_lock(hw); 1628 1629 return 0; 1630 } 1631 1632 static int 1633 adc_input_select_hendrix(struct hw *hw, enum ADCSRC type, unsigned char boost) 1634 { 1635 u32 data; 1636 u32 i2c_data; 1637 unsigned int ret; 1638 1639 if (i2c_unlock(hw)) 1640 return -1; 1641 1642 do { 1643 ret = hw_read_pci(hw, 0xEC); 1644 } while (!(ret & 0x800000)); /* i2c ready poll */ 1645 /* set i2c access mode as Direct Control */ 1646 hw_write_pci(hw, 0xEC, 0x05); 1647 1648 data = hw_read_20kx(hw, GPIO); 1649 switch (type) { 1650 case ADC_MICIN: 1651 data |= (0x1 << 7); 1652 i2c_data = 0x1; /* Mic-in */ 1653 break; 1654 case ADC_LINEIN: 1655 data &= ~(0x1 << 7); 1656 i2c_data = 0x2; /* Line-in */ 1657 break; 1658 default: 1659 i2c_lock(hw); 1660 return -1; 1661 } 1662 hw_write_20kx(hw, GPIO, data); 1663 i2c_write(hw, 0x001a0080, 0x2a, i2c_data); 1664 if (boost) { 1665 i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */ 1666 i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */ 1667 } else { 1668 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */ 1669 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */ 1670 } 1671 1672 i2c_lock(hw); 1673 1674 return 0; 1675 } 1676 1677 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type) 1678 { 1679 int state = type == ADC_MICIN; 1680 1681 switch (hw->model) { 1682 case CTSB055X: 1683 return adc_input_select_SB055x(hw, type, state); 1684 case CTSB073X: 1685 return adc_input_select_hendrix(hw, type, state); 1686 case CTUAA: 1687 return adc_input_select_hendrix(hw, type, state); 1688 default: 1689 return adc_input_select_SBx(hw, type, state); 1690 } 1691 } 1692 1693 static int adc_init_SB055x(struct hw *hw, int input, int mic20db) 1694 { 1695 return adc_input_select_SB055x(hw, input, mic20db); 1696 } 1697 1698 static int adc_init_SBx(struct hw *hw, int input, int mic20db) 1699 { 1700 u16 gpioorg; 1701 u16 input_source; 1702 u32 adcdata; 1703 unsigned int ret; 1704 1705 input_source = 0x100; /* default to analog */ 1706 switch (input) { 1707 case ADC_MICIN: 1708 adcdata = 0x1; 1709 input_source = 0x180; /* set GPIO7 to select Mic */ 1710 break; 1711 case ADC_LINEIN: 1712 adcdata = 0x2; 1713 break; 1714 case ADC_VIDEO: 1715 adcdata = 0x4; 1716 break; 1717 case ADC_AUX: 1718 adcdata = 0x8; 1719 break; 1720 case ADC_NONE: 1721 adcdata = 0x0; 1722 input_source = 0x0; /* set to Digital */ 1723 break; 1724 default: 1725 adcdata = 0x0; 1726 break; 1727 } 1728 1729 if (i2c_unlock(hw)) 1730 return -1; 1731 1732 do { 1733 ret = hw_read_pci(hw, 0xEC); 1734 } while (!(ret & 0x800000)); /* i2c ready poll */ 1735 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */ 1736 1737 i2c_write(hw, 0x001a0080, 0x0e, 0x08); 1738 i2c_write(hw, 0x001a0080, 0x18, 0x0a); 1739 i2c_write(hw, 0x001a0080, 0x28, 0x86); 1740 i2c_write(hw, 0x001a0080, 0x2a, adcdata); 1741 1742 if (mic20db) { 1743 i2c_write(hw, 0x001a0080, 0x1c, 0xf7); 1744 i2c_write(hw, 0x001a0080, 0x1e, 0xf7); 1745 } else { 1746 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); 1747 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); 1748 } 1749 1750 if (!