xref: /openbmc/linux/sound/pci/cmipci.c (revision b6dcefde)
1 /*
2  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22 
23 #include <asm/io.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/gameport.h>
30 #include <linux/moduleparam.h>
31 #include <linux/mutex.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
42 
43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47 		"{C-Media,CMI8738B},"
48 		"{C-Media,CMI8338A},"
49 		"{C-Media,CMI8338B}}");
50 
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
54 
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
57 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
64 
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
81 
82 /*
83  * CM8x38 registers definition
84  */
85 
86 #define CM_REG_FUNCTRL0		0x00
87 #define CM_RST_CH1		0x00080000
88 #define CM_RST_CH0		0x00040000
89 #define CM_CHEN1		0x00020000	/* ch1: enable */
90 #define CM_CHEN0		0x00010000	/* ch0: enable */
91 #define CM_PAUSE1		0x00000008	/* ch1: pause */
92 #define CM_PAUSE0		0x00000004	/* ch0: pause */
93 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
94 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
95 
96 #define CM_REG_FUNCTRL1		0x04
97 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
98 #define CM_DSFC_SHIFT		13
99 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
100 #define CM_ASFC_SHIFT		10
101 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
102 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
103 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
104 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
105 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
106 #define CM_BREQ			0x00000010	/* bus master enabled */
107 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
108 #define CM_UART_EN		0x00000004	/* legacy UART */
109 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
110 #define CM_ZVPORT		0x00000001	/* ZVPORT */
111 
112 #define CM_REG_CHFORMAT		0x08
113 
114 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
115 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
116 #define CM_CHB3D		0x20000000	/* 4 channels */
117 
118 #define CM_CHIP_MASK1		0x1f000000
119 #define CM_CHIP_037		0x01000000
120 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
121 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
122 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
123 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
124 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
125 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
126 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
127 
128 #define CM_ADCBITLEN_MASK	0x0000C000
129 #define CM_ADCBITLEN_16		0x00000000
130 #define CM_ADCBITLEN_15		0x00004000
131 #define CM_ADCBITLEN_14		0x00008000
132 #define CM_ADCBITLEN_13		0x0000C000
133 
134 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
135 #define CM_ADCDACLEN_060	0x00000000
136 #define CM_ADCDACLEN_066	0x00001000
137 #define CM_ADCDACLEN_130	0x00002000
138 #define CM_ADCDACLEN_280	0x00003000
139 
140 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
141 #define CM_ADCDLEN_ORIGINAL	0x00000000
142 #define CM_ADCDLEN_EXTRA	0x00001000
143 #define CM_ADCDLEN_24K		0x00002000
144 #define CM_ADCDLEN_WEIGHT	0x00003000
145 
146 #define CM_CH1_SRATE_176K	0x00000800
147 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
148 #define CM_CH1_SRATE_88K	0x00000400
149 #define CM_CH0_SRATE_176K	0x00000200
150 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
151 #define CM_CH0_SRATE_88K	0x00000100
152 #define CM_CH0_SRATE_128K	0x00000300
153 #define CM_CH0_SRATE_MASK	0x00000300
154 
155 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
156 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
157 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
158 #define CM_SPDLOCKED		0x00000010
159 
160 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
161 #define CM_CH1FMT_SHIFT		2
162 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
163 #define CM_CH0FMT_SHIFT		0
164 
165 #define CM_REG_INT_HLDCLR	0x0C
166 #define CM_CHIP_MASK2		0xff000000
167 #define CM_CHIP_8768		0x20000000
168 #define CM_CHIP_055		0x08000000
169 #define CM_CHIP_039		0x04000000
170 #define CM_CHIP_039_6CH		0x01000000
171 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
172 #define CM_TDMA_INT_EN		0x00040000
173 #define CM_CH1_INT_EN		0x00020000
174 #define CM_CH0_INT_EN		0x00010000
175 
176 #define CM_REG_INT_STATUS	0x10
177 #define CM_INTR			0x80000000
178 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
179 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
180 #define CM_UARTINT		0x00010000
181 #define CM_LTDMAINT		0x00008000
182 #define CM_HTDMAINT		0x00004000
183 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
184 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
185 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
186 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
187 #define CM_CH1BUSY		0x00000008
188 #define CM_CH0BUSY		0x00000004
189 #define CM_CHINT1		0x00000002
190 #define CM_CHINT0		0x00000001
191 
192 #define CM_REG_LEGACY_CTRL	0x14
193 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
194 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
195 #define CM_VMPU_330		0x00000000
196 #define CM_VMPU_320		0x20000000
197 #define CM_VMPU_310		0x40000000
198 #define CM_VMPU_300		0x60000000
199 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
200 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
201 #define CM_VSBSEL_220		0x00000000
202 #define CM_VSBSEL_240		0x04000000
203 #define CM_VSBSEL_260		0x08000000
204 #define CM_VSBSEL_280		0x0C000000
205 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
206 #define CM_FMSEL_388		0x00000000
207 #define CM_FMSEL_3C8		0x01000000
208 #define CM_FMSEL_3E0		0x02000000
209 #define CM_FMSEL_3E8		0x03000000
210 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
211 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
212 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
213 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
214 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
216 #define CM_C_EECS		0x00040000
217 #define CM_C_EEDI46		0x00020000
218 #define CM_C_EECK46		0x00010000
219 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
220 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
221 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
222 #define CM_EXBASEN		0x00001000	/* external bass input enable */
223 
224 #define CM_REG_MISC_CTRL	0x18
225 #define CM_PWD			0x80000000	/* power down */
226 #define CM_RESET		0x40000000
227 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
228 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
229 #define CM_TXVX			0x08000000	/* model 037? */
230 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
231 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
232 #define CM_SPDIF48K		0x01000000	/* write */
233 #define CM_SPATUS48K		0x01000000	/* read */
234 #define CM_ENDBDAC		0x00800000	/* enable double dac */
235 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
236 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
237 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
238 #define CM_FM_EN		0x00080000	/* enable legacy FM */
239 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
240 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
241 #define CM_VIDWPDSB		0x00010000	/* model 037? */
242 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
243 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
244 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
245 #define CM_VIDWPPRT		0x00002000	/* model 037? */
246 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
247 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
248 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
249 #define CM_ENCENTER		0x00000080
250 #define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
251 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
252 #define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
253 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
254 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
255 #define CM_UPDDMA_2048		0x00000000
256 #define CM_UPDDMA_1024		0x00000004
257 #define CM_UPDDMA_512		0x00000008
258 #define CM_UPDDMA_256		0x0000000C
259 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
260 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
262 
263 #define CM_REG_TDMA_POSITION	0x1C
264 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
265 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
266 
267 	/* byte */
268 #define CM_REG_MIXER0		0x20
269 #define CM_REG_SBVR		0x20		/* write: sb16 version */
270 #define CM_REG_DEV		0x20		/* read: hardware device version */
271 
272 #define CM_REG_MIXER21		0x21
273 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
274 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
275 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
276 #define CM_X_SB16		0x01		/* SB16 compatible */
277 
278 #define CM_REG_SB16_DATA	0x22
279 #define CM_REG_SB16_ADDR	0x23
280 
281 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
282 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
284 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
285 
286 #define CM_REG_MIXER1		0x24
287 #define CM_FMMUTE		0x80	/* mute FM */
288 #define CM_FMMUTE_SHIFT		7
289 #define CM_WSMUTE		0x40	/* mute PCM */
290 #define CM_WSMUTE_SHIFT		6
291 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
292 #define CM_REAR2LIN_SHIFT	5
293 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
294 #define CM_REAR2FRONT_SHIFT	4
295 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
296 #define CM_WAVEINL_SHIFT	3
297 #define CM_WAVEINR		0x04	/* digical wave rec. right */
298 #define CM_WAVEINR_SHIFT	2
299 #define CM_X3DEN		0x02	/* 3D surround enable */
300 #define CM_X3DEN_SHIFT		1
301 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
302 #define CM_CDPLAY_SHIFT		0
303 
304 #define CM_REG_MIXER2		0x25
305 #define CM_RAUXREN		0x80	/* AUX right capture */
306 #define CM_RAUXREN_SHIFT	7
307 #define CM_RAUXLEN		0x40	/* AUX left capture */
308 #define CM_RAUXLEN_SHIFT	6
309 #define CM_VAUXRM		0x20	/* AUX right mute */
310 #define CM_VAUXRM_SHIFT		5
311 #define CM_VAUXLM		0x10	/* AUX left mute */
312 #define CM_VAUXLM_SHIFT		4
313 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
314 #define CM_VADMIC_SHIFT		1
315 #define CM_MICGAINZ		0x01	/* mic boost */
316 #define CM_MICGAINZ_SHIFT	0
317 
318 #define CM_REG_MIXER3		0x24
319 #define CM_REG_AUX_VOL		0x26
320 #define CM_VAUXL_MASK		0xf0
321 #define CM_VAUXR_MASK		0x0f
322 
323 #define CM_REG_MISC		0x27
324 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
325 #define CM_XGPO1		0x20
326 // #define CM_XGPBIO		0x04
327 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
328 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
329 #define CM_SPDVALID		0x02	/* spdif input valid check */
330 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
331 
332 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
333 /*
334  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335  * or identical with AC97 codec?
