1 /** 2 * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved. 3 * 4 * This source file is released under GPL v2 license (no other versions). 5 * See the COPYING file included in the main directory of this source 6 * distribution for the license terms and conditions. 7 * 8 * @File ctatc.c 9 * 10 * @Brief 11 * This file contains the implementation of the device resource management 12 * object. 13 * 14 * @Author Liu Chun 15 * @Date Mar 28 2008 16 */ 17 18 #include "ctatc.h" 19 #include "ctpcm.h" 20 #include "ctmixer.h" 21 #include "ctsrc.h" 22 #include "ctamixer.h" 23 #include "ctdaio.h" 24 #include "cttimer.h" 25 #include <linux/delay.h> 26 #include <linux/slab.h> 27 #include <sound/pcm.h> 28 #include <sound/control.h> 29 #include <sound/asoundef.h> 30 31 #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */ 32 #define MAX_MULTI_CHN 8 33 34 #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \ 35 | IEC958_AES0_CON_NOT_COPYRIGHT) \ 36 | ((IEC958_AES1_CON_MIXER \ 37 | IEC958_AES1_CON_ORIGINAL) << 8) \ 38 | (0x10 << 16) \ 39 | ((IEC958_AES3_CON_FS_48000) << 24)) 40 41 static struct snd_pci_quirk subsys_20k1_list[] = { 42 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X), 43 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X), 44 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X), 45 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X), 46 SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000, 47 "UAA", CTUAA), 48 { } /* terminator */ 49 }; 50 51 static struct snd_pci_quirk subsys_20k2_list[] = { 52 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760, 53 "SB0760", CTSB0760), 54 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB1270, 55 "SB1270", CTSB1270), 56 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801, 57 "SB0880", CTSB0880), 58 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802, 59 "SB0880", CTSB0880), 60 SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803, 61 "SB0880", CTSB0880), 62 SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 63 PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX", 64 CTHENDRIX), 65 { } /* terminator */ 66 }; 67 68 static const char *ct_subsys_name[NUM_CTCARDS] = { 69 /* 20k1 models */ 70 [CTSB055X] = "SB055x", 71 [CTSB073X] = "SB073x", 72 [CTUAA] = "UAA", 73 [CT20K1_UNKNOWN] = "Unknown", 74 /* 20k2 models */ 75 [CTSB0760] = "SB076x", 76 [CTHENDRIX] = "Hendrix", 77 [CTSB0880] = "SB0880", 78 [CTSB1270] = "SB1270", 79 [CT20K2_UNKNOWN] = "Unknown", 80 }; 81 82 static struct { 83 int (*create)(struct ct_atc *atc, 84 enum CTALSADEVS device, const char *device_name); 85 int (*destroy)(void *alsa_dev); 86 const char *public_name; 87 } alsa_dev_funcs[NUM_CTALSADEVS] = { 88 [FRONT] = { .create = ct_alsa_pcm_create, 89 .destroy = NULL, 90 .public_name = "Front/WaveIn"}, 91 [SURROUND] = { .create = ct_alsa_pcm_create, 92 .destroy = NULL, 93 .public_name = "Surround"}, 94 [CLFE] = { .create = ct_alsa_pcm_create, 95 .destroy = NULL, 96 .public_name = "Center/LFE"}, 97 [SIDE] = { .create = ct_alsa_pcm_create, 98 .destroy = NULL, 99 .public_name = "Side"}, 100 [IEC958] = { .create = ct_alsa_pcm_create, 101 .destroy = NULL, 102 .public_name = "IEC958 Non-audio"}, 103 104 [MIXER] = { .create = ct_alsa_mix_create, 105 .destroy = NULL, 106 .public_name = "Mixer"} 107 }; 108 109 typedef int (*create_t)(void *, void **); 110 typedef int (*destroy_t)(void *); 111 112 static struct { 113 int (*create)(void *hw, void **rmgr); 114 int (*destroy)(void *mgr); 115 } rsc_mgr_funcs[NUM_RSCTYP] = { 116 [SRC] = { .create = (create_t)src_mgr_create, 117 .destroy = (destroy_t)src_mgr_destroy }, 118 [SRCIMP] = { .create = (create_t)srcimp_mgr_create, 119 .destroy = (destroy_t)srcimp_mgr_destroy }, 120 [AMIXER] = { .create = (create_t)amixer_mgr_create, 121 .destroy = (destroy_t)amixer_mgr_destroy }, 122 [SUM] = { .create = (create_t)sum_mgr_create, 123 .destroy = (destroy_t)sum_mgr_destroy }, 124 [DAIO] = { .create = (create_t)daio_mgr_create, 125 .destroy = (destroy_t)daio_mgr_destroy } 126 }; 127 128 static int 129 atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm); 130 131 /* * 132 * Only mono and interleaved modes are supported now. 133 * Always allocates a contiguous channel block. 134 * */ 135 136 static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm) 137 { 138 struct snd_pcm_runtime *runtime; 139 struct ct_vm *vm; 140 141 if (!apcm->substream) 142 return 0; 143 144 runtime = apcm->substream->runtime; 145 vm = atc->vm; 146 147 apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes); 148 149 if (!apcm->vm_block) 150 return -ENOENT; 151 152 return 0; 153 } 154 155 static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm) 156 { 157 struct ct_vm *vm; 158 159 if (!apcm->vm_block) 160 return; 161 162 vm = atc->vm; 163 164 vm->unmap(vm, apcm->vm_block); 165 166 apcm->vm_block = NULL; 167 } 168 169 static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index) 170 { 171 return atc->vm->get_ptp_phys(atc->vm, index); 172 } 173 174 static unsigned int convert_format(snd_pcm_format_t snd_format) 175 { 176 switch (snd_format) { 177 case SNDRV_PCM_FORMAT_U8: 178 return SRC_SF_U8; 179 case SNDRV_PCM_FORMAT_S16_LE: 180 return SRC_SF_S16; 181 case SNDRV_PCM_FORMAT_S24_3LE: 182 return SRC_SF_S24; 183 case SNDRV_PCM_FORMAT_S32_LE: 184 return SRC_SF_S32; 185 case SNDRV_PCM_FORMAT_FLOAT_LE: 186 return SRC_SF_F32; 187 default: 188 printk(KERN_ERR "ctxfi: not recognized snd format is %d \n", 189 snd_format); 190 return SRC_SF_S16; 191 } 192 } 193 194 static unsigned int 195 atc_get_pitch(unsigned int input_rate, unsigned int output_rate) 196 { 197 unsigned int pitch; 198 int b; 199 200 /* get pitch and convert to fixed-point 8.24 format. */ 201 pitch = (input_rate / output_rate) << 24; 202 input_rate %= output_rate; 203 input_rate /= 100; 204 output_rate /= 100; 205 for (b = 31; ((b >= 0) && !