1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 5 */ 6 7 /* Does not work. Warning may block system in capture mode */ 8 /* #define USE_VAR48KRATE */ 9 10 #include <linux/io.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/init.h> 14 #include <linux/pci.h> 15 #include <linux/slab.h> 16 #include <linux/gameport.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <sound/core.h> 20 #include <sound/info.h> 21 #include <sound/control.h> 22 #include <sound/pcm.h> 23 #include <sound/rawmidi.h> 24 #include <sound/mpu401.h> 25 #include <sound/opl3.h> 26 #include <sound/sb.h> 27 #include <sound/asoundef.h> 28 #include <sound/initval.h> 29 30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 32 MODULE_LICENSE("GPL"); 33 34 #if IS_REACHABLE(CONFIG_GAMEPORT) 35 #define SUPPORT_JOYSTICK 1 36 #endif 37 38 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 39 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 40 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 41 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1}; 42 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 43 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 44 #ifdef SUPPORT_JOYSTICK 45 static int joystick_port[SNDRV_CARDS]; 46 #endif 47 48 module_param_array(index, int, NULL, 0444); 49 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 50 module_param_array(id, charp, NULL, 0444); 51 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 52 module_param_array(enable, bool, NULL, 0444); 53 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 54 module_param_hw_array(mpu_port, long, ioport, NULL, 0444); 55 MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 56 module_param_hw_array(fm_port, long, ioport, NULL, 0444); 57 MODULE_PARM_DESC(fm_port, "FM port."); 58 module_param_array(soft_ac3, bool, NULL, 0444); 59 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only)."); 60 #ifdef SUPPORT_JOYSTICK 61 module_param_hw_array(joystick_port, int, ioport, NULL, 0444); 62 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 63 #endif 64 65 /* 66 * CM8x38 registers definition 67 */ 68 69 #define CM_REG_FUNCTRL0 0x00 70 #define CM_RST_CH1 0x00080000 71 #define CM_RST_CH0 0x00040000 72 #define CM_CHEN1 0x00020000 /* ch1: enable */ 73 #define CM_CHEN0 0x00010000 /* ch0: enable */ 74 #define CM_PAUSE1 0x00000008 /* ch1: pause */ 75 #define CM_PAUSE0 0x00000004 /* ch0: pause */ 76 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 77 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 78 79 #define CM_REG_FUNCTRL1 0x04 80 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 81 #define CM_DSFC_SHIFT 13 82 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 83 #define CM_ASFC_SHIFT 10 84 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 85 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 86 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 87 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 88 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 89 #define CM_BREQ 0x00000010 /* bus master enabled */ 90 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 91 #define CM_UART_EN 0x00000004 /* legacy UART */ 92 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 93 #define CM_ZVPORT 0x00000001 /* ZVPORT */ 94 95 #define CM_REG_CHFORMAT 0x08 96 97 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 98 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 99 #define CM_CHB3D 0x20000000 /* 4 channels */ 100 101 #define CM_CHIP_MASK1 0x1f000000 102 #define CM_CHIP_037 0x01000000 103 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 104 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 105 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 106 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 107 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 108 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 109 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 110 111 #define CM_ADCBITLEN_MASK 0x0000C000 112 #define CM_ADCBITLEN_16 0x00000000 113 #define CM_ADCBITLEN_15 0x00004000 114 #define CM_ADCBITLEN_14 0x00008000 115 #define CM_ADCBITLEN_13 0x0000C000 116 117 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 118 #define CM_ADCDACLEN_060 0x00000000 119 #define CM_ADCDACLEN_066 0x00001000 120 #define CM_ADCDACLEN_130 0x00002000 121 #define CM_ADCDACLEN_280 0x00003000 122 123 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 124 #define CM_ADCDLEN_ORIGINAL 0x00000000 125 #define CM_ADCDLEN_EXTRA 0x00001000 126 #define CM_ADCDLEN_24K 0x00002000 127 #define CM_ADCDLEN_WEIGHT 0x00003000 128 129 #define CM_CH1_SRATE_176K 0x00000800 130 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 131 #define CM_CH1_SRATE_88K 0x00000400 132 #define CM_CH0_SRATE_176K 0x00000200 133 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 134 #define CM_CH0_SRATE_88K 0x00000100 135 #define CM_CH0_SRATE_128K 0x00000300 136 #define CM_CH0_SRATE_MASK 0x00000300 137 138 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 139 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 140 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 141 #define CM_SPDLOCKED 0x00000010 142 143 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 144 #define CM_CH1FMT_SHIFT 2 145 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 146 #define CM_CH0FMT_SHIFT 0 147 148 #define CM_REG_INT_HLDCLR 0x0C 149 #define CM_CHIP_MASK2 0xff000000 150 #define CM_CHIP_8768 0x20000000 151 #define CM_CHIP_055 0x08000000 152 #define CM_CHIP_039 0x04000000 153 #define CM_CHIP_039_6CH 0x01000000 154 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 155 #define CM_TDMA_INT_EN 0x00040000 156 #define CM_CH1_INT_EN 0x00020000 157 #define CM_CH0_INT_EN 0x00010000 158 159 #define CM_REG_INT_STATUS 0x10 160 #define CM_INTR 0x80000000 161 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 162 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 163 #define CM_UARTINT 0x00010000 164 #define CM_LTDMAINT 0x00008000 165 #define CM_HTDMAINT 0x00004000 166 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 167 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 168 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 169 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 170 #define CM_CH1BUSY 0x00000008 171 #define CM_CH0BUSY 0x00000004 172 #define CM_CHINT1 0x00000002 173 #define CM_CHINT0 0x00000001 174 175 #define CM_REG_LEGACY_CTRL 0x14 176 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 177 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 178 #define CM_VMPU_330 0x00000000 179 #define CM_VMPU_320 0x20000000 180 #define CM_VMPU_310 0x40000000 181 #define CM_VMPU_300 0x60000000 182 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 183 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 184 #define CM_VSBSEL_220 0x00000000 185 #define CM_VSBSEL_240 0x04000000 186 #define CM_VSBSEL_260 0x08000000 187 #define CM_VSBSEL_280 0x0C000000 188 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 189 #define CM_FMSEL_388 0x00000000 190 #define CM_FMSEL_3C8 0x01000000 191 #define CM_FMSEL_3E0 0x02000000 192 #define CM_FMSEL_3E8 0x03000000 193 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 194 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 195 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 196 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 197 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 198 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 199 #define CM_C_EECS 0x00040000 200 #define CM_C_EEDI46 0x00020000 201 #define CM_C_EECK46 0x00010000 202 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 203 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 204 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 205 #define CM_EXBASEN 0x00001000 /* external bass input enable */ 206 207 #define CM_REG_MISC_CTRL 0x18 208 #define CM_PWD 0x80000000 /* power down */ 209 #define CM_RESET 0x40000000 210 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 211 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 212 #define CM_TXVX 0x08000000 /* model 037? */ 213 #define CM_N4SPK3D 0x04000000 /* copy front to rear */ 214 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 215 #define CM_SPDIF48K 0x01000000 /* write */ 216 #define CM_SPATUS48K 0x01000000 /* read */ 217 #define CM_ENDBDAC 0x00800000 /* enable double dac */ 218 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 219 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 220 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 221 #define CM_FM_EN 0x00080000 /* enable legacy FM */ 222 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 223 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 224 #define CM_VIDWPDSB 0x00010000 /* model 037? */ 225 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 226 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 227 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 228 #define CM_VIDWPPRT 0x00002000 /* model 037? */ 229 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 230 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 231 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 232 #define CM_ENCENTER 0x00000080 233 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ 234 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 235 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ 236 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 237 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 238 #define CM_UPDDMA_2048 0x00000000 239 #define CM_UPDDMA_1024 0x00000004 240 #define CM_UPDDMA_512 0x00000008 241 #define CM_UPDDMA_256 0x0000000C 242 #define CM_TWAIT_MASK 0x00000003 /* model 037 */ 243 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 244 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 245 246 #define CM_REG_TDMA_POSITION 0x1C 247 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 248 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 249 250 /* byte */ 251 #define CM_REG_MIXER0 0x20 252 #define CM_REG_SBVR 0x20 /* write: sb16 version */ 253 #define CM_REG_DEV 0x20 /* read: hardware device version */ 254 255 #define CM_REG_MIXER21 0x21 256 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ 257 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 258 #define CM_PROINV 0x02 /* SBPro left/right channel switching */ 259 #define CM_X_SB16 0x01 /* SB16 compatible */ 260 261 #define CM_REG_SB16_DATA 0x22 262 #define CM_REG_SB16_ADDR 0x23 263 264 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 265 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 266 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 267 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 268 269 #define CM_REG_MIXER1 0x24 270 #define CM_FMMUTE 0x80 /* mute FM */ 271 #define CM_FMMUTE_SHIFT 7 272 #define CM_WSMUTE 0x40 /* mute PCM */ 273 #define CM_WSMUTE_SHIFT 6 274 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 275 #define CM_REAR2LIN_SHIFT 5 276 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ 277 #define CM_REAR2FRONT_SHIFT 4 278 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 279 #define CM_WAVEINL_SHIFT 3 280 #define CM_WAVEINR 0x04 /* digical wave rec. right */ 281 #define CM_WAVEINR_SHIFT 2 282 #define CM_X3DEN 0x02 /* 3D surround enable */ 283 #define CM_X3DEN_SHIFT 1 284 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 285 #define CM_CDPLAY_SHIFT 0 286 287 #define CM_REG_MIXER2 0x25 288 #define CM_RAUXREN 0x80 /* AUX right capture */ 289 #define CM_RAUXREN_SHIFT 7 290 #define CM_RAUXLEN 0x40 /* AUX left capture */ 291 #define CM_RAUXLEN_SHIFT 6 292 #define CM_VAUXRM 0x20 /* AUX right mute */ 293 #define CM_VAUXRM_SHIFT 5 294 #define CM_VAUXLM 0x10 /* AUX left mute */ 295 #define CM_VAUXLM_SHIFT 4 296 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 297 #define CM_VADMIC_SHIFT 1 298 #define CM_MICGAINZ 0x01 /* mic boost */ 299 #define CM_MICGAINZ_SHIFT 0 300 301 #define CM_REG_MIXER3 0x24 302 #define CM_REG_AUX_VOL 0x26 303 #define CM_VAUXL_MASK 0xf0 304 #define CM_VAUXR_MASK 0x0f 305 306 #define CM_REG_MISC 0x27 307 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 308 #define CM_XGPO1 0x20 309 // #define CM_XGPBIO 0x04 310 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 311 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 312 #define CM_SPDVALID 0x02 /* spdif input valid check */ 313 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 314 315 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 316 /* 317 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 318 * or identical with AC97 codec? 319 */ 320 #define CM_REG_EXTERN_CODEC CM_REG_AC97 321 322 /* 323 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 324 */ 325 #define CM_REG_MPU_PCI 0x40 326 327 /* 328 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 329 */ 330 #define CM_REG_FM_PCI 0x50 331 332 /* 333 * access from SB-mixer port 334 */ 335 #define CM_REG_EXTENT_IND 0xf0 336 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 337 #define CM_VPHONE_SHIFT 5 338 #define CM_VPHOM 0x10 /* Phone mute control */ 339 #define CM_VSPKM 0x08 /* Speaker mute control, default high */ 340 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 341 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 342 #define CM_VADMIC3 0x01 /* Mic record boost */ 343 344 /* 345 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 346 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 347 * unit (readonly?). 