336  */
337 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
338 
339 /*
340  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341  */
342 #define CM_REG_MPU_PCI		0x40
343 
344 /*
345  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346  */
347 #define CM_REG_FM_PCI		0x50
348 
349 /*
350  * access from SB-mixer port
351  */
352 #define CM_REG_EXTENT_IND	0xf0
353 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
354 #define CM_VPHONE_SHIFT		5
355 #define CM_VPHOM		0x10	/* Phone mute control */
356 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
357 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
358 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
359 #define CM_VADMIC3		0x01	/* Mic record boost */
360 
361 /*
362  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364  * unit (readonly?).
365  */
366 #define CM_REG_PLL		0xf8
367 
368 /*
369  * extended registers
370  */
371 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
372 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
373 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
374 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
375 
376 #define CM_REG_EXT_MISC		0x90
377 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
378 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
379 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
380 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
381 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
382 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
383 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
384 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
385 
386 /*
387  * size of i/o region
388  */
389 #define CM_EXTENT_CODEC	  0x100
390 #define CM_EXTENT_MIDI	  0x2
391 #define CM_EXTENT_SYNTH	  0x4
392 
393 
394 /*
395  * channels for playback / capture
396  */
397 #define CM_CH_PLAY	0
398 #define CM_CH_CAPT	1
399 
400 /*
401  * flags to check device open/close
402  */
403 #define CM_OPEN_NONE	0
404 #define CM_OPEN_CH_MASK	0x01
405 #define CM_OPEN_DAC	0x10
406 #define CM_OPEN_ADC	0x20
407 #define CM_OPEN_SPDIF	0x40
408 #define CM_OPEN_MCHAN	0x80
409 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
410 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
411 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
413 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415 
416 
417 #if CM_CH_PLAY == 1
418 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
419 #define CM_PLAYBACK_SPDF	CM_SPDF_1
420 #define CM_CAPTURE_SPDF		CM_SPDF_0
421 #else
422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423 #define CM_PLAYBACK_SPDF	CM_SPDF_0
424 #define CM_CAPTURE_SPDF		CM_SPDF_1
425 #endif
426 
427 
428 /*
429  * driver data
430  */
431 
432 struct cmipci_pcm {
433 	struct snd_pcm_substream *substream;
434 	u8 running;		/* dac/adc running? */
435 	u8 fmt;			/* format bits */
436 	u8 is_dac;
437 	u8 needs_silencing;
438 	unsigned int dma_size;	/* in frames */
439 	unsigned int shift;
440 	unsigned int ch;	/* channel (0/1) */
441 	unsigned int offset;	/* physical address of the buffer */
442 };
443 
444 /* mixer elements toggled/resumed during ac3 playback */
445 struct cmipci_mixer_auto_switches {
446 	const char *name;	/* switch to toggle */
447 	int toggle_on;		/* value to change when ac3 mode */
448 };
449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450 	{"PCM Playback Switch", 0},
451 	{"IEC958 Output Switch", 1},
452 	{"IEC958 Mix Analog", 0},
453 	// {"IEC958 Out To DAC", 1}, // no longer used
454 	{"IEC958 Loop", 0},
455 };
456 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
457 
458 struct cmipci {
459 	struct snd_card *card;
460 
461 	struct pci_dev *pci;
462 	unsigned int device;	/* device ID */
463 	int irq;
464 
465 	unsigned long iobase;
466 	unsigned int ctrl;	/* FUNCTRL0 current value */
467 
468 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
469 	struct snd_pcm *pcm2;	/* 2nd DAC */
470 	struct snd_pcm *pcm_spdif;	/* SPDIF */
471 
472 	int chip_version;
473 	int max_channels;
474 	unsigned int can_ac3_sw: 1;
475 	unsigned int can_ac3_hw: 1;
476 	unsigned int can_multi_ch: 1;
477 	unsigned int can_96k: 1;	/* samplerate above 48k */
478 	unsigned int do_soft_ac3: 1;
479 
480 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
481 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
482 	int spdif_counter;	/* for software AC3 */
483 
484 	unsigned int dig_status;
485 	unsigned int dig_pcm_status;
486 
487 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488 
489 	int opened[2];	/* open mode */
490 	struct mutex open_mutex;
491 
492 	unsigned int mixer_insensitive: 1;
493 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494 	int mixer_res_status[CM_SAVED_MIXERS];
495 
496 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
497 
498 	/* external MIDI */
499 	struct snd_rawmidi *rmidi;
500 
501 #ifdef SUPPORT_JOYSTICK
502 	struct gameport *gameport;
503 #endif
504 
505 	spinlock_t reg_lock;
506 
507 #ifdef CONFIG_PM
508 	unsigned int saved_regs[0x20];
509 	unsigned char saved_mixers[0x20];
510 #endif
511 };
512 
513 
514 /* read/write operations for dword register */
515 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516 {
517 	outl(data, cm->iobase + cmd);
518 }
519 
520 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521 {
522 	return inl(cm->iobase + cmd);
523 }
524 
525 /* read/write operations for word register */
526 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527 {
528 	outw(data, cm->iobase + cmd);
529 }
530 
531 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532 {
533 	return inw(cm->iobase + cmd);
534 }
535 
536 /* read/write operations for byte register */
537 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538 {
539 	outb(data, cm->iobase + cmd);
540 }
541 
542 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543 {
544 	return inb(cm->iobase + cmd);
545 }
546 
547 /* bit operations for dword register */
548 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549 {
550 	unsigned int val, oval;
551 	val = oval = inl(cm->iobase + cmd);
552 	val |= flag;
553 	if (val == oval)
554 		return 0;
555 	outl(val, cm->iobase + cmd);
556 	return 1;
557 }
558 
559 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560 {
561 	unsigned int val, oval;
562 	val = oval = inl(cm->iobase + cmd);
563 	val &= ~flag;
564 	if (val == oval)
565 		return 0;
566 	outl(val, cm->iobase + cmd);
567 	return 1;
568 }
569 
570 /* bit operations for byte register */
571 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572 {
573 	unsigned char val, oval;
574 	val = oval = inb(cm->iobase + cmd);
575 	val |= flag;
576 	if (val == oval)
577 		return 0;
578 	outb(val, cm->iobase + cmd);
579 	return 1;
580 }
581 
582 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583 {
584 	unsigned char val, oval;
585 	val = oval = inb(cm->iobase + cmd);
586 	val &= ~flag;
587 	if (val == oval)
588 		return 0;
589 	outb(val, cm->iobase + cmd);
590 	return 1;
591 }
592 
593 
594 /*
595  * PCM interface
596  */
597 
598 /*
599  * calculate frequency
600  */
601 
602 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603 
604 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605 {
606 	unsigned int i;
607 
608 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
609 		if (rates[i] == rate)
610 			return i;
611 	}
612 	snd_BUG();
613 	return 0;
614 }
615 
616 #ifdef USE_VAR48KRATE
617 /*
618  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619  * does it this way .. maybe not.  Never get any information from C-Media about
620  * that <werner@suse.de>.
621  */
622 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623 {
624 	unsigned int delta, tolerance;
625 	int xm, xn, xr;
626 
627 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628 		rate <<= 1;
629 	*n = -1;
630 	if (*r > 0xff)
631 		goto out;
632 	tolerance = rate*CM_TOLERANCE_RATE;
633 
634 	for (xn = (1+2); xn < (0x1f+2); xn++) {
635 		for (xm = (1+2); xm < (0xff+2); xm++) {
636 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637 
638 			if (xr < rate)
639 				delta = rate - xr;
640 			else
641 				delta = xr - rate;
642 
643 			/*
644 			 * If we found one, remember this,
645 			 * and try to find a closer one
646 			 */
647 			if (delta < tolerance) {
648 				tolerance = delta;
649 				*m = xm - 2;
650 				*n = xn - 2;
651 			}
652 		}
653 	}
654 out:
655 	return (*n > -1);
656 }
657 
658 /*
659  * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff
660  * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen
661  * at the register CM_REG_FUNCTRL1 (0x04).
