1 /** 2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. 3 * 4 * This source file is released under GPL v2 license (no other versions). 5 * See the COPYING file included in the main directory of this source 6 * distribution for the license terms and conditions. 7 * 8 * @File cthw20k1.c 9 * 10 * @Brief 11 * This file contains the implementation of hardware access methord for 20k1. 12 * 13 * @Author Liu Chun 14 * @Date Jun 24 2008 15 * 16 */ 17 18 #include <linux/types.h> 19 #include <linux/slab.h> 20 #include <linux/pci.h> 21 #include <linux/io.h> 22 #include <linux/string.h> 23 #include <linux/spinlock.h> 24 #include <linux/kernel.h> 25 #include <linux/interrupt.h> 26 #include <linux/delay.h> 27 #include "cthw20k1.h" 28 #include "ct20k1reg.h" 29 30 #if BITS_PER_LONG == 32 31 #define CT_XFI_DMA_MASK DMA_BIT_MASK(32) /* 32 bit PTE */ 32 #else 33 #define CT_XFI_DMA_MASK DMA_BIT_MASK(64) /* 64 bit PTE */ 34 #endif 35 36 struct hw20k1 { 37 struct hw hw; 38 spinlock_t reg_20k1_lock; 39 spinlock_t reg_pci_lock; 40 }; 41 42 static u32 hw_read_20kx(struct hw *hw, u32 reg); 43 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data); 44 static u32 hw_read_pci(struct hw *hw, u32 reg); 45 static void hw_write_pci(struct hw *hw, u32 reg, u32 data); 46 47 /* 48 * Type definition block. 49 * The layout of control structures can be directly applied on 20k2 chip. 50 */ 51 52 /* 53 * SRC control block definitions. 54 */ 55 56 /* SRC resource control block */ 57 #define SRCCTL_STATE 0x00000007 58 #define SRCCTL_BM 0x00000008 59 #define SRCCTL_RSR 0x00000030 60 #define SRCCTL_SF 0x000001C0 61 #define SRCCTL_WR 0x00000200 62 #define SRCCTL_PM 0x00000400 63 #define SRCCTL_ROM 0x00001800 64 #define SRCCTL_VO 0x00002000 65 #define SRCCTL_ST 0x00004000 66 #define SRCCTL_IE 0x00008000 67 #define SRCCTL_ILSZ 0x000F0000 68 #define SRCCTL_BP 0x00100000 69 70 #define SRCCCR_CISZ 0x000007FF 71 #define SRCCCR_CWA 0x001FF800 72 #define SRCCCR_D 0x00200000 73 #define SRCCCR_RS 0x01C00000 74 #define SRCCCR_NAL 0x3E000000 75 #define SRCCCR_RA 0xC0000000 76 77 #define SRCCA_CA 0x03FFFFFF 78 #define SRCCA_RS 0x1C000000 79 #define SRCCA_NAL 0xE0000000 80 81 #define SRCSA_SA 0x03FFFFFF 82 83 #define SRCLA_LA 0x03FFFFFF 84 85 /* Mixer Parameter Ring ram Low and Hight register. 86 * Fixed-point value in 8.24 format for parameter channel */ 87 #define MPRLH_PITCH 0xFFFFFFFF 88 89 /* SRC resource register dirty flags */ 90 union src_dirty { 91 struct { 92 u16 ctl:1; 93 u16 ccr:1; 94 u16 sa:1; 95 u16 la:1; 96 u16 ca:1; 97 u16 mpr:1; 98 u16 czbfs:1; /* Clear Z-Buffers */ 99 u16 rsv:9; 100 } bf; 101 u16 data; 102 }; 103 104 struct src_rsc_ctrl_blk { 105 unsigned int ctl; 106 unsigned int ccr; 107 unsigned int ca; 108 unsigned int sa; 109 unsigned int la; 110 unsigned int mpr; 111 union src_dirty dirty; 112 }; 113 114 /* SRC manager control block */ 115 union src_mgr_dirty { 116 struct { 117 u16 enb0:1; 118 u16 enb1:1; 119 u16 enb2:1; 120 u16 enb3:1; 121 u16 enb4:1; 122 u16 enb5:1; 123 u16 enb6:1; 124 u16 enb7:1; 125 u16 enbsa:1; 126 u16 rsv:7; 127 } bf; 128 u16 data; 129 }; 130 131 struct src_mgr_ctrl_blk { 132 unsigned int enbsa; 133 unsigned int enb[8]; 134 union src_mgr_dirty dirty; 135 }; 136 137 /* SRCIMP manager control block */ 138 #define SRCAIM_ARC 0x00000FFF 139 #define SRCAIM_NXT 0x00FF0000 140 #define SRCAIM_SRC 0xFF000000 141 142 struct srcimap { 143 unsigned int srcaim; 144 unsigned int idx; 145 }; 146 147 /* SRCIMP manager register dirty flags */ 148 union srcimp_mgr_dirty { 149 struct { 150 u16 srcimap:1; 151 u16 rsv:15; 152 } bf; 153 u16 data; 154 }; 155 156 struct srcimp_mgr_ctrl_blk { 157 struct srcimap srcimap; 158 union srcimp_mgr_dirty dirty; 159 }; 160 161 /* 162 * Function implementation block. 163 */ 164 165 static int src_get_rsc_ctrl_blk(void **rblk) 166 { 167 struct src_rsc_ctrl_blk *blk; 168 169 *rblk = NULL; 170 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 171 if (!blk) 172 return -ENOMEM; 173 174 *rblk = blk; 175 176 return 0; 177 } 178 179 static int src_put_rsc_ctrl_blk(void *blk) 180 { 181 kfree((struct src_rsc_ctrl_blk *)blk); 182 183 return 0; 184 } 185 186 static int src_set_state(void *blk, unsigned int state) 187 { 188 struct src_rsc_ctrl_blk *ctl = blk; 189 190 set_field(&ctl->ctl, SRCCTL_STATE, state); 191 ctl->dirty.bf.ctl = 1; 192 return 0; 193 } 194 195 static int src_set_bm(void *blk, unsigned int bm) 196 { 197 struct src_rsc_ctrl_blk *ctl = blk; 198 199 set_field(&ctl->ctl, SRCCTL_BM, bm); 200 ctl->dirty.bf.ctl = 1; 201 return 0; 202 } 203 204 static int src_set_rsr(void *blk, unsigned int rsr) 205 { 206 struct src_rsc_ctrl_blk *ctl = blk; 207 208 set_field(&ctl->ctl, SRCCTL_RSR, rsr); 209 ctl->dirty.bf.ctl = 1; 210 return 0; 211 } 212 213 static int src_set_sf(void *blk, unsigned int sf) 214 { 215 struct src_rsc_ctrl_blk *ctl = blk; 216 217 set_field(&ctl->ctl, SRCCTL_SF, sf); 218 ctl->dirty.bf.ctl = 1; 219 return 0; 220 } 221 222 static int src_set_wr(void *blk, unsigned int wr) 223 { 224 struct src_rsc_ctrl_blk *ctl = blk; 225 226 set_field(&ctl->ctl, SRCCTL_WR, wr); 227 ctl->dirty.bf.ctl = 1; 228 return 0; 229 } 230 231 static int src_set_pm(void *blk, unsigned int pm) 232 { 233 struct src_rsc_ctrl_blk *ctl = blk; 234 235 set_field(&ctl->ctl, SRCCTL_PM, pm); 236 ctl->dirty.bf.ctl = 1; 237 return 0; 238 } 239 240 static int src_set_rom(void *blk, unsigned int rom) 241 { 242 struct src_rsc_ctrl_blk *ctl = blk; 243 244 set_field(&ctl->ctl, SRCCTL_ROM, rom); 245 ctl->dirty.bf.ctl = 1; 246 return 0; 247 } 248 249 static int src_set_vo(void *blk, unsigned int vo) 250 { 251 struct src_rsc_ctrl_blk *ctl = blk; 252 253 set_field(&ctl->ctl, SRCCTL_VO, vo); 254 ctl->dirty.bf.ctl = 1; 255 return 0; 256 } 257 258 static int src_set_st(void *blk, unsigned int st) 259 { 260 struct src_rsc_ctrl_blk *ctl = blk; 261 262 set_field(&ctl->ctl, SRCCTL_ST, st); 263 ctl->dirty.bf.ctl = 1; 264 return 0; 265 } 266 267 static int src_set_ie(void *blk, unsigned int ie) 268 { 269 struct src_rsc_ctrl_blk *ctl = blk; 270 271 set_field(&ctl->ctl, SRCCTL_IE, ie); 272 ctl->dirty.bf.ctl = 1; 273 return 0; 274 } 275 276 static int src_set_ilsz(void *blk, unsigned int ilsz) 277 { 278 struct src_rsc_ctrl_blk *ctl = blk; 279 280 set_field(&ctl->ctl, SRCCTL_ILSZ, ilsz); 281 ctl->dirty.bf.ctl = 1; 282 return 0; 283 } 284 285 static int src_set_bp(void *blk, unsigned int bp) 286 { 287 struct src_rsc_ctrl_blk *ctl = blk; 288 289 set_field(&ctl->ctl, SRCCTL_BP, bp); 290 ctl->dirty.bf.ctl = 1; 291 return 0; 292 } 293 294 static int src_set_cisz(void *blk, unsigned int cisz) 295 { 296 struct src_rsc_ctrl_blk *ctl = blk; 297 298 set_field(&ctl->ccr, SRCCCR_CISZ, cisz); 299 ctl->dirty.bf.ccr = 1; 300 return 0; 301 } 302 303 static int src_set_ca(void *blk, unsigned int ca) 304 { 305 struct src_rsc_ctrl_blk *ctl = blk; 306 307 set_field(&ctl->ca, SRCCA_CA, ca); 308 ctl->dirty.bf.ca = 1; 309 return 0; 310 } 311 312 static int src_set_sa(void *blk, unsigned int sa) 313 { 314 struct src_rsc_ctrl_blk *ctl = blk; 315 316 set_field(&ctl->sa, SRCSA_SA, sa); 317 ctl->dirty.bf.sa = 1; 318 return 0; 319 } 320 321 static int src_set_la(void *blk, unsigned int la) 322 { 323 struct src_rsc_ctrl_blk *ctl = blk; 324 325 set_field(&ctl->la, SRCLA_LA, la); 326 ctl->dirty.bf.la = 1; 327 return 0; 328 } 329 330 static int src_set_pitch(void *blk, unsigned int pitch) 331 { 332 struct src_rsc_ctrl_blk *ctl = blk; 333 334 set_field(&ctl->mpr, MPRLH_PITCH, pitch); 335 ctl->dirty.bf.mpr = 1; 336 return 0; 337 } 338 339 static int src_set_clear_zbufs(void *blk, unsigned int clear) 340 { 341 ((struct src_rsc_ctrl_blk *)blk)->dirty.bf.czbfs = (clear ? 