(input_rate >> b)); ) 206 b--; 207 208 if (b >= 0) { 209 input_rate <<= (31 - b); 210 input_rate /= output_rate; 211 b = 24 - (31 - b); 212 if (b >= 0) 213 input_rate <<= b; 214 else 215 input_rate >>= -b; 216 217 pitch |= input_rate; 218 } 219 220 return pitch; 221 } 222 223 static int select_rom(unsigned int pitch) 224 { 225 if (pitch > 0x00428f5c && pitch < 0x01b851ec) { 226 /* 0.26 <= pitch <= 1.72 */ 227 return 1; 228 } else if (pitch == 0x01d66666 || pitch == 0x01d66667) { 229 /* pitch == 1.8375 */ 230 return 2; 231 } else if (pitch == 0x02000000) { 232 /* pitch == 2 */ 233 return 3; 234 } else if (pitch <= 0x08000000) { 235 /* 0 <= pitch <= 8 */ 236 return 0; 237 } else { 238 return -ENOENT; 239 } 240 } 241 242 static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm) 243 { 244 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 245 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; 246 struct src_desc desc = {0}; 247 struct amixer_desc mix_dsc = {0}; 248 struct src *src; 249 struct amixer *amixer; 250 int err; 251 int n_amixer = apcm->substream->runtime->channels, i = 0; 252 int device = apcm->substream->pcm->device; 253 unsigned int pitch; 254 255 /* first release old resources */ 256 atc_pcm_release_resources(atc, apcm); 257 258 /* Get SRC resource */ 259 desc.multi = apcm->substream->runtime->channels; 260 desc.msr = atc->msr; 261 desc.mode = MEMRD; 262 err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src); 263 if (err) 264 goto error1; 265 266 pitch = atc_get_pitch(apcm->substream->runtime->rate, 267 (atc->rsr * atc->msr)); 268 src = apcm->src; 269 src->ops->set_pitch(src, pitch); 270 src->ops->set_rom(src, select_rom(pitch)); 271 src->ops->set_sf(src, convert_format(apcm->substream->runtime->format)); 272 src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL)); 273 274 /* Get AMIXER resource */ 275 n_amixer = (n_amixer < 2) ? 2 : n_amixer; 276 apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL); 277 if (!apcm->amixers) { 278 err = -ENOMEM; 279 goto error1; 280 } 281 mix_dsc.msr = atc->msr; 282 for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) { 283 err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc, 284 (struct amixer **)&apcm->amixers[i]); 285 if (err) 286 goto error1; 287 288 apcm->n_amixer++; 289 } 290 291 /* Set up device virtual mem map */ 292 err = ct_map_audio_buffer(atc, apcm); 293 if (err < 0) 294 goto error1; 295 296 /* Connect resources */ 297 src = apcm->src; 298 for (i = 0; i < n_amixer; i++) { 299 amixer = apcm->amixers[i]; 300 mutex_lock(&atc->atc_mutex); 301 amixer->ops->setup(amixer, &src->rsc, 302 INIT_VOL, atc->pcm[i+device*2]); 303 mutex_unlock(&atc->atc_mutex); 304 src = src->ops->next_interleave(src); 305 if (!src) 306 src = apcm->src; 307 } 308 309 ct_timer_prepare(apcm->timer); 310 311 return 0; 312 313 error1: 314 atc_pcm_release_resources(atc, apcm); 315 return err; 316 } 317 318 static int 319 atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm) 320 { 321 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 322 struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP]; 323 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; 324 struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM]; 325 struct srcimp *srcimp; 326 int i; 327 328 if (apcm->srcimps) { 329 for (i = 0; i < apcm->n_srcimp; i++) { 330 srcimp = apcm->srcimps[i]; 331 srcimp->ops->unmap(srcimp); 332 srcimp_mgr->put_srcimp(srcimp_mgr, srcimp); 333 apcm->srcimps[i] = NULL; 334 } 335 kfree(apcm->srcimps); 336 apcm->srcimps = NULL; 337 } 338 339 if (apcm->srccs) { 340 for (i = 0; i < apcm->n_srcc; i++) { 341 src_mgr->put_src(src_mgr, apcm->srccs[i]); 342 apcm->srccs[i] = NULL; 343 } 344 kfree(apcm->srccs); 345 apcm->srccs = NULL; 346 } 347 348 if (apcm->amixers) { 349 for (i = 0; i < apcm->n_amixer; i++) { 350 amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]); 351 apcm->amixers[i] = NULL; 352 } 353 kfree(apcm->amixers); 354 apcm->amixers = NULL; 355 } 356 357 if (apcm->mono) { 358 sum_mgr->put_sum(sum_mgr, apcm->mono); 359 apcm->mono = NULL; 360 } 361 362 if (apcm->src) { 363 src_mgr->put_src(src_mgr, apcm->src); 364 apcm->src = NULL; 365 } 366 367 if (apcm->vm_block) { 368 /* Undo device virtual mem map */ 369 ct_unmap_audio_buffer(atc, apcm); 370 apcm->vm_block = NULL; 371 } 372 373 return 0; 374 } 375 376 static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm) 377 { 378 unsigned int max_cisz; 379 struct src *src = apcm->src; 380 381 if (apcm->started) 382 return 0; 383 apcm->started = 1; 384 385 max_cisz = src->multi * src->rsc.msr; 386 max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8); 387 388 src->ops->set_sa(src, apcm->vm_block->addr); 389 src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size); 390 src->ops->set_ca(src, apcm->vm_block->addr + max_cisz); 391 src->ops->set_cisz(src, max_cisz); 392 393 src->ops->set_bm(src, 1); 394 src->ops->set_state(src, SRC_STATE_INIT); 395 src->ops->commit_write(src); 396 397 ct_timer_start(apcm->timer); 398 return 0; 399 } 400 401 static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm) 402 { 403 struct src *src; 404 int i; 405 406 ct_timer_stop(apcm->timer); 407 408 src = apcm->src; 409 src->ops->set_bm(src, 0); 410 src->ops->set_state(src, SRC_STATE_OFF); 411 src->ops->commit_write(src); 412 413 if (apcm->srccs) { 414 for (i = 0; i < apcm->n_srcc; i++) { 415 src = apcm->srccs[i]; 416 src->ops->set_bm(src, 0); 417 src->ops->set_state(src, SRC_STATE_OFF); 418 src->ops->commit_write(src); 419 } 420 } 421 422 apcm->started = 0; 423 424 return 0; 425 } 426 427 static int 428 atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm) 429 { 430 struct src *src = apcm->src; 431 u32 size, max_cisz; 432 int position; 433 434 if (!src) 435 return 0; 436 position = src->ops->get_ca(src); 437 438 if (position < apcm->vm_block->addr) { 439 snd_printdd("ctxfi: bad ca - ca=0x%08x, vba=0x%08x, vbs=0x%08x\n", position, apcm->vm_block->addr, apcm->vm_block->size); 440 position = apcm->vm_block->addr; 441 } 442 443 size = apcm->vm_block->size; 444 max_cisz = src->multi * src->rsc.msr; 445 max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8); 