662  * Problem: other ways are also possible (any information about that?)
663  */
664 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665 {
666 	unsigned int reg = CM_REG_PLL + slot;
667 	/*
668 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669 	 * for DSFC/ASFC (000 upto 111).
670 	 */
671 
672 	/* FIXME: Init (Do we've to set an other register first before programming?) */
673 
674 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675 	snd_cmipci_write_b(cm, reg, rate>>8);
676 	snd_cmipci_write_b(cm, reg, rate&0xff);
677 
678 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
679 }
680 #endif /* USE_VAR48KRATE */
681 
682 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683 				struct snd_pcm_hw_params *hw_params)
684 {
685 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686 }
687 
688 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689 					  struct snd_pcm_hw_params *hw_params)
690 {
691 	struct cmipci *cm = snd_pcm_substream_chip(substream);
692 	if (params_channels(hw_params) > 2) {
693 		mutex_lock(&cm->open_mutex);
694 		if (cm->opened[CM_CH_PLAY]) {
695 			mutex_unlock(&cm->open_mutex);
696 			return -EBUSY;
697 		}
698 		/* reserve the channel A */
699 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
700 		mutex_unlock(&cm->open_mutex);
701 	}
702 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703 }
704 
705 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
706 {
707 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710 	udelay(10);
711 }
712 
713 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
714 {
715 	return snd_pcm_lib_free_pages(substream);
716 }
717 
718 
719 /*
720  */
721 
722 static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724 	.count = 3,
725 	.list = hw_channels,
726 	.mask = 0,
727 };
728 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729 	.count = 4,
730 	.list = hw_channels,
731 	.mask = 0,
732 };
733 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734 	.count = 5,
735 	.list = hw_channels,
736 	.mask = 0,
737 };
738 
739 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
740 {
741 	if (channels > 2) {
742 		if (!cm->can_multi_ch || !rec->ch)
743 			return -EINVAL;
744 		if (rec->fmt != 0x03) /* stereo 16bit only */
745 			return -EINVAL;
746 	}
747 
748 	if (cm->can_multi_ch) {
749 		spin_lock_irq(&cm->reg_lock);
750 		if (channels > 2) {
751 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753 		} else {
754 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
756 		}
757 		if (channels == 8)
758 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759 		else
760 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761 		if (channels == 6) {
762 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764 		} else {
765 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
767 		}
768 		if (channels == 4)
769 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770 		else
771 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772 		spin_unlock_irq(&cm->reg_lock);
773 	}
774 	return 0;
775 }
776 
777 
778 /*
779  * prepare playback/capture channel
780  * channel to be used must have been set in rec->ch.
781  */
782 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783 				 struct snd_pcm_substream *substream)
784 {
785 	unsigned int reg, freq, freq_ext, val;
786 	unsigned int period_size;
787 	struct snd_pcm_runtime *runtime = substream->runtime;
788 
789 	rec->fmt = 0;
790 	rec->shift = 0;
791 	if (snd_pcm_format_width(runtime->format) >= 16) {
792 		rec->fmt |= 0x02;
793 		if (snd_pcm_format_width(runtime->format) > 16)
794 			rec->shift++; /* 24/32bit */
795 	}
796 	if (runtime->channels > 1)
797 		rec->fmt |= 0x01;
798 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799 		snd_printd("cannot set dac channels\n");
800 		return -EINVAL;
801 	}
802 
803 	rec->offset = runtime->dma_addr;
804 	/* buffer and period sizes in frame */
805 	rec->dma_size = runtime->buffer_size << rec->shift;
806 	period_size = runtime->period_size << rec->shift;
807 	if (runtime->channels > 2) {
808 		/* multi-channels */
809 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810 		period_size = (period_size * runtime->channels) / 2;
811 	}
812 
813 	spin_lock_irq(&cm->reg_lock);
814 
815 	/* set buffer address */
816 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817 	snd_cmipci_write(cm, reg, rec->offset);
818 	/* program sample counts */
819 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
822 
823 	/* set adc/dac flag */
824 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825 	if (rec->is_dac)
826 		cm->ctrl &= ~val;
827 	else
828 		cm->ctrl |= val;
829 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830 	//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
831 
832 	/* set sample rate */
833 	freq = 0;
834 	freq_ext = 0;
835 	if (runtime->rate > 48000)
836 		switch (runtime->rate) {
837 		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
838 		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
839 		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840 		default:     snd_BUG(); break;
841 		}
842 	else
843 		freq = snd_cmipci_rate_freq(runtime->rate);
844 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845 	if (rec->ch) {
846 		val &= ~CM_DSFC_MASK;
847 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848 	} else {
849 		val &= ~CM_ASFC_MASK;
850 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
851 	}
852 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853 	//snd_printd("cmipci: functrl1 = %08x\n", val);
854 
855 	/* set format */
856 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857 	if (rec->ch) {
858 		val &= ~CM_CH1FMT_MASK;
859 		val |= rec->fmt << CM_CH1FMT_SHIFT;
860 	} else {
861 		val &= ~CM_CH0FMT_MASK;
862 		val |= rec->fmt << CM_CH0FMT_SHIFT;
863 	}
864 	if (cm->can_96k) {
865 		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866 		val |= freq_ext << (rec->ch * 2);
867 	}
868 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869 	//snd_printd("cmipci: chformat = %08x\n", val);
870 
871 	if (!rec->is_dac && cm->chip_version) {
872 		if (runtime->rate > 44100)
873 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874 		else
875 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
876 	}
877 
878 	rec->running = 0;
879 	spin_unlock_irq(&cm->reg_lock);
880 
881 	return 0;
882 }
883 
884 /*
885  * PCM trigger/stop
886  */
887 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888 				  int cmd)
889 {
890 	unsigned int inthld, chen, reset, pause;
891 	int result = 0;
892 
893 	inthld = CM_CH0_INT_EN << rec->ch;
894 	chen = CM_CHEN0 << rec->ch;
895 	reset = CM_RST_CH0 << rec->ch;
896 	pause = CM_PAUSE0 << rec->ch;
897 
898 	spin_lock(&cm->reg_lock);
899 	switch (cmd) {
900 	case SNDRV_PCM_TRIGGER_START:
901 		rec->running = 1;
902 		/* set interrupt */
903 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904 		cm->ctrl |= chen;
905 		/* enable channel */
906 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907 		//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
908 		break;
909 	case SNDRV_PCM_TRIGGER_STOP:
910 		rec->running = 0;
911 		/* disable interrupt */
912 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913 		/* reset */
914 		cm->ctrl &= ~chen;
915 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917 		rec->needs_silencing = rec->is_dac;
918 		break;
919 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
920 	case SNDRV_PCM_TRIGGER_SUSPEND:
921 		cm->ctrl |= pause;
922 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923 		break;
924 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
925 	case SNDRV_PCM_TRIGGER_RESUME:
926 		cm->ctrl &= ~pause;
927 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928 		break;
929 	default:
930 		result = -EINVAL;
931 		break;
932 	}
933 	spin_unlock(&cm->reg_lock);
934 	return result;
935 }
936 
937 /*
938  * return the current pointer
939  */
940 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941 						struct snd_pcm_substream *substream)
942 {
943 	size_t ptr;
944 	unsigned int reg;
945 	if (!rec->running)
946 		return 0;
947 #if 1 // this seems better..