348 */ 349 #define CM_REG_PLL 0xf8 350 351 /* 352 * extended registers 353 */ 354 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 355 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 356 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 357 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 358 359 #define CM_REG_EXT_MISC 0x90 360 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 361 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 362 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 363 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 364 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 365 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 366 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 367 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 368 369 /* 370 * size of i/o region 371 */ 372 #define CM_EXTENT_CODEC 0x100 373 #define CM_EXTENT_MIDI 0x2 374 #define CM_EXTENT_SYNTH 0x4 375 376 377 /* 378 * channels for playback / capture 379 */ 380 #define CM_CH_PLAY 0 381 #define CM_CH_CAPT 1 382 383 /* 384 * flags to check device open/close 385 */ 386 #define CM_OPEN_NONE 0 387 #define CM_OPEN_CH_MASK 0x01 388 #define CM_OPEN_DAC 0x10 389 #define CM_OPEN_ADC 0x20 390 #define CM_OPEN_SPDIF 0x40 391 #define CM_OPEN_MCHAN 0x80 392 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 393 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 394 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 395 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 396 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 397 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 398 399 400 #if CM_CH_PLAY == 1 401 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 402 #define CM_PLAYBACK_SPDF CM_SPDF_1 403 #define CM_CAPTURE_SPDF CM_SPDF_0 404 #else 405 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 406 #define CM_PLAYBACK_SPDF CM_SPDF_0 407 #define CM_CAPTURE_SPDF CM_SPDF_1 408 #endif 409 410 411 /* 412 * driver data 413 */ 414 415 struct cmipci_pcm { 416 struct snd_pcm_substream *substream; 417 u8 running; /* dac/adc running? */ 418 u8 fmt; /* format bits */ 419 u8 is_dac; 420 u8 needs_silencing; 421 unsigned int dma_size; /* in frames */ 422 unsigned int shift; 423 unsigned int ch; /* channel (0/1) */ 424 unsigned int offset; /* physical address of the buffer */ 425 }; 426 427 /* mixer elements toggled/resumed during ac3 playback */ 428 struct cmipci_mixer_auto_switches { 429 const char *name; /* switch to toggle */ 430 int toggle_on; /* value to change when ac3 mode */ 431 }; 432 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 433 {"PCM Playback Switch", 0}, 434 {"IEC958 Output Switch", 1}, 435 {"IEC958 Mix Analog", 0}, 436 // {"IEC958 Out To DAC", 1}, // no longer used 437 {"IEC958 Loop", 0}, 438 }; 439 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 440 441 struct cmipci { 442 struct snd_card *card; 443 444 struct pci_dev *pci; 445 unsigned int device; /* device ID */ 446 int irq; 447 448 unsigned long iobase; 449 unsigned int ctrl; /* FUNCTRL0 current value */ 450 451 struct snd_pcm *pcm; /* DAC/ADC PCM */ 452 struct snd_pcm *pcm2; /* 2nd DAC */ 453 struct snd_pcm *pcm_spdif; /* SPDIF */ 454 455 int chip_version; 456 int max_channels; 457 unsigned int can_ac3_sw: 1; 458 unsigned int can_ac3_hw: 1; 459 unsigned int can_multi_ch: 1; 460 unsigned int can_96k: 1; /* samplerate above 48k */ 461 unsigned int do_soft_ac3: 1; 462 463 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 464 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 465 int spdif_counter; /* for software AC3 */ 466 467 unsigned int dig_status; 468 unsigned int dig_pcm_status; 469 470 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 471 472 int opened[2]; /* open mode */ 473 struct mutex open_mutex; 474 475 unsigned int mixer_insensitive: 1; 476 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 477 int mixer_res_status[CM_SAVED_MIXERS]; 478 479 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 480 481 /* external MIDI */ 482 struct snd_rawmidi *rmidi; 483 484 #ifdef SUPPORT_JOYSTICK 485 struct gameport *gameport; 486 #endif 487 488 spinlock_t reg_lock; 489 490 #ifdef CONFIG_PM_SLEEP 491 unsigned int saved_regs[0x20]; 492 unsigned char saved_mixers[0x20]; 493 #endif 494 }; 495 496 497 /* read/write operations for dword register */ 498 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 499 { 500 outl(data, cm->iobase + cmd); 501 } 502 503 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 504 { 505 return inl(cm->iobase + cmd); 506 } 507 508 /* read/write operations for word register */ 509 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 510 { 511 outw(data, cm->iobase + cmd); 512 } 513 514 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 515 { 516 return inw(cm->iobase + cmd); 517 } 518 519 /* read/write operations for byte register */ 520 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 521 { 522 outb(data, cm->iobase + cmd); 523 } 524 525 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 526 { 527 return inb(cm->iobase + cmd); 528 } 529 530 /* bit operations for dword register */ 531 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 532 { 533 unsigned int val, oval; 534 val = oval = inl(cm->iobase + cmd); 535 val |= flag; 536 if (val == oval) 537 return 0; 538 outl(val, cm->iobase + cmd); 539 return 1; 540 } 541 542 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 543 { 544 unsigned int val, oval; 545 val = oval = inl(cm->iobase + cmd); 546 val &= ~flag; 547 if (val == oval) 548 return 0; 549 outl(val, cm->iobase + cmd); 550 return 1; 551 } 552 553 /* bit operations for byte register */ 554 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 555 { 556 unsigned char val, oval; 557 val = oval = inb(cm->iobase + cmd); 558 val |= flag; 559 if (val == oval) 560 return 0; 561 outb(val, cm->iobase + cmd); 562 return 1; 563 } 564 565 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 566 { 567 unsigned char val, oval; 568 val = oval = inb(cm->iobase + cmd); 569 val &= ~flag; 570 if (val == oval) 571 return 0; 572 outb(val, cm->iobase + cmd); 573 return 1; 574 } 575 576 577 /* 578 * PCM interface 579 */ 580 581 /* 582 * calculate frequency 583 */ 584 585 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 586 587 static unsigned int snd_cmipci_rate_freq(unsigned int rate) 588 { 589 unsigned int i; 590 591 for (i = 0; i < ARRAY_SIZE(rates); i++) { 592 if (rates[i] == rate) 593 return i; 594 } 595 snd_BUG(); 596 return 0; 597 } 598 599 #ifdef USE_VAR48KRATE 600 /* 601 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 602 * does it this way .. maybe not. Never get any information from C-Media about 603 * that <werner@suse.de>. 604 */ 605 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 606 { 607 unsigned int delta, tolerance; 608 int xm, xn, xr; 609 610 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 611 rate <<= 1; 612 *n = -1; 613 if (*r > 0xff) 614 goto out; 615 tolerance = rate*CM_TOLERANCE_RATE; 616 617 for (xn = (1+2); xn < (0x1f+2); xn++) { 618 for (xm = (1+2); xm < (0xff+2); xm++) { 619 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 620 621 if (xr < rate) 622 delta = rate - xr; 623 else 624 delta = xr - rate; 625 626 /* 627 * If we found one, remember this, 628 * and try to find a closer one 629 */ 630 if (delta < tolerance) { 631 tolerance = delta; 632 *m = xm - 2; 633 *n = xn - 2; 634 } 635 } 636 } 637 out: 638 return (*n > -1); 639 } 640 641 /* 642 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff 643 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen 644 * at the register CM_REG_FUNCTRL1 (0x04). 645 * Problem: other ways are also possible (any information about that?) 646 */ 647 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 648 { 649 unsigned int reg = CM_REG_PLL + slot; 650 /* 651 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 652 * for DSFC/ASFC (000 up to 111). 653 */ 654 655 /* FIXME: Init (Do we've to set an other register first before programming?) */ 656 657 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 658 snd_cmipci_write_b(cm, reg, rate>>8); 659 snd_cmipci_write_b(cm, reg, rate&0xff); 660 661 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 662 } 663 #endif /* USE_VAR48KRATE */ 664 665 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 666 struct snd_pcm_hw_params *hw_params) 667 { 668 struct cmipci *cm = snd_pcm_substream_chip(substream); 669 if (params_channels(hw_params) > 2) { 670 mutex_lock(&cm->open_mutex); 671 if (cm->opened[CM_CH_PLAY]) { 672 mutex_unlock(&cm->open_mutex); 673 return -EBUSY; 674 } 675 /* reserve the channel A */ 676 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 677 mutex_unlock(&cm->open_mutex); 678 } 679 return 0; 680 } 681 682 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 683 { 684 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 685 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 686 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 687 udelay(10); 688 } 689 690 691 /* 692 */ 693 694 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 695 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 696 .count = 3, 697 .list = hw_channels, 698 .mask = 0, 699 }; 700 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 701 .count = 4, 702 .list = hw_channels, 703 .mask = 0, 704 }; 705 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 706 .count = 5, 707 .list = hw_channels, 708 .mask = 0, 709 }; 710 711 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 712 { 713 if (channels > 2) { 714 if (!cm->can_multi_ch || !rec->ch) 715 return -EINVAL; 716 if (rec->fmt != 0x03) /* stereo 16bit only */ 717 return -EINVAL; 718 } 719 720 if (cm->can_multi_ch) { 721 spin_lock_irq(&cm->reg_lock); 722 if (channels > 2) { 723 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 724 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 725 } else { 726 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 727 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 728 } 729 if (channels == 8) 730 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 731 else 732 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 733 if (channels == 6) { 734 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 735 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 736 } else { 737 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 738 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 739 } 740 if (channels == 4) 741 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 742 else 743 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 744 spin_unlock_irq(&cm->reg_lock); 745 } 746 return 0; 747 } 748 749 750 /* 751 * prepare playback/capture channel 752 * channel to be used must have been set in rec->ch. 753 */ 754 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 755 struct snd_pcm_substream *substream) 756 { 757 unsigned int reg, freq, freq_ext, val; 758 unsigned int period_size; 759 struct snd_pcm_runtime *runtime = substream->runtime; 760 761 rec->fmt = 0; 762 rec->shift = 0; 763 if (snd_pcm_format_width(runtime->format) >= 16) { 764 rec->fmt |= 0x02; 765 if (snd_pcm_format_width(runtime->format) > 16) 766 rec->shift++; /* 24/32bit */ 767 } 768 if (runtime->channels > 1) 769 rec->fmt |= 0x01; 770 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 771 dev_dbg(cm->card->dev, "cannot set dac channels\n"); 772 return -EINVAL; 773 } 774 775 rec->offset = runtime->dma_addr; 776 /* buffer and period sizes in frame */ 777 rec->dma_size = runtime->buffer_size << rec->shift; 778 period_size = runtime->period_size << rec->shift; 779 if (runtime->channels > 2) { 780 /* multi-channels */ 781 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 782 period_size = (period_size * runtime->channels) / 2; 783 } 784 785 spin_lock_irq(&cm->reg_lock); 786 787 /* set buffer address */ 788 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 789 snd_cmipci_write(cm, reg, rec->offset); 790 /* program sample counts */ 791 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 792 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 793 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 794 795 /* set adc/dac flag */ 796 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 797 if (rec->is_dac) 798 cm->ctrl &= ~val; 799 else 800 cm->ctrl |= val; 801 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 802 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */ 803 804 /* set sample rate */ 805 freq = 0; 806 freq_ext = 0; 807 if (runtime->rate > 48000) 808 switch (runtime->rate) { 809 case 88200: freq_ext = CM_CH0_SRATE_88K; break; 810 case 96000: freq_ext = CM_CH0_SRATE_96K; break; 811 case 128000: freq_ext = CM_CH0_SRATE_128K; break; 812 default: snd_BUG(); break; 813 } 814 else 815 freq = snd_cmipci_rate_freq(runtime->rate); 816 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 817 if (rec->ch) { 818 val &= ~CM_DSFC_MASK; 819 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 