(hw_read_20kx(hw, ID0) & 0x100)) 1751 i2c_write(hw, 0x001a0080, 0x16, 0x26); 1752 1753 i2c_lock(hw); 1754 1755 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1756 gpioorg &= 0xfe7f; 1757 gpioorg |= input_source; 1758 hw_write_20kx(hw, GPIO, gpioorg); 1759 1760 return 0; 1761 } 1762 1763 static int hw_adc_init(struct hw *hw, const struct adc_conf *info) 1764 { 1765 if (hw->model == CTSB055X) 1766 return adc_init_SB055x(hw, info->input, info->mic20db); 1767 else 1768 return adc_init_SBx(hw, info->input, info->mic20db); 1769 } 1770 1771 static struct capabilities hw_capabilities(struct hw *hw) 1772 { 1773 struct capabilities cap; 1774 1775 /* SB073x and Vista compatible cards have no digit IO switch */ 1776 cap.digit_io_switch = !(hw->model == CTSB073X || hw->model == CTUAA); 1777 cap.dedicated_mic = 0; 1778 cap.output_switch = 0; 1779 cap.mic_source_switch = 0; 1780 1781 return cap; 1782 } 1783 1784 #define CTLBITS(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d)) 1785 1786 #define UAA_CFG_PWRSTATUS 0x44 1787 #define UAA_CFG_SPACE_FLAG 0xA0 1788 #define UAA_CORE_CHANGE 0x3FFC 1789 static int uaa_to_xfi(struct pci_dev *pci) 1790 { 1791 unsigned int bar0, bar1, bar2, bar3, bar4, bar5; 1792 unsigned int cmd, irq, cl_size, l_timer, pwr; 1793 unsigned int is_uaa; 1794 unsigned int data[4] = {0}; 1795 unsigned int io_base; 1796 void __iomem *mem_base; 1797 int i; 1798 const u32 CTLX = CTLBITS('C', 'T', 'L', 'X'); 1799 const u32 CTL_ = CTLBITS('C', 'T', 'L', '-'); 1800 const u32 CTLF = CTLBITS('C', 'T', 'L', 'F'); 1801 const u32 CTLi = CTLBITS('C', 'T', 'L', 'i'); 1802 const u32 CTLA = CTLBITS('C', 'T', 'L', 'A'); 1803 const u32 CTLZ = CTLBITS('C', 'T', 'L', 'Z'); 1804 const u32 CTLL = CTLBITS('C', 'T', 'L', 'L'); 1805 1806 /* By default, Hendrix card UAA Bar0 should be using memory... */ 1807 io_base = pci_resource_start(pci, 0); 1808 mem_base = ioremap(io_base, pci_resource_len(pci, 0)); 1809 if (!mem_base) 1810 return -ENOENT; 1811 1812 /* Read current mode from Mode Change Register */ 1813 for (i = 0; i < 4; i++) 1814 data[i] = readl(mem_base + UAA_CORE_CHANGE); 1815 1816 /* Determine current mode... */ 1817 if (data[0] == CTLA) { 1818 is_uaa = ((data[1] == CTLZ && data[2] == CTLL 1819 && data[3] == CTLA) || (data[1] == CTLA 1820 && data[2] == CTLZ && data[3] == CTLL)); 1821 } else if (data[0] == CTLZ) { 1822 is_uaa = (data[1] == CTLL 1823 && data[2] == CTLA && data[3] == CTLA); 1824 } else if (data[0] == CTLL) { 1825 is_uaa = (data[1] == CTLA 1826 && data[2] == CTLA && data[3] == CTLZ); 1827 } else { 1828 is_uaa = 0; 1829 } 1830 1831 if (!is_uaa) { 1832 /* Not in UAA mode currently. Return directly. */ 1833 iounmap(mem_base); 1834 return 0; 1835 } 1836 1837 pci_read_config_dword(pci, PCI_BASE_ADDRESS_0, &bar0); 1838 pci_read_config_dword(pci, PCI_BASE_ADDRESS_1, &bar1); 1839 pci_read_config_dword(pci, PCI_BASE_ADDRESS_2, &bar2); 1840 pci_read_config_dword(pci, PCI_BASE_ADDRESS_3, &bar3); 1841 pci_read_config_dword(pci, PCI_BASE_ADDRESS_4, &bar4); 1842 pci_read_config_dword(pci, PCI_BASE_ADDRESS_5, &bar5); 1843 pci_read_config_dword(pci, PCI_INTERRUPT_LINE, &irq); 1844 pci_read_config_dword(pci, PCI_CACHE_LINE_SIZE, &cl_size); 1845 pci_read_config_dword(pci, PCI_LATENCY_TIMER, &l_timer); 