446 447 return (position + size - max_cisz - apcm->vm_block->addr) % size; 448 } 449 450 struct src_node_conf_t { 451 unsigned int pitch; 452 unsigned int msr:8; 453 unsigned int mix_msr:8; 454 unsigned int imp_msr:8; 455 unsigned int vo:1; 456 }; 457 458 static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm, 459 struct src_node_conf_t *conf, int *n_srcc) 460 { 461 unsigned int pitch; 462 463 /* get pitch and convert to fixed-point 8.24 format. */ 464 pitch = atc_get_pitch((atc->rsr * atc->msr), 465 apcm->substream->runtime->rate); 466 *n_srcc = 0; 467 468 if (1 == atc->msr) { /* FIXME: do we really need SRC here if pitch==1 */ 469 *n_srcc = apcm->substream->runtime->channels; 470 conf[0].pitch = pitch; 471 conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1; 472 conf[0].vo = 1; 473 } else if (2 <= atc->msr) { 474 if (0x8000000 < pitch) { 475 /* Need two-stage SRCs, SRCIMPs and 476 * AMIXERs for converting format */ 477 conf[0].pitch = (atc->msr << 24); 478 conf[0].msr = conf[0].mix_msr = 1; 479 conf[0].imp_msr = atc->msr; 480 conf[0].vo = 0; 481 conf[1].pitch = atc_get_pitch(atc->rsr, 482 apcm->substream->runtime->rate); 483 conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1; 484 conf[1].vo = 1; 485 *n_srcc = apcm->substream->runtime->channels * 2; 486 } else if (0x1000000 < pitch) { 487 /* Need one-stage SRCs, SRCIMPs and 488 * AMIXERs for converting format */ 489 conf[0].pitch = pitch; 490 conf[0].msr = conf[0].mix_msr 491 = conf[0].imp_msr = atc->msr; 492 conf[0].vo = 1; 493 *n_srcc = apcm->substream->runtime->channels; 494 } 495 } 496 } 497 498 static int 499 atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm) 500 { 501 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 502 struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP]; 503 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; 504 struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM]; 505 struct src_desc src_dsc = {0}; 506 struct src *src; 507 struct srcimp_desc srcimp_dsc = {0}; 508 struct srcimp *srcimp; 509 struct amixer_desc mix_dsc = {0}; 510 struct sum_desc sum_dsc = {0}; 511 unsigned int pitch; 512 int multi, err, i; 513 int n_srcimp, n_amixer, n_srcc, n_sum; 514 struct src_node_conf_t src_node_conf[2] = {{0} }; 515 516 /* first release old resources */ 517 atc_pcm_release_resources(atc, apcm); 518 519 /* The numbers of converting SRCs and SRCIMPs should be determined 520 * by pitch value. */ 521 522 multi = apcm->substream->runtime->channels; 523 524 /* get pitch and convert to fixed-point 8.24 format. */ 525 pitch = atc_get_pitch((atc->rsr * atc->msr), 526 apcm->substream->runtime->rate); 527 528 setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc); 529 n_sum = (1 == multi) ? 1 : 0; 530 n_amixer = n_sum * 2 + n_srcc; 531 n_srcimp = n_srcc; 532 if ((multi > 1) && (0x8000000 >= pitch)) { 533 /* Need extra AMIXERs and SRCIMPs for special treatment 534 * of interleaved recording of conjugate channels */ 535 n_amixer += multi * atc->msr; 536 n_srcimp += multi * atc->msr; 537 } else { 538 n_srcimp += multi; 539 } 540 541 if (n_srcc) { 542 apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL); 543 if (!apcm->srccs) 544 return -ENOMEM; 545 } 546 if (n_amixer) { 547 apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL); 548 if (!apcm->amixers) { 549 err = -ENOMEM; 550 goto error1; 551 } 552 } 553 apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL); 554 if (!apcm->srcimps) { 555 err = -ENOMEM; 556 goto error1; 557 } 558 559 /* Allocate SRCs for sample rate conversion if needed */ 560 src_dsc.multi = 1; 561 src_dsc.mode = ARCRW; 562 for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) { 563 src_dsc.msr = src_node_conf[i/multi].msr; 564 err = src_mgr->get_src(src_mgr, &src_dsc, 565 (struct src **)&apcm->srccs[i]); 566 if (err) 567 goto error1; 568 569 src = apcm->srccs[i]; 570 pitch = src_node_conf[i/multi].pitch; 571 src->ops->set_pitch(src, pitch); 572 src->ops->set_rom(src, select_rom(pitch)); 573 src->ops->set_vo(src, src_node_conf[i/multi].vo); 574 575 apcm->n_srcc++; 576 } 577 578 /* Allocate AMIXERs for routing SRCs of conversion if needed */ 579 for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) { 580 if (i < (n_sum*2)) 581 mix_dsc.msr = atc->msr; 582 else if (i < (n_sum*2+n_srcc)) 583 mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr; 584 else 585 mix_dsc.msr = 1; 586 587 err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc, 588 (struct amixer **)&apcm->amixers[i]); 589 if (err) 590 goto error1; 591 592 apcm->n_amixer++; 593 } 594 595 /* Allocate a SUM resource to mix all input channels together */ 596 sum_dsc.msr = atc->msr; 597 err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono); 598 if (err) 599 goto error1; 600 601 pitch = atc_get_pitch((atc->rsr * atc->msr), 602 apcm->substream->runtime->rate); 603 /* Allocate SRCIMP resources */ 604 for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) { 605 if (i < (n_srcc)) 606 srcimp_dsc.msr = src_node_conf[i/multi].imp_msr; 607 else if (1 == multi) 608 srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1; 609 else 610 srcimp_dsc.msr = 1; 611 612 err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp); 613 if (err) 614 goto error1; 615 616 apcm->srcimps[i] = srcimp; 617 apcm->n_srcimp++; 618 } 619 620 /* Allocate a SRC for writing data to host memory */ 621 src_dsc.multi = apcm->substream->runtime->channels; 622 src_dsc.msr = 1; 623 src_dsc.mode = MEMWR; 624 err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src); 625 if (err) 626 goto error1; 627 628 src = apcm->src; 629 src->ops->set_pitch(src, pitch); 630 631 /* Set up device virtual mem map */ 632 err = ct_map_audio_buffer(atc, apcm); 633 if (err < 0) 634 goto error1; 635 636 return 0; 637 638 error1: 639 atc_pcm_release_resources(atc, apcm); 640 return err; 641 } 642 643 static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm) 644 { 645 struct src *src; 646 struct amixer *amixer; 647 struct srcimp *srcimp; 