1 : 0); 342 return 0; 343 } 344 345 static int src_set_dirty(void *blk, unsigned int flags) 346 { 347 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 348 return 0; 349 } 350 351 static int src_set_dirty_all(void *blk) 352 { 353 ((struct src_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 354 return 0; 355 } 356 357 #define AR_SLOT_SIZE 4096 358 #define AR_SLOT_BLOCK_SIZE 16 359 #define AR_PTS_PITCH 6 360 #define AR_PARAM_SRC_OFFSET 0x60 361 362 static unsigned int src_param_pitch_mixer(unsigned int src_idx) 363 { 364 return ((src_idx << 4) + AR_PTS_PITCH + AR_SLOT_SIZE 365 - AR_PARAM_SRC_OFFSET) % AR_SLOT_SIZE; 366 367 } 368 369 static int src_commit_write(struct hw *hw, unsigned int idx, void *blk) 370 { 371 struct src_rsc_ctrl_blk *ctl = blk; 372 int i; 373 374 if (ctl->dirty.bf.czbfs) { 375 /* Clear Z-Buffer registers */ 376 for (i = 0; i < 8; i++) 377 hw_write_20kx(hw, SRCUPZ+idx*0x100+i*0x4, 0); 378 379 for (i = 0; i < 4; i++) 380 hw_write_20kx(hw, SRCDN0Z+idx*0x100+i*0x4, 0); 381 382 for (i = 0; i < 8; i++) 383 hw_write_20kx(hw, SRCDN1Z+idx*0x100+i*0x4, 0); 384 385 ctl->dirty.bf.czbfs = 0; 386 } 387 if (ctl->dirty.bf.mpr) { 388 /* Take the parameter mixer resource in the same group as that 389 * the idx src is in for simplicity. Unlike src, all conjugate 390 * parameter mixer resources must be programmed for 391 * corresponding conjugate src resources. */ 392 unsigned int pm_idx = src_param_pitch_mixer(idx); 393 hw_write_20kx(hw, PRING_LO_HI+4*pm_idx, ctl->mpr); 394 hw_write_20kx(hw, PMOPLO+8*pm_idx, 0x3); 395 hw_write_20kx(hw, PMOPHI+8*pm_idx, 0x0); 396 ctl->dirty.bf.mpr = 0; 397 } 398 if (ctl->dirty.bf.sa) { 399 hw_write_20kx(hw, SRCSA+idx*0x100, ctl->sa); 400 ctl->dirty.bf.sa = 0; 401 } 402 if (ctl->dirty.bf.la) { 403 hw_write_20kx(hw, SRCLA+idx*0x100, ctl->la); 404 ctl->dirty.bf.la = 0; 405 } 406 if (ctl->dirty.bf.ca) { 407 hw_write_20kx(hw, SRCCA+idx*0x100, ctl->ca); 408 ctl->dirty.bf.ca = 0; 409 } 410 411 /* Write srccf register */ 412 hw_write_20kx(hw, SRCCF+idx*0x100, 0x0); 413 414 if (ctl->dirty.bf.ccr) { 415 hw_write_20kx(hw, SRCCCR+idx*0x100, ctl->ccr); 416 ctl->dirty.bf.ccr = 0; 417 } 418 if (ctl->dirty.bf.ctl) { 419 hw_write_20kx(hw, SRCCTL+idx*0x100, ctl->ctl); 420 ctl->dirty.bf.ctl = 0; 421 } 422 423 return 0; 424 } 425 426 static int src_get_ca(struct hw *hw, unsigned int idx, void *blk) 427 { 428 struct src_rsc_ctrl_blk *ctl = blk; 429 430 ctl->ca = hw_read_20kx(hw, SRCCA+idx*0x100); 431 ctl->dirty.bf.ca = 0; 432 433 return get_field(ctl->ca, SRCCA_CA); 434 } 435 436 static unsigned int src_get_dirty(void *blk) 437 { 438 return ((struct src_rsc_ctrl_blk *)blk)->dirty.data; 439 } 440 441 static unsigned int src_dirty_conj_mask(void) 442 { 443 return 0x20; 444 } 445 446 static int src_mgr_enbs_src(void *blk, unsigned int idx) 447 { 448 ((struct src_mgr_ctrl_blk *)blk)->enbsa = ~(0x0); 449 ((struct src_mgr_ctrl_blk *)blk)->dirty.bf.enbsa = 1; 450 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 451 return 0; 452 } 453 454 static int src_mgr_enb_src(void *blk, unsigned int idx) 455 { 456 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] |= (0x1 << (idx%32)); 457 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 458 return 0; 459 } 460 461 static int src_mgr_dsb_src(void *blk, unsigned int idx) 462 { 463 ((struct src_mgr_ctrl_blk *)blk)->enb[idx/32] &= ~(0x1 << (idx%32)); 464 ((struct src_mgr_ctrl_blk *)blk)->dirty.data |= (0x1 << (idx/32)); 465 return 0; 466 } 467 468 static int src_mgr_commit_write(struct hw *hw, void *blk) 469 { 470 struct src_mgr_ctrl_blk *ctl = blk; 471 int i; 472 unsigned int ret; 473 474 if (ctl->dirty.bf.enbsa) { 475 do { 476 ret = hw_read_20kx(hw, SRCENBSTAT); 477 } while (ret & 0x1); 478 hw_write_20kx(hw, SRCENBS, ctl->enbsa); 479 ctl->dirty.bf.enbsa = 0; 480 } 481 for (i = 0; i < 8; i++) { 482 if ((ctl->dirty.data & (0x1 << i))) { 483 hw_write_20kx(hw, SRCENB+(i*0x100), ctl->enb[i]); 484 ctl->dirty.data &= ~(0x1 << i); 485 } 486 } 487 488 return 0; 489 } 490 491 static int src_mgr_get_ctrl_blk(void **rblk) 492 { 493 struct src_mgr_ctrl_blk *blk; 494 495 *rblk = NULL; 496 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 497 if (!blk) 498 return -ENOMEM; 499 500 *rblk = blk; 501 502 return 0; 503 } 504 505 static int src_mgr_put_ctrl_blk(void *blk) 506 { 507 kfree((struct src_mgr_ctrl_blk *)blk); 508 509 return 0; 510 } 511 512 static int srcimp_mgr_get_ctrl_blk(void **rblk) 513 { 514 struct srcimp_mgr_ctrl_blk *blk; 515 516 *rblk = NULL; 517 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 518 if (!blk) 519 return -ENOMEM; 520 521 *rblk = blk; 522 523 return 0; 524 } 525 526 static int srcimp_mgr_put_ctrl_blk(void *blk) 527 { 528 kfree((struct srcimp_mgr_ctrl_blk *)blk); 529 530 return 0; 531 } 532 533 static int srcimp_mgr_set_imaparc(void *blk, unsigned int slot) 534 { 535 struct srcimp_mgr_ctrl_blk *ctl = blk; 536 537 set_field(&ctl->srcimap.srcaim, SRCAIM_ARC, slot); 538 ctl->dirty.bf.srcimap = 1; 539 return 0; 540 } 541 542 static int srcimp_mgr_set_imapuser(void *blk, unsigned int user) 543 { 544 struct srcimp_mgr_ctrl_blk *ctl = blk; 545 546 set_field(&ctl->srcimap.srcaim, SRCAIM_SRC, user); 547 ctl->dirty.bf.srcimap = 1; 548 return 0; 549 } 550 551 static int srcimp_mgr_set_imapnxt(void *blk, unsigned int next) 552 { 553 struct srcimp_mgr_ctrl_blk *ctl = blk; 554 555 set_field(&ctl->srcimap.srcaim, SRCAIM_NXT, next); 556 ctl->dirty.bf.srcimap = 1; 557 return 0; 558 } 559 560 static int srcimp_mgr_set_imapaddr(void *blk, unsigned int addr) 561 { 562 struct srcimp_mgr_ctrl_blk *ctl = blk; 563 564 ctl->srcimap.idx = addr; 565 ctl->dirty.bf.srcimap = 1; 566 return 0; 567 } 568 569 static int srcimp_mgr_commit_write(struct hw *hw, void *blk) 570 { 571 struct srcimp_mgr_ctrl_blk *ctl = blk; 572 573 if (ctl->dirty.bf.srcimap) { 574 hw_write_20kx(hw, SRCIMAP+ctl->srcimap.idx*0x100, 575 ctl->srcimap.srcaim); 576 ctl->dirty.bf.srcimap = 0; 577 } 578 579 return 0; 580 } 581 582 /* 583 * AMIXER control block definitions. 