1846 pci_read_config_dword(pci, UAA_CFG_PWRSTATUS, &pwr); 1847 pci_read_config_dword(pci, PCI_COMMAND, &cmd); 1848 1849 /* Set up X-Fi core PCI configuration space. */ 1850 /* Switch to X-Fi config space with BAR0 exposed. */ 1851 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x87654321); 1852 /* Copy UAA's BAR5 into X-Fi BAR0 */ 1853 pci_write_config_dword(pci, PCI_BASE_ADDRESS_0, bar5); 1854 /* Switch to X-Fi config space without BAR0 exposed. */ 1855 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x12345678); 1856 pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, bar1); 1857 pci_write_config_dword(pci, PCI_BASE_ADDRESS_2, bar2); 1858 pci_write_config_dword(pci, PCI_BASE_ADDRESS_3, bar3); 1859 pci_write_config_dword(pci, PCI_BASE_ADDRESS_4, bar4); 1860 pci_write_config_dword(pci, PCI_INTERRUPT_LINE, irq); 1861 pci_write_config_dword(pci, PCI_CACHE_LINE_SIZE, cl_size); 1862 pci_write_config_dword(pci, PCI_LATENCY_TIMER, l_timer); 1863 pci_write_config_dword(pci, UAA_CFG_PWRSTATUS, pwr); 1864 pci_write_config_dword(pci, PCI_COMMAND, cmd); 1865 1866 /* Switch to X-Fi mode */ 1867 writel(CTLX, (mem_base + UAA_CORE_CHANGE)); 1868 writel(CTL_, (mem_base + UAA_CORE_CHANGE)); 1869 writel(CTLF, (mem_base + UAA_CORE_CHANGE)); 1870 writel(CTLi, (mem_base + UAA_CORE_CHANGE)); 1871 1872 iounmap(mem_base); 1873 1874 return 0; 1875 } 1876 1877 static irqreturn_t ct_20k1_interrupt(int irq, void *dev_id) 1878 { 1879 struct hw *hw = dev_id; 1880 unsigned int status; 1881 1882 status = hw_read_20kx(hw, GIP); 1883 if (!status) 1884 return IRQ_NONE; 1885 1886 if (hw->irq_callback) 1887 hw->irq_callback(hw->irq_callback_data, status); 1888 1889 hw_write_20kx(hw, GIP, status); 1890 return IRQ_HANDLED; 1891 } 1892 1893 static int hw_card_start(struct hw *hw) 1894 { 1895 int err; 1896 struct pci_dev *pci = hw->pci; 1897 const unsigned int dma_bits = BITS_PER_LONG; 1898 1899 err = pci_enable_device(pci); 1900 if (err < 0) 1901 return err; 1902 1903 /* Set DMA transfer mask */ 1904 if (!dma_set_mask(&pci->dev, DMA_BIT_MASK(dma_bits))) { 1905 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(dma_bits)); 1906 } else { 1907 dma_set_mask(&pci->dev, DMA_BIT_MASK(32)); 1908 dma_set_coherent_mask(&pci->dev, DMA_BIT_MASK(32)); 1909 } 1910 1911 if (!hw->io_base) { 1912 err = pci_request_regions(pci, "XFi"); 1913 if (err < 0) 1914 goto error1; 1915 1916 if (hw->model == CTUAA) 1917 hw->io_base = pci_resource_start(pci, 5); 1918 else 1919 hw->io_base = pci_resource_start(pci, 0); 1920 1921 } 1922 1923 /* Switch to X-Fi mode from UAA mode if neeeded */ 1924 if (hw->model == CTUAA) { 1925 err = uaa_to_xfi(pci); 1926 if (err) 1927 goto error2; 1928 1929 } 1930 1931 if (hw->irq < 0) { 1932 err = request_irq(pci->irq, ct_20k1_interrupt, IRQF_SHARED, 1933 KBUILD_MODNAME, hw); 1934 if (err < 0) { 1935 dev_err(hw->card->dev, 1936 "XFi: Cannot get irq %d\n", pci->irq); 1937 goto error2; 1938 } 1939 hw->irq = pci->irq; 1940 hw->card->sync_irq = hw->irq; 1941 } 1942 1943 pci_set_master(pci); 1944 1945 return 0; 1946 1947 error2: 1948 pci_release_regions(pci); 1949 hw->io_base = 0; 1950 error1: 1951 pci_disable_device(pci); 1952 return