948 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
949 	ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1);
950 	ptr >>= rec->shift;
951 #else
952 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
953 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
954 	ptr = bytes_to_frames(substream->runtime, ptr);
955 #endif
956 	if (substream->runtime->channels > 2)
957 		ptr = (ptr * 2) / substream->runtime->channels;
958 	return ptr;
959 }
960 
961 /*
962  * playback
963  */
964 
965 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
966 				       int cmd)
967 {
968 	struct cmipci *cm = snd_pcm_substream_chip(substream);
969 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
970 }
971 
972 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
973 {
974 	struct cmipci *cm = snd_pcm_substream_chip(substream);
975 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
976 }
977 
978 
979 
980 /*
981  * capture
982  */
983 
984 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
985 				     int cmd)
986 {
987 	struct cmipci *cm = snd_pcm_substream_chip(substream);
988 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
989 }
990 
991 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
992 {
993 	struct cmipci *cm = snd_pcm_substream_chip(substream);
994 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
995 }
996 
997 
998 /*
999  * hw preparation for spdif
1000  */
1001 
1002 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1003 					 struct snd_ctl_elem_info *uinfo)
1004 {
1005 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1006 	uinfo->count = 1;
1007 	return 0;
1008 }
1009 
1010 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1011 					struct snd_ctl_elem_value *ucontrol)
1012 {
1013 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1014 	int i;
1015 
1016 	spin_lock_irq(&chip->reg_lock);
1017 	for (i = 0; i < 4; i++)
1018 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1019 	spin_unlock_irq(&chip->reg_lock);
1020 	return 0;
1021 }
1022 
1023 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1024 					 struct snd_ctl_elem_value *ucontrol)
1025 {
1026 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1027 	int i, change;
1028 	unsigned int val;
1029 
1030 	val = 0;
1031 	spin_lock_irq(&chip->reg_lock);
1032 	for (i = 0; i < 4; i++)
1033 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1034 	change = val != chip->dig_status;
1035 	chip->dig_status = val;
1036 	spin_unlock_irq(&chip->reg_lock);
1037 	return change;
1038 }
1039 
1040 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1041 {
1042 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1043 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1044 	.info =		snd_cmipci_spdif_default_info,
1045 	.get =		snd_cmipci_spdif_default_get,
1046 	.put =		snd_cmipci_spdif_default_put
1047 };
1048 
1049 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1050 				      struct snd_ctl_elem_info *uinfo)
1051 {
1052 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1053 	uinfo->count = 1;
1054 	return 0;
1055 }
1056 
1057 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1058 				     struct snd_ctl_elem_value *ucontrol)
1059 {
1060 	ucontrol->value.iec958.status[0] = 0xff;
1061 	ucontrol->value.iec958.status[1] = 0xff;
1062 	ucontrol->value.iec958.status[2] = 0xff;
1063 	ucontrol->value.iec958.status[3] = 0xff;
1064 	return 0;
1065 }
1066 
1067 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1068 {
1069 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1070 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1071 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1072 	.info =		snd_cmipci_spdif_mask_info,
1073 	.get =		snd_cmipci_spdif_mask_get,
1074 };
1075 
1076 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1077 					struct snd_ctl_elem_info *uinfo)
1078 {
1079 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1080 	uinfo->count = 1;
1081 	return 0;
1082 }
1083 
1084 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1085 				       struct snd_ctl_elem_value *ucontrol)
1086 {
1087 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1088 	int i;
1089 
1090 	spin_lock_irq(&chip->reg_lock);
1091 	for (i = 0; i < 4; i++)
1092 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1093 	spin_unlock_irq(&chip->reg_lock);
1094 	return 0;
1095 }
1096 
1097 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1098 				       struct snd_ctl_elem_value *ucontrol)
1099 {
1100 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1101 	int i, change;
1102 	unsigned int val;
1103 
1104 	val = 0;
1105 	spin_lock_irq(&chip->reg_lock);
1106 	for (i = 0; i < 4; i++)
1107 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1108 	change = val != chip->dig_pcm_status;
1109 	chip->dig_pcm_status = val;
1110 	spin_unlock_irq(&chip->reg_lock);
1111 	return change;
1112 }
1113 
1114 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1115 {
1116 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1117 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1118 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1119 	.info =		snd_cmipci_spdif_stream_info,
1120 	.get =		snd_cmipci_spdif_stream_get,
1121 	.put =		snd_cmipci_spdif_stream_put
1122 };
1123 
1124 /*
1125  */
1126 
1127 /* save mixer setting and mute for AC3 playback */
1128 static int save_mixer_state(struct cmipci *cm)
1129 {
1130 	if (! cm->mixer_insensitive) {
1131 		struct snd_ctl_elem_value *val;
1132 		unsigned int i;
1133 
1134 		val = kmalloc(sizeof(*val), GFP_ATOMIC);
1135 		if (!val)
1136 			return -ENOMEM;
1137 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1138 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1139 			if (ctl) {
1140 				int event;
1141 				memset(val, 0, sizeof(*val));
1142 				ctl->get(ctl, val);
1143 				cm->mixer_res_status[i] = val->value.integer.value[0];
1144 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1145 				event = SNDRV_CTL_EVENT_MASK_INFO;
1146 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1147 					ctl->put(ctl, val); /* toggle */
1148 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1149 				}
1150 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1151 				snd_ctl_notify(cm->card, event, &ctl->id);
1152 			}
1153 		}
1154 		kfree(val);
1155 		cm->mixer_insensitive = 1;
1156 	}
1157 	return 0;
1158 }
1159 
1160 
1161 /* restore the previously saved mixer status */
1162 static void restore_mixer_state(struct cmipci *cm)
1163 {
1164 	if (cm->mixer_insensitive) {
1165 		struct snd_ctl_elem_value *val;
1166 		unsigned int i;
1167 
1168 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1169 		if (!val)
1170 			return;
1171 		cm->mixer_insensitive = 0; /* at first clear this;
1172 					      otherwise the changes will be ignored */
1173 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1174 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1175 			if (ctl) {
1176 				int event;
1177 
1178 				memset(val, 0, sizeof(*val));
1179 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1180 				ctl->get(ctl, val);
1181 				event = SNDRV_CTL_EVENT_MASK_INFO;
1182 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1183 					val->value.integer.value[0] = cm->mixer_res_status[i];
1184 					ctl->put(ctl, val);
1185 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1186 				}
1187 				snd_ctl_notify(cm->card, event, &ctl->id);
1188 			}
1189 		}
1190 		kfree(val);
1191 	}
1192 }
1193 
1194 /* spinlock held! */
1195 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1196 {
1197 	if (do_ac3) {
1198 		/* AC3EN for 037 */
1199 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1200 		/* AC3EN for 039 */
1201 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1202 
1203 		if (cm->can_ac3_hw) {
1204 			/* SPD24SEL for 037, 0x02 */
1205 			/* SPD24SEL for 039, 0x20, but cannot be set */
1206 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1207 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1208 		} else { /* can_ac3_sw */
1209 			/* SPD32SEL for 037 & 039, 0x20 */
1210 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1211 			/* set 176K sample rate to fix 033 HW bug */
1212 			if (cm->chip_version == 33) {
1213 				if (rate >= 48000) {
1214 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1215 				} else {
1216 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1217 				}
1218 			}
1219 		}
1220 
1221 	} else {
1222 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1223 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1224 
1225 		if (cm->can_ac3_hw) {
1226 			/* chip model >= 37 */
1227 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1228 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1229 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1230 			} else {
1231 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1232 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1233 			}
1234 		} else {
1235 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1236 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1237 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1238 		}
1239 	}
1240 }
1241 
1242 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1243 {
1244 	int rate, err;
1245 
1246 	rate = subs->runtime->rate;
1247 
1248 	if (up && do_ac3)
1249 		if ((err = save_mixer_state(cm)) < 0)
1250 			return err;
1251 
1252 	spin_lock_irq(&cm->reg_lock);
1253 	cm->spdif_playback_avail = up;
1254 	if (up) {
1255 		/* they are controlled via "IEC958 Output Switch" */
1256 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1257 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1258 		if (cm->spdif_playback_enabled)
1259 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1260 		setup_ac3(cm, subs, do_ac3, rate);
1261 
1262 		if (rate == 48000 || rate == 96000)
1263 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1264 		else
1265 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1266 		if (rate > 48000)
1267 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1268 		else
1269 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1270 	} else {
1271 		/* they are controlled via "IEC958 Output Switch" */
1272 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1273 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1274 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1275 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1276 		setup_ac3(cm, subs, 0, 0);
1277 	}
1278 	spin_unlock_irq(&cm->reg_lock);
1279 	return 0;
1280 }
1281 
1282 
1283 /*
1284  * preparation
1285  */
1286 
1287 /* playback - enable spdif only on the certain condition */
1288 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1289 {
1290 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1291 	int rate = substream->runtime->rate;
1292 	int err, do_spdif, do_ac3 = 0;
1293 
1294 	do_spdif = (rate >= 44100 && rate <= 96000 &&
1295 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1296 		    substream->runtime->channels == 2);
1297 	if (do_spdif && cm->can_ac3_hw)
1298 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1299 	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1300 		return err;
1301 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1302 }
1303 
1304 /* playback  (via device #2) - enable spdif always */
1305 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1306 {
1307 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1308 	int err, do_ac3;
1309 
1310 	if (cm->can_ac3_hw)
1311 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1312 	else
1313 		do_ac3 = 1; /* doesn't matter */
1314 	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1315 		return err;
1316 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1317 }
1318 
1319 /*
1320  * Apparently, the samples last played on channel A stay in some buffer, even
1321  * after the channel is reset, and get added to the data for the rear DACs when
1322  * playing a multichannel stream on channel B.  This is likely to generate
1323  * wraparounds and thus distortions.