584 */ 585 586 #define AMOPLO_M 0x00000003 587 #define AMOPLO_X 0x0003FFF0 588 #define AMOPLO_Y 0xFFFC0000 589 590 #define AMOPHI_SADR 0x000000FF 591 #define AMOPHI_SE 0x80000000 592 593 /* AMIXER resource register dirty flags */ 594 union amixer_dirty { 595 struct { 596 u16 amoplo:1; 597 u16 amophi:1; 598 u16 rsv:14; 599 } bf; 600 u16 data; 601 }; 602 603 /* AMIXER resource control block */ 604 struct amixer_rsc_ctrl_blk { 605 unsigned int amoplo; 606 unsigned int amophi; 607 union amixer_dirty dirty; 608 }; 609 610 static int amixer_set_mode(void *blk, unsigned int mode) 611 { 612 struct amixer_rsc_ctrl_blk *ctl = blk; 613 614 set_field(&ctl->amoplo, AMOPLO_M, mode); 615 ctl->dirty.bf.amoplo = 1; 616 return 0; 617 } 618 619 static int amixer_set_iv(void *blk, unsigned int iv) 620 { 621 /* 20k1 amixer does not have this field */ 622 return 0; 623 } 624 625 static int amixer_set_x(void *blk, unsigned int x) 626 { 627 struct amixer_rsc_ctrl_blk *ctl = blk; 628 629 set_field(&ctl->amoplo, AMOPLO_X, x); 630 ctl->dirty.bf.amoplo = 1; 631 return 0; 632 } 633 634 static int amixer_set_y(void *blk, unsigned int y) 635 { 636 struct amixer_rsc_ctrl_blk *ctl = blk; 637 638 set_field(&ctl->amoplo, AMOPLO_Y, y); 639 ctl->dirty.bf.amoplo = 1; 640 return 0; 641 } 642 643 static int amixer_set_sadr(void *blk, unsigned int sadr) 644 { 645 struct amixer_rsc_ctrl_blk *ctl = blk; 646 647 set_field(&ctl->amophi, AMOPHI_SADR, sadr); 648 ctl->dirty.bf.amophi = 1; 649 return 0; 650 } 651 652 static int amixer_set_se(void *blk, unsigned int se) 653 { 654 struct amixer_rsc_ctrl_blk *ctl = blk; 655 656 set_field(&ctl->amophi, AMOPHI_SE, se); 657 ctl->dirty.bf.amophi = 1; 658 return 0; 659 } 660 661 static int amixer_set_dirty(void *blk, unsigned int flags) 662 { 663 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = (flags & 0xffff); 664 return 0; 665 } 666 667 static int amixer_set_dirty_all(void *blk) 668 { 669 ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data = ~(0x0); 670 return 0; 671 } 672 673 static int amixer_commit_write(struct hw *hw, unsigned int idx, void *blk) 674 { 675 struct amixer_rsc_ctrl_blk *ctl = blk; 676 677 if (ctl->dirty.bf.amoplo || ctl->dirty.bf.amophi) { 678 hw_write_20kx(hw, AMOPLO+idx*8, ctl->amoplo); 679 ctl->dirty.bf.amoplo = 0; 680 hw_write_20kx(hw, AMOPHI+idx*8, ctl->amophi); 681 ctl->dirty.bf.amophi = 0; 682 } 683 684 return 0; 685 } 686 687 static int amixer_get_y(void *blk) 688 { 689 struct amixer_rsc_ctrl_blk *ctl = blk; 690 691 return get_field(ctl->amoplo, AMOPLO_Y); 692 } 693 694 static unsigned int amixer_get_dirty(void *blk) 695 { 696 return ((struct amixer_rsc_ctrl_blk *)blk)->dirty.data; 697 } 698 699 static int amixer_rsc_get_ctrl_blk(void **rblk) 700 { 701 struct amixer_rsc_ctrl_blk *blk; 702 703 *rblk = NULL; 704 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 705 if (!blk) 706 return -ENOMEM; 707 708 *rblk = blk; 709 710 return 0; 711 } 712 713 static int amixer_rsc_put_ctrl_blk(void *blk) 714 { 715 kfree((struct amixer_rsc_ctrl_blk *)blk); 716 717 return 0; 718 } 719 720 static int amixer_mgr_get_ctrl_blk(void **rblk) 721 { 722 /*amixer_mgr_ctrl_blk_t *blk;*/ 723 724 *rblk = NULL; 725 /*blk = kzalloc(sizeof(*blk), GFP_KERNEL); 726 if (!blk) 727 return -ENOMEM; 728 729 *rblk = blk;*/ 730 731 return 0; 732 } 733 734 static int amixer_mgr_put_ctrl_blk(void *blk) 735 { 736 /*kfree((amixer_mgr_ctrl_blk_t *)blk);*/ 737 738 return 0; 739 } 740 741 /* 742 * DAIO control block definitions. 743 */ 744 745 /* Receiver Sample Rate Tracker Control register */ 746 #define SRTCTL_SRCR 0x000000FF 747 #define SRTCTL_SRCL 0x0000FF00 748 #define SRTCTL_RSR 0x00030000 749 #define SRTCTL_DRAT 0x000C0000 750 #define SRTCTL_RLE 0x10000000 751 #define SRTCTL_RLP 0x20000000 752 #define SRTCTL_EC 0x40000000 753 #define SRTCTL_ET 0x80000000 754 755 /* DAIO Receiver register dirty flags */ 756 union dai_dirty { 757 struct { 758 u16 srtctl:1; 759 u16 rsv:15; 760 } bf; 761 u16 data; 762 }; 763 764 /* DAIO Receiver control block */ 765 struct dai_ctrl_blk { 766 unsigned int srtctl; 767 union dai_dirty dirty; 768 }; 769 770 /* S/PDIF Transmitter register dirty flags */ 771 union dao_dirty { 772 struct { 773 u16 spos:1; 774 u16 rsv:15; 775 } bf; 776 u16 data; 777 }; 778 779 /* S/PDIF Transmitter control block */ 780 struct dao_ctrl_blk { 781 unsigned int spos; /* S/PDIF Output Channel Status Register */ 782 union dao_dirty dirty; 783 }; 784 785 /* Audio Input Mapper RAM */ 786 #define AIM_ARC 0x00000FFF 787 #define AIM_NXT 0x007F0000 788 789 struct daoimap { 790 unsigned int aim; 791 unsigned int idx; 792 }; 793 794 /* I2S Transmitter/Receiver Control register */ 795 #define I2SCTL_EA 0x00000004 796 #define I2SCTL_EI 0x00000010 797 798 /* S/PDIF Transmitter Control register */ 799 #define SPOCTL_OE 0x00000001 800 #define SPOCTL_OS 0x0000000E 801 #define SPOCTL_RIV 0x00000010 802 #define SPOCTL_LIV 0x00000020 803 #define SPOCTL_SR 0x000000C0 804 805 /* S/PDIF Receiver Control register */ 806 #define SPICTL_EN 0x00000001 807 #define SPICTL_I24 0x00000002 808 #define SPICTL_IB 0x00000004 809 #define SPICTL_SM 0x00000008 810 #define SPICTL_VM 0x00000010 811 812 /* DAIO manager register dirty flags */ 813 union daio_mgr_dirty { 814 struct { 815 u32 i2soctl:4; 816 u32 i2sictl:4; 817 u32 spoctl:4; 818 u32 spictl:4; 819 u32 daoimap:1; 820 u32 rsv:15; 821 } bf; 822 u32 data; 823 }; 824 825 /* DAIO manager control block */ 826 struct daio_mgr_ctrl_blk { 827 unsigned int i2sctl; 828 unsigned int spoctl; 829 unsigned int spictl; 830 struct daoimap daoimap; 831 union daio_mgr_dirty dirty; 832 }; 833 834 static int dai_srt_set_srcr(void *blk, unsigned int src) 835 { 836 struct dai_ctrl_blk *ctl = blk; 837 838 set_field(&ctl->srtctl, SRTCTL_SRCR, src); 839 ctl->dirty.bf.srtctl = 1; 840 return 0; 841 } 842 843 static int dai_srt_set_srcl(void *blk, unsigned int src) 844 { 845 struct dai_ctrl_blk *ctl = blk; 846 847 set_field(&ctl->srtctl, SRTCTL_SRCL, src); 848 ctl->dirty.bf.srtctl = 1; 849 return 0; 850 } 851 852 static int dai_srt_set_rsr(void *blk, unsigned int rsr) 853 { 854 struct dai_ctrl_blk *ctl = blk; 855 856 set_field(&ctl->srtctl, SRTCTL_RSR, rsr); 857 ctl->dirty.bf.srtctl = 1; 858 return 0; 859 } 860 861 static int dai_srt_set_drat(void *blk, unsigned int drat) 862 { 863 struct dai_ctrl_blk *ctl = blk; 864 865 set_field(&ctl->srtctl, SRTCTL_DRAT, drat); 866 ctl->dirty.bf.srtctl = 1; 867 return 0; 868 } 869 870 static int dai_srt_set_ec(void *blk, unsigned int ec) 871 { 872 struct dai_ctrl_blk *ctl = blk; 873 874 set_field(&ctl->srtctl, SRTCTL_EC, ec ? 1 : 0); 875 ctl->dirty.bf.srtctl = 1; 876 return 0; 877 } 878 879 static int dai_srt_set_et(void *blk, unsigned int et) 880 { 881 struct dai_ctrl_blk *ctl = blk; 882 883 set_field(&ctl->srtctl, SRTCTL_ET, et ? 1 : 0); 884 ctl->dirty.bf.srtctl = 1; 885 return 0; 886 } 887 888 static int dai_commit_write(struct hw *hw, unsigned int idx, void *blk) 889 { 890 struct dai_ctrl_blk *ctl = blk; 891 892 if (ctl->dirty.bf.srtctl) { 893 if (idx < 4) { 894 /* S/PDIF SRTs */ 895 hw_write_20kx(hw, SRTSCTL+0x4*idx, ctl->srtctl); 896 } else { 897 /* I2S SRT */ 898 hw_write_20kx(hw, SRTICTL, ctl->srtctl); 899 } 900 ctl->dirty.bf.srtctl = 0; 901 } 902 903 return 0; 904 } 905 906 static int dai_get_ctrl_blk(void **rblk) 907 { 908 struct dai_ctrl_blk *blk; 909 910 *rblk = NULL; 911 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 912 if (!blk) 913 return -ENOMEM; 914 915 *rblk = blk; 916 917 return 0; 918 } 919 920 static int dai_put_ctrl_blk(void *blk) 921 { 922 kfree((struct dai_ctrl_blk *)blk); 923 924 return 0; 925 } 926 927 static int dao_set_spos(void *blk, unsigned int spos) 928 { 929 ((struct dao_ctrl_blk *)blk)->spos = spos; 930 ((struct dao_ctrl_blk *)blk)->dirty.bf.spos = 1; 931 return 0; 932 } 933 934 static int dao_commit_write(struct hw *hw, unsigned int idx, void *blk) 935 { 936 struct dao_ctrl_blk *ctl = blk; 937 938 if (ctl->dirty.bf.spos) { 939 if (idx < 4) { 940 /* S/PDIF SPOSx */ 941 hw_write_20kx(hw, SPOS+0x4*idx, ctl->spos); 