err; 1953 } 1954 1955 static int hw_card_stop(struct hw *hw) 1956 { 1957 unsigned int data; 1958 1959 /* disable transport bus master and queueing of request */ 1960 hw_write_20kx(hw, TRNCTL, 0x00); 1961 1962 /* disable pll */ 1963 data = hw_read_20kx(hw, PLLCTL); 1964 hw_write_20kx(hw, PLLCTL, (data & (~(0x0F<<12)))); 1965 1966 return 0; 1967 } 1968 1969 static int hw_card_shutdown(struct hw *hw) 1970 { 1971 if (hw->irq >= 0) 1972 free_irq(hw->irq, hw); 1973 1974 hw->irq = -1; 1975 iounmap(hw->mem_base); 1976 hw->mem_base = NULL; 1977 1978 if (hw->io_base) 1979 pci_release_regions(hw->pci); 1980 1981 hw->io_base = 0; 1982 1983 pci_disable_device(hw->pci); 1984 1985 return 0; 1986 } 1987 1988 static int hw_card_init(struct hw *hw, struct card_conf *info) 1989 { 1990 int err; 1991 unsigned int gctl; 1992 u32 data; 1993 struct dac_conf dac_info = {0}; 1994 struct adc_conf adc_info = {0}; 1995 struct daio_conf daio_info = {0}; 1996 struct trn_conf trn_info = {0}; 1997 1998 /* Get PCI io port base address and do Hendrix switch if needed. */ 1999 err = hw_card_start(hw); 2000 if (err) 2001 return err; 2002 2003 /* PLL init */ 2004 err = hw_pll_init(hw, info->rsr); 2005 if (err < 0) 2006 return err; 2007 2008 /* kick off auto-init */ 2009 err = hw_auto_init(hw); 2010 if (err < 0) 2011 return err; 2012 2013 /* Enable audio ring */ 2014 gctl = hw_read_20kx(hw, GCTL); 2015 set_field(&gctl, GCTL_EAC, 1); 2016 set_field(&gctl, GCTL_DBP, 1); 2017 set_field(&gctl, GCTL_TBP, 1); 2018 set_field(&gctl, GCTL_FBP, 1); 2019 set_field(&gctl, GCTL_ET, 1); 2020 hw_write_20kx(hw, GCTL, gctl); 2021 mdelay(10); 2022 2023 /* Reset all global pending interrupts */ 2024 hw_write_20kx(hw, GIE, 0); 2025 /* Reset all SRC pending interrupts */ 2026 hw_write_20kx(hw, SRCIP, 0); 2027 msleep(30); 2028 2029 /* Detect the card ID and configure GPIO accordingly. */ 2030 switch (hw->model) { 2031 case CTSB055X: 2032 hw_write_20kx(hw, GPIOCTL, 0x13fe); 2033 break; 2034 case CTSB073X: 2035 hw_write_20kx(hw, GPIOCTL, 0x00e6); 2036 break; 2037 case CTUAA: 2038 hw_write_20kx(hw, GPIOCTL, 0x00c2); 2039 break; 2040 default: 2041 hw_write_20kx(hw, GPIOCTL, 0x01e6); 2042 break; 2043 } 2044 2045 trn_info.vm_pgt_phys = info->vm_pgt_phys; 2046 err = hw_trn_init(hw, &trn_info); 2047 if (err < 0) 2048 return err; 2049 2050 daio_info.msr = info->msr; 2051 err = hw_daio_init(hw, &daio_info); 2052 if (err < 0) 2053 return err; 2054 2055 dac_info.msr = info->msr; 2056 err = hw_dac_init(hw, &dac_info); 2057 if (err < 0) 2058 return err; 2059 2060 adc_info.msr = info->msr; 2061 adc_info.input = ADC_LINEIN; 2062 adc_info.mic20db = 0; 2063 err = hw_adc_init(hw, &adc_info); 2064 if (err < 0) 2065 return err; 2066 2067 data = hw_read_20kx(hw, SRCMCTL); 2068 data |= 0x1; /* Enables input from the audio ring */ 2069 hw_write_20kx(hw, SRCMCTL, data); 2070 2071 return 0; 2072 } 2073 2074 #ifdef CONFIG_PM_SLEEP 2075 static int hw_suspend(struct hw *hw) 2076 { 2077 struct pci_dev *pci = hw->pci; 2078 2079 hw_card_stop(hw); 2080 2081 if (hw->model == CTUAA) { 2082 /* Switch to UAA config space. */ 2083 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x0); 2084 } 2085 2086 