820 } else { 821 val &= ~CM_ASFC_MASK; 822 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 823 } 824 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 825 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val); 826 827 /* set format */ 828 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 829 if (rec->ch) { 830 val &= ~CM_CH1FMT_MASK; 831 val |= rec->fmt << CM_CH1FMT_SHIFT; 832 } else { 833 val &= ~CM_CH0FMT_MASK; 834 val |= rec->fmt << CM_CH0FMT_SHIFT; 835 } 836 if (cm->can_96k) { 837 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 838 val |= freq_ext << (rec->ch * 2); 839 } 840 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 841 dev_dbg(cm->card->dev, "chformat = %08x\n", val); 842 843 if (!rec->is_dac && cm->chip_version) { 844 if (runtime->rate > 44100) 845 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 846 else 847 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 848 } 849 850 rec->running = 0; 851 spin_unlock_irq(&cm->reg_lock); 852 853 return 0; 854 } 855 856 /* 857 * PCM trigger/stop 858 */ 859 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 860 int cmd) 861 { 862 unsigned int inthld, chen, reset, pause; 863 int result = 0; 864 865 inthld = CM_CH0_INT_EN << rec->ch; 866 chen = CM_CHEN0 << rec->ch; 867 reset = CM_RST_CH0 << rec->ch; 868 pause = CM_PAUSE0 << rec->ch; 869 870 spin_lock(&cm->reg_lock); 871 switch (cmd) { 872 case SNDRV_PCM_TRIGGER_START: 873 rec->running = 1; 874 /* set interrupt */ 875 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 876 cm->ctrl |= chen; 877 /* enable channel */ 878 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 879 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); 880 break; 881 case SNDRV_PCM_TRIGGER_STOP: 882 rec->running = 0; 883 /* disable interrupt */ 884 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 885 /* reset */ 886 cm->ctrl &= ~chen; 887 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 888 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 889 rec->needs_silencing = rec->is_dac; 890 break; 891 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 892 case SNDRV_PCM_TRIGGER_SUSPEND: 893 cm->ctrl |= pause; 894 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 895 break; 896 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 897 case SNDRV_PCM_TRIGGER_RESUME: 898 cm->ctrl &= ~pause; 899 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 900 break; 901 default: 902 result = -EINVAL; 903 break; 904 } 905 spin_unlock(&cm->reg_lock); 906 return result; 907 } 908 909 /* 910 * return the current pointer 911 */ 912 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 913 struct snd_pcm_substream *substream) 914 { 915 size_t ptr; 916 unsigned int reg, rem, tries; 917 918 if (!rec->running) 919 return 0; 920 #if 1 // this seems better.. 921 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 922 for (tries = 0; tries < 3; tries++) { 923 rem = snd_cmipci_read_w(cm, reg); 924 if (rem < rec->dma_size) 925 goto ok; 926 } 927 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem); 928 return SNDRV_PCM_POS_XRUN; 929 ok: 930 ptr = (rec->dma_size - (rem + 1)) >> rec->shift; 931 #else 932 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 933 ptr = snd_cmipci_read(cm, reg) - rec->offset; 934 ptr = bytes_to_frames(substream->runtime, ptr); 935 #endif 936 if (substream->runtime->channels > 2) 937 ptr = (ptr * 2) / substream->runtime->channels; 938 return ptr; 939 } 940 941 /* 942 * playback 943 */ 944 945 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 946 int cmd) 947 { 948 struct cmipci *cm = snd_pcm_substream_chip(substream); 949 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 950 } 951 952 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 953 { 954 struct cmipci *cm = snd_pcm_substream_chip(substream); 955 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 956 } 957 958 959 960 /* 961 * capture 962 */ 963 964 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 965 int cmd) 966 { 967 struct cmipci *cm = snd_pcm_substream_chip(substream); 968 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 969 } 970 971 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 972 { 973 struct cmipci *cm = snd_pcm_substream_chip(substream); 974 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 975 } 976 977 978 /* 979 * hw preparation for spdif 980 */ 981 982 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 983 struct snd_ctl_elem_info *uinfo) 984 { 985 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 986 uinfo->count = 1; 987 return 0; 988 } 989 990 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 991 struct snd_ctl_elem_value *ucontrol) 992 { 993 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 994 int i; 995 996 spin_lock_irq(&chip->reg_lock); 997 for (i = 0; i < 4; i++) 998 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 999 spin_unlock_irq(&chip->reg_lock); 1000 return 0; 1001 } 1002 1003 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 1004 struct snd_ctl_elem_value *ucontrol) 1005 { 1006 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1007 int i, change; 1008 unsigned int val; 1009 1010 val = 0; 1011 spin_lock_irq(&chip->reg_lock); 1012 for (i = 0; i < 4; i++) 1013 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1014 change = val != chip->dig_status; 1015 chip->dig_status = val; 1016 spin_unlock_irq(&chip->reg_lock); 1017 return change; 1018 } 1019 1020 static const struct snd_kcontrol_new snd_cmipci_spdif_default = 1021 { 1022 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1023 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1024 .info = snd_cmipci_spdif_default_info, 1025 .get = snd_cmipci_spdif_default_get, 1026 .put = snd_cmipci_spdif_default_put 1027 }; 1028 1029 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1030 struct snd_ctl_elem_info *uinfo) 1031 { 1032 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1033 uinfo->count = 1; 1034 return 0; 1035 } 1036 1037 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1038 struct snd_ctl_elem_value *ucontrol) 1039 { 1040 ucontrol->value.iec958.status[0] = 0xff; 1041 ucontrol->value.iec958.status[1] = 0xff; 1042 ucontrol->value.iec958.status[2] = 0xff; 1043 ucontrol->value.iec958.status[3] = 0xff; 1044 return 0; 1045 } 1046 1047 static const struct snd_kcontrol_new snd_cmipci_spdif_mask = 1048 { 1049 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1050 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1051 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1052 .info = snd_cmipci_spdif_mask_info, 1053 .get = snd_cmipci_spdif_mask_get, 1054 }; 1055 1056 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1057 struct snd_ctl_elem_info *uinfo) 1058 { 1059 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1060 uinfo->count = 1; 1061 return 0; 1062 } 1063 1064 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1065 struct snd_ctl_elem_value *ucontrol) 1066 { 1067 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1068 int i; 1069 1070 spin_lock_irq(&chip->reg_lock); 1071 for (i = 0; i < 4; i++) 1072 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1073 spin_unlock_irq(&chip->reg_lock); 1074 return 0; 1075 } 1076 1077 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1078 struct snd_ctl_elem_value *ucontrol) 1079 { 1080 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1081 int i, change; 1082 unsigned int val; 1083 1084 val = 0; 1085 spin_lock_irq(&chip->reg_lock); 1086 for (i = 0; i < 4; i++) 1087 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1088 change = val != chip->dig_pcm_status; 1089 chip->dig_pcm_status = val; 1090 spin_unlock_irq(&chip->reg_lock); 1091 return change; 1092 } 1093 1094 static const struct snd_kcontrol_new snd_cmipci_spdif_stream = 1095 { 1096 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1097 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1098 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1099 .info = snd_cmipci_spdif_stream_info, 1100 .get = snd_cmipci_spdif_stream_get, 1101 .put = snd_cmipci_spdif_stream_put 1102 }; 1103 1104 /* 1105 */ 1106 1107 /* save mixer setting and mute for AC3 playback */ 1108 static int save_mixer_state(struct cmipci *cm) 1109 { 1110 if (! cm->mixer_insensitive) { 1111 struct snd_ctl_elem_value *val; 1112 unsigned int i; 1113 1114 val = kmalloc(sizeof(*val), GFP_KERNEL); 1115 if (!val) 1116 return -ENOMEM; 1117 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1118 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1119 if (ctl) { 1120 int event; 1121 memset(val, 0, sizeof(*val)); 1122 ctl->get(ctl, val); 1123 cm->mixer_res_status[i] = val->value.integer.value[0]; 1124 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1125 event = SNDRV_CTL_EVENT_MASK_INFO; 1126 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1127 ctl->put(ctl, val); /* toggle */ 1128 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1129 } 1130 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1131 snd_ctl_notify(cm->card, event, &ctl->id); 1132 } 1133 } 1134 kfree(val); 1135 cm->mixer_insensitive = 1; 1136 } 1137 return 0; 1138 } 1139 1140 1141 /* restore the previously saved mixer status */ 1142 static void restore_mixer_state(struct cmipci *cm) 1143 { 1144 if (cm->mixer_insensitive) { 1145 struct snd_ctl_elem_value *val; 1146 unsigned int i; 1147 1148 val = kmalloc(sizeof(*val), GFP_KERNEL); 1149 if (!val) 1150 return; 1151 cm->mixer_insensitive = 0; /* at first clear this; 1152 otherwise the changes will be ignored */ 1153 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1154 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1155 if (ctl) { 1156 int event; 1157 1158 memset(val, 0, sizeof(*val)); 1159 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1160 ctl->get(ctl, val); 1161 event = SNDRV_CTL_EVENT_MASK_INFO; 1162 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1163 val->value.integer.value[0] = cm->mixer_res_status[i]; 1164 ctl->put(ctl, val); 1165 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1166 } 1167 snd_ctl_notify(cm->card, event, &ctl->id); 1168 } 1169 } 1170 kfree(val); 1171 } 1172 } 1173 1174 /* spinlock held! */ 1175 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1176 { 1177 if (do_ac3) { 1178 /* AC3EN for 037 */ 1179 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1180 /* AC3EN for 039 */ 1181 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1182 1183 if (cm->can_ac3_hw) { 1184 /* SPD24SEL for 037, 0x02 */ 1185 /* SPD24SEL for 039, 0x20, but cannot be set */ 1186 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1187 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1188 } else { /* can_ac3_sw */ 1189 /* SPD32SEL for 037 & 039, 0x20 */ 1190 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1191 /* set 176K sample rate to fix 033 HW bug */ 1192 if (cm->chip_version == 33) { 1193 if (rate >= 48000) { 1194 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1195 } else { 1196 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1197 } 1198 } 1199 } 1200 1201 } else { 1202 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1203 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1204 1205 if (cm->can_ac3_hw) { 1206 /* chip model >= 37 */ 1207 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1208 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1209 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1210 } else { 1211 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1212 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1213 } 1214 } else { 1215 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1216 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1217 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1218 } 1219 } 1220 } 1221 1222 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1223 { 1224 int rate, err; 1225 1226 rate = subs->runtime->rate; 1227 1228 if (up && do_ac3) 1229 if ((err = save_mixer_state(cm)) < 0) 1230 return err; 1231 1232 spin_lock_irq(&cm->reg_lock); 1233 cm->spdif_playback_avail = up; 1234 if (up) { 1235 /* they are controlled via "IEC958 Output Switch" */ 1236 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1237 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1238 if (cm->spdif_playback_enabled) 1239 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1240 setup_ac3(cm, subs, do_ac3, rate); 1241 1242 if (rate == 48000 || rate == 96000) 1243 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1244 else 1245 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1246 if (rate > 48000) 1247 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1248 else 1249 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1250 } else { 1251 /* they are controlled via "IEC958 Output Switch" */ 1252 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1253 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1254 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1255 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1256 setup_ac3(cm, subs, 0, 0); 1257 } 1258 spin_unlock_irq(&cm->reg_lock); 1259 return 0; 1260 } 1261 1262 1263 /* 1264 * preparation 1265 */ 1266 1267 /* playback - enable spdif only on the certain condition */ 1268 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1269 { 1270 struct cmipci *cm = snd_pcm_substream_chip(substream); 1271 int rate = substream->runtime->rate; 1272 int err, do_spdif, do_ac3 = 0; 1273 1274 do_spdif = (rate >= 44100 && rate <= 96000 && 1275 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1276 substream->runtime->channels == 2); 1277 if (do_spdif && cm->can_ac3_hw) 1278 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1279 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0) 1280 return err; 1281 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1282 } 1283 1284 /* playback (via device #2) - enable spdif always */ 1285 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1286 { 1287 struct cmipci *cm = snd_pcm_substream_chip(substream); 1288 int err, do_ac3; 1289 1290 if (cm->can_ac3_hw) 1291 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1292 else 1293 do_ac3 = 1; /* doesn't matter */ 1294 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0) 1295 return err; 1296 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1297 } 1298 1299 /* 1300 * Apparently, the samples last played on channel A stay in some buffer, even 1301 * after the channel is reset, and get added to the data for the rear DACs when 1302 * playing a multichannel stream on channel B. This is likely to generate 1303 * wraparounds and thus distortions. 