942 } 943 ctl->dirty.bf.spos = 0; 944 } 945 946 return 0; 947 } 948 949 static int dao_get_spos(void *blk, unsigned int *spos) 950 { 951 *spos = ((struct dao_ctrl_blk *)blk)->spos; 952 return 0; 953 } 954 955 static int dao_get_ctrl_blk(void **rblk) 956 { 957 struct dao_ctrl_blk *blk; 958 959 *rblk = NULL; 960 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 961 if (!blk) 962 return -ENOMEM; 963 964 *rblk = blk; 965 966 return 0; 967 } 968 969 static int dao_put_ctrl_blk(void *blk) 970 { 971 kfree((struct dao_ctrl_blk *)blk); 972 973 return 0; 974 } 975 976 static int daio_mgr_enb_dai(void *blk, unsigned int idx) 977 { 978 struct daio_mgr_ctrl_blk *ctl = blk; 979 980 if (idx < 4) { 981 /* S/PDIF input */ 982 set_field(&ctl->spictl, SPICTL_EN << (idx*8), 1); 983 ctl->dirty.bf.spictl |= (0x1 << idx); 984 } else { 985 /* I2S input */ 986 idx %= 4; 987 set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 1); 988 ctl->dirty.bf.i2sictl |= (0x1 << idx); 989 } 990 return 0; 991 } 992 993 static int daio_mgr_dsb_dai(void *blk, unsigned int idx) 994 { 995 struct daio_mgr_ctrl_blk *ctl = blk; 996 997 if (idx < 4) { 998 /* S/PDIF input */ 999 set_field(&ctl->spictl, SPICTL_EN << (idx*8), 0); 1000 ctl->dirty.bf.spictl |= (0x1 << idx); 1001 } else { 1002 /* I2S input */ 1003 idx %= 4; 1004 set_field(&ctl->i2sctl, I2SCTL_EI << (idx*8), 0); 1005 ctl->dirty.bf.i2sictl |= (0x1 << idx); 1006 } 1007 return 0; 1008 } 1009 1010 static int daio_mgr_enb_dao(void *blk, unsigned int idx) 1011 { 1012 struct daio_mgr_ctrl_blk *ctl = blk; 1013 1014 if (idx < 4) { 1015 /* S/PDIF output */ 1016 set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 1); 1017 ctl->dirty.bf.spoctl |= (0x1 << idx); 1018 } else { 1019 /* I2S output */ 1020 idx %= 4; 1021 set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 1); 1022 ctl->dirty.bf.i2soctl |= (0x1 << idx); 1023 } 1024 return 0; 1025 } 1026 1027 static int daio_mgr_dsb_dao(void *blk, unsigned int idx) 1028 { 1029 struct daio_mgr_ctrl_blk *ctl = blk; 1030 1031 if (idx < 4) { 1032 /* S/PDIF output */ 1033 set_field(&ctl->spoctl, SPOCTL_OE << (idx*8), 0); 1034 ctl->dirty.bf.spoctl |= (0x1 << idx); 1035 } else { 1036 /* I2S output */ 1037 idx %= 4; 1038 set_field(&ctl->i2sctl, I2SCTL_EA << (idx*8), 0); 1039 ctl->dirty.bf.i2soctl |= (0x1 << idx); 1040 } 1041 return 0; 1042 } 1043 1044 static int daio_mgr_dao_init(void *blk, unsigned int idx, unsigned int conf) 1045 { 1046 struct daio_mgr_ctrl_blk *ctl = blk; 1047 1048 if (idx < 4) { 1049 /* S/PDIF output */ 1050 switch ((conf & 0x7)) { 1051 case 0: 1052 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 3); 1053 break; /* CDIF */ 1054 case 1: 1055 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 0); 1056 break; 1057 case 2: 1058 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 1); 1059 break; 1060 case 4: 1061 set_field(&ctl->spoctl, SPOCTL_SR << (idx*8), 2); 1062 break; 1063 default: 1064 break; 1065 } 1066 set_field(&ctl->spoctl, SPOCTL_LIV << (idx*8), 1067 (conf >> 4) & 0x1); /* Non-audio */ 1068 set_field(&ctl->spoctl, SPOCTL_RIV << (idx*8), 1069 (conf >> 4) & 0x1); /* Non-audio */ 1070 set_field(&ctl->spoctl, SPOCTL_OS << (idx*8), 1071 ((conf >> 3) & 0x1) ? 2 : 2); /* Raw */ 1072 1073 ctl->dirty.bf.spoctl |= (0x1 << idx); 1074 } else { 1075 /* I2S output */ 1076 /*idx %= 4; */ 1077 } 1078 return 0; 1079 } 1080 1081 static int daio_mgr_set_imaparc(void *blk, unsigned int slot) 1082 { 1083 struct daio_mgr_ctrl_blk *ctl = blk; 1084 1085 set_field(&ctl->daoimap.aim, AIM_ARC, slot); 1086 ctl->dirty.bf.daoimap = 1; 1087 return 0; 1088 } 1089 1090 static int daio_mgr_set_imapnxt(void *blk, unsigned int next) 1091 { 1092 struct daio_mgr_ctrl_blk *ctl = blk; 1093 1094 set_field(&ctl->daoimap.aim, AIM_NXT, next); 1095 ctl->dirty.bf.daoimap = 1; 1096 return 0; 1097 } 1098 1099 static int daio_mgr_set_imapaddr(void *blk, unsigned int addr) 1100 { 1101 struct daio_mgr_ctrl_blk *ctl = blk; 1102 1103 ctl->daoimap.idx = addr; 1104 ctl->dirty.bf.daoimap = 1; 1105 return 0; 1106 } 1107 1108 static int daio_mgr_commit_write(struct hw *hw, void *blk) 1109 { 1110 struct daio_mgr_ctrl_blk *ctl = blk; 1111 int i; 1112 1113 if (ctl->dirty.bf.i2sictl || ctl->dirty.bf.i2soctl) { 1114 for (i = 0; i < 4; i++) { 1115 if ((ctl->dirty.bf.i2sictl & (0x1 << i))) 1116 ctl->dirty.bf.i2sictl &= ~(0x1 << i); 1117 1118 if ((ctl->dirty.bf.i2soctl & (0x1 << i))) 1119 ctl->dirty.bf.i2soctl &= ~(0x1 << i); 1120 } 1121 hw_write_20kx(hw, I2SCTL, ctl->i2sctl); 1122 mdelay(1); 1123 } 1124 if (ctl->dirty.bf.spoctl) { 1125 for (i = 0; i < 4; i++) { 1126 if ((ctl->dirty.bf.spoctl & (0x1 << i))) 1127 ctl->dirty.bf.spoctl &= ~(0x1 << i); 1128 } 1129 hw_write_20kx(hw, SPOCTL, ctl->spoctl); 1130 mdelay(1); 1131 } 1132 if (ctl->dirty.bf.spictl) { 1133 for (i = 0; i < 4; i++) { 1134 if ((ctl->dirty.bf.spictl & (0x1 << i))) 1135 ctl->dirty.bf.spictl &= ~(0x1 << i); 1136 } 1137 hw_write_20kx(hw, SPICTL, ctl->spictl); 1138 mdelay(1); 1139 } 1140 if (ctl->dirty.bf.daoimap) { 1141 hw_write_20kx(hw, DAOIMAP+ctl->daoimap.idx*4, 1142 ctl->daoimap.aim); 1143 ctl->dirty.bf.daoimap = 0; 1144 } 1145 1146 return 0; 1147 } 1148 1149 static int daio_mgr_get_ctrl_blk(struct hw *hw, void **rblk) 1150 { 1151 struct daio_mgr_ctrl_blk *blk; 1152 1153 *rblk = NULL; 1154 blk = kzalloc(sizeof(*blk), GFP_KERNEL); 1155 if (!blk) 1156 return -ENOMEM; 1157 1158 blk->i2sctl = hw_read_20kx(hw, I2SCTL); 1159 blk->spoctl = hw_read_20kx(hw, SPOCTL); 1160 blk->spictl = hw_read_20kx(hw, SPICTL); 1161 1162 *rblk = blk; 1163 1164 return 0; 1165 } 1166 1167 static int daio_mgr_put_ctrl_blk(void *blk) 1168 { 1169 kfree((struct daio_mgr_ctrl_blk *)blk); 1170 1171 return 0; 1172 } 1173 1174 /* Timer interrupt */ 1175 static int set_timer_irq(struct hw *hw, int enable) 1176 { 1177 hw_write_20kx(hw, GIE, enable ? IT_INT : 0); 1178 return 0; 1179 } 1180 1181 static int set_timer_tick(struct hw *hw, unsigned int ticks) 1182 { 1183 if (ticks) 1184 ticks |= TIMR_IE | TIMR_IP; 1185 hw_write_20kx(hw, TIMR, ticks); 1186 return 0; 1187 } 1188 1189 static unsigned int get_wc(struct hw *hw) 1190 { 1191 return hw_read_20kx(hw, WC); 1192 } 1193 1194 /* Card hardware initialization block */ 1195 struct dac_conf { 1196 unsigned int msr; /* master sample rate in rsrs */ 1197 }; 1198 1199 struct adc_conf { 1200 unsigned int msr; /* master sample rate in rsrs */ 1201 unsigned char input; /* the input source of ADC */ 1202 unsigned char mic20db; /* boost mic by 20db if input is microphone */ 1203 }; 1204 1205 struct daio_conf { 1206 unsigned int msr; /* master sample rate in rsrs */ 1207 }; 1208 1209 struct trn_conf { 1210 unsigned long vm_pgt_phys; 1211 }; 1212 1213 static int hw_daio_init(struct hw *hw, const struct daio_conf *info) 1214 { 1215 u32 i2sorg; 1216 u32 spdorg; 1217 1218 /* Read I2S CTL. Keep original value. */ 1219 /*i2sorg = hw_read_20kx(hw, I2SCTL);*/ 1220 i2sorg = 0x94040404; /* enable all audio out and I2S-D input */ 1221 /* Program I2S with proper master sample rate and enable 1222 * the correct I2S channel. */ 1223 i2sorg &= 0xfffffffc; 1224 1225 /* Enable S/PDIF-out-A in fixed 24-bit data 1226 * format and default to 48kHz. */ 1227 /* Disable all before doing any changes. */ 1228 hw_write_20kx(hw, SPOCTL, 0x0); 1229 spdorg = 0x05; 1230 1231 switch (info->msr) { 1232 case 1: 1233 i2sorg |= 1; 1234 spdorg |= (0x0 << 6); 1235 break; 1236 case 2: 1237 i2sorg |= 2; 1238 spdorg |= (0x1 << 6); 1239 break; 1240 case 4: 1241 i2sorg |= 3; 1242 spdorg |= (0x2 << 6); 1243 break; 1244 default: 1245 i2sorg |= 1; 1246 break; 1247 } 1248 1249 hw_write_20kx(hw, I2SCTL, i2sorg); 1250 hw_write_20kx(hw, SPOCTL, spdorg); 1251 1252 /* Enable S/PDIF-in-A in fixed 24-bit data format. */ 1253 /* Disable all before doing any changes. */ 1254 hw_write_20kx(hw, SPICTL, 0x0); 1255 mdelay(1); 1256 spdorg = 0x0a0a0a0a; 1257 hw_write_20kx(hw, SPICTL, spdorg); 1258 mdelay(1); 1259 1260 return 0; 1261 } 1262 1263 /* TRANSPORT operations */ 1264 static int hw_trn_init(struct hw *hw, const struct trn_conf *info) 1265 { 1266 u32 trnctl; 1267 u32 ptp_phys_low, ptp_phys_high; 1268 1269 /* Set up device page table */ 1270 if ((~0UL) == info->vm_pgt_phys) { 1271 dev_err(hw->card->dev, 1272 "Wrong device page table page address!