1324  * To avoid this, we play at least one zero sample after the actual stream has
1325  * stopped.
1326  */
1327 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1328 {
1329 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1330 	unsigned int reg, val;
1331 
1332 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1333 		/* set up a small silence buffer */
1334 		memset(runtime->dma_area, 0, PAGE_SIZE);
1335 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1336 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1337 		snd_cmipci_write(cm, reg, val);
1338 
1339 		/* configure for 16 bits, 2 channels, 8 kHz */
1340 		if (runtime->channels > 2)
1341 			set_dac_channels(cm, rec, 2);
1342 		spin_lock_irq(&cm->reg_lock);
1343 		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1344 		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1345 		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1346 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1347 		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1348 		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1349 		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1350 		if (cm->can_96k)
1351 			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1352 		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1353 
1354 		/* start stream (we don't need interrupts) */
1355 		cm->ctrl |= CM_CHEN0 << rec->ch;
1356 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1357 		spin_unlock_irq(&cm->reg_lock);
1358 
1359 		msleep(1);
1360 
1361 		/* stop and reset stream */
1362 		spin_lock_irq(&cm->reg_lock);
1363 		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1364 		val = CM_RST_CH0 << rec->ch;
1365 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1366 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1367 		spin_unlock_irq(&cm->reg_lock);
1368 
1369 		rec->needs_silencing = 0;
1370 	}
1371 }
1372 
1373 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1374 {
1375 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1376 	setup_spdif_playback(cm, substream, 0, 0);
1377 	restore_mixer_state(cm);
1378 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1379 	return snd_cmipci_hw_free(substream);
1380 }
1381 
1382 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1383 {
1384 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1385 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1386 	return snd_cmipci_hw_free(substream);
1387 }
1388 
1389 /* capture */
1390 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1391 {
1392 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1393 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1394 }
1395 
1396 /* capture with spdif (via device #2) */
1397 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1398 {
1399 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1400 
1401 	spin_lock_irq(&cm->reg_lock);
1402 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1403 	if (cm->can_96k) {
1404 		if (substream->runtime->rate > 48000)
1405 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1406 		else
1407 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1408 	}
1409 	if (snd_pcm_format_width(substream->runtime->format) > 16)
1410 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1411 	else
1412 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1413 
1414 	spin_unlock_irq(&cm->reg_lock);
1415 
1416 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1417 }
1418 
1419 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1420 {
1421 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1422 
1423 	spin_lock_irq(&cm->reg_lock);
1424 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1425 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1426 	spin_unlock_irq(&cm->reg_lock);
1427 
1428 	return snd_cmipci_hw_free(subs);
1429 }
1430 
1431 
1432 /*
1433  * interrupt handler
1434  */
1435 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1436 {
1437 	struct cmipci *cm = dev_id;
1438 	unsigned int status, mask = 0;
1439 
1440 	/* fastpath out, to ease interrupt sharing */
1441 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1442 	if (!(status & CM_INTR))
1443 		return IRQ_NONE;
1444 
1445 	/* acknowledge interrupt */
1446 	spin_lock(&cm->reg_lock);
1447 	if (status & CM_CHINT0)
1448 		mask |= CM_CH0_INT_EN;
1449 	if (status & CM_CHINT1)
1450 		mask |= CM_CH1_INT_EN;
1451 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1452 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1453 	spin_unlock(&cm->reg_lock);
1454 
1455 	if (cm->rmidi && (status & CM_UARTINT))
1456 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1457 
1458 	if (cm->pcm) {
1459 		if ((status & CM_CHINT0) && cm->channel[0].running)
1460 			snd_pcm_period_elapsed(cm->channel[0].substream);
1461 		if ((status & CM_CHINT1) && cm->channel[1].running)
1462 			snd_pcm_period_elapsed(cm->channel[1].substream);
1463 	}
1464 	return IRQ_HANDLED;
1465 }
1466 
1467 /*
1468  * h/w infos
1469  */
1470 
1471 /* playback on channel A */
1472 static struct snd_pcm_hardware snd_cmipci_playback =
1473 {
1474 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1475 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1476 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1477 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1478 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1479 	.rate_min =		5512,
1480 	.rate_max =		48000,
1481 	.channels_min =		1,
1482 	.channels_max =		2,
1483 	.buffer_bytes_max =	(128*1024),
1484 	.period_bytes_min =	64,
1485 	.period_bytes_max =	(128*1024),
1486 	.periods_min =		2,
1487 	.periods_max =		1024,
1488 	.fifo_size =		0,
1489 };
1490 
1491 /* capture on channel B */
1492 static struct snd_pcm_hardware snd_cmipci_capture =
1493 {
1494 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1495 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1496 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1497 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1498 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1499 	.rate_min =		5512,
1500 	.rate_max =		48000,
1501 	.channels_min =		1,
1502 	.channels_max =		2,
1503 	.buffer_bytes_max =	(128*1024),
1504 	.period_bytes_min =	64,
1505 	.period_bytes_max =	(128*1024),
1506 	.periods_min =		2,
1507 	.periods_max =		1024,
1508 	.fifo_size =		0,
1509 };
1510 
1511 /* playback on channel B - stereo 16bit only? */
1512 static struct snd_pcm_hardware snd_cmipci_playback2 =
1513 {
1514 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1515 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1516 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1517 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1518 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1519 	.rate_min =		5512,
1520 	.rate_max =		48000,
1521 	.channels_min =		2,
1522 	.channels_max =		2,
1523 	.buffer_bytes_max =	(128*1024),
1524 	.period_bytes_min =	64,
1525 	.period_bytes_max =	(128*1024),
1526 	.periods_min =		2,
1527 	.periods_max =		1024,
1528 	.fifo_size =		0,
1529 };
1530 
1531 /* spdif playback on channel A */
1532 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1533 {
1534 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1535 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1536 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1537 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1538 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1539 	.rate_min =		44100,
1540 	.rate_max =		48000,
1541 	.channels_min =		2,
1542 	.channels_max =		2,
1543 	.buffer_bytes_max =	(128*1024),
1544 	.period_bytes_min =	64,
1545 	.period_bytes_max =	(128*1024),
1546 	.periods_min =		2,
1547 	.periods_max =		1024,
1548 	.fifo_size =		0,
1549 };
1550 
1551 /* spdif playback on channel A (32bit, IEC958 subframes) */
1552 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1553 {
1554 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1555 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1556 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1557 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1558 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1559 	.rate_min =		44100,
1560 	.rate_max =		48000,
1561 	.channels_min =		2,
1562 	.channels_max =		2,
1563 	.buffer_bytes_max =	(128*1024),
1564 	.period_bytes_min =	64,
1565 	.period_bytes_max =	(128*1024),
1566 	.periods_min =		2,
1567 	.periods_max =		1024,
1568 	.fifo_size =		0,
1569 };
1570 
1571 /* spdif capture on channel B */
1572 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1573 {
1574 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1575 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1576 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1577 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1578 				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1579 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1580 	.rate_min =		44100,
1581 	.rate_max =		48000,
1582 	.channels_min =		2,
1583 	.channels_max =		2,
1584 	.buffer_bytes_max =	(128*1024),
1585 	.period_bytes_min =	64,
1586 	.period_bytes_max =	(128*1024),
1587 	.periods_min =		2,
1588 	.periods_max =		1024,
1589 	.fifo_size =		0,
1590 };
1591 
1592 static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1593 			32000, 44100, 48000, 88200, 96000, 128000 };
1594 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1595 		.count = ARRAY_SIZE(rate_constraints),
1596 		.list = rate_constraints,
1597 		.mask = 0,
1598 };
1599 
1600 /*
1601  * check device open/close
1602  */
1603 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1604 {
1605 	int ch = mode & CM_OPEN_CH_MASK;
1606 
1607 	/* FIXME: a file should wait until the device becomes free
1608 	 * when it's opened on blocking mode.  however, since the current
1609 	 * pcm framework doesn't pass file pointer before actually opened,
1610 	 * we can't know whether blocking mode or not in open callback..