return 0; 2087 } 2088 2089 static int hw_resume(struct hw *hw, struct card_conf *info) 2090 { 2091 /* Re-initialize card hardware. */ 2092 return hw_card_init(hw, info); 2093 } 2094 #endif 2095 2096 static u32 hw_read_20kx(struct hw *hw, u32 reg) 2097 { 2098 u32 value; 2099 unsigned long flags; 2100 2101 spin_lock_irqsave( 2102 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); 2103 outl(reg, hw->io_base + 0x0); 2104 value = inl(hw->io_base + 0x4); 2105 spin_unlock_irqrestore( 2106 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); 2107 2108 return value; 2109 } 2110 2111 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data) 2112 { 2113 unsigned long flags; 2114 2115 spin_lock_irqsave( 2116 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); 2117 outl(reg, hw->io_base + 0x0); 2118 outl(data, hw->io_base + 0x4); 2119 spin_unlock_irqrestore( 2120 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); 2121 2122 } 2123 2124 static u32 hw_read_pci(struct hw *hw, u32 reg) 2125 { 2126 u32 value; 2127 unsigned long flags; 2128 2129 spin_lock_irqsave( 2130 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); 2131 outl(reg, hw->io_base + 0x10); 2132 value = inl(hw->io_base + 0x14); 2133 spin_unlock_irqrestore( 2134 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); 2135 2136 return value; 2137 } 2138 2139 static void hw_write_pci(struct hw *hw, u32 reg, u32 data) 2140 { 2141 unsigned long flags; 2142 2143 spin_lock_irqsave( 2144 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); 2145 outl(reg, hw->io_base + 0x10); 2146 outl(data, hw->io_base + 0x14); 2147 spin_unlock_irqrestore( 2148 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); 2149 } 2150 2151 static const struct hw ct20k1_preset = { 2152 .irq = -1, 2153 2154 .card_init = hw_card_init, 2155 .card_stop = hw_card_stop, 2156 .pll_init = hw_pll_init, 2157 .is_adc_source_selected = hw_is_adc_input_selected, 2158 .select_adc_source = hw_adc_input_select, 2159 .capabilities = hw_capabilities, 2160 #ifdef CONFIG_PM_SLEEP 2161 .suspend = hw_suspend, 2162 .resume = hw_resume, 2163 #endif 2164 2165 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk, 2166 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk, 2167 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk, 2168 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk, 2169 .src_set_state = src_set_state, 2170 .src_set_bm = src_set_bm, 2171 .src_set_rsr = src_set_rsr, 2172 .src_set_sf = src_set_sf, 2173 .src_set_wr = src_set_wr, 2174 .src_set_pm = src_set_pm, 2175 .src_set_rom = src_set_rom, 2176 .src_set_vo = src_set_vo, 2177 .src_set_st = src_set_st, 2178 .src_set_ie = src_set_ie, 2179 .src_set_ilsz = src_set_ilsz, 2180 .src_set_bp = src_set_bp, 2181 .src_set_cisz = src_set_cisz, 2182 .src_set_ca = src_set_ca, 2183 .src_set_sa = src_set_sa, 2184 .src_set_la = src_set_la, 2185 .src_set_pitch = src_set_pitch, 2186 .src_set_dirty = src_set_dirty, 2187 .src_set_clear_zbufs = src_set_clear_zbufs, 2188 .src_set_dirty_all = src_set_dirty_all, 2189 .src_commit_write = src_commit_write, 2190 .src_get_ca = src_get_ca, 2191 .src_get_dirty = src_get_dirty, 2192 .src_dirty_conj_mask = src_dirty_conj_mask, 2193 .src_mgr_enbs_src = src_mgr_enbs_src, 2194 .src_mgr_enb_src = src_mgr_enb_src, 2195 .src_mgr_dsb_src = src_mgr_dsb_src, 2196 .src_mgr_commit_write = src_mgr_commit_write, 2197 2198 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk, 2199 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk, 2200 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc, 2201 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser, 2202 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt, 2203 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr, 2204 .srcimp_mgr_commit_write = srcimp_mgr_commit_write, 2205 2206 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk, 2207 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk, 2208 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk, 2209 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk, 2210 .amixer_set_mode = amixer_set_mode, 2211 .amixer_set_iv = amixer_set_iv, 2212 .amixer_set_x = amixer_set_x, 2213 .amixer_set_y = amixer_set_y, 2214 .amixer_set_sadr = amixer_set_sadr, 2215 .amixer_set_se = amixer_set_se, 2216 .amixer_set_dirty = amixer_set_dirty, 2217 .amixer_set_dirty_all = amixer_set_dirty_all, 2218 .amixer_commit_write = amixer_commit_write, 2219 .amixer_get_y = amixer_get_y, 2220 .amixer_get_dirty = amixer_get_dirty, 2221 2222 .dai_get_ctrl_blk = dai_get_ctrl_blk, 2223 .dai_put_ctrl_blk = dai_put_ctrl_blk, 2224 .dai_srt_set_srco = dai_srt_set_srcr, 2225 .dai_srt_set_srcm = dai_srt_set_srcl, 2226 .dai_srt_set_rsr = dai_srt_set_rsr, 2227 .dai_srt_set_drat = dai_srt_set_drat, 2228 .dai_srt_set_ec = dai_srt_set_ec, 2229 .dai_srt_set_et = dai_srt_set_et, 2230 .dai_commit_write = dai_commit_write, 2231 2232 .dao_get_ctrl_blk = dao_get_ctrl_blk, 2233 .dao_put_ctrl_blk = dao_put_ctrl_blk, 2234 .dao_set_spos = dao_set_spos, 2235 .dao_commit_write = dao_commit_write, 2236 .dao_get_spos = dao_get_spos, 2237 2238 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk, 2239 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk, 2240 .daio_mgr_enb_dai = daio_mgr_enb_dai, 2241 .daio_mgr_dsb_dai = daio_mgr_dsb_dai, 2242 .daio_mgr_enb_dao = daio_mgr_enb_dao, 2243 .daio_mgr_dsb_dao = daio_mgr_dsb_dao, 2244 .daio_mgr_dao_init = daio_mgr_dao_init, 2245 .daio_mgr_set_imaparc = daio_mgr_set_imaparc, 2246 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt, 2247 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr, 2248 .daio_mgr_commit_write = daio_mgr_commit_write, 2249 2250 .set_timer_irq = set_timer_irq, 2251 .set_timer_tick = set_timer_tick, 2252 .get_wc = get_wc, 2253 }; 2254 2255 int create_20k1_hw_obj(struct hw **rhw) 2256 { 2257 struct hw20k1 *hw20k1; 2258 2259 *rhw = NULL; 2260 hw20k1 = kzalloc(sizeof(*hw20k1), GFP_KERNEL); 2261 if (!hw20k1) 2262 return -ENOMEM; 2263 2264 spin_lock_init(&hw20k1->reg_20k1_lock); 2265 spin_lock_init(&hw20k1->reg_pci_lock); 2266 2267 hw20k1->hw = ct20k1_preset; 2268 2269 *rhw = &hw20k1->hw; 2270 2271 return 0; 2272 } 2273 2274 int destroy_20k1_hw_obj(struct hw *hw) 2275 { 2276 if (hw->io_base) 2277 hw_card_shutdown(hw); 2278 2279 kfree(container_of(hw, struct hw20k1, hw)); 2280 return 0; 2281 } 2282