1304 * To avoid this, we play at least one zero sample after the actual stream has 1305 * stopped. 1306 */ 1307 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1308 { 1309 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1310 unsigned int reg, val; 1311 1312 if (rec->needs_silencing && runtime && runtime->dma_area) { 1313 /* set up a small silence buffer */ 1314 memset(runtime->dma_area, 0, PAGE_SIZE); 1315 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1316 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1317 snd_cmipci_write(cm, reg, val); 1318 1319 /* configure for 16 bits, 2 channels, 8 kHz */ 1320 if (runtime->channels > 2) 1321 set_dac_channels(cm, rec, 2); 1322 spin_lock_irq(&cm->reg_lock); 1323 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1324 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1325 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1326 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1327 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1328 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1329 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1330 if (cm->can_96k) 1331 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 1332 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1333 1334 /* start stream (we don't need interrupts) */ 1335 cm->ctrl |= CM_CHEN0 << rec->ch; 1336 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1337 spin_unlock_irq(&cm->reg_lock); 1338 1339 msleep(1); 1340 1341 /* stop and reset stream */ 1342 spin_lock_irq(&cm->reg_lock); 1343 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1344 val = CM_RST_CH0 << rec->ch; 1345 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1346 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1347 spin_unlock_irq(&cm->reg_lock); 1348 1349 rec->needs_silencing = 0; 1350 } 1351 } 1352 1353 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1354 { 1355 struct cmipci *cm = snd_pcm_substream_chip(substream); 1356 setup_spdif_playback(cm, substream, 0, 0); 1357 restore_mixer_state(cm); 1358 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1359 return 0; 1360 } 1361 1362 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1363 { 1364 struct cmipci *cm = snd_pcm_substream_chip(substream); 1365 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1366 return 0; 1367 } 1368 1369 /* capture */ 1370 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1371 { 1372 struct cmipci *cm = snd_pcm_substream_chip(substream); 1373 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1374 } 1375 1376 /* capture with spdif (via device #2) */ 1377 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1378 { 1379 struct cmipci *cm = snd_pcm_substream_chip(substream); 1380 1381 spin_lock_irq(&cm->reg_lock); 1382 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1383 if (cm->can_96k) { 1384 if (substream->runtime->rate > 48000) 1385 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1386 else 1387 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1388 } 1389 if (snd_pcm_format_width(substream->runtime->format) > 16) 1390 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1391 else 1392 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1393 1394 spin_unlock_irq(&cm->reg_lock); 1395 1396 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1397 } 1398 1399 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1400 { 1401 struct cmipci *cm = snd_pcm_substream_chip(subs); 1402 1403 spin_lock_irq(&cm->reg_lock); 1404 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1405 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1406 spin_unlock_irq(&cm->reg_lock); 1407 1408 return 0; 1409 } 1410 1411 1412 /* 1413 * interrupt handler 1414 */ 1415 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1416 { 1417 struct cmipci *cm = dev_id; 1418 unsigned int status, mask = 0; 1419 1420 /* fastpath out, to ease interrupt sharing */ 1421 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1422 if (!(status & CM_INTR)) 1423 return IRQ_NONE; 1424 1425 /* acknowledge interrupt */ 1426 spin_lock(&cm->reg_lock); 1427 if (status & CM_CHINT0) 1428 mask |= CM_CH0_INT_EN; 1429 if (status & CM_CHINT1) 1430 mask |= CM_CH1_INT_EN; 1431 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1432 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1433 spin_unlock(&cm->reg_lock); 1434 1435 if (cm->rmidi && (status & CM_UARTINT)) 1436 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1437 1438 if (cm->pcm) { 1439 if ((status & CM_CHINT0) && cm->channel[0].running) 1440 snd_pcm_period_elapsed(cm->channel[0].substream); 1441 if ((status & CM_CHINT1) && cm->channel[1].running) 1442 snd_pcm_period_elapsed(cm->channel[1].substream); 1443 } 1444 return IRQ_HANDLED; 1445 } 1446 1447 /* 1448 * h/w infos 1449 */ 1450 1451 /* playback on channel A */ 1452 static const struct snd_pcm_hardware snd_cmipci_playback = 1453 { 1454 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1455 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1456 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1457 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1458 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1459 .rate_min = 5512, 1460 .rate_max = 48000, 1461 .channels_min = 1, 1462 .channels_max = 2, 1463 .buffer_bytes_max = (128*1024), 1464 .period_bytes_min = 64, 1465 .period_bytes_max = (128*1024), 1466 .periods_min = 2, 1467 .periods_max = 1024, 1468 .fifo_size = 0, 1469 }; 1470 1471 /* capture on channel B */ 1472 static const struct snd_pcm_hardware snd_cmipci_capture = 1473 { 1474 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1475 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1476 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1477 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1478 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1479 .rate_min = 5512, 1480 .rate_max = 48000, 1481 .channels_min = 1, 1482 .channels_max = 2, 1483 .buffer_bytes_max = (128*1024), 1484 .period_bytes_min = 64, 1485 .period_bytes_max = (128*1024), 1486 .periods_min = 2, 1487 .periods_max = 1024, 1488 .fifo_size = 0, 1489 }; 1490 1491 /* playback on channel B - stereo 16bit only? */ 1492 static const struct snd_pcm_hardware snd_cmipci_playback2 = 1493 { 1494 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1495 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1496 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1497 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1498 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1499 .rate_min = 5512, 1500 .rate_max = 48000, 1501 .channels_min = 2, 1502 .channels_max = 2, 1503 .buffer_bytes_max = (128*1024), 1504 .period_bytes_min = 64, 1505 .period_bytes_max = (128*1024), 1506 .periods_min = 2, 1507 .periods_max = 1024, 1508 .fifo_size = 0, 1509 }; 1510 1511 /* spdif playback on channel A */ 1512 static const struct snd_pcm_hardware snd_cmipci_playback_spdif = 1513 { 1514 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1515 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1516 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1517 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1518 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1519 .rate_min = 44100, 1520 .rate_max = 48000, 1521 .channels_min = 2, 1522 .channels_max = 2, 1523 .buffer_bytes_max = (128*1024), 1524 .period_bytes_min = 64, 1525 .period_bytes_max = (128*1024), 1526 .periods_min = 2, 1527 .periods_max = 1024, 1528 .fifo_size = 0, 1529 }; 1530 1531 /* spdif playback on channel A (32bit, IEC958 subframes) */ 1532 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1533 { 1534 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1535 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1536 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1537 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1538 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1539 .rate_min = 44100, 1540 .rate_max = 48000, 1541 .channels_min = 2, 1542 .channels_max = 2, 1543 .buffer_bytes_max = (128*1024), 1544 .period_bytes_min = 64, 1545 .period_bytes_max = (128*1024), 1546 .periods_min = 2, 1547 .periods_max = 1024, 1548 .fifo_size = 0, 1549 }; 1550 1551 /* spdif capture on channel B */ 1552 static const struct snd_pcm_hardware snd_cmipci_capture_spdif = 1553 { 1554 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1555 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1556 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1557 .formats = SNDRV_PCM_FMTBIT_S16_LE | 1558 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1559 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1560 .rate_min = 44100, 1561 .rate_max = 48000, 1562 .channels_min = 2, 1563 .channels_max = 2, 1564 .buffer_bytes_max = (128*1024), 1565 .period_bytes_min = 64, 1566 .period_bytes_max = (128*1024), 1567 .periods_min = 2, 1568 .periods_max = 1024, 1569 .fifo_size = 0, 1570 }; 1571 1572 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050, 1573 32000, 44100, 48000, 88200, 96000, 128000 }; 1574 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = { 1575 .count = ARRAY_SIZE(rate_constraints), 1576 .list = rate_constraints, 1577 .mask = 0, 1578 }; 1579 1580 /* 1581 * check device open/close 1582 */ 1583 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1584 { 1585 int ch = mode & CM_OPEN_CH_MASK; 1586 1587 /* FIXME: a file should wait until the device becomes free 1588 * when it's opened on blocking mode. however, since the current 1589 * pcm framework doesn't pass file pointer before actually opened, 1590 * we can't know whether blocking mode or not in open callback.. 1591 */ 1592 mutex_lock(&cm->open_mutex); 1593 if (cm->opened[ch]) { 1594 mutex_unlock(&cm->open_mutex); 1595 return -EBUSY; 1596 } 1597 cm->opened[ch] = mode; 1598 cm->channel[ch].substream = subs; 1599 if (! (mode & CM_OPEN_DAC)) { 1600 /* disable dual DAC mode */ 1601 cm->channel[ch].is_dac = 0; 1602 spin_lock_irq(&cm->reg_lock); 1603 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1604 spin_unlock_irq(&cm->reg_lock); 1605 } 1606 mutex_unlock(&cm->open_mutex); 1607 return 0; 1608 } 1609 1610 static void close_device_check(struct cmipci *cm, int mode) 1611 { 1612 int ch = mode & CM_OPEN_CH_MASK; 1613 1614 mutex_lock(&cm->open_mutex); 1615 if (cm->opened[ch] == mode) { 1616 if (cm->channel[ch].substream) { 1617 snd_cmipci_ch_reset(cm, ch); 1618 cm->channel[ch].running = 0; 1619 cm->channel[ch].substream = NULL; 1620 } 1621 cm->opened[ch] = 0; 1622 if (! cm->channel[ch].is_dac) { 1623 /* enable dual DAC mode again */ 1624 cm->channel[ch].is_dac = 1; 1625 spin_lock_irq(&cm->reg_lock); 1626 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1627 spin_unlock_irq(&cm->reg_lock); 1628 } 1629 } 1630 mutex_unlock(&cm->open_mutex); 1631 } 1632 1633 /* 1634 */ 1635 1636 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1637 { 1638 struct cmipci *cm = snd_pcm_substream_chip(substream); 1639 struct snd_pcm_runtime *runtime = substream->runtime; 1640 int err; 1641 1642 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0) 1643 return err; 1644 runtime->hw = snd_cmipci_playback; 1645 if (cm->chip_version == 68) { 1646 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1647 SNDRV_PCM_RATE_96000; 1648 runtime->hw.rate_max = 96000; 1649 } else if (cm->chip_version == 55) { 1650 err = snd_pcm_hw_constraint_list(runtime, 0, 1651 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1652 if (err < 0) 1653 return err; 1654 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1655 runtime->hw.rate_max = 128000; 1656 } 1657 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1658 cm->dig_pcm_status = cm->dig_status; 1659 return 0; 1660 } 1661 1662 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1663 { 1664 struct cmipci *cm = snd_pcm_substream_chip(substream); 1665 struct snd_pcm_runtime *runtime = substream->runtime; 1666 