648 struct ct_mixer *mixer = atc->mixer; 649 struct sum *mono; 650 struct rsc *out_ports[8] = {NULL}; 651 int err, i, j, n_sum, multi; 652 unsigned int pitch; 653 int mix_base = 0, imp_base = 0; 654 655 atc_pcm_release_resources(atc, apcm); 656 657 /* Get needed resources. */ 658 err = atc_pcm_capture_get_resources(atc, apcm); 659 if (err) 660 return err; 661 662 /* Connect resources */ 663 mixer->get_output_ports(mixer, MIX_PCMO_FRONT, 664 &out_ports[0], &out_ports[1]); 665 666 multi = apcm->substream->runtime->channels; 667 if (1 == multi) { 668 mono = apcm->mono; 669 for (i = 0; i < 2; i++) { 670 amixer = apcm->amixers[i]; 671 amixer->ops->setup(amixer, out_ports[i], 672 MONO_SUM_SCALE, mono); 673 } 674 out_ports[0] = &mono->rsc; 675 n_sum = 1; 676 mix_base = n_sum * 2; 677 } 678 679 for (i = 0; i < apcm->n_srcc; i++) { 680 src = apcm->srccs[i]; 681 srcimp = apcm->srcimps[imp_base+i]; 682 amixer = apcm->amixers[mix_base+i]; 683 srcimp->ops->map(srcimp, src, out_ports[i%multi]); 684 amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL); 685 out_ports[i%multi] = &amixer->rsc; 686 } 687 688 pitch = atc_get_pitch((atc->rsr * atc->msr), 689 apcm->substream->runtime->rate); 690 691 if ((multi > 1) && (pitch <= 0x8000000)) { 692 /* Special connection for interleaved 693 * recording with conjugate channels */ 694 for (i = 0; i < multi; i++) { 695 out_ports[i]->ops->master(out_ports[i]); 696 for (j = 0; j < atc->msr; j++) { 697 amixer = apcm->amixers[apcm->n_srcc+j*multi+i]; 698 amixer->ops->set_input(amixer, out_ports[i]); 699 amixer->ops->set_scale(amixer, INIT_VOL); 700 amixer->ops->set_sum(amixer, NULL); 701 amixer->ops->commit_raw_write(amixer); 702 out_ports[i]->ops->next_conj(out_ports[i]); 703 704 srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i]; 705 srcimp->ops->map(srcimp, apcm->src, 706 &amixer->rsc); 707 } 708 } 709 } else { 710 for (i = 0; i < multi; i++) { 711 srcimp = apcm->srcimps[apcm->n_srcc+i]; 712 srcimp->ops->map(srcimp, apcm->src, out_ports[i]); 713 } 714 } 715 716 ct_timer_prepare(apcm->timer); 717 718 return 0; 719 } 720 721 static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm) 722 { 723 struct src *src; 724 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 725 int i, multi; 726 727 if (apcm->started) 728 return 0; 729 730 apcm->started = 1; 731 multi = apcm->substream->runtime->channels; 732 /* Set up converting SRCs */ 733 for (i = 0; i < apcm->n_srcc; i++) { 734 src = apcm->srccs[i]; 735 src->ops->set_pm(src, ((i%multi) != (multi-1))); 736 src_mgr->src_disable(src_mgr, src); 737 } 738 739 /* Set up recording SRC */ 740 src = apcm->src; 741 src->ops->set_sf(src, convert_format(apcm->substream->runtime->format)); 742 src->ops->set_sa(src, apcm->vm_block->addr); 743 src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size); 744 src->ops->set_ca(src, apcm->vm_block->addr); 745 src_mgr->src_disable(src_mgr, src); 746 747 /* Disable relevant SRCs firstly */ 748 src_mgr->commit_write(src_mgr); 749 750 /* Enable SRCs respectively */ 751 for (i = 0; i < apcm->n_srcc; i++) { 752 src = apcm->srccs[i]; 753 src->ops->set_state(src, SRC_STATE_RUN); 754 src->ops->commit_write(src); 755 src_mgr->src_enable_s(src_mgr, src); 756 } 757 src = apcm->src; 758 src->ops->set_bm(src, 1); 759 src->ops->set_state(src, SRC_STATE_RUN); 760 src->ops->commit_write(src); 761 src_mgr->src_enable_s(src_mgr, src); 762 763 /* Enable relevant SRCs synchronously */ 764 src_mgr->commit_write(src_mgr); 765 766 ct_timer_start(apcm->timer); 767 return 0; 768 } 769 770 static int 771 atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm) 772 { 773 struct src *src = apcm->src; 774 775 if (!src) 776 return 0; 777 return src->ops->get_ca(src) - apcm->vm_block->addr; 778 } 779 780 static int spdif_passthru_playback_get_resources(struct ct_atc *atc, 781 struct ct_atc_pcm *apcm) 782 { 783 struct src_mgr *src_mgr = atc->rsc_mgrs[SRC]; 784 struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER]; 785 struct src_desc desc = {0}; 786 struct amixer_desc mix_dsc = {0}; 787 struct src *src; 788 int err; 789 int n_amixer = apcm->substream->runtime->channels, i; 790 unsigned int pitch, rsr = atc->pll_rate; 791 792 /* first release old resources */ 793 atc_pcm_release_resources(atc, apcm); 794 795 /* Get SRC resource */ 796 desc.multi = apcm->substream->runtime->channels; 797 desc.msr = 1; 798 while (apcm->substream->runtime->rate > (rsr * desc.msr)) 799 desc.msr <<= 1; 800 801 desc.mode = MEMRD; 802 err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src); 803 if (err) 804 goto error1; 805 806 pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr)); 807 src = apcm->src; 808 src->ops->set_pitch(src, pitch); 809 src->ops->set_rom(src, select_rom(pitch)); 810 src->ops->set_sf(src, convert_format(apcm->substream->runtime->format)); 811 src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL)); 812 src->ops->set_bp(src, 1); 813 814 /* Get AMIXER resource */ 815 n_amixer = (n_amixer < 2) ? 2 : n_amixer; 816 apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL); 817 if (!apcm->amixers) { 818 err = -ENOMEM; 819 goto error1; 820 } 821 mix_dsc.msr = desc.msr; 822 for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) { 823 err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc, 824 (struct amixer **)&apcm->amixers[i]); 825 if (err) 826 goto error1; 827 828 apcm->n_amixer++; 829 } 830 831 /* Set up device virtual mem map */ 832 err = ct_map_audio_buffer(atc, apcm); 833 if (err < 0) 834 goto error1; 835 836 return 0; 837 838 error1: 839 atc_pcm_release_resources(atc, apcm); 840 return err; 841 } 842 843 static int atc_pll_init(struct ct_atc *atc, int rate) 844 { 845 struct hw *hw = atc->hw; 846 int err; 847 err = hw->pll_init(hw, rate); 848 atc->pll_rate = err ? 