1611 	 */
1612 	mutex_lock(&cm->open_mutex);
1613 	if (cm->opened[ch]) {
1614 		mutex_unlock(&cm->open_mutex);
1615 		return -EBUSY;
1616 	}
1617 	cm->opened[ch] = mode;
1618 	cm->channel[ch].substream = subs;
1619 	if (! (mode & CM_OPEN_DAC)) {
1620 		/* disable dual DAC mode */
1621 		cm->channel[ch].is_dac = 0;
1622 		spin_lock_irq(&cm->reg_lock);
1623 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1624 		spin_unlock_irq(&cm->reg_lock);
1625 	}
1626 	mutex_unlock(&cm->open_mutex);
1627 	return 0;
1628 }
1629 
1630 static void close_device_check(struct cmipci *cm, int mode)
1631 {
1632 	int ch = mode & CM_OPEN_CH_MASK;
1633 
1634 	mutex_lock(&cm->open_mutex);
1635 	if (cm->opened[ch] == mode) {
1636 		if (cm->channel[ch].substream) {
1637 			snd_cmipci_ch_reset(cm, ch);
1638 			cm->channel[ch].running = 0;
1639 			cm->channel[ch].substream = NULL;
1640 		}
1641 		cm->opened[ch] = 0;
1642 		if (! cm->channel[ch].is_dac) {
1643 			/* enable dual DAC mode again */
1644 			cm->channel[ch].is_dac = 1;
1645 			spin_lock_irq(&cm->reg_lock);
1646 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1647 			spin_unlock_irq(&cm->reg_lock);
1648 		}
1649 	}
1650 	mutex_unlock(&cm->open_mutex);
1651 }
1652 
1653 /*
1654  */
1655 
1656 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1657 {
1658 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1659 	struct snd_pcm_runtime *runtime = substream->runtime;
1660 	int err;
1661 
1662 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1663 		return err;
1664 	runtime->hw = snd_cmipci_playback;
1665 	if (cm->chip_version == 68) {
1666 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1667 				     SNDRV_PCM_RATE_96000;
1668 		runtime->hw.rate_max = 96000;
1669 	} else if (cm->chip_version == 55) {
1670 		err = snd_pcm_hw_constraint_list(runtime, 0,
1671 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1672 		if (err < 0)
1673 			return err;
1674 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1675 		runtime->hw.rate_max = 128000;
1676 	}
1677 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1678 	cm->dig_pcm_status = cm->dig_status;
1679 	return 0;
1680 }
1681 
1682 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1683 {
1684 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1685 	struct snd_pcm_runtime *runtime = substream->runtime;
1686 	int err;
1687 
1688 	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1689 		return err;
1690 	runtime->hw = snd_cmipci_capture;
1691 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1692 		runtime->hw.rate_min = 41000;
1693 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1694 	} else if (cm->chip_version == 55) {
1695 		err = snd_pcm_hw_constraint_list(runtime, 0,
1696 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1697 		if (err < 0)
1698 			return err;
1699 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1700 		runtime->hw.rate_max = 128000;
1701 	}
1702 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1703 	return 0;
1704 }
1705 
1706 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1707 {
1708 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1709 	struct snd_pcm_runtime *runtime = substream->runtime;
1710 	int err;
1711 
1712 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1713 		return err;
1714 	runtime->hw = snd_cmipci_playback2;
1715 	mutex_lock(&cm->open_mutex);
1716 	if (! cm->opened[CM_CH_PLAY]) {
1717 		if (cm->can_multi_ch) {
1718 			runtime->hw.channels_max = cm->max_channels;
1719 			if (cm->max_channels == 4)
1720 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1721 			else if (cm->max_channels == 6)
1722 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1723 			else if (cm->max_channels == 8)
1724 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1725 		}
1726 	}
1727 	mutex_unlock(&cm->open_mutex);
1728 	if (cm->chip_version == 68) {
1729 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1730 				     SNDRV_PCM_RATE_96000;
1731 		runtime->hw.rate_max = 96000;
1732 	} else if (cm->chip_version == 55) {
1733 		err = snd_pcm_hw_constraint_list(runtime, 0,
1734 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1735 		if (err < 0)
1736 			return err;
1737 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1738 		runtime->hw.rate_max = 128000;
1739 	}
1740 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1741 	return 0;
1742 }
1743 
1744 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1745 {
1746 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1747 	struct snd_pcm_runtime *runtime = substream->runtime;
1748 	int err;
1749 
1750 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1751 		return err;
1752 	if (cm->can_ac3_hw) {
1753 		runtime->hw = snd_cmipci_playback_spdif;
1754 		if (cm->chip_version >= 37) {
1755 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1756 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1757 		}
1758 		if (cm->can_96k) {
1759 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1760 					     SNDRV_PCM_RATE_96000;
1761 			runtime->hw.rate_max = 96000;
1762 		}
1763 	} else {
1764 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1765 	}
1766 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1767 	cm->dig_pcm_status = cm->dig_status;
1768 	return 0;
1769 }
1770 
1771 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1772 {
1773 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1774 	struct snd_pcm_runtime *runtime = substream->runtime;
1775 	int err;
1776 
1777 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1778 		return err;
1779 	runtime->hw = snd_cmipci_capture_spdif;
1780 	if (cm->can_96k && !(cm->chip_version == 68)) {
1781 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1782 				     SNDRV_PCM_RATE_96000;
1783 		runtime->hw.rate_max = 96000;
1784 	}
1785 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1786 	return 0;
1787 }
1788 
1789 
1790 /*
1791  */
1792 
1793 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1794 {
1795 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1796 	close_device_check(cm, CM_OPEN_PLAYBACK);
1797 	return 0;
1798 }
1799 
1800 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1801 {
1802 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1803 	close_device_check(cm, CM_OPEN_CAPTURE);
1804 	return 0;
1805 }
1806 
1807 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1808 {
1809 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1810 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1811 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1812 	return 0;
1813 }
1814 
1815 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1816 {
1817 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1818 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1819 	return 0;
1820 }
1821 
1822 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1823 {
1824 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1825 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1826 	return 0;
1827 }
1828 
1829 
1830 /*
1831  */
1832 
1833 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1834 	.open =		snd_cmipci_playback_open,
1835 	.close =	snd_cmipci_playback_close,
1836 	.ioctl =	snd_pcm_lib_ioctl,
1837 	.hw_params =	snd_cmipci_hw_params,
1838 	.hw_free =	snd_cmipci_playback_hw_free,
1839 	.prepare =	snd_cmipci_playback_prepare,
1840 	.trigger =	snd_cmipci_playback_trigger,
1841 	.pointer =	snd_cmipci_playback_pointer,
1842 };
1843 
1844 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1845 	.open =		snd_cmipci_capture_open,
1846 	.close =	snd_cmipci_capture_close,
1847 	.ioctl =	snd_pcm_lib_ioctl,
1848 	.hw_params =	snd_cmipci_hw_params,
1849 	.hw_free =	snd_cmipci_hw_free,
1850 	.prepare =	snd_cmipci_capture_prepare,
1851 	.trigger =	snd_cmipci_capture_trigger,
1852 	.pointer =	snd_cmipci_capture_pointer,
1853 };
1854 
1855 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1856 	.open =		snd_cmipci_playback2_open,
1857 	.close =	snd_cmipci_playback2_close,
1858 	.ioctl =	snd_pcm_lib_ioctl,
1859 	.hw_params =	snd_cmipci_playback2_hw_params,
1860 	.hw_free =	snd_cmipci_playback2_hw_free,
1861 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1862 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1863 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1864 };
1865 
1866 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1867 	.open =		snd_cmipci_playback_spdif_open,
1868 	.close =	snd_cmipci_playback_spdif_close,
1869 	.ioctl =	snd_pcm_lib_ioctl,
1870 	.hw_params =	snd_cmipci_hw_params,
1871 	.hw_free =	snd_cmipci_playback_hw_free,
1872 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1873 	.trigger =	snd_cmipci_playback_trigger,
1874 	.pointer =	snd_cmipci_playback_pointer,
1875 };
1876 
1877 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1878 	.open =		snd_cmipci_capture_spdif_open,
1879 	.close =	snd_cmipci_capture_spdif_close,
1880 	.ioctl =	snd_pcm_lib_ioctl,
1881 	.hw_params =	snd_cmipci_hw_params,
1882 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1883 	.prepare =	snd_cmipci_capture_spdif_prepare,
1884 	.trigger =	snd_cmipci_capture_trigger,
1885 	.pointer =	snd_cmipci_capture_pointer,
1886 };
1887 
1888 
1889 /*
1890  */
1891 
1892 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1893 {
1894 	struct snd_pcm *pcm;
1895 	int err;
1896 
1897 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1898 	if (err < 0)
1899 		return err;
1900 
1901 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1902 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1903 
1904 	pcm->private_data = cm;
1905 	pcm->info_flags = 0;
1906 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1907 	cm->pcm = pcm;
1908 
1909 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1910 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1911 
1912 	return 0;
1913 }
1914 
1915 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1916 {
1917 	struct snd_pcm *pcm;
1918 	int err;
1919 
1920 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1921 	if (err < 0)
1922 		return err;
1923 
1924 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1925 
1926 	pcm->private_data = cm;
1927 	pcm->info_flags = 0;
1928 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1929 	cm->pcm2 = pcm;
1930 
1931 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1932 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1933 
1934 	return 0;
1935 }
1936 
1937 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1938 {
1939 	struct snd_pcm *pcm;
1940 	int err;
1941 
1942 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1943 	if (err < 0)
1944 		return err;
1945 
1946 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1947 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1948 
1949 	pcm->private_data = cm;
1950 	pcm->info_flags = 0;
1951 	strcpy(pcm->name, "C-Media PCI IEC958");
1952 	cm->pcm_spdif = pcm;
1953 
1954 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1955 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1956 
1957 	return 0;
1958 }
1959 
1960 /*
1961  * mixer interface:
1962  * - CM8338/8738 has a compatible mixer interface with SB16, but
1963  *   lack of some elements like tone control, i/o gain and AGC.