int err; 1667 1668 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0) 1669 return err; 1670 runtime->hw = snd_cmipci_capture; 1671 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1672 runtime->hw.rate_min = 41000; 1673 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1674 } else if (cm->chip_version == 55) { 1675 err = snd_pcm_hw_constraint_list(runtime, 0, 1676 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1677 if (err < 0) 1678 return err; 1679 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1680 runtime->hw.rate_max = 128000; 1681 } 1682 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1683 return 0; 1684 } 1685 1686 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1687 { 1688 struct cmipci *cm = snd_pcm_substream_chip(substream); 1689 struct snd_pcm_runtime *runtime = substream->runtime; 1690 int err; 1691 1692 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */ 1693 return err; 1694 runtime->hw = snd_cmipci_playback2; 1695 mutex_lock(&cm->open_mutex); 1696 if (! cm->opened[CM_CH_PLAY]) { 1697 if (cm->can_multi_ch) { 1698 runtime->hw.channels_max = cm->max_channels; 1699 if (cm->max_channels == 4) 1700 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1701 else if (cm->max_channels == 6) 1702 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1703 else if (cm->max_channels == 8) 1704 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1705 } 1706 } 1707 mutex_unlock(&cm->open_mutex); 1708 if (cm->chip_version == 68) { 1709 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1710 SNDRV_PCM_RATE_96000; 1711 runtime->hw.rate_max = 96000; 1712 } else if (cm->chip_version == 55) { 1713 err = snd_pcm_hw_constraint_list(runtime, 0, 1714 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1715 if (err < 0) 1716 return err; 1717 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1718 runtime->hw.rate_max = 128000; 1719 } 1720 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1721 return 0; 1722 } 1723 1724 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1725 { 1726 struct cmipci *cm = snd_pcm_substream_chip(substream); 1727 struct snd_pcm_runtime *runtime = substream->runtime; 1728 int err; 1729 1730 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */ 1731 return err; 1732 if (cm->can_ac3_hw) { 1733 runtime->hw = snd_cmipci_playback_spdif; 1734 if (cm->chip_version >= 37) { 1735 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1736 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1737 } 1738 if (cm->can_96k) { 1739 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1740 SNDRV_PCM_RATE_96000; 1741 runtime->hw.rate_max = 96000; 1742 } 1743 } else { 1744 runtime->hw = snd_cmipci_playback_iec958_subframe; 1745 } 1746 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1747 cm->dig_pcm_status = cm->dig_status; 1748 return 0; 1749 } 1750 1751 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1752 { 1753 struct cmipci *cm = snd_pcm_substream_chip(substream); 1754 struct snd_pcm_runtime *runtime = substream->runtime; 1755 int err; 1756 1757 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */ 1758 return err; 1759 runtime->hw = snd_cmipci_capture_spdif; 1760 if (cm->can_96k && !(cm->chip_version == 68)) { 1761 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1762 SNDRV_PCM_RATE_96000; 1763 runtime->hw.rate_max = 96000; 1764 } 1765 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1766 return 0; 1767 } 1768 1769 1770 /* 1771 */ 1772 1773 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1774 { 1775 struct cmipci *cm = snd_pcm_substream_chip(substream); 1776 close_device_check(cm, CM_OPEN_PLAYBACK); 1777 return 0; 1778 } 1779 1780 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1781 { 1782 struct cmipci *cm = snd_pcm_substream_chip(substream); 1783 close_device_check(cm, CM_OPEN_CAPTURE); 1784 return 0; 1785 } 1786 1787 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1788 { 1789 struct cmipci *cm = snd_pcm_substream_chip(substream); 1790 close_device_check(cm, CM_OPEN_PLAYBACK2); 1791 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1792 return 0; 1793 } 1794 1795 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1796 { 1797 struct cmipci *cm = snd_pcm_substream_chip(substream); 1798 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1799 return 0; 1800 } 1801 1802 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1803 { 1804 struct cmipci *cm = snd_pcm_substream_chip(substream); 1805 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1806 return 0; 1807 } 1808 1809 1810 /* 1811 */ 1812 1813 static const struct snd_pcm_ops snd_cmipci_playback_ops = { 1814 .open = snd_cmipci_playback_open, 1815 .close = snd_cmipci_playback_close, 1816 .hw_free = snd_cmipci_playback_hw_free, 1817 .prepare = snd_cmipci_playback_prepare, 1818 .trigger = snd_cmipci_playback_trigger, 1819 .pointer = snd_cmipci_playback_pointer, 1820 }; 1821 1822 static const struct snd_pcm_ops snd_cmipci_capture_ops = { 1823 .open = snd_cmipci_capture_open, 1824 .close = snd_cmipci_capture_close, 1825 .prepare = snd_cmipci_capture_prepare, 1826 .trigger = snd_cmipci_capture_trigger, 1827 .pointer = snd_cmipci_capture_pointer, 1828 }; 1829 1830 static const struct snd_pcm_ops snd_cmipci_playback2_ops = { 1831 .open = snd_cmipci_playback2_open, 1832 .close = snd_cmipci_playback2_close, 1833 .hw_params = snd_cmipci_playback2_hw_params, 1834 .hw_free = snd_cmipci_playback2_hw_free, 1835 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1836 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1837 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1838 }; 1839 1840 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1841 .open = snd_cmipci_playback_spdif_open, 1842 .close = snd_cmipci_playback_spdif_close, 1843 .hw_free = snd_cmipci_playback_hw_free, 1844 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1845 .trigger = snd_cmipci_playback_trigger, 1846 .pointer = snd_cmipci_playback_pointer, 1847 }; 1848 1849 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1850 .open = snd_cmipci_capture_spdif_open, 1851 .close = snd_cmipci_capture_spdif_close, 1852 .hw_free = snd_cmipci_capture_spdif_hw_free, 1853 .prepare = snd_cmipci_capture_spdif_prepare, 1854 .trigger = snd_cmipci_capture_trigger, 1855 .pointer = snd_cmipci_capture_pointer, 1856 }; 1857 1858 1859 /* 1860 */ 1861 1862 static int snd_cmipci_pcm_new(struct cmipci *cm, int device) 1863 { 1864 struct snd_pcm *pcm; 1865 int err; 1866 1867 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1868 if (err < 0) 1869 return err; 1870 1871 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1872 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1873 1874 pcm->private_data = cm; 1875 pcm->info_flags = 0; 1876 strcpy(pcm->name, "C-Media PCI DAC/ADC"); 1877 cm->pcm = pcm; 1878 1879 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1880 &cm->pci->dev, 64*1024, 128*1024); 1881 1882 return 0; 1883 } 1884 1885 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1886 { 1887 struct snd_pcm *pcm; 1888 int err; 1889 1890 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1891 if (err < 0) 1892 return err; 1893 1894 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1895 1896 pcm->private_data = cm; 1897 pcm->info_flags = 0; 1898 strcpy(pcm->name, "C-Media PCI 2nd DAC"); 1899 cm->pcm2 = pcm; 1900 1901 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1902 &cm->pci->dev, 64*1024, 128*1024); 1903 1904 return 0; 1905 } 1906 1907 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1908 { 1909 struct snd_pcm *pcm; 1910 int err; 1911 1912 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1913 if (err < 0) 1914 return err; 1915 1916 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1917 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1918 1919 pcm->private_data = cm; 1920 pcm->info_flags = 0; 1921 strcpy(pcm->name, "C-Media PCI IEC958"); 1922 cm->pcm_spdif = pcm; 1923 1924 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1925 &cm->pci->dev, 64*1024, 128*1024); 1926 1927 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1928 snd_pcm_alt_chmaps, cm->max_channels, 0, 1929 NULL); 1930 if (err < 0) 1931 return err; 1932 1933 return 0; 1934 } 1935 1936 /* 1937 * mixer interface: 1938 * - CM8338/8738 has a compatible mixer interface with SB16, but 1939 * lack of some elements like tone control, i/o gain and AGC. 1940 * - Access to native registers: 1941 * - A 3D switch 1942 * - Output mute switches 1943 */ 1944 1945 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1946 { 1947 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1948 outb(data, s->iobase + CM_REG_SB16_DATA); 1949 } 1950 1951 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1952 { 1953 unsigned char v; 1954 1955 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1956 v = inb(s->iobase + CM_REG_SB16_DATA); 1957 return v; 1958 } 1959 1960 /* 1961 * general mixer element 1962 */ 1963 struct cmipci_sb_reg { 1964 unsigned int left_reg, right_reg; 1965 unsigned int left_shift, right_shift; 1966 unsigned int mask; 1967 unsigned int invert: 1; 1968 unsigned int stereo: 1; 1969 }; 1970 1971 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 1972 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 1973 1974 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 1975 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 1976 .info = snd_cmipci_info_volume, \ 1977 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 1978 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 1979 } 1980 1981 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 1982 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 1983 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 1984 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 1985 1986 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 1987 { 1988 r->left_reg = val & 0xff; 1989 r->right_reg = (val >> 8) & 0xff; 1990 r->left_shift = (val >> 16) & 0x07; 1991 r->right_shift = (val >> 19) & 0x07; 1992 r->invert = (val >> 22) & 1; 1993 r->stereo = (val >> 23) & 1; 1994 r->mask = (val >> 24) & 0xff; 1995 } 1996 1997 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 1998 struct snd_ctl_elem_info *uinfo) 1999 { 2000 struct cmipci_sb_reg reg; 2001 2002 cmipci_sb_reg_decode(®, kcontrol->private_value); 2003 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2004 uinfo->count = reg.stereo + 1; 2005 uinfo->value.integer.min = 0; 2006 uinfo->value.integer.max = reg.mask; 2007 return 0; 2008 } 2009 2010 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 2011 struct snd_ctl_elem_value *ucontrol) 2012 { 2013 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2014 struct cmipci_sb_reg reg; 2015 int val; 2016 2017 cmipci_sb_reg_decode(®, kcontrol->private_value); 2018 spin_lock_irq(&cm->reg_lock); 2019 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 2020 if (reg.invert) 2021 val = reg.mask - val; 2022 ucontrol->value.integer.value[0] = val; 2023 if (reg.stereo) { 2024 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 2025 if (reg.invert) 2026 val = reg.mask - val; 2027 ucontrol->value.integer.value[1] = val; 2028 } 2029 spin_unlock_irq(&cm->reg_lock); 2030 return 0; 2031 } 2032 2033 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2034 struct snd_ctl_elem_value *ucontrol) 2035 { 2036 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2037 struct cmipci_sb_reg reg; 2038 int change; 2039 int left, right, oleft, oright; 2040 2041 cmipci_sb_reg_decode(®, kcontrol->private_value); 2042 left = ucontrol->value.integer.value[0] & reg.mask; 2043 if (reg.invert) 2044 left = reg.mask - left; 2045 left <<= reg.left_shift; 2046 if (reg.stereo) { 2047 right = ucontrol->value.integer.value[1] & reg.mask; 2048 if (reg.invert) 2049 right = reg.mask - right; 2050 right <<= reg.right_shift; 2051 } else 2052 right = 0; 2053 spin_lock_irq(&cm->reg_lock); 2054 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2055 left |= oleft & ~(reg.mask << reg.left_shift); 2056 change = left != oleft; 2057 if (reg.stereo) { 2058 if (reg.left_reg != reg.right_reg) { 2059 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2060 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2061 } else 2062 oright = left; 2063 right |= oright & ~(reg.mask << reg.right_shift); 2064 change |= right != oright; 2065 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2066 } else 2067 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2068 spin_unlock_irq(&cm->reg_lock); 2069 return change; 2070 } 2071 2072 /* 2073 * input route (left,right) -> (left,right) 2074 */ 2075 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2076 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2077 .info = snd_cmipci_info_input_sw, \ 2078 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2079 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2080 } 2081 2082 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2083 struct snd_ctl_elem_info *uinfo) 2084 { 2085 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2086 uinfo->count = 4; 2087 uinfo->value.integer.min = 0; 2088 uinfo->value.integer.max = 1; 2089 return 0; 2090 } 2091 2092 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2093 struct snd_ctl_elem_value *ucontrol) 2094 { 