0 : rate; 849 return err; 850 } 851 852 static int 853 spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm) 854 { 855 struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio); 856 unsigned int rate = apcm->substream->runtime->rate; 857 unsigned int status; 858 int err = 0; 859 unsigned char iec958_con_fs; 860 861 switch (rate) { 862 case 48000: 863 iec958_con_fs = IEC958_AES3_CON_FS_48000; 864 break; 865 case 44100: 866 iec958_con_fs = IEC958_AES3_CON_FS_44100; 867 break; 868 case 32000: 869 iec958_con_fs = IEC958_AES3_CON_FS_32000; 870 break; 871 default: 872 return -ENOENT; 873 } 874 875 mutex_lock(&atc->atc_mutex); 876 dao->ops->get_spos(dao, &status); 877 if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) { 878 status &= ~(IEC958_AES3_CON_FS << 24); 879 status |= (iec958_con_fs << 24); 880 dao->ops->set_spos(dao, status); 881 dao->ops->commit_write(dao); 882 } 883 if ((rate != atc->pll_rate) && (32000 != rate)) 884 err = atc_pll_init(atc, rate); 885 mutex_unlock(&atc->atc_mutex); 886 887 return err; 888 } 889 890 static int 891 spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm) 892 { 893 struct src *src; 894 struct amixer *amixer; 895 struct dao *dao; 896 int err; 897 int i; 898 899 atc_pcm_release_resources(atc, apcm); 900 901 /* Configure SPDIFOO and PLL to passthrough mode; 902 * determine pll_rate. */ 903 err = spdif_passthru_playback_setup(atc, apcm); 904 if (err) 905 return err; 906 907 /* Get needed resources. */ 908 err = spdif_passthru_playback_get_resources(atc, apcm); 909 if (err) 910 return err; 911 912 /* Connect resources */ 913 src = apcm->src; 914 for (i = 0; i < apcm->n_amixer; i++) { 915 amixer = apcm->amixers[i]; 916 amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL); 917 src = src->ops->next_interleave(src); 918 if (!src) 919 src = apcm->src; 920 } 921 /* Connect to SPDIFOO */ 922 mutex_lock(&atc->atc_mutex); 923 dao = container_of(atc->daios[SPDIFOO], struct dao, daio); 924 amixer = apcm->amixers[0]; 925 dao->ops->set_left_input(dao, &amixer->rsc); 926 amixer = apcm->amixers[1]; 927 dao->ops->set_right_input(dao, &amixer->rsc); 928 mutex_unlock(&atc->atc_mutex); 929 930 ct_timer_prepare(apcm->timer); 931 932 return 0; 933 } 934 935 static int atc_select_line_in(struct ct_atc *atc) 936 { 937 struct hw *hw = atc->hw; 938 struct ct_mixer *mixer = atc->mixer; 939 struct src *src; 940 941 if (hw->is_adc_source_selected(hw, ADC_LINEIN)) 942 return 0; 943 944 mixer->set_input_left(mixer, MIX_MIC_IN, NULL); 945 mixer->set_input_right(mixer, MIX_MIC_IN, NULL); 946 947 hw->select_adc_source(hw, ADC_LINEIN); 948 949 src = atc->srcs[2]; 950 mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc); 951 src = atc->srcs[3]; 952 mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc); 953 954 return 0; 955 } 956 957 static int atc_select_mic_in(struct ct_atc *atc) 958 { 959 struct hw *hw = atc->hw; 960 struct ct_mixer *mixer = atc->mixer; 961 struct src *src; 962 963 if (hw->is_adc_source_selected(hw, ADC_MICIN)) 964 return 0; 965 966 mixer->set_input_left(mixer, MIX_LINE_IN, NULL); 967 mixer->set_input_right(mixer, MIX_LINE_IN, NULL); 968 969 hw->select_adc_source(hw, ADC_MICIN); 970 971 src = atc->srcs[2]; 972 mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc); 973 src = atc->srcs[3]; 974 mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc); 975 976 return 0; 977 } 978 979 static struct capabilities atc_capabilities(struct ct_atc *atc) 980 { 981 struct hw *hw = atc->hw; 982 983 return hw->capabilities(hw); 984 } 985 986 static int atc_output_switch_get(struct ct_atc *atc) 987 { 988 struct hw *hw = atc->hw; 989 990 return hw->output_switch_get(hw); 991 } 992 993 static int atc_output_switch_put(struct ct_atc *atc, int position) 994 { 995 struct hw *hw = atc->hw; 996 997 return hw->output_switch_put(hw, position); 998 } 999 1000 static int atc_mic_source_switch_get(struct ct_atc *atc) 1001 { 1002 struct hw *hw = atc->hw; 1003 1004 return hw->mic_source_switch_get(hw); 1005 } 1006 1007 static int atc_mic_source_switch_put(struct ct_atc *atc, int position) 1008 { 1009 struct hw *hw = atc->hw; 1010 1011 return hw->mic_source_switch_put(hw, position); 1012 } 1013 1014 static int atc_select_digit_io(struct ct_atc *atc) 1015 { 1016 struct hw *hw = atc->hw; 1017 1018 if (hw->is_adc_source_selected(hw, ADC_NONE)) 1019 return 0; 1020 1021 hw->select_adc_source(hw, ADC_NONE); 1022 1023 return 0; 1024 } 1025 1026 static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type) 1027 { 1028 struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO]; 1029 1030 if (state) 1031 daio_mgr->daio_enable(daio_mgr, atc->daios[type]); 1032 else 1033 daio_mgr->daio_disable(daio_mgr, atc->daios[type]); 1034 1035 daio_mgr->commit_write(daio_mgr); 1036 1037 return 0; 1038 } 1039 1040 static int 1041 atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type) 1042 { 1043 struct dao *dao = container_of(atc->daios[type], struct dao, daio); 1044 return dao->ops->get_spos(dao, status); 1045 } 1046 1047 static int 1048 atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type) 1049 { 1050 struct dao *dao = container_of(atc->daios[type], struct dao, daio); 1051 1052 dao->ops->set_spos(dao, status); 1053 dao->ops->commit_write(dao); 1054 return 0; 1055 } 1056 1057 static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state) 1058 { 1059 return atc_daio_unmute(atc, state, LINEO1); 1060 } 1061 1062 static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state) 1063 { 1064 return atc_daio_unmute(atc, state, LINEO2); 1065 } 1066 1067 static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state) 1068 { 1069 return atc_daio_unmute(atc, state, LINEO3); 1070 } 1071 1072 static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state) 1073 { 1074 return atc_daio_unmute(atc, state, LINEO4); 1075 } 1076 1077 static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state) 1078 { 1079 return atc_daio_unmute(atc, state, LINEIM); 1080 } 1081 1082 static int atc_mic_unmute(struct ct_atc *atc, unsigned char state) 1083 { 1084 return atc_daio_unmute(atc, state, MIC); 1085 } 1086 1087 static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state) 1088 { 1089 return atc_daio_unmute(atc, state, SPDIFOO); 1090 } 1091 1092 static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state) 1093 { 1094 return atc_daio_unmute(atc, state, SPDIFIO); 1095 } 1096 1097 static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status) 1098 { 1099 return atc_dao_get_status(atc, status, SPDIFOO); 1100 } 1101 1102 static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status) 1103 { 1104 return atc_dao_set_status(atc, status, SPDIFOO); 1105 } 1106 1107 static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state) 1108 { 1109 struct dao_desc da_dsc = {0}; 1110 struct dao *dao; 1111 int err; 1112 struct ct_mixer *mixer = atc->mixer; 1113 struct rsc *rscs[2] = {NULL}; 1114 unsigned int spos = 0; 1115 1116 mutex_lock(&atc->atc_mutex); 1117 dao = container_of(atc->daios[SPDIFOO], struct dao, daio); 1118 da_dsc.msr = state ? 