1964  * - Access to native registers:
1965  *   - A 3D switch
1966  *   - Output mute switches
1967  */
1968 
1969 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1970 {
1971 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1972 	outb(data, s->iobase + CM_REG_SB16_DATA);
1973 }
1974 
1975 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1976 {
1977 	unsigned char v;
1978 
1979 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1980 	v = inb(s->iobase + CM_REG_SB16_DATA);
1981 	return v;
1982 }
1983 
1984 /*
1985  * general mixer element
1986  */
1987 struct cmipci_sb_reg {
1988 	unsigned int left_reg, right_reg;
1989 	unsigned int left_shift, right_shift;
1990 	unsigned int mask;
1991 	unsigned int invert: 1;
1992 	unsigned int stereo: 1;
1993 };
1994 
1995 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1996  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1997 
1998 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1999 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2000   .info = snd_cmipci_info_volume, \
2001   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2002   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2003 }
2004 
2005 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2006 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2007 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2008 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2009 
2010 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2011 {
2012 	r->left_reg = val & 0xff;
2013 	r->right_reg = (val >> 8) & 0xff;
2014 	r->left_shift = (val >> 16) & 0x07;
2015 	r->right_shift = (val >> 19) & 0x07;
2016 	r->invert = (val >> 22) & 1;
2017 	r->stereo = (val >> 23) & 1;
2018 	r->mask = (val >> 24) & 0xff;
2019 }
2020 
2021 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2022 				  struct snd_ctl_elem_info *uinfo)
2023 {
2024 	struct cmipci_sb_reg reg;
2025 
2026 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2027 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2028 	uinfo->count = reg.stereo + 1;
2029 	uinfo->value.integer.min = 0;
2030 	uinfo->value.integer.max = reg.mask;
2031 	return 0;
2032 }
2033 
2034 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2035 				 struct snd_ctl_elem_value *ucontrol)
2036 {
2037 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2038 	struct cmipci_sb_reg reg;
2039 	int val;
2040 
2041 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2042 	spin_lock_irq(&cm->reg_lock);
2043 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2044 	if (reg.invert)
2045 		val = reg.mask - val;
2046 	ucontrol->value.integer.value[0] = val;
2047 	if (reg.stereo) {
2048 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2049 		if (reg.invert)
2050 			val = reg.mask - val;
2051 		 ucontrol->value.integer.value[1] = val;
2052 	}
2053 	spin_unlock_irq(&cm->reg_lock);
2054 	return 0;
2055 }
2056 
2057 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2058 				 struct snd_ctl_elem_value *ucontrol)
2059 {
2060 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2061 	struct cmipci_sb_reg reg;
2062 	int change;
2063 	int left, right, oleft, oright;
2064 
2065 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2066 	left = ucontrol->value.integer.value[0] & reg.mask;
2067 	if (reg.invert)
2068 		left = reg.mask - left;
2069 	left <<= reg.left_shift;
2070 	if (reg.stereo) {
2071 		right = ucontrol->value.integer.value[1] & reg.mask;
2072 		if (reg.invert)
2073 			right = reg.mask - right;
2074 		right <<= reg.right_shift;
2075 	} else
2076 		right = 0;
2077 	spin_lock_irq(&cm->reg_lock);
2078 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2079 	left |= oleft & ~(reg.mask << reg.left_shift);
2080 	change = left != oleft;
2081 	if (reg.stereo) {
2082 		if (reg.left_reg != reg.right_reg) {
2083 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2084 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2085 		} else
2086 			oright = left;
2087 		right |= oright & ~(reg.mask << reg.right_shift);
2088 		change |= right != oright;
2089 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2090 	} else
2091 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2092 	spin_unlock_irq(&cm->reg_lock);
2093 	return change;
2094 }
2095 
2096 /*
2097  * input route (left,right) -> (left,right)
2098  */
2099 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2100 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2101   .info = snd_cmipci_info_input_sw, \
2102   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2103   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2104 }
2105 
2106 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2107 				    struct snd_ctl_elem_info *uinfo)
2108 {
2109 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2110 	uinfo->count = 4;
2111 	uinfo->value.integer.min = 0;
2112 	uinfo->value.integer.max = 1;
2113 	return 0;
2114 }
2115 
2116 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2117 				   struct snd_ctl_elem_value *ucontrol)
2118 {
2119 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2120 	struct cmipci_sb_reg reg;
2121 	int val1, val2;
2122 
2123 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2124 	spin_lock_irq(&cm->reg_lock);
2125 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2126 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2127 	spin_unlock_irq(&cm->reg_lock);
2128 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2129 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2130 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2131 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2132 	return 0;
2133 }
2134 
2135 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2136 				   struct snd_ctl_elem_value *ucontrol)
2137 {
2138 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2139 	struct cmipci_sb_reg reg;
2140 	int change;
2141 	int val1, val2, oval1, oval2;
2142 
2143 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2144 	spin_lock_irq(&cm->reg_lock);
2145 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2146 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2147 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2148 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2149 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2150 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2151 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2152 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2153 	change = val1 != oval1 || val2 != oval2;
2154 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2155 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2156 	spin_unlock_irq(&cm->reg_lock);
2157 	return change;
2158 }
2159 
2160 /*
2161  * native mixer switches/volumes
2162  */
2163 
2164 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2165 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2166   .info = snd_cmipci_info_native_mixer, \
2167   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2168   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2169 }
2170 
2171 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2172 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2173   .info = snd_cmipci_info_native_mixer, \
2174   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2175   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2176 }
2177 
2178 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2179 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2180   .info = snd_cmipci_info_native_mixer, \
2181   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2182   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2183 }
2184 
2185 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2186 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2187   .info = snd_cmipci_info_native_mixer, \
2188   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2189   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2190 }
2191 
2192 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2193 					struct snd_ctl_elem_info *uinfo)
2194 {
2195 	struct cmipci_sb_reg reg;
2196 
2197 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2198 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2199 	uinfo->count = reg.stereo + 1;
2200 	uinfo->value.integer.min = 0;
2201 	uinfo->value.integer.max = reg.mask;
2202 	return 0;
2203 
2204 }
2205 
2206 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2207 				       struct snd_ctl_elem_value *ucontrol)
2208 {
2209 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2210 	struct cmipci_sb_reg reg;
2211 	unsigned char oreg, val;
2212 
2213 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2214 	spin_lock_irq(&cm->reg_lock);
2215 	oreg = inb(cm->iobase + reg.left_reg);
2216 	val = (oreg >> reg.left_shift) & reg.mask;
2217 	if (reg.invert)
2218 		val = reg.mask - val;
2219 	ucontrol->value.integer.value[0] = val;
2220 	if (reg.stereo) {
2221 		val = (oreg >> reg.right_shift) & reg.mask;
2222 		if (reg.invert)
2223 			val = reg.mask - val;
2224 		ucontrol->value.integer.value[1] = val;
2225 	}
2226 	spin_unlock_irq(&cm->reg_lock);
2227 	return 0;
2228 }
2229 
2230 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2231 				       struct snd_ctl_elem_value *ucontrol)
2232 {
2233 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2234 	struct cmipci_sb_reg reg;
2235 	unsigned char oreg, nreg, val;
2236 
2237 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2238 	spin_lock_irq(&cm->reg_lock);
2239 	oreg = inb(cm->iobase + reg.left_reg);
2240 	val = ucontrol->value.integer.value[0] & reg.mask;
2241 	if (reg.invert)
2242 		val = reg.mask - val;
2243 	nreg = oreg & ~(reg.mask << reg.left_shift);
2244 	nreg |= (val << reg.left_shift);
2245 	if (reg.stereo) {
2246 		val = ucontrol->value.integer.value[1] & reg.mask;
2247 		if (reg.invert)
2248 			val = reg.mask - val;
2249 		nreg &= ~(reg.mask << reg.right_shift);
2250 		nreg |= (val << reg.right_shift);
2251 	}
2252 	outb(nreg, cm->iobase + reg.left_reg);
2253 	spin_unlock_irq(&cm->reg_lock);
2254 	return (nreg != oreg);
2255 }
2256 
2257 /*
2258  * special case - check mixer sensitivity
2259  */
2260 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2261 						 struct snd_ctl_elem_value *ucontrol)
2262 {
2263 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2264 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2265 }
2266 
2267 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2268 						 struct snd_ctl_elem_value *ucontrol)
2269 {