2095 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2096 struct cmipci_sb_reg reg; 2097 int val1, val2; 2098 2099 cmipci_sb_reg_decode(®, kcontrol->private_value); 2100 spin_lock_irq(&cm->reg_lock); 2101 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2102 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2103 spin_unlock_irq(&cm->reg_lock); 2104 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2105 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2106 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2107 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2108 return 0; 2109 } 2110 2111 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2112 struct snd_ctl_elem_value *ucontrol) 2113 { 2114 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2115 struct cmipci_sb_reg reg; 2116 int change; 2117 int val1, val2, oval1, oval2; 2118 2119 cmipci_sb_reg_decode(®, kcontrol->private_value); 2120 spin_lock_irq(&cm->reg_lock); 2121 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2122 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2123 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2124 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2125 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2126 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2127 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2128 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2129 change = val1 != oval1 || val2 != oval2; 2130 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2131 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2132 spin_unlock_irq(&cm->reg_lock); 2133 return change; 2134 } 2135 2136 /* 2137 * native mixer switches/volumes 2138 */ 2139 2140 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2141 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2142 .info = snd_cmipci_info_native_mixer, \ 2143 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2144 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2145 } 2146 2147 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2148 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2149 .info = snd_cmipci_info_native_mixer, \ 2150 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2151 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2152 } 2153 2154 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2155 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2156 .info = snd_cmipci_info_native_mixer, \ 2157 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2158 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2159 } 2160 2161 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2162 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2163 .info = snd_cmipci_info_native_mixer, \ 2164 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2165 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2166 } 2167 2168 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2169 struct snd_ctl_elem_info *uinfo) 2170 { 2171 struct cmipci_sb_reg reg; 2172 2173 cmipci_sb_reg_decode(®, kcontrol->private_value); 2174 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2175 uinfo->count = reg.stereo + 1; 2176 uinfo->value.integer.min = 0; 2177 uinfo->value.integer.max = reg.mask; 2178 return 0; 2179 2180 } 2181 2182 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2183 struct snd_ctl_elem_value *ucontrol) 2184 { 2185 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2186 struct cmipci_sb_reg reg; 2187 unsigned char oreg, val; 2188 2189 cmipci_sb_reg_decode(®, kcontrol->private_value); 2190 spin_lock_irq(&cm->reg_lock); 2191 oreg = inb(cm->iobase + reg.left_reg); 2192 val = (oreg >> reg.left_shift) & reg.mask; 2193 if (reg.invert) 2194 val = reg.mask - val; 2195 ucontrol->value.integer.value[0] = val; 2196 if (reg.stereo) { 2197 val = (oreg >> reg.right_shift) & reg.mask; 2198 if (reg.invert) 2199 val = reg.mask - val; 2200 ucontrol->value.integer.value[1] = val; 2201 } 2202 spin_unlock_irq(&cm->reg_lock); 2203 return 0; 2204 } 2205 2206 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2207 struct snd_ctl_elem_value *ucontrol) 2208 { 2209 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2210 struct cmipci_sb_reg reg; 2211 unsigned char oreg, nreg, val; 2212 2213 cmipci_sb_reg_decode(®, kcontrol->private_value); 2214 spin_lock_irq(&cm->reg_lock); 2215 oreg = inb(cm->iobase + reg.left_reg); 2216 val = ucontrol->value.integer.value[0] & reg.mask; 2217 if (reg.invert) 2218 val = reg.mask - val; 2219 nreg = oreg & ~(reg.mask << reg.left_shift); 2220 nreg |= (val << reg.left_shift); 2221 if (reg.stereo) { 2222 val = ucontrol->value.integer.value[1] & reg.mask; 2223 if (reg.invert) 2224 val = reg.mask - val; 2225 nreg &= ~(reg.mask << reg.right_shift); 2226 nreg |= (val << reg.right_shift); 2227 } 2228 outb(nreg, cm->iobase + reg.left_reg); 2229 spin_unlock_irq(&cm->reg_lock); 2230 return (nreg != oreg); 2231 } 2232 2233 /* 2234 * special case - check mixer sensitivity 2235 */ 2236 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2237 struct snd_ctl_elem_value *ucontrol) 2238 { 2239 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2240 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2241 } 2242 2243 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2244 struct snd_ctl_elem_value *ucontrol) 2245 { 2246 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2247 if (cm->mixer_insensitive) { 2248 /* ignored */ 2249 return 0; 2250 } 2251 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2252 } 2253 2254 2255 static const struct snd_kcontrol_new snd_cmipci_mixers[] = { 2256 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2257 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2258 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2259 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2260 { /* switch with sensitivity */ 2261 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2262 .name = "PCM Playback Switch", 2263 .info = snd_cmipci_info_native_mixer, 2264 .get = snd_cmipci_get_native_mixer_sensitive, 2265 .put = snd_cmipci_put_native_mixer_sensitive, 2266 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2267 }, 2268 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2269 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2270 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2271 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2272 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2273 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2274 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2275 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2276 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2277 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2278 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2279 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2280 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2281 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2282 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2283 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2284 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2285 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2286 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2287 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2288 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2289 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2290 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2291 }; 2292 2293 /* 2294 * other switches 2295 */ 2296 2297 struct cmipci_switch_args { 2298 int reg; /* register index */ 2299 unsigned int mask; /* mask bits */ 2300 unsigned int mask_on; /* mask bits to turn on */ 2301 unsigned int is_byte: 1; /* byte access? */ 2302 unsigned int ac3_sensitive: 1; /* access forbidden during 2303 * non-audio operation? 2304 */ 2305 }; 2306 2307 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2308 2309 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2310 struct snd_ctl_elem_value *ucontrol, 2311 struct cmipci_switch_args *args) 2312 { 2313 unsigned int val; 2314 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2315 2316 spin_lock_irq(&cm->reg_lock); 2317 if (args->ac3_sensitive && cm->mixer_insensitive) { 2318 ucontrol->value.integer.value[0] = 0; 2319 spin_unlock_irq(&cm->reg_lock); 2320 return 0; 2321 } 2322 if (args->is_byte) 2323 val = inb(cm->iobase + args->reg); 2324 else 2325 val = snd_cmipci_read(cm, args->reg); 2326 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2327 spin_unlock_irq(&cm->reg_lock); 2328 return 0; 2329 } 2330 2331 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2332 struct snd_ctl_elem_value *ucontrol) 2333 { 2334 struct cmipci_switch_args *args; 2335 args = (struct cmipci_switch_args *)kcontrol->private_value; 2336 if (snd_BUG_ON(!args)) 2337 return -EINVAL; 2338 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2339 } 2340 2341 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2342 struct snd_ctl_elem_value *ucontrol, 2343 struct cmipci_switch_args *args) 2344 { 2345 unsigned int val; 2346 int change; 2347 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2348 2349 spin_lock_irq(&cm->reg_lock); 2350 if (args->ac3_sensitive && cm->mixer_insensitive) { 2351 /* ignored */ 2352 spin_unlock_irq(&cm->reg_lock); 2353 return 0; 2354 } 2355 if (args->is_byte) 2356 val = inb(cm->iobase + args->reg); 2357 else 2358 val = snd_cmipci_read(cm, args->reg); 2359 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2360 args->mask_on : (args->mask & ~args->mask_on)); 2361 if (change) { 2362 val &= ~args->mask; 2363 if (ucontrol->value.integer.value[0]) 2364 val |= args->mask_on; 2365 else 2366 val |= (args->mask & ~args->mask_on); 2367 if (args->is_byte) 2368 outb((unsigned char)val, cm->iobase + args->reg); 2369 else 2370 snd_cmipci_write(cm, args->reg, val); 2371 } 2372 spin_unlock_irq(&cm->reg_lock); 2373 return change; 2374 } 2375 2376 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2377 struct snd_ctl_elem_value *ucontrol) 2378 { 2379 struct cmipci_switch_args *args; 2380 args = (struct cmipci_switch_args *)kcontrol->private_value; 2381 if (snd_BUG_ON(!args)) 2382 return -EINVAL; 2383 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2384 } 2385 2386 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2387 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2388 .reg = xreg, \ 2389 .mask = xmask, \ 2390 .mask_on = xmask_on, \ 2391 .is_byte = xis_byte, \ 2392 .ac3_sensitive = xac3, \ 2393 } 2394 2395 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2396 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2397 2398 #if 0 /* these will be controlled in pcm device */ 2399 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2400 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2401 #endif 2402 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2403 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2404 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2405 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2406 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2407 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2408 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2409 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2410 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2411 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2412 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2413 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2414 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2415 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2416 #if CM_CH_PLAY == 1 2417 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2418 #else 2419 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2420 #endif 2421 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2422 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2423 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2424 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2425 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2426 2427 #define DEFINE_SWITCH(sname, stype, sarg) \ 2428 { .name = sname, \ 2429 .iface = stype, \ 2430 .info = snd_cmipci_uswitch_info, \ 2431 .get = snd_cmipci_uswitch_get, \ 2432 .put = snd_cmipci_uswitch_put, \ 2433 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2434 } 2435 2436 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2437 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2438 2439 2440 /* 2441 * callbacks for spdif output switch 2442 * needs toggle two registers.. 2443 */ 2444 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2445 struct snd_ctl_elem_value *ucontrol) 2446 { 2447 int changed; 2448 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2449 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2450 return changed; 2451 } 2452 2453 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2454 struct snd_ctl_elem_value *ucontrol) 2455 { 2456 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2457 int changed; 2458 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2459 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2460 if (changed) { 2461 if (ucontrol->value.integer.value[0]) { 2462 if (chip->spdif_playback_avail) 2463 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2464 } else { 2465 if (chip->spdif_playback_avail) 2466 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2467 } 2468 } 2469 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2470 return changed; 2471 } 2472 2473 2474 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2475 struct snd_ctl_elem_info *uinfo) 2476 { 2477 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2478 static const char *const texts[3] = { 2479 "Line-In", "Rear Output", "Bass Output" 2480 }; 2481 2482 return snd_ctl_enum_info(uinfo, 1, 2483 cm->chip_version >= 39 ? 