1 : atc->msr; 1119 da_dsc.passthru = state ? 1 : 0; 1120 err = dao->ops->reinit(dao, &da_dsc); 1121 if (state) { 1122 spos = IEC958_DEFAULT_CON; 1123 } else { 1124 mixer->get_output_ports(mixer, MIX_SPDIF_OUT, 1125 &rscs[0], &rscs[1]); 1126 dao->ops->set_left_input(dao, rscs[0]); 1127 dao->ops->set_right_input(dao, rscs[1]); 1128 /* Restore PLL to atc->rsr if needed. */ 1129 if (atc->pll_rate != atc->rsr) 1130 err = atc_pll_init(atc, atc->rsr); 1131 } 1132 dao->ops->set_spos(dao, spos); 1133 dao->ops->commit_write(dao); 1134 mutex_unlock(&atc->atc_mutex); 1135 1136 return err; 1137 } 1138 1139 static int atc_release_resources(struct ct_atc *atc) 1140 { 1141 int i; 1142 struct daio_mgr *daio_mgr = NULL; 1143 struct dao *dao = NULL; 1144 struct dai *dai = NULL; 1145 struct daio *daio = NULL; 1146 struct sum_mgr *sum_mgr = NULL; 1147 struct src_mgr *src_mgr = NULL; 1148 struct srcimp_mgr *srcimp_mgr = NULL; 1149 struct srcimp *srcimp = NULL; 1150 struct ct_mixer *mixer = NULL; 1151 1152 /* disconnect internal mixer objects */ 1153 if (atc->mixer) { 1154 mixer = atc->mixer; 1155 mixer->set_input_left(mixer, MIX_LINE_IN, NULL); 1156 mixer->set_input_right(mixer, MIX_LINE_IN, NULL); 1157 mixer->set_input_left(mixer, MIX_MIC_IN, NULL); 1158 mixer->set_input_right(mixer, MIX_MIC_IN, NULL); 1159 mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL); 1160 mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL); 1161 } 1162 1163 if (atc->daios) { 1164 daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO]; 1165 for (i = 0; i < atc->n_daio; i++) { 1166 daio = atc->daios[i]; 1167 if (daio->type < LINEIM) { 1168 dao = container_of(daio, struct dao, daio); 1169 dao->ops->clear_left_input(dao); 1170 dao->ops->clear_right_input(dao); 1171 } else { 1172 dai = container_of(daio, struct dai, daio); 1173 /* some thing to do for dai ... */ 1174 } 1175 daio_mgr->put_daio(daio_mgr, daio); 1176 } 1177 kfree(atc->daios); 1178 atc->daios = NULL; 1179 } 1180 1181 if (atc->pcm) { 1182 sum_mgr = atc->rsc_mgrs[SUM]; 1183 for (i = 0; i < atc->n_pcm; i++) 1184 sum_mgr->put_sum(sum_mgr, atc->pcm[i]); 1185 1186 kfree(atc->pcm); 1187 atc->pcm = NULL; 1188 } 1189 1190 if (atc->srcs) { 1191 src_mgr = atc->rsc_mgrs[SRC]; 1192 for (i = 0; i < atc->n_src; i++) 1193 src_mgr->put_src(src_mgr, atc->srcs[i]); 1194 1195 kfree(atc->srcs); 1196 atc->srcs = NULL; 1197 } 1198 1199 if (atc->srcimps) { 1200 srcimp_mgr = atc->rsc_mgrs[SRCIMP]; 1201 for (i = 0; i < atc->n_srcimp; i++) { 1202 srcimp = atc->srcimps[i]; 1203 srcimp->ops->unmap(srcimp); 1204 srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]); 1205 } 1206 kfree(atc->srcimps); 1207 atc->srcimps = NULL; 1208 } 1209 1210 return 0; 1211 } 1212 1213 static int ct_atc_destroy(struct ct_atc *atc) 1214 { 1215 int i = 0; 1216 1217 if (!atc) 1218 return 0; 1219 1220 if (atc->timer) { 1221 ct_timer_free(atc->timer); 1222 atc->timer = NULL; 1223 } 1224 1225 atc_release_resources(atc); 1226 1227 /* Destroy internal mixer objects */ 1228 if (atc->mixer) 1229 ct_mixer_destroy(atc->mixer); 1230 1231 for (i = 0; i < NUM_RSCTYP; i++) { 1232 if (rsc_mgr_funcs[i].destroy && atc->rsc_mgrs[i]) 1233 rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]); 1234 1235 } 1236 1237 if (atc->hw) 1238 destroy_hw_obj((struct hw *)atc->hw); 1239 1240 /* Destroy device virtual memory manager object */ 1241 if (atc->vm) { 1242 ct_vm_destroy(atc->vm); 1243 atc->vm = NULL; 1244 } 1245 1246 kfree(atc); 1247 1248 return 0; 1249 } 1250 1251 static int atc_dev_free(struct snd_device *dev) 1252 { 1253 struct ct_atc *atc = dev->device_data; 1254 return ct_atc_destroy(atc); 1255 } 1256 1257 static int atc_identify_card(struct ct_atc *atc, unsigned int ssid) 1258 { 1259 const struct snd_pci_quirk *p; 1260 const struct snd_pci_quirk *list; 1261 u16 vendor_id, device_id; 1262 1263 switch (atc->chip_type) { 1264 case ATC20K1: 1265 atc->chip_name = "20K1"; 1266 list = subsys_20k1_list; 1267 break; 1268 case ATC20K2: 1269 atc->chip_name = "20K2"; 1270 list = subsys_20k2_list; 1271 break; 1272 default: 1273 return -ENOENT; 1274 } 1275 if (ssid) { 1276 vendor_id = ssid >> 16; 1277 device_id = ssid & 0xffff; 1278 } else { 1279 vendor_id = atc->pci->subsystem_vendor; 1280 device_id = atc->pci->subsystem_device; 1281 } 1282 p = snd_pci_quirk_lookup_id(vendor_id, device_id, list); 1283 if (p) { 1284 if (p->value < 0) { 1285 printk(KERN_ERR "ctxfi: " 1286 "Device %04x:%04x is black-listed\n", 1287 vendor_id, device_id); 1288 return -ENOENT; 1289 } 1290 atc->model = p->value; 1291 } else { 1292 if (atc->chip_type == ATC20K1) 1293 atc->model = CT20K1_UNKNOWN; 1294 else 1295 atc->model = CT20K2_UNKNOWN; 1296 } 1297 atc->model_name = ct_subsys_name[atc->model]; 1298 snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n", 1299 atc->chip_name, atc->model_name, 1300 vendor_id, device_id); 1301 return 0; 1302 } 1303 1304 int ct_atc_create_alsa_devs(struct ct_atc *atc) 1305 { 1306 enum CTALSADEVS i; 1307 int err; 1308 1309 alsa_dev_funcs[MIXER].public_name = atc->chip_name; 1310 1311 for (i = 0; i < NUM_CTALSADEVS; i++) { 1312 if (!alsa_dev_funcs[i].create) 1313 continue; 1314 1315 err = alsa_dev_funcs[i].create(atc, i, 1316 alsa_dev_funcs[i].public_name); 1317 if (err) { 1318 printk(KERN_ERR "ctxfi: " 1319 "Creating alsa device %d failed!