\n"); 1273 return -1; 1274 } 1275 1276 trnctl = 0x13; /* 32-bit, 4k-size page */ 1277 ptp_phys_low = (u32)info->vm_pgt_phys; 1278 ptp_phys_high = upper_32_bits(info->vm_pgt_phys); 1279 if (sizeof(void *) == 8) /* 64bit address */ 1280 trnctl |= (1 << 2); 1281 #if 0 /* Only 4k h/w pages for simplicitiy */ 1282 #if PAGE_SIZE == 8192 1283 trnctl |= (1<<5); 1284 #endif 1285 #endif 1286 hw_write_20kx(hw, PTPALX, ptp_phys_low); 1287 hw_write_20kx(hw, PTPAHX, ptp_phys_high); 1288 hw_write_20kx(hw, TRNCTL, trnctl); 1289 hw_write_20kx(hw, TRNIS, 0x200c01); /* really needed? */ 1290 1291 return 0; 1292 } 1293 1294 /* Card initialization */ 1295 #define GCTL_EAC 0x00000001 1296 #define GCTL_EAI 0x00000002 1297 #define GCTL_BEP 0x00000004 1298 #define GCTL_BES 0x00000008 1299 #define GCTL_DSP 0x00000010 1300 #define GCTL_DBP 0x00000020 1301 #define GCTL_ABP 0x00000040 1302 #define GCTL_TBP 0x00000080 1303 #define GCTL_SBP 0x00000100 1304 #define GCTL_FBP 0x00000200 1305 #define GCTL_XA 0x00000400 1306 #define GCTL_ET 0x00000800 1307 #define GCTL_PR 0x00001000 1308 #define GCTL_MRL 0x00002000 1309 #define GCTL_SDE 0x00004000 1310 #define GCTL_SDI 0x00008000 1311 #define GCTL_SM 0x00010000 1312 #define GCTL_SR 0x00020000 1313 #define GCTL_SD 0x00040000 1314 #define GCTL_SE 0x00080000 1315 #define GCTL_AID 0x00100000 1316 1317 static int hw_pll_init(struct hw *hw, unsigned int rsr) 1318 { 1319 unsigned int pllctl; 1320 int i; 1321 1322 pllctl = (48000 == rsr) ? 0x1480a001 : 0x1480a731; 1323 for (i = 0; i < 3; i++) { 1324 if (hw_read_20kx(hw, PLLCTL) == pllctl) 1325 break; 1326 1327 hw_write_20kx(hw, PLLCTL, pllctl); 1328 mdelay(40); 1329 } 1330 if (i >= 3) { 1331 dev_alert(hw->card->dev, "PLL initialization failed!!!\n"); 1332 return -EBUSY; 1333 } 1334 1335 return 0; 1336 } 1337 1338 static int hw_auto_init(struct hw *hw) 1339 { 1340 unsigned int gctl; 1341 int i; 1342 1343 gctl = hw_read_20kx(hw, GCTL); 1344 set_field(&gctl, GCTL_EAI, 0); 1345 hw_write_20kx(hw, GCTL, gctl); 1346 set_field(&gctl, GCTL_EAI, 1); 1347 hw_write_20kx(hw, GCTL, gctl); 1348 mdelay(10); 1349 for (i = 0; i < 400000; i++) { 1350 gctl = hw_read_20kx(hw, GCTL); 1351 if (get_field(gctl, GCTL_AID)) 1352 break; 1353 } 1354 if (!get_field(gctl, GCTL_AID)) { 1355 dev_alert(hw->card->dev, "Card Auto-init failed!!!\n"); 1356 return -EBUSY; 1357 } 1358 1359 return 0; 1360 } 1361 1362 static int i2c_unlock(struct hw *hw) 1363 { 1364 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) 1365 return 0; 1366 1367 hw_write_pci(hw, 0xcc, 0x8c); 1368 hw_write_pci(hw, 0xcc, 0x0e); 1369 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) 1370 return 0; 1371 1372 hw_write_pci(hw, 0xcc, 0xee); 1373 hw_write_pci(hw, 0xcc, 0xaa); 1374 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) 1375 return 0; 1376 1377 return -1; 1378 } 1379 1380 static void i2c_lock(struct hw *hw) 1381 { 1382 if ((hw_read_pci(hw, 0xcc) & 0xff) == 0xaa) 1383 hw_write_pci(hw, 0xcc, 0x00); 1384 } 1385 1386 static void i2c_write(struct hw *hw, u32 device, u32 addr, u32 data) 1387 { 1388 unsigned int ret; 1389 1390 do { 1391 ret = hw_read_pci(hw, 0xEC); 1392 } while (!(ret & 0x800000)); 1393 hw_write_pci(hw, 0xE0, device); 1394 hw_write_pci(hw, 0xE4, (data << 8) | (addr & 0xff)); 1395 } 1396 1397 /* DAC operations */ 1398 1399 static int hw_reset_dac(struct hw *hw) 1400 { 1401 u32 i; 1402 u16 gpioorg; 1403 unsigned int ret; 1404 1405 if (i2c_unlock(hw)) 1406 return -1; 1407 1408 do { 1409 ret = hw_read_pci(hw, 0xEC); 1410 } while (!(ret & 0x800000)); 1411 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */ 1412 1413 /* To be effective, need to reset the DAC twice. */ 1414 for (i = 0; i < 2; i++) { 1415 /* set gpio */ 1416 mdelay(100); 1417 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1418 gpioorg &= 0xfffd; 1419 hw_write_20kx(hw, GPIO, gpioorg); 1420 mdelay(1); 1421 hw_write_20kx(hw, GPIO, gpioorg | 0x2); 1422 } 1423 1424 i2c_write(hw, 0x00180080, 0x01, 0x80); 1425 i2c_write(hw, 0x00180080, 0x02, 0x10); 1426 1427 i2c_lock(hw); 1428 1429 return 0; 1430 } 1431 1432 static int hw_dac_init(struct hw *hw, const struct dac_conf *info) 1433 { 1434 u32 data; 1435 u16 gpioorg; 1436 unsigned int ret; 1437 1438 if (hw->model == CTSB055X) { 1439 /* SB055x, unmute outputs */ 1440 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1441 gpioorg &= 0xffbf; /* set GPIO6 to low */ 1442 gpioorg |= 2; /* set GPIO1 to high */ 1443 hw_write_20kx(hw, GPIO, gpioorg); 1444 return 0; 1445 } 1446 1447 /* mute outputs */ 1448 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1449 gpioorg &= 0xffbf; 1450 hw_write_20kx(hw, GPIO, gpioorg); 1451 1452 hw_reset_dac(hw); 1453 1454 if (i2c_unlock(hw)) 1455 return -1; 1456 1457 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */ 1458 do { 1459 ret = hw_read_pci(hw, 0xEC); 1460 } while (!(ret & 0x800000)); 1461 1462 switch (info->msr) { 1463 case 1: 1464 data = 0x24; 1465 break; 1466 case 2: 1467 data = 0x25; 1468 break; 1469 case 4: 1470 data = 0x26; 1471 break; 1472 default: 1473 data = 0x24; 1474 break; 1475 } 1476 1477 i2c_write(hw, 0x00180080, 0x06, data); 1478 i2c_write(hw, 0x00180080, 0x09, data); 1479 i2c_write(hw, 0x00180080, 0x0c, data); 1480 i2c_write(hw, 0x00180080, 0x0f, data); 1481 1482 i2c_lock(hw); 1483 1484 /* unmute outputs */ 1485 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1486 gpioorg = gpioorg | 0x40; 1487 hw_write_20kx(hw, GPIO, gpioorg); 1488 1489 return 0; 1490 } 1491 1492 /* ADC operations */ 1493 1494 static int is_adc_input_selected_SB055x(struct hw *hw, enum ADCSRC type) 1495 { 1496 return 0; 1497 } 1498 1499 static int is_adc_input_selected_SBx(struct hw *hw, enum ADCSRC type) 1500 { 1501 u32 data; 1502 1503 data = hw_read_20kx(hw, GPIO); 1504 switch (type) { 1505 case ADC_MICIN: 1506 data = ((data & (0x1<<7)) && (data & (0x1<<8))); 1507 break; 1508 case ADC_LINEIN: 1509 data = (!(data & (0x1<<7)) && (data & (0x1<<8))); 1510 break; 1511 case ADC_NONE: /* Digital I/O */ 1512 data = (!(data & (0x1<<8))); 1513 break; 1514 default: 1515 data = 0; 1516 } 1517 return data; 1518 } 1519 1520 static int is_adc_input_selected_hendrix(struct hw *hw, enum ADCSRC type) 1521 { 1522 u32 data; 1523 1524 data = hw_read_20kx(hw, GPIO); 1525 switch (type) { 1526 case ADC_MICIN: 1527 data = (data & (0x1 << 7)) ? 