3 : 2, texts); 2484 } 2485 2486 static inline unsigned int get_line_in_mode(struct cmipci *cm) 2487 { 2488 unsigned int val; 2489 if (cm->chip_version >= 39) { 2490 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2491 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2492 return 2; 2493 } 2494 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2495 if (val & CM_REAR2LIN) 2496 return 1; 2497 return 0; 2498 } 2499 2500 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2501 struct snd_ctl_elem_value *ucontrol) 2502 { 2503 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2504 2505 spin_lock_irq(&cm->reg_lock); 2506 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2507 spin_unlock_irq(&cm->reg_lock); 2508 return 0; 2509 } 2510 2511 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2512 struct snd_ctl_elem_value *ucontrol) 2513 { 2514 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2515 int change; 2516 2517 spin_lock_irq(&cm->reg_lock); 2518 if (ucontrol->value.enumerated.item[0] == 2) 2519 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2520 else 2521 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2522 if (ucontrol->value.enumerated.item[0] == 1) 2523 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2524 else 2525 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2526 spin_unlock_irq(&cm->reg_lock); 2527 return change; 2528 } 2529 2530 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2531 struct snd_ctl_elem_info *uinfo) 2532 { 2533 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" }; 2534 2535 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2536 } 2537 2538 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2539 struct snd_ctl_elem_value *ucontrol) 2540 { 2541 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2542 /* same bit as spdi_phase */ 2543 spin_lock_irq(&cm->reg_lock); 2544 ucontrol->value.enumerated.item[0] = 2545 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2546 spin_unlock_irq(&cm->reg_lock); 2547 return 0; 2548 } 2549 2550 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2551 struct snd_ctl_elem_value *ucontrol) 2552 { 2553 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2554 int change; 2555 2556 spin_lock_irq(&cm->reg_lock); 2557 if (ucontrol->value.enumerated.item[0]) 2558 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2559 else 2560 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2561 spin_unlock_irq(&cm->reg_lock); 2562 return change; 2563 } 2564 2565 /* both for CM8338/8738 */ 2566 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = { 2567 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2568 { 2569 .name = "Line-In Mode", 2570 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2571 .info = snd_cmipci_line_in_mode_info, 2572 .get = snd_cmipci_line_in_mode_get, 2573 .put = snd_cmipci_line_in_mode_put, 2574 }, 2575 }; 2576 2577 /* for non-multichannel chips */ 2578 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch = 2579 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2580 2581 /* only for CM8738 */ 2582 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = { 2583 #if 0 /* controlled in pcm device */ 2584 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2585 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2586 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2587 #endif 2588 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2589 { .name = "IEC958 Output Switch", 2590 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2591 .info = snd_cmipci_uswitch_info, 2592 .get = snd_cmipci_spdout_enable_get, 2593 .put = snd_cmipci_spdout_enable_put, 2594 }, 2595 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2596 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2597 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2598 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2599 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2600 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2601 }; 2602 2603 /* only for model 033/037 */ 2604 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = { 2605 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2606 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2607 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2608 }; 2609 2610 /* only for model 039 or later */ 2611 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = { 2612 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2613 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2614 { 2615 .name = "Mic-In Mode", 2616 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2617 .info = snd_cmipci_mic_in_mode_info, 2618 .get = snd_cmipci_mic_in_mode_get, 2619 .put = snd_cmipci_mic_in_mode_put, 2620 } 2621 }; 2622 2623 /* card control switches */ 2624 static const struct snd_kcontrol_new snd_cmipci_modem_switch = 2625 DEFINE_CARD_SWITCH("Modem", modem); 2626 2627 2628 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2629 { 2630 struct snd_card *card; 2631 const struct snd_kcontrol_new *sw; 2632 struct snd_kcontrol *kctl; 2633 unsigned int idx; 2634 int err; 2635 2636 if (snd_BUG_ON(!cm || !cm->card)) 2637 return -EINVAL; 2638 2639 card = cm->card; 2640 2641 strcpy(card->mixername, "CMedia PCI"); 2642 2643 spin_lock_irq(&cm->reg_lock); 2644 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2645 spin_unlock_irq(&cm->reg_lock); 2646 2647 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2648 if (cm->chip_version == 68) { // 8768 has no PCM volume 2649 if (!strcmp(snd_cmipci_mixers[idx].name, 2650 "PCM Playback Volume")) 2651 continue; 2652 } 2653 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0) 2654 return err; 2655 } 2656 2657 /* mixer switches */ 2658 sw = snd_cmipci_mixer_switches; 2659 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2660 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2661 if (err < 0) 2662 return err; 2663 } 2664 if (! cm->can_multi_ch) { 2665 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2666 if (err < 0) 2667 return err; 2668 } 2669 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2670 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2671 sw = snd_cmipci_8738_mixer_switches; 2672 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2673 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2674 if (err < 0) 2675 return err; 2676 } 2677 if (cm->can_ac3_hw) { 2678 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0) 2679 return err; 2680 kctl->id.device = pcm_spdif_device; 2681 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0) 2682 return err; 2683 kctl->id.device = pcm_spdif_device; 2684 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0) 2685 return err; 2686 kctl->id.device = pcm_spdif_device; 2687 } 2688 if (cm->chip_version <= 37) { 2689 sw = snd_cmipci_old_mixer_switches; 2690 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2691 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2692 if (err < 0) 2693 return err; 2694 } 2695 } 2696 } 2697 if (cm->chip_version >= 39) { 2698 sw = snd_cmipci_extra_mixer_switches; 2699 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2700 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2701 if (err < 0) 2702 return err; 2703 } 2704 } 2705 2706 /* card switches */ 2707 /* 2708 * newer chips don't have the register bits to force modem link 2709 * detection; the bit that was FLINKON now mutes CH1 2710 */ 2711 if (cm->chip_version < 39) { 2712 err = snd_ctl_add(cm->card, 2713 snd_ctl_new1(&snd_cmipci_modem_switch, cm)); 2714 if (err < 0) 2715 return err; 2716 } 2717 2718 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2719 struct snd_ctl_elem_id elem_id; 2720 struct snd_kcontrol *ctl; 2721 memset(&elem_id, 0, sizeof(elem_id)); 2722 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 2723 strcpy(elem_id.name, cm_saved_mixer[idx].name); 2724 ctl = snd_ctl_find_id(cm->card, &elem_id); 2725 if (ctl) 2726 cm->mixer_res_ctl[idx] = ctl; 2727 } 2728 2729 return 0; 2730 } 2731 2732 2733 /* 2734 * proc interface 2735 */ 2736 2737 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2738 struct snd_info_buffer *buffer) 2739 { 2740 struct cmipci *cm = entry->private_data; 2741 int i, v; 2742 2743 snd_iprintf(buffer, "%s\n", cm->card->longname); 2744 for (i = 0; i < 0x94; i++) { 2745 if (i == 0x28) 2746 i = 0x90; 2747 v = inb(cm->iobase + i); 2748 if (i % 4 == 0) 2749 snd_iprintf(buffer, "\n%02x:", i); 2750 snd_iprintf(buffer, " %02x", v); 2751 } 2752 snd_iprintf(buffer, "\n"); 2753 } 2754 2755 static void snd_cmipci_proc_init(struct cmipci *cm) 2756 { 2757 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read); 2758 } 2759 2760 static const struct pci_device_id snd_cmipci_ids[] = { 2761 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0}, 2762 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0}, 2763 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2764 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0}, 2765 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2766 {0,}, 2767 }; 2768 2769 2770 /* 2771 * check chip version and capabilities 2772 * driver name is modified according to the chip model 2773 */ 2774 static void query_chip(struct cmipci *cm) 2775 { 2776 unsigned int detect; 2777 2778 /* check reg 0Ch, bit 24-31 */ 2779 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2780 if (! detect) { 2781 /* check reg 08h, bit 24-28 */ 2782 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2783 switch (detect) { 2784 case 0: 2785 cm->chip_version = 33; 2786 if (cm->do_soft_ac3) 2787 cm->can_ac3_sw = 1; 2788 else 2789 cm->can_ac3_hw = 1; 2790 break; 2791 case CM_CHIP_037: 2792 cm->chip_version = 37; 2793 cm->can_ac3_hw = 1; 2794 break; 2795 default: 2796 cm->chip_version = 39; 2797 cm->can_ac3_hw = 1; 2798 break; 2799 } 2800 cm->max_channels = 2; 2801 } else { 2802 if (detect & CM_CHIP_039) { 2803 cm->chip_version = 39; 2804 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2805 cm->max_channels = 6; 2806 else 2807 cm->max_channels = 4; 2808 } else if (detect & CM_CHIP_8768) { 2809 cm->chip_version = 68; 2810 cm->max_channels = 8; 2811 cm->can_96k = 1; 2812 } else { 2813 cm->chip_version = 55; 2814 cm->max_channels = 6; 2815 cm->can_96k = 1; 2816 } 2817 cm->can_ac3_hw = 1; 2818 cm->can_multi_ch = 1; 2819 } 2820 } 2821 2822 #ifdef SUPPORT_JOYSTICK 2823 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2824 { 2825 static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2826 struct gameport *gp; 2827 struct resource *r = NULL; 2828 int i, io_port = 0; 2829 2830 if (joystick_port[dev] == 0) 2831 return -ENODEV; 2832 2833 if (joystick_port[dev] == 1) { /* auto-detect */ 2834 for (i = 0; ports[i]; i++) { 2835 io_port = ports[i]; 2836 r = request_region(io_port, 1, "CMIPCI gameport"); 2837 if (r) 2838 break; 2839 } 2840 } else { 2841 io_port = joystick_port[dev]; 2842 r = request_region(io_port, 1, "CMIPCI gameport"); 2843 } 2844 2845 if (!r) { 2846 dev_warn(cm->card->dev, "cannot reserve joystick ports\n"); 2847 return -EBUSY; 2848 } 2849 2850 cm->gameport = gp = gameport_allocate_port(); 2851 if (!gp) { 2852 dev_err(cm->card->dev, "cannot allocate memory for gameport\n"); 2853 release_and_free_resource(r); 2854 return -ENOMEM; 2855 } 2856 gameport_set_name(gp, "C-Media Gameport"); 2857 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2858 gameport_set_dev_parent(gp, &cm->pci->dev); 2859 gp->io = io_port; 2860 gameport_set_port_data(gp, r); 2861 2862 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2863 2864 gameport_register_port(cm->gameport); 2865 2866 return 0; 2867 } 2868 2869 static void snd_cmipci_free_gameport(struct cmipci *cm) 2870 { 2871 if (cm->gameport) { 2872 struct resource *r = gameport_get_port_data(cm->gameport); 2873 2874 gameport_unregister_port(cm->gameport); 2875 cm->gameport = NULL; 2876 2877 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2878 release_and_free_resource(r); 2879 } 2880 } 2881 #else 2882 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2883 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2884 #endif 2885 2886 static int snd_cmipci_free(struct cmipci *cm) 2887 { 2888 if (cm->irq >= 0) { 2889 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2890 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2891 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2892 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2893 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2894 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2895 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2896 2897 /* reset mixer */ 2898 snd_cmipci_mixer_write(cm, 0, 0); 2899 2900 free_irq(cm->irq, cm); 2901 } 2902 2903 snd_cmipci_free_gameport(cm); 2904 pci_release_regions(cm->pci); 2905 pci_disable_device(cm->pci); 2906 kfree(cm); 2907 return 0; 2908 } 2909 2910 static int snd_cmipci_dev_free(struct snd_device *device) 2911 { 2912 struct cmipci *cm = device->device_data; 2913 return snd_cmipci_free(cm); 2914 } 2915 2916 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2917 { 2918 long iosynth; 2919 unsigned int val; 2920 struct snd_opl3 *opl3; 2921 int err; 2922 2923 if (!fm_port) 2924 goto disable_fm; 2925 2926 if (cm->chip_version >= 39) { 2927 /* first try FM regs in PCI port range */ 2928 iosynth = cm->iobase + CM_REG_FM_PCI; 2929 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2930 OPL3_HW_OPL3, 1, &opl3); 2931 } else { 2932 err = -EIO; 2933 } 2934 if (err < 0) { 2935 /* then try legacy ports */ 2936 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2937 iosynth = fm_port; 2938 switch (iosynth) { 2939 case 0x3E8: val |= CM_FMSEL_3E8; break; 2940 case 0x3E0: val |= CM_FMSEL_3E0; break; 2941 case 0x3C8: val |= CM_FMSEL_3C8; break; 2942 case 0x388: val |= CM_FMSEL_388; break; 2943 default: 2944 goto disable_fm; 2945 } 2946 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2947 /* enable FM */ 2948 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2949 2950 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2951 OPL3_HW_OPL3, 0, &opl3) < 0) { 2952 dev_err(cm->card->dev, 2953 "no OPL device at %#lx, skipping...