\n", i); 1320 return err; 1321 } 1322 } 1323 1324 return 0; 1325 } 1326 1327 static int atc_create_hw_devs(struct ct_atc *atc) 1328 { 1329 struct hw *hw; 1330 struct card_conf info = {0}; 1331 int i, err; 1332 1333 err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw); 1334 if (err) { 1335 printk(KERN_ERR "Failed to create hw obj!!!\n"); 1336 return err; 1337 } 1338 atc->hw = hw; 1339 1340 /* Initialize card hardware. */ 1341 info.rsr = atc->rsr; 1342 info.msr = atc->msr; 1343 info.vm_pgt_phys = atc_get_ptp_phys(atc, 0); 1344 err = hw->card_init(hw, &info); 1345 if (err < 0) 1346 return err; 1347 1348 for (i = 0; i < NUM_RSCTYP; i++) { 1349 if (!rsc_mgr_funcs[i].create) 1350 continue; 1351 1352 err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]); 1353 if (err) { 1354 printk(KERN_ERR "ctxfi: " 1355 "Failed to create rsc_mgr %d!!!\n", i); 1356 return err; 1357 } 1358 } 1359 1360 return 0; 1361 } 1362 1363 static int atc_get_resources(struct ct_atc *atc) 1364 { 1365 struct daio_desc da_desc = {0}; 1366 struct daio_mgr *daio_mgr; 1367 struct src_desc src_dsc = {0}; 1368 struct src_mgr *src_mgr; 1369 struct srcimp_desc srcimp_dsc = {0}; 1370 struct srcimp_mgr *srcimp_mgr; 1371 struct sum_desc sum_dsc = {0}; 1372 struct sum_mgr *sum_mgr; 1373 int err, i, num_srcs, num_daios; 1374 1375 num_daios = ((atc->model == CTSB1270) ? 8 : 7); 1376 num_srcs = ((atc->model == CTSB1270) ? 6 : 4); 1377 1378 atc->daios = kzalloc(sizeof(void *)*num_daios, GFP_KERNEL); 1379 if (!atc->daios) 1380 return -ENOMEM; 1381 1382 atc->srcs = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL); 1383 if (!atc->srcs) 1384 return -ENOMEM; 1385 1386 atc->srcimps = kzalloc(sizeof(void *)*num_srcs, GFP_KERNEL); 1387 if (!atc->srcimps) 1388 return -ENOMEM; 1389 1390 atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL); 1391 if (!atc->pcm) 1392 return -ENOMEM; 1393 1394 daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO]; 1395 da_desc.msr = atc->msr; 1396 for (i = 0, atc->n_daio = 0; i < num_daios; i++) { 1397 da_desc.type = (atc->model != CTSB073X) ? i : 1398 ((i == SPDIFIO) ? SPDIFI1 : i); 1399 err = daio_mgr->get_daio(daio_mgr, &da_desc, 1400 (struct daio **)&atc->daios[i]); 1401 if (err) { 1402 printk(KERN_ERR "ctxfi: Failed to get DAIO " 1403 "resource %d!!!\n", i); 1404 return err; 1405 } 1406 atc->n_daio++; 1407 } 1408 1409 src_mgr = atc->rsc_mgrs[SRC]; 1410 src_dsc.multi = 1; 1411 src_dsc.msr = atc->msr; 1412 src_dsc.mode = ARCRW; 1413 for (i = 0, atc->n_src = 0; i < num_srcs; i++) { 1414 err = src_mgr->get_src(src_mgr, &src_dsc, 1415 (struct src **)&atc->srcs[i]); 1416 if (err) 1417 return err; 1418 1419 atc->n_src++; 1420 } 1421 1422 srcimp_mgr = atc->rsc_mgrs[SRCIMP]; 1423 srcimp_dsc.msr = 8; 1424 for (i = 0, atc->n_srcimp = 0; i < num_srcs; i++) { 1425 err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, 1426 (struct srcimp **)&atc->srcimps[i]); 1427 if (err) 1428 return err; 1429 1430 atc->n_srcimp++; 1431 } 1432 1433 sum_mgr = atc->rsc_mgrs[SUM]; 1434 sum_dsc.msr = atc->msr; 1435 for (i = 0, atc->n_pcm = 0; i < (2*4); i++) { 1436 err = sum_mgr->get_sum(sum_mgr, &sum_dsc, 1437 (struct sum **)&atc->pcm[i]); 1438 if (err) 1439 return err; 1440 1441 atc->n_pcm++; 1442 } 1443 1444 return 0; 1445 } 1446 1447 static void 1448 atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai, 1449 struct src **srcs, struct srcimp **srcimps) 1450 { 1451 struct rsc *rscs[2] = {NULL}; 1452 struct src *src; 1453 struct srcimp *srcimp; 1454 int i = 0; 1455 1456 rscs[0] = &dai->daio.rscl; 1457 rscs[1] = &dai->daio.rscr; 1458 for (i = 0; i < 2; i++) { 1459 src = srcs[i]; 1460 srcimp = srcimps[i]; 1461 srcimp->ops->map(srcimp, src, rscs[i]); 1462 src_mgr->src_disable(src_mgr, src); 1463 } 1464 1465 src_mgr->commit_write(src_mgr); /* Actually disable SRCs */ 1466 1467 src = srcs[0]; 1468 src->ops->set_pm(src, 1); 1469 for (i = 0; i < 2; i++) { 1470 src = srcs[i]; 1471 src->ops->set_state(src, SRC_STATE_RUN); 1472 src->ops->commit_write(src); 1473 src_mgr->src_enable_s(src_mgr, src); 1474 } 1475 1476 dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc)); 1477 dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc)); 1478 1479 dai->ops->set_enb_src(dai, 1); 1480 dai->ops->set_enb_srt(dai, 1); 1481 dai->ops->commit_write(dai); 1482 1483 src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */ 1484 } 1485 1486 static void atc_connect_resources(struct ct_atc *atc) 1487 { 1488 struct dai *dai; 1489 struct dao *dao; 1490 struct src *src; 1491 struct sum *sum; 1492 struct ct_mixer *mixer; 1493 struct rsc *rscs[2] = {NULL}; 1494 int i, j; 1495 1496 mixer = atc->mixer; 1497 1498 for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) { 1499 mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]); 1500 dao = container_of(atc->daios[j], struct dao, daio); 1501 dao->ops->set_left_input(dao, rscs[0]); 1502 dao->ops->set_right_input(dao, rscs[1]); 1503 } 1504 1505 dai = container_of(atc->daios[LINEIM], struct dai, daio); 1506 atc_connect_dai(atc->rsc_mgrs[SRC], dai, 1507 (struct src **)&atc->srcs[2], 1508 (struct srcimp **)&atc->srcimps[2]); 1509 src = atc->srcs[2]; 1510 mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc); 1511 src = atc->srcs[3]; 1512 mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc); 1513 1514 if (atc->model == CTSB1270) { 1515 /* Titanium HD has a dedicated ADC for the Mic. */ 1516 dai = container_of(atc->daios[MIC], struct dai, daio); 1517 atc_connect_dai(atc->rsc_mgrs[SRC], dai, 1518 (struct src **)&atc->srcs[4], 1519 (struct srcimp **)&atc->srcimps[4]); 1520 src = atc->srcs[4]; 1521 mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc); 1522 src = atc->srcs[5]; 1523 mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc); 1524 } 1525 1526 dai = container_of(atc->daios[SPDIFIO], struct dai, daio); 1527 atc_connect_dai(atc->rsc_mgrs[SRC], dai, 1528 (struct src **)&atc->srcs[0], 1529 (struct