1 : 0; 1528 break; 1529 case ADC_LINEIN: 1530 data = (data & (0x1 << 7)) ? 0 : 1; 1531 break; 1532 default: 1533 data = 0; 1534 } 1535 return data; 1536 } 1537 1538 static int hw_is_adc_input_selected(struct hw *hw, enum ADCSRC type) 1539 { 1540 switch (hw->model) { 1541 case CTSB055X: 1542 return is_adc_input_selected_SB055x(hw, type); 1543 case CTSB073X: 1544 return is_adc_input_selected_hendrix(hw, type); 1545 case CTUAA: 1546 return is_adc_input_selected_hendrix(hw, type); 1547 default: 1548 return is_adc_input_selected_SBx(hw, type); 1549 } 1550 } 1551 1552 static int 1553 adc_input_select_SB055x(struct hw *hw, enum ADCSRC type, unsigned char boost) 1554 { 1555 u32 data; 1556 1557 /* 1558 * check and set the following GPIO bits accordingly 1559 * ADC_Gain = GPIO2 1560 * DRM_off = GPIO3 1561 * Mic_Pwr_on = GPIO7 1562 * Digital_IO_Sel = GPIO8 1563 * Mic_Sw = GPIO9 1564 * Aux/MicLine_Sw = GPIO12 1565 */ 1566 data = hw_read_20kx(hw, GPIO); 1567 data &= 0xec73; 1568 switch (type) { 1569 case ADC_MICIN: 1570 data |= (0x1<<7) | (0x1<<8) | (0x1<<9) ; 1571 data |= boost ? (0x1<<2) : 0; 1572 break; 1573 case ADC_LINEIN: 1574 data |= (0x1<<8); 1575 break; 1576 case ADC_AUX: 1577 data |= (0x1<<8) | (0x1<<12); 1578 break; 1579 case ADC_NONE: 1580 data |= (0x1<<12); /* set to digital */ 1581 break; 1582 default: 1583 return -1; 1584 } 1585 1586 hw_write_20kx(hw, GPIO, data); 1587 1588 return 0; 1589 } 1590 1591 1592 static int 1593 adc_input_select_SBx(struct hw *hw, enum ADCSRC type, unsigned char boost) 1594 { 1595 u32 data; 1596 u32 i2c_data; 1597 unsigned int ret; 1598 1599 if (i2c_unlock(hw)) 1600 return -1; 1601 1602 do { 1603 ret = hw_read_pci(hw, 0xEC); 1604 } while (!(ret & 0x800000)); /* i2c ready poll */ 1605 /* set i2c access mode as Direct Control */ 1606 hw_write_pci(hw, 0xEC, 0x05); 1607 1608 data = hw_read_20kx(hw, GPIO); 1609 switch (type) { 1610 case ADC_MICIN: 1611 data |= ((0x1 << 7) | (0x1 << 8)); 1612 i2c_data = 0x1; /* Mic-in */ 1613 break; 1614 case ADC_LINEIN: 1615 data &= ~(0x1 << 7); 1616 data |= (0x1 << 8); 1617 i2c_data = 0x2; /* Line-in */ 1618 break; 1619 case ADC_NONE: 1620 data &= ~(0x1 << 8); 1621 i2c_data = 0x0; /* set to Digital */ 1622 break; 1623 default: 1624 i2c_lock(hw); 1625 return -1; 1626 } 1627 hw_write_20kx(hw, GPIO, data); 1628 i2c_write(hw, 0x001a0080, 0x2a, i2c_data); 1629 if (boost) { 1630 i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */ 1631 i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */ 1632 } else { 1633 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */ 1634 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */ 1635 } 1636 1637 i2c_lock(hw); 1638 1639 return 0; 1640 } 1641 1642 static int 1643 adc_input_select_hendrix(struct hw *hw, enum ADCSRC type, unsigned char boost) 1644 { 1645 u32 data; 1646 u32 i2c_data; 1647 unsigned int ret; 1648 1649 if (i2c_unlock(hw)) 1650 return -1; 1651 1652 do { 1653 ret = hw_read_pci(hw, 0xEC); 1654 } while (!(ret & 0x800000)); /* i2c ready poll */ 1655 /* set i2c access mode as Direct Control */ 1656 hw_write_pci(hw, 0xEC, 0x05); 1657 1658 data = hw_read_20kx(hw, GPIO); 1659 switch (type) { 1660 case ADC_MICIN: 1661 data |= (0x1 << 7); 1662 i2c_data = 0x1; /* Mic-in */ 1663 break; 1664 case ADC_LINEIN: 1665 data &= ~(0x1 << 7); 1666 i2c_data = 0x2; /* Line-in */ 1667 break; 1668 default: 1669 i2c_lock(hw); 1670 return -1; 1671 } 1672 hw_write_20kx(hw, GPIO, data); 1673 i2c_write(hw, 0x001a0080, 0x2a, i2c_data); 1674 if (boost) { 1675 i2c_write(hw, 0x001a0080, 0x1c, 0xe7); /* +12dB boost */ 1676 i2c_write(hw, 0x001a0080, 0x1e, 0xe7); /* +12dB boost */ 1677 } else { 1678 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); /* No boost */ 1679 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); /* No boost */ 1680 } 1681 1682 i2c_lock(hw); 1683 1684 return 0; 1685 } 1686 1687 static int hw_adc_input_select(struct hw *hw, enum ADCSRC type) 1688 { 1689 int state = type == ADC_MICIN; 1690 1691 switch (hw->model) { 1692 case CTSB055X: 1693 return adc_input_select_SB055x(hw, type, state); 1694 case CTSB073X: 1695 return adc_input_select_hendrix(hw, type, state); 1696 case CTUAA: 1697 return adc_input_select_hendrix(hw, type, state); 1698 default: 1699 return adc_input_select_SBx(hw, type, state); 1700 } 1701 } 1702 1703 static int adc_init_SB055x(struct hw *hw, int input, int mic20db) 1704 { 1705 return adc_input_select_SB055x(hw, input, mic20db); 1706 } 1707 1708 static int adc_init_SBx(struct hw *hw, int input, int mic20db) 1709 { 1710 u16 gpioorg; 1711 u16 input_source; 1712 u32 adcdata; 1713 unsigned int ret; 1714 1715 input_source = 0x100; /* default to analog */ 1716 switch (input) { 1717 case ADC_MICIN: 1718 adcdata = 0x1; 1719 input_source = 0x180; /* set GPIO7 to select Mic */ 1720 break; 1721 case ADC_LINEIN: 1722 adcdata = 0x2; 1723 break; 1724 case ADC_VIDEO: 1725 adcdata = 0x4; 1726 break; 1727 case ADC_AUX: 1728 adcdata = 0x8; 1729 break; 1730 case ADC_NONE: 1731 adcdata = 0x0; 1732 input_source = 0x0; /* set to Digital */ 1733 break; 1734 default: 1735 adcdata = 0x0; 1736 break; 1737 } 1738 1739 if (i2c_unlock(hw)) 1740 return -1; 1741 1742 do { 1743 ret = hw_read_pci(hw, 0xEC); 1744 } while (!(ret & 0x800000)); /* i2c ready poll */ 1745 hw_write_pci(hw, 0xEC, 0x05); /* write to i2c status control */ 1746 1747 i2c_write(hw, 0x001a0080, 0x0e, 0x08); 1748 i2c_write(hw, 0x001a0080, 0x18, 0x0a); 1749 i2c_write(hw, 0x001a0080, 0x28, 0x86); 1750 i2c_write(hw, 0x001a0080, 0x2a, adcdata); 1751 1752 if (mic20db) { 1753 i2c_write(hw, 0x001a0080, 0x1c, 0xf7); 1754 i2c_write(hw, 0x001a0080, 0x1e, 0xf7); 1755 } else { 1756 i2c_write(hw, 0x001a0080, 0x1c, 0xcf); 1757 i2c_write(hw, 0x001a0080, 0x1e, 0xcf); 1758 } 1759 1760 if (!(hw_read_20kx(hw, ID0) & 0x100)) 1761 i2c_write(hw, 0x001a0080, 0x16, 0x26); 1762 1763 i2c_lock(hw); 1764 1765 gpioorg = (u16)hw_read_20kx(hw, GPIO); 1766 gpioorg &= 0xfe7f; 1767 gpioorg |= input_source; 1768 hw_write_20kx(hw, GPIO, gpioorg); 1769 1770 return 0; 1771 } 1772 1773 static int hw_adc_init(struct hw *hw, const struct adc_conf *info) 1774 { 1775 if (hw->model == CTSB055X) 1776 return adc_init_SB055x(hw, info->input, info->mic20db); 1777 else 1778 return adc_init_SBx(hw, info->input, info->mic20db); 1779 } 1780 1781 static struct capabilities hw_capabilities(struct hw *hw) 1782 { 1783 struct capabilities cap; 1784 1785 /* SB073x and Vista compatible cards have no digit IO switch */ 1786 cap.digit_io_switch = !