\n", 2954 iosynth); 2955 goto disable_fm; 2956 } 2957 } 2958 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { 2959 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n"); 2960 return err; 2961 } 2962 return 0; 2963 2964 disable_fm: 2965 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 2966 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2967 return 0; 2968 } 2969 2970 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 2971 int dev, struct cmipci **rcmipci) 2972 { 2973 struct cmipci *cm; 2974 int err; 2975 static const struct snd_device_ops ops = { 2976 .dev_free = snd_cmipci_dev_free, 2977 }; 2978 unsigned int val; 2979 long iomidi = 0; 2980 int integrated_midi = 0; 2981 char modelstr[16]; 2982 int pcm_index, pcm_spdif_index; 2983 static const struct pci_device_id intel_82437vx[] = { 2984 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 2985 { }, 2986 }; 2987 2988 *rcmipci = NULL; 2989 2990 if ((err = pci_enable_device(pci)) < 0) 2991 return err; 2992 2993 cm = kzalloc(sizeof(*cm), GFP_KERNEL); 2994 if (cm == NULL) { 2995 pci_disable_device(pci); 2996 return -ENOMEM; 2997 } 2998 2999 spin_lock_init(&cm->reg_lock); 3000 mutex_init(&cm->open_mutex); 3001 cm->device = pci->device; 3002 cm->card = card; 3003 cm->pci = pci; 3004 cm->irq = -1; 3005 cm->channel[0].ch = 0; 3006 cm->channel[1].ch = 1; 3007 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 3008 3009 if ((err = pci_request_regions(pci, card->driver)) < 0) { 3010 kfree(cm); 3011 pci_disable_device(pci); 3012 return err; 3013 } 3014 cm->iobase = pci_resource_start(pci, 0); 3015 3016 if (request_irq(pci->irq, snd_cmipci_interrupt, 3017 IRQF_SHARED, KBUILD_MODNAME, cm)) { 3018 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); 3019 snd_cmipci_free(cm); 3020 return -EBUSY; 3021 } 3022 cm->irq = pci->irq; 3023 card->sync_irq = cm->irq; 3024 3025 pci_set_master(cm->pci); 3026 3027 /* 3028 * check chip version, max channels and capabilities 3029 */ 3030 3031 cm->chip_version = 0; 3032 cm->max_channels = 2; 3033 cm->do_soft_ac3 = soft_ac3[dev]; 3034 3035 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 3036 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 3037 query_chip(cm); 3038 /* added -MCx suffix for chip supporting multi-channels */ 3039 if (cm->can_multi_ch) 3040 sprintf(cm->card->driver + strlen(cm->card->driver), 3041 "-MC%d", cm->max_channels); 3042 else if (cm->can_ac3_sw) 3043 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); 3044 3045 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3046 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3047 3048 #if CM_CH_PLAY == 1 3049 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 3050 #else 3051 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 3052 #endif 3053 3054 /* initialize codec registers */ 3055 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3056 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3057 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 3058 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3059 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3060 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 3061 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3062 3063 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3064 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3065 #if CM_CH_PLAY == 1 3066 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3067 #else 3068 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3069 #endif 3070 if (cm->chip_version) { 3071 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3072 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3073 } 3074 /* Set Bus Master Request */ 3075 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3076 3077 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3078 switch (pci->device) { 3079 case PCI_DEVICE_ID_CMEDIA_CM8738: 3080 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3081 if (!pci_dev_present(intel_82437vx)) 3082 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3083 break; 3084 default: 3085 break; 3086 } 3087 3088 if (cm->chip_version < 68) { 3089 val = pci->device < 0x110 ? 8338 : 8738; 3090 } else { 3091 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3092 case 0: 3093 val = 8769; 3094 break; 3095 case 2: 3096 val = 8762; 3097 break; 3098 default: 3099 switch ((pci->subsystem_vendor << 16) | 3100 pci->subsystem_device) { 3101 case 0x13f69761: 3102 case 0x584d3741: 3103 case 0x584d3751: 3104 case 0x584d3761: 3105 case 0x584d3771: 3106 case 0x72848384: 3107 val = 8770; 3108 break; 3109 default: 3110 val = 8768; 3111 break; 3112 } 3113 } 3114 } 3115 sprintf(card->shortname, "C-Media CMI%d", val); 3116 if (cm->chip_version < 68) 3117 sprintf(modelstr, " (model %d)", cm->chip_version); 3118 else 3119 modelstr[0] = '\0'; 3120 sprintf(card->longname, "%s%s at %#lx, irq %i", 3121 card->shortname, modelstr, cm->iobase, cm->irq); 3122 3123 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) { 3124 snd_cmipci_free(cm); 3125 return err; 3126 } 3127 3128 if (cm->chip_version >= 39) { 3129 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3130 if (val != 0x00 && val != 0xff) { 3131 if (mpu_port[dev]) 3132 iomidi = cm->iobase + CM_REG_MPU_PCI; 3133 integrated_midi = 1; 3134 } 3135 } 3136 if (!integrated_midi) { 3137 val = 0; 3138 iomidi = mpu_port[dev]; 3139 switch (iomidi) { 3140 case 0x320: val = CM_VMPU_320; break; 3141 case 0x310: val = CM_VMPU_310; break; 3142 case 0x300: val = CM_VMPU_300; break; 3143 case 0x330: val = CM_VMPU_330; break; 3144 default: 3145 iomidi = 0; break; 3146 } 3147 if (iomidi > 0) { 3148 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3149 /* enable UART */ 3150 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3151 if (inb(iomidi + 1) == 0xff) { 3152 dev_err(cm->card->dev, 3153 "cannot enable MPU-401 port at %#lx\n", 3154 iomidi); 3155 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3156 CM_UART_EN); 3157 iomidi = 0; 3158 } 3159 } 3160 } 3161 3162 if (cm->chip_version < 68) { 3163 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3164 if (err < 0) 3165 return err; 3166 } 3167 3168 /* reset mixer */ 3169 snd_cmipci_mixer_write(cm, 0, 0); 3170 3171 snd_cmipci_proc_init(cm); 3172 3173 /* create pcm devices */ 3174 pcm_index = pcm_spdif_index = 0; 3175 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0) 3176 return err; 3177 pcm_index++; 3178 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0) 3179 return err; 3180 pcm_index++; 3181 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3182 pcm_spdif_index = pcm_index; 3183 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0) 3184 return err; 3185 } 3186 3187 /* create mixer interface & switches */ 3188 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0) 3189 return err; 3190 3191 if (iomidi > 0) { 3192 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3193 iomidi, 3194 (integrated_midi ? 3195 MPU401_INFO_INTEGRATED : 0) | 3196 MPU401_INFO_IRQ_HOOK, 3197 -1, &cm->rmidi)) < 0) { 3198 dev_err(cm->card->dev, 3199 "no UART401 device at 0x%lx\n", iomidi); 3200 } 3201 } 3202 3203 #ifdef USE_VAR48KRATE 3204 for (val = 0; val < ARRAY_SIZE(rates); val++) 3205 snd_cmipci_set_pll(cm, rates[val], val); 3206 3207 /* 3208 * (Re-)Enable external switch spdo_48k 3209 */ 3210 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3211 #endif /* USE_VAR48KRATE */ 3212 3213 if (snd_cmipci_create_gameport(cm, dev) < 0) 3214 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3215 3216 *rcmipci = cm; 3217 return 0; 3218 } 3219 3220 /* 3221 */ 3222 3223 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3224 3225 static int snd_cmipci_probe(struct pci_dev *pci, 3226 const struct pci_device_id *pci_id) 3227 { 3228 static int dev; 3229 struct snd_card *card; 3230 struct cmipci *cm; 3231 int err; 3232 3233 if (dev >= SNDRV_CARDS) 3234 return -ENODEV; 3235 if (! enable[dev]) { 3236 dev++; 3237 return -ENOENT; 3238 } 3239 3240 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 3241 0, &card); 3242 if (err < 0) 3243 return err; 3244 3245 switch (pci->device) { 3246 case PCI_DEVICE_ID_CMEDIA_CM8738: 3247 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3248 strcpy(card->driver, "CMI8738"); 3249 break; 3250 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3251 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3252 strcpy(card->driver, "CMI8338"); 3253 break; 3254 default: 3255 strcpy(card->driver, "CMIPCI"); 3256 break; 3257 } 3258 3259 err = snd_cmipci_create(card, pci, dev, &cm); 3260 if (err < 0) 3261 goto free_card; 3262 3263 card->private_data = cm; 3264 3265 err = snd_card_register(card); 3266 if (err < 0) 3267 goto free_card; 3268 3269 pci_set_drvdata(pci, card); 3270 dev++; 3271 return 0; 3272 3273 free_card: 3274 snd_card_free(card); 3275 return err; 3276 } 3277 3278 static void snd_cmipci_remove(struct pci_dev *pci) 3279 { 3280 snd_card_free(pci_get_drvdata(pci)); 3281 } 3282 3283 3284 #ifdef CONFIG_PM_SLEEP 3285 /* 3286 * power management 3287 */ 3288 static const unsigned char saved_regs[] = { 3289 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3290 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL, 3291 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3292 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3293 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3294 }; 3295 3296 static const unsigned char saved_mixers[] = { 3297 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3298 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3299 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3300 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3301 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3302 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3303 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3304 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3305 }; 3306 3307 static int snd_cmipci_suspend(struct device *dev) 3308 { 3309 struct snd_card *card = dev_get_drvdata(dev); 3310 struct cmipci *cm = card->private_data; 3311 int i; 3312 3313 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3314 3315 /* save registers */ 3316 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3317 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3318 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3319 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3320 3321 /* disable ints */ 3322 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3323 return 0; 3324 } 3325 3326 static int snd_cmipci_resume(struct device *dev) 3327 { 3328 struct snd_card *card = dev_get_drvdata(dev); 3329 struct cmipci *cm = card->private_data; 3330 int i; 3331 3332 /* reset / initialize to a sane state */ 3333 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3334 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3335 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3336 snd_cmipci_mixer_write(cm, 0, 0); 3337 3338 /* restore registers */ 3339 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3340 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3341 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3342 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3343 3344 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3345 return 0; 3346 } 3347 3348 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume); 3349 #define SND_CMIPCI_PM_OPS &snd_cmipci_pm 3350 #else 3351 #define SND_CMIPCI_PM_OPS NULL 3352 #endif /* CONFIG_PM_SLEEP */ 3353 3354 static struct pci_driver cmipci_driver = { 3355 .name = KBUILD_MODNAME, 3356 .id_table = snd_cmipci_ids, 3357 .probe = snd_cmipci_probe, 3358 .remove = snd_cmipci_remove, 3359 .driver = { 3360 .pm = SND_CMIPCI_PM_OPS, 3361 }, 3362 }; 3363 3364 module_pci_driver(cmipci_driver); 3365