srcimp **)&atc->srcimps[0]); 1530 1531 src = atc->srcs[0]; 1532 mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc); 1533 src = atc->srcs[1]; 1534 mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc); 1535 1536 for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) { 1537 sum = atc->pcm[j]; 1538 mixer->set_input_left(mixer, i, &sum->rsc); 1539 sum = atc->pcm[j+1]; 1540 mixer->set_input_right(mixer, i, &sum->rsc); 1541 } 1542 } 1543 1544 #ifdef CONFIG_PM_SLEEP 1545 static int atc_suspend(struct ct_atc *atc) 1546 { 1547 int i; 1548 struct hw *hw = atc->hw; 1549 1550 snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot); 1551 1552 for (i = FRONT; i < NUM_PCMS; i++) { 1553 if (!atc->pcms[i]) 1554 continue; 1555 1556 snd_pcm_suspend_all(atc->pcms[i]); 1557 } 1558 1559 atc_release_resources(atc); 1560 1561 hw->suspend(hw); 1562 1563 return 0; 1564 } 1565 1566 static int atc_hw_resume(struct ct_atc *atc) 1567 { 1568 struct hw *hw = atc->hw; 1569 struct card_conf info = {0}; 1570 1571 /* Re-initialize card hardware. */ 1572 info.rsr = atc->rsr; 1573 info.msr = atc->msr; 1574 info.vm_pgt_phys = atc_get_ptp_phys(atc, 0); 1575 return hw->resume(hw, &info); 1576 } 1577 1578 static int atc_resources_resume(struct ct_atc *atc) 1579 { 1580 struct ct_mixer *mixer; 1581 int err = 0; 1582 1583 /* Get resources */ 1584 err = atc_get_resources(atc); 1585 if (err < 0) { 1586 atc_release_resources(atc); 1587 return err; 1588 } 1589 1590 /* Build topology */ 1591 atc_connect_resources(atc); 1592 1593 mixer = atc->mixer; 1594 mixer->resume(mixer); 1595 1596 return 0; 1597 } 1598 1599 static int atc_resume(struct ct_atc *atc) 1600 { 1601 int err = 0; 1602 1603 /* Do hardware resume. */ 1604 err = atc_hw_resume(atc); 1605 if (err < 0) { 1606 printk(KERN_ERR "ctxfi: pci_enable_device failed, " 1607 "disabling device\n"); 1608 snd_card_disconnect(atc->card); 1609 return err; 1610 } 1611 1612 err = atc_resources_resume(atc); 1613 if (err < 0) 1614 return err; 1615 1616 snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0); 1617 1618 return 0; 1619 } 1620 #endif 1621 1622 static struct ct_atc atc_preset = { 1623 .map_audio_buffer = ct_map_audio_buffer, 1624 .unmap_audio_buffer = ct_unmap_audio_buffer, 1625 .pcm_playback_prepare = atc_pcm_playback_prepare, 1626 .pcm_release_resources = atc_pcm_release_resources, 1627 .pcm_playback_start = atc_pcm_playback_start, 1628 .pcm_playback_stop = atc_pcm_stop, 1629 .pcm_playback_position = atc_pcm_playback_position, 1630 .pcm_capture_prepare = atc_pcm_capture_prepare, 1631 .pcm_capture_start = atc_pcm_capture_start, 1632 .pcm_capture_stop = atc_pcm_stop, 1633 .pcm_capture_position = atc_pcm_capture_position, 1634 .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare, 1635 .get_ptp_phys = atc_get_ptp_phys, 1636 .select_line_in = atc_select_line_in, 1637 .select_mic_in = atc_select_mic_in, 1638 .select_digit_io = atc_select_digit_io, 1639 .line_front_unmute = atc_line_front_unmute, 1640 .line_surround_unmute = atc_line_surround_unmute, 1641 .line_clfe_unmute = atc_line_clfe_unmute, 1642 .line_rear_unmute = atc_line_rear_unmute, 1643 .line_in_unmute = atc_line_in_unmute, 1644 .mic_unmute = atc_mic_unmute, 1645 .spdif_out_unmute = atc_spdif_out_unmute, 1646 .spdif_in_unmute = atc_spdif_in_unmute, 1647 .spdif_out_get_status = atc_spdif_out_get_status, 1648 .spdif_out_set_status = atc_spdif_out_set_status, 1649 .spdif_out_passthru = atc_spdif_out_passthru, 1650 .capabilities = atc_capabilities, 1651 .output_switch_get = atc_output_switch_get, 1652 .output_switch_put = atc_output_switch_put, 1653 .mic_source_switch_get = atc_mic_source_switch_get, 1654 .mic_source_switch_put = atc_mic_source_switch_put, 1655 #ifdef CONFIG_PM_SLEEP 1656 .suspend = atc_suspend, 1657 .resume = atc_resume, 1658 #endif 1659 }; 1660 1661 /** 1662 * ct_atc_create - create and initialize a hardware manager 1663 * @card: corresponding alsa card object 1664 * @pci: corresponding kernel pci device object 1665 * @ratc: return created object address in it 1666 * 1667 * Creates and initializes a hardware manager. 1668 * 1669 * Creates kmallocated ct_atc structure. Initializes hardware. 1670 * Returns 0 if succeeds, or negative error code if fails. 1671 */ 1672 1673 int ct_atc_create(struct snd_card *card, struct pci_dev *pci, 1674 unsigned int rsr, unsigned int msr, 1675 int chip_type, unsigned int ssid, 1676 struct ct_atc **ratc) 1677 { 1678 struct ct_atc *atc; 1679 static struct snd_device_ops ops = { 1680 .dev_free = atc_dev_free, 1681 }; 1682 int err; 1683 1684 *ratc = NULL; 1685 1686 atc = kzalloc(sizeof(*atc), GFP_KERNEL); 1687 if (!atc) 1688 return -ENOMEM; 1689 1690 /* Set operations */ 1691 *atc = atc_preset; 1692 1693 atc->card = card; 1694 atc->pci = pci; 1695 atc->rsr = rsr; 1696 atc->msr = msr; 1697 atc->chip_type = chip_type; 1698 1699 mutex_init(&atc->atc_mutex); 1700 1701 /* Find card model */ 1702 err = atc_identify_card(atc, ssid); 1703 if (err < 0) { 1704 printk(KERN_ERR "ctatc: Card not recognised\n"); 1705 goto error1; 1706 } 1707 1708 /* Set up device virtual memory management object */ 1709 err = ct_vm_create(&atc->vm, pci); 1710 if (err < 0) 1711 goto error1; 1712 1713 /* Create all atc hw devices */ 1714 err = atc_create_hw_devs(atc); 1715 if (err < 0) 1716 goto error1; 1717 1718 err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer); 1719 if (err) { 1720 printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n"); 1721 goto error1; 1722 } 1723 1724 /* Get resources */ 1725 err = atc_get_resources(atc); 1726 if (err < 0) 1727 goto error1; 1728 1729 /* Build topology */ 1730 atc_connect_resources(atc); 1731 1732 atc->timer = ct_timer_new(atc); 1733 if (!atc->timer) { 1734 err = -ENOMEM; 1735 goto error1; 1736 } 1737 1738 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops); 1739 if (err < 0) 1740 goto error1; 1741 1742 *ratc = atc; 1743 return 0; 1744 1745 error1: 1746 ct_atc_destroy(atc); 1747 printk(KERN_ERR "ctxfi: Something wrong!!!\n"); 1748 return err; 1749 } 1750