(hw->model == CTSB073X || hw->model == CTUAA); 1787 cap.dedicated_mic = 0; 1788 cap.output_switch = 0; 1789 cap.mic_source_switch = 0; 1790 1791 return cap; 1792 } 1793 1794 #define CTLBITS(a, b, c, d) (((a) << 24) | ((b) << 16) | ((c) << 8) | (d)) 1795 1796 #define UAA_CFG_PWRSTATUS 0x44 1797 #define UAA_CFG_SPACE_FLAG 0xA0 1798 #define UAA_CORE_CHANGE 0x3FFC 1799 static int uaa_to_xfi(struct pci_dev *pci) 1800 { 1801 unsigned int bar0, bar1, bar2, bar3, bar4, bar5; 1802 unsigned int cmd, irq, cl_size, l_timer, pwr; 1803 unsigned int is_uaa; 1804 unsigned int data[4] = {0}; 1805 unsigned int io_base; 1806 void __iomem *mem_base; 1807 int i; 1808 const u32 CTLX = CTLBITS('C', 'T', 'L', 'X'); 1809 const u32 CTL_ = CTLBITS('C', 'T', 'L', '-'); 1810 const u32 CTLF = CTLBITS('C', 'T', 'L', 'F'); 1811 const u32 CTLi = CTLBITS('C', 'T', 'L', 'i'); 1812 const u32 CTLA = CTLBITS('C', 'T', 'L', 'A'); 1813 const u32 CTLZ = CTLBITS('C', 'T', 'L', 'Z'); 1814 const u32 CTLL = CTLBITS('C', 'T', 'L', 'L'); 1815 1816 /* By default, Hendrix card UAA Bar0 should be using memory... */ 1817 io_base = pci_resource_start(pci, 0); 1818 mem_base = ioremap(io_base, pci_resource_len(pci, 0)); 1819 if (!mem_base) 1820 return -ENOENT; 1821 1822 /* Read current mode from Mode Change Register */ 1823 for (i = 0; i < 4; i++) 1824 data[i] = readl(mem_base + UAA_CORE_CHANGE); 1825 1826 /* Determine current mode... */ 1827 if (data[0] == CTLA) { 1828 is_uaa = ((data[1] == CTLZ && data[2] == CTLL 1829 && data[3] == CTLA) || (data[1] == CTLA 1830 && data[2] == CTLZ && data[3] == CTLL)); 1831 } else if (data[0] == CTLZ) { 1832 is_uaa = (data[1] == CTLL 1833 && data[2] == CTLA && data[3] == CTLA); 1834 } else if (data[0] == CTLL) { 1835 is_uaa = (data[1] == CTLA 1836 && data[2] == CTLA && data[3] == CTLZ); 1837 } else { 1838 is_uaa = 0; 1839 } 1840 1841 if (!is_uaa) { 1842 /* Not in UAA mode currently. Return directly. */ 1843 iounmap(mem_base); 1844 return 0; 1845 } 1846 1847 pci_read_config_dword(pci, PCI_BASE_ADDRESS_0, &bar0); 1848 pci_read_config_dword(pci, PCI_BASE_ADDRESS_1, &bar1); 1849 pci_read_config_dword(pci, PCI_BASE_ADDRESS_2, &bar2); 1850 pci_read_config_dword(pci, PCI_BASE_ADDRESS_3, &bar3); 1851 pci_read_config_dword(pci, PCI_BASE_ADDRESS_4, &bar4); 1852 pci_read_config_dword(pci, PCI_BASE_ADDRESS_5, &bar5); 1853 pci_read_config_dword(pci, PCI_INTERRUPT_LINE, &irq); 1854 pci_read_config_dword(pci, PCI_CACHE_LINE_SIZE, &cl_size); 1855 pci_read_config_dword(pci, PCI_LATENCY_TIMER, &l_timer); 1856 pci_read_config_dword(pci, UAA_CFG_PWRSTATUS, &pwr); 1857 pci_read_config_dword(pci, PCI_COMMAND, &cmd); 1858 1859 /* Set up X-Fi core PCI configuration space. */ 1860 /* Switch to X-Fi config space with BAR0 exposed. */ 1861 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x87654321); 1862 /* Copy UAA's BAR5 into X-Fi BAR0 */ 1863 pci_write_config_dword(pci, PCI_BASE_ADDRESS_0, bar5); 1864 /* Switch to X-Fi config space without BAR0 exposed. */ 1865 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x12345678); 1866 pci_write_config_dword(pci, PCI_BASE_ADDRESS_1, bar1); 1867 pci_write_config_dword(pci, PCI_BASE_ADDRESS_2, bar2); 1868 pci_write_config_dword(pci, PCI_BASE_ADDRESS_3, bar3); 1869 pci_write_config_dword(pci, PCI_BASE_ADDRESS_4, bar4); 1870 pci_write_config_dword(pci, PCI_INTERRUPT_LINE, irq); 1871 pci_write_config_dword(pci, PCI_CACHE_LINE_SIZE, cl_size); 1872 pci_write_config_dword(pci, PCI_LATENCY_TIMER, l_timer); 1873 pci_write_config_dword(pci, UAA_CFG_PWRSTATUS, pwr); 1874 pci_write_config_dword(pci, PCI_COMMAND, cmd); 1875 1876 /* Switch to X-Fi mode */ 1877 writel(CTLX, (mem_base + UAA_CORE_CHANGE)); 1878 writel(CTL_, (mem_base + UAA_CORE_CHANGE)); 1879 writel(CTLF, (mem_base + UAA_CORE_CHANGE)); 1880 writel(CTLi, (mem_base + UAA_CORE_CHANGE)); 1881 1882 iounmap(mem_base); 1883 1884 return 0; 1885 } 1886 1887 static irqreturn_t ct_20k1_interrupt(int irq, void *dev_id) 1888 { 1889 struct hw *hw = dev_id; 1890 unsigned int status; 1891 1892 status = hw_read_20kx(hw, GIP); 1893 if (!status) 1894 return IRQ_NONE; 1895 1896 if (hw->irq_callback) 1897 hw->irq_callback(hw->irq_callback_data, status); 1898 1899 hw_write_20kx(hw, GIP, status); 1900 return IRQ_HANDLED; 1901 } 1902 1903 static int hw_card_start(struct hw *hw) 1904 { 1905 int err; 1906 struct pci_dev *pci = hw->pci; 1907 1908 err = pci_enable_device(pci); 1909 if (err < 0) 1910 return err; 1911 1912 /* Set DMA transfer mask */ 1913 if (pci_set_dma_mask(pci, CT_XFI_DMA_MASK) < 0 || 1914 pci_set_consistent_dma_mask(pci, CT_XFI_DMA_MASK) < 0) { 1915 dev_err(hw->card->dev, 1916 "architecture does not support PCI busmaster DMA with mask 0x%llx\n", 1917 CT_XFI_DMA_MASK); 1918 err = -ENXIO; 1919 goto error1; 1920 } 1921 1922 if (!hw->io_base) { 1923 err = pci_request_regions(pci, "XFi"); 1924 if (err < 0) 1925 goto error1; 1926 1927 if (hw->model == CTUAA) 1928 hw->io_base = pci_resource_start(pci, 5); 1929 else 1930 hw->io_base = pci_resource_start(pci, 0); 1931 1932 } 1933 1934 /* Switch to X-Fi mode from UAA mode if neeeded */ 1935 if (hw->model == CTUAA) { 1936 err = uaa_to_xfi(pci); 1937 if (err) 1938 goto error2; 1939 1940 } 1941 1942 if (hw->irq < 0) { 1943 err = request_irq(pci->irq, ct_20k1_interrupt, IRQF_SHARED, 1944 KBUILD_MODNAME, hw); 1945 if (err < 0) { 1946 dev_err(hw->card->dev, 1947 "XFi: Cannot get irq %d\n", pci->irq); 1948 goto error2; 1949 } 1950 hw->irq = pci->irq; 1951 } 1952 1953 pci_set_master(pci); 1954 1955 return 0; 1956 1957 error2: 1958 pci_release_regions(pci); 1959 hw->io_base = 0; 1960 error1: 1961 pci_disable_device(pci); 1962 return err; 1963 } 1964 1965 static int hw_card_stop(struct hw *hw) 1966 { 1967 unsigned int data; 1968 1969 /* disable transport bus master and queueing of request */ 1970 hw_write_20kx(hw, TRNCTL, 0x00); 1971 1972 /* disable pll */ 1973 data = hw_read_20kx(hw, PLLCTL); 1974 hw_write_20kx(hw, PLLCTL, (data & (~(0x0F<<12)))); 1975 1976 /* TODO: Disable interrupt and so on... */ 1977 if (hw->irq >= 0) 1978 synchronize_irq(hw->irq); 1979 return 0; 1980 } 1981 1982 static int hw_card_shutdown(struct hw *hw) 1983 { 1984 if (hw->irq >= 0) 1985 free_irq(hw->irq, hw); 1986 1987 hw->irq = -1; 1988 iounmap(hw->mem_base); 1989 hw->mem_base = NULL; 1990 1991 if (hw->io_base) 1992 pci_release_regions(hw->pci); 1993 1994 hw->io_base = 0; 1995 1996 pci_disable_device(hw->pci); 1997 1998 return 0; 1999 } 2000 2001 static int hw_card_init(struct hw *hw, struct card_conf *info) 2002 { 2003 int err; 2004 unsigned int gctl; 2005 u32 data; 2006 struct dac_conf dac_info = {0}; 2007 struct adc_conf adc_info = {0}; 2008 struct daio_conf daio_info = {0}; 2009 struct trn_conf trn_info = {0}; 2010 2011 /* Get PCI io port base address and do Hendrix switch if needed. */ 2012 err = hw_card_start(hw); 2013 if (err) 2014 return err; 2015 2016 /* PLL init */ 2017 err = hw_pll_init(hw, info->rsr); 2018 if (err < 0) 2019 return err; 2020 2021 /* kick off auto-init */ 2022 err = hw_auto_init(hw); 2023 if (err < 0) 2024 return err; 2025 2026 /* Enable audio ring */ 2027 gctl = hw_read_20kx(hw, GCTL); 2028 set_field(&gctl, GCTL_EAC, 1); 2029 set_field(&gctl, GCTL_DBP, 1); 2030 set_field(&gctl, GCTL_TBP, 1); 2031 set_field(&gctl, GCTL_FBP, 1); 2032 set_field(&gctl, GCTL_ET, 1); 2033 hw_write_20kx(hw, GCTL, gctl); 2034 mdelay(10); 2035 2036 /* Reset all global pending interrupts */ 2037 hw_write_20kx(hw, GIE, 0); 2038 /* Reset all SRC pending interrupts */ 2039 hw_write_20kx(hw, SRCIP, 0); 2040 mdelay(30); 2041 2042 /* Detect the card ID and configure GPIO accordingly. */ 2043 switch (hw->model) { 2044 case CTSB055X: 2045 hw_write_20kx(hw, GPIOCTL, 0x13fe); 2046 break; 2047 case CTSB073X: 2048 hw_write_20kx(hw, GPIOCTL, 0x00e6); 2049 break; 2050 case CTUAA: 2051 hw_write_20kx(hw, GPIOCTL, 0x00c2); 2052 break; 2053 default: 2054 hw_write_20kx(hw, GPIOCTL, 0x01e6); 2055 break; 2056 } 2057 2058 trn_info.vm_pgt_phys = info->vm_pgt_phys; 2059 err = hw_trn_init(hw, &trn_info); 2060 if (err < 0) 2061 return err; 2062 2063 daio_info.msr = info->msr; 2064 err = hw_daio_init(hw, &daio_info); 2065 if (err < 0) 2066 return err; 2067 2068 dac_info.msr = info->msr; 2069 err = hw_dac_init(hw, &dac_info); 2070 if (err < 0) 2071 return err; 2072 2073 adc_info.msr = info->msr; 2074 adc_info.input = ADC_LINEIN; 2075 adc_info.mic20db = 0; 2076 err = hw_adc_init(hw, &adc_info); 2077 if (err < 0) 2078 return err; 2079 2080 data = hw_read_20kx(hw, SRCMCTL); 2081 data |= 0x1; /* Enables input from the audio ring */ 2082 hw_write_20kx(hw, SRCMCTL, data); 2083 2084 return 0; 2085 } 2086 2087 #ifdef CONFIG_PM_SLEEP 2088 static int hw_suspend(struct hw *hw) 2089 { 2090 struct pci_dev *pci = hw->pci; 2091 2092 hw_card_stop(hw); 2093 2094 if (hw->model == CTUAA) { 2095 /* Switch to UAA config space. */ 2096 pci_write_config_dword(pci, UAA_CFG_SPACE_FLAG, 0x0); 2097 } 2098 2099 return 0; 2100 } 2101 2102 static int hw_resume(struct hw *hw, struct card_conf *info) 2103 { 2104 /* Re-initialize card hardware. */ 2105 return hw_card_init(hw, info); 2106 } 2107 #endif 2108 2109 static u32 hw_read_20kx(struct hw *hw, u32 reg) 2110 { 2111 u32 value; 2112 unsigned long flags; 2113 2114 spin_lock_irqsave( 2115 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); 2116 outl(reg, hw->io_base + 0x0); 2117 value = inl(hw->io_base + 0x4); 2118 spin_unlock_irqrestore( 2119 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); 2120 2121 return value; 2122 } 2123 2124 static void hw_write_20kx(struct hw *hw, u32 reg, u32 data) 2125 { 2126 unsigned long flags; 2127 2128 spin_lock_irqsave( 2129 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); 2130 outl(reg, hw->io_base + 0x0); 2131 outl(data, hw->io_base + 0x4); 2132 spin_unlock_irqrestore( 2133 &container_of(hw, struct hw20k1, hw)->reg_20k1_lock, flags); 2134 2135 } 2136 2137 static u32 hw_read_pci(struct hw *hw, u32 reg) 2138 { 2139 u32 value; 2140 unsigned long flags; 2141 2142 spin_lock_irqsave( 2143 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); 2144 outl(reg, hw->io_base + 0x10); 2145 value = inl(hw->io_base + 0x14); 2146 spin_unlock_irqrestore( 2147 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); 2148 2149 return value; 2150 } 2151 2152 static void hw_write_pci(struct hw *hw, u32 reg, u32 data) 2153 { 2154 unsigned long flags; 2155 2156 spin_lock_irqsave( 2157 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); 2158 outl(reg, hw->io_base + 0x10); 2159 outl(data, hw->io_base + 0x14); 2160 spin_unlock_irqrestore( 2161 &container_of(hw, struct hw20k1, hw)->reg_pci_lock, flags); 2162 } 2163 2164 static struct hw ct20k1_preset = { 2165 .irq = -1, 2166 2167 .card_init = hw_card_init, 2168 .card_stop = hw_card_stop, 2169 .pll_init = hw_pll_init, 2170 .is_adc_source_selected = hw_is_adc_input_selected, 2171 .select_adc_source = hw_adc_input_select, 2172 .capabilities = hw_capabilities, 2173 #ifdef CONFIG_PM_SLEEP 2174 .suspend = hw_suspend, 2175 .resume = hw_resume, 2176 #endif 2177 2178 .src_rsc_get_ctrl_blk = src_get_rsc_ctrl_blk, 2179 .src_rsc_put_ctrl_blk = src_put_rsc_ctrl_blk, 2180 .src_mgr_get_ctrl_blk = src_mgr_get_ctrl_blk, 2181 .src_mgr_put_ctrl_blk = src_mgr_put_ctrl_blk, 2182 .src_set_state = src_set_state, 2183 .src_set_bm = src_set_bm, 2184 .src_set_rsr = src_set_rsr, 2185 .src_set_sf = src_set_sf, 2186 .src_set_wr = src_set_wr, 2187 .src_set_pm = src_set_pm, 2188 .src_set_rom = src_set_rom, 2189 .src_set_vo = src_set_vo, 2190 .src_set_st = src_set_st, 2191 .src_set_ie = src_set_ie, 2192 .src_set_ilsz = src_set_ilsz, 2193 .src_set_bp = src_set_bp, 2194 .src_set_cisz = src_set_cisz, 2195 .src_set_ca = src_set_ca, 2196 .src_set_sa = src_set_sa, 2197 .src_set_la = src_set_la, 2198 .src_set_pitch = src_set_pitch, 2199 .src_set_dirty = src_set_dirty, 2200 .src_set_clear_zbufs = src_set_clear_zbufs, 2201 .src_set_dirty_all = src_set_dirty_all, 2202 .src_commit_write = src_commit_write, 2203 .src_get_ca = src_get_ca, 2204 .src_get_dirty = src_get_dirty, 2205 .src_dirty_conj_mask = src_dirty_conj_mask, 2206 .src_mgr_enbs_src = src_mgr_enbs_src, 2207 .src_mgr_enb_src = src_mgr_enb_src, 2208 .src_mgr_dsb_src = src_mgr_dsb_src, 2209 .src_mgr_commit_write = src_mgr_commit_write, 2210 2211 .srcimp_mgr_get_ctrl_blk = srcimp_mgr_get_ctrl_blk, 2212 .srcimp_mgr_put_ctrl_blk = srcimp_mgr_put_ctrl_blk, 2213 .srcimp_mgr_set_imaparc = srcimp_mgr_set_imaparc, 2214 .srcimp_mgr_set_imapuser = srcimp_mgr_set_imapuser, 2215 .srcimp_mgr_set_imapnxt = srcimp_mgr_set_imapnxt, 2216 .srcimp_mgr_set_imapaddr = srcimp_mgr_set_imapaddr, 2217 .srcimp_mgr_commit_write = srcimp_mgr_commit_write, 2218 2219 .amixer_rsc_get_ctrl_blk = amixer_rsc_get_ctrl_blk, 2220 .amixer_rsc_put_ctrl_blk = amixer_rsc_put_ctrl_blk, 2221 .amixer_mgr_get_ctrl_blk = amixer_mgr_get_ctrl_blk, 2222 .amixer_mgr_put_ctrl_blk = amixer_mgr_put_ctrl_blk, 2223 .amixer_set_mode = amixer_set_mode, 2224 .amixer_set_iv = amixer_set_iv, 2225 .amixer_set_x = amixer_set_x, 2226 .amixer_set_y = amixer_set_y, 2227 .amixer_set_sadr = amixer_set_sadr, 2228 .amixer_set_se = amixer_set_se, 2229 .amixer_set_dirty = amixer_set_dirty, 2230 .amixer_set_dirty_all = amixer_set_dirty_all, 2231 .amixer_commit_write = amixer_commit_write, 2232 .amixer_get_y = amixer_get_y, 2233 .amixer_get_dirty = amixer_get_dirty, 2234 2235 .dai_get_ctrl_blk = dai_get_ctrl_blk, 2236 .dai_put_ctrl_blk = dai_put_ctrl_blk, 2237 .dai_srt_set_srco = dai_srt_set_srcr, 2238 .dai_srt_set_srcm = dai_srt_set_srcl, 2239 .dai_srt_set_rsr = dai_srt_set_rsr, 2240 .dai_srt_set_drat = dai_srt_set_drat, 2241 .dai_srt_set_ec = dai_srt_set_ec, 2242 .dai_srt_set_et = dai_srt_set_et, 2243 .dai_commit_write = dai_commit_write, 2244 2245 .dao_get_ctrl_blk = dao_get_ctrl_blk, 2246 .dao_put_ctrl_blk = dao_put_ctrl_blk, 2247 .dao_set_spos = dao_set_spos, 2248 .dao_commit_write = dao_commit_write, 2249 .dao_get_spos = dao_get_spos, 2250 2251 .daio_mgr_get_ctrl_blk = daio_mgr_get_ctrl_blk, 2252 .daio_mgr_put_ctrl_blk = daio_mgr_put_ctrl_blk, 2253 .daio_mgr_enb_dai = daio_mgr_enb_dai, 2254 .daio_mgr_dsb_dai = daio_mgr_dsb_dai, 2255 .daio_mgr_enb_dao = daio_mgr_enb_dao, 2256 .daio_mgr_dsb_dao = daio_mgr_dsb_dao, 2257 .daio_mgr_dao_init = daio_mgr_dao_init, 2258 .daio_mgr_set_imaparc = daio_mgr_set_imaparc, 2259 .daio_mgr_set_imapnxt = daio_mgr_set_imapnxt, 2260 .daio_mgr_set_imapaddr = daio_mgr_set_imapaddr, 2261 .daio_mgr_commit_write = daio_mgr_commit_write, 2262 2263 .set_timer_irq = set_timer_irq, 2264 .set_timer_tick = set_timer_tick, 2265 .get_wc = get_wc, 2266 }; 2267 2268 int create_20k1_hw_obj(struct hw **rhw) 2269 { 2270 struct hw20k1 *hw20k1; 2271 2272 *rhw = NULL; 2273 hw20k1 = kzalloc(sizeof(*hw20k1), GFP_KERNEL); 2274 if (!hw20k1) 2275 return -ENOMEM; 2276 2277 spin_lock_init(&hw20k1->reg_20k1_lock); 2278 spin_lock_init(&hw20k1->reg_pci_lock); 2279 2280 hw20k1->hw = ct20k1_preset; 2281 2282 *rhw = &hw20k1->hw; 2283 2284 return 0; 2285 } 2286 2287 int destroy_20k1_hw_obj(struct hw *hw) 2288 { 2289 if (hw->io_base) 2290 hw_card_shutdown(hw); 2291 2292 kfree(container_of(hw, struct hw20k1, hw)); 2293 return 0; 2294 } 2295