2270 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2271 	if (cm->mixer_insensitive) {
2272 		/* ignored */
2273 		return 0;
2274 	}
2275 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2276 }
2277 
2278 
2279 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2280 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2281 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2282 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2283 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2284 	{ /* switch with sensitivity */
2285 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2286 		.name = "PCM Playback Switch",
2287 		.info = snd_cmipci_info_native_mixer,
2288 		.get = snd_cmipci_get_native_mixer_sensitive,
2289 		.put = snd_cmipci_put_native_mixer_sensitive,
2290 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2291 	},
2292 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2293 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2294 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2295 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2296 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2297 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2298 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2299 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2300 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2301 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2302 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2303 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2304 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2305 	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2306 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2307 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2308 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2309 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2310 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2311 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2312 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2313 	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2314 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2315 };
2316 
2317 /*
2318  * other switches
2319  */
2320 
2321 struct cmipci_switch_args {
2322 	int reg;		/* register index */
2323 	unsigned int mask;	/* mask bits */
2324 	unsigned int mask_on;	/* mask bits to turn on */
2325 	unsigned int is_byte: 1;		/* byte access? */
2326 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2327 					 * non-audio operation?
2328 					 */
2329 };
2330 
2331 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2332 
2333 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2334 				   struct snd_ctl_elem_value *ucontrol,
2335 				   struct cmipci_switch_args *args)
2336 {
2337 	unsigned int val;
2338 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2339 
2340 	spin_lock_irq(&cm->reg_lock);
2341 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2342 		ucontrol->value.integer.value[0] = 0;
2343 		spin_unlock_irq(&cm->reg_lock);
2344 		return 0;
2345 	}
2346 	if (args->is_byte)
2347 		val = inb(cm->iobase + args->reg);
2348 	else
2349 		val = snd_cmipci_read(cm, args->reg);
2350 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2351 	spin_unlock_irq(&cm->reg_lock);
2352 	return 0;
2353 }
2354 
2355 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2356 				  struct snd_ctl_elem_value *ucontrol)
2357 {
2358 	struct cmipci_switch_args *args;
2359 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2360 	if (snd_BUG_ON(!args))
2361 		return -EINVAL;
2362 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2363 }
2364 
2365 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2366 				   struct snd_ctl_elem_value *ucontrol,
2367 				   struct cmipci_switch_args *args)
2368 {
2369 	unsigned int val;
2370 	int change;
2371 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2372 
2373 	spin_lock_irq(&cm->reg_lock);
2374 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2375 		/* ignored */
2376 		spin_unlock_irq(&cm->reg_lock);
2377 		return 0;
2378 	}
2379 	if (args->is_byte)
2380 		val = inb(cm->iobase + args->reg);
2381 	else
2382 		val = snd_cmipci_read(cm, args->reg);
2383 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2384 			args->mask_on : (args->mask & ~args->mask_on));
2385 	if (change) {
2386 		val &= ~args->mask;
2387 		if (ucontrol->value.integer.value[0])
2388 			val |= args->mask_on;
2389 		else
2390 			val |= (args->mask & ~args->mask_on);
2391 		if (args->is_byte)
2392 			outb((unsigned char)val, cm->iobase + args->reg);
2393 		else
2394 			snd_cmipci_write(cm, args->reg, val);
2395 	}
2396 	spin_unlock_irq(&cm->reg_lock);
2397 	return change;
2398 }
2399 
2400 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2401 				  struct snd_ctl_elem_value *ucontrol)
2402 {
2403 	struct cmipci_switch_args *args;
2404 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2405 	if (snd_BUG_ON(!args))
2406 		return -EINVAL;
2407 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2408 }
2409 
2410 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2411 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2412   .reg = xreg, \
2413   .mask = xmask, \
2414   .mask_on = xmask_on, \
2415   .is_byte = xis_byte, \
2416   .ac3_sensitive = xac3, \
2417 }
2418 
2419 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2420 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2421 
2422 #if 0 /* these will be controlled in pcm device */
2423 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2424 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2425 #endif
2426 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2427 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2428 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2429 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2430 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2431 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2432 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2433 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2434 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2435 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2436 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2437 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2438 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2439 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2440 #if CM_CH_PLAY == 1
2441 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2442 #else
2443 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2444 #endif
2445 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2446 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2447 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2448 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2449 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2450 
2451 #define DEFINE_SWITCH(sname, stype, sarg) \
2452 { .name = sname, \
2453   .iface = stype, \
2454   .info = snd_cmipci_uswitch_info, \
2455   .get = snd_cmipci_uswitch_get, \
2456   .put = snd_cmipci_uswitch_put, \
2457   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2458 }
2459 
2460 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2461 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2462 
2463 
2464 /*
2465  * callbacks for spdif output switch
2466  * needs toggle two registers..
2467  */
2468 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2469 					struct snd_ctl_elem_value *ucontrol)
2470 {
2471 	int changed;
2472 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2473 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2474 	return changed;
2475 }
2476 
2477 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2478 					struct snd_ctl_elem_value *ucontrol)
2479 {
2480 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2481 	int changed;
2482 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2483 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2484 	if (changed) {
2485 		if (ucontrol->value.integer.value[0]) {
2486 			if (chip->spdif_playback_avail)
2487 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2488 		} else {
2489 			if (chip->spdif_playback_avail)
2490 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2491 		}
2492 	}
2493 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2494 	return changed;
2495 }
2496 
2497 
2498 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2499 					struct snd_ctl_elem_info *uinfo)
2500 {
2501 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2502 	static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" };
2503 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2504 	uinfo->count = 1;
2505 	uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2;
2506 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2507 		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2508 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2509 	return 0;
2510 }
2511 
2512 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2513 {
2514 	unsigned int val;
2515 	if (cm->chip_version >= 39) {
2516 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2517 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2518 			return 2;
2519 	}
2520 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2521 	if (val & CM_REAR2LIN)
2522 		return 1;
2523 	return 0;
2524 }
2525 
2526 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2527 				       struct snd_ctl_elem_value *ucontrol)
2528 {
2529 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2530 
2531 	spin_lock_irq(&cm->reg_lock);
2532 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2533 	spin_unlock_irq(&cm->reg_lock);
2534 	return 0;
2535 }
2536 
2537 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2538 				       struct snd_ctl_elem_value *ucontrol)
2539 {
2540 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2541 	int change;
2542 
2543 	spin_lock_irq(&cm->reg_lock);
2544 	if (ucontrol->value.enumerated.item[0] == 2)
2545 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2546 	else
2547 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2548 	if (ucontrol->value.enumerated.item[0] == 1)
2549 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2550 	else
2551 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2552 	spin_unlock_irq(&cm->reg_lock);
2553 	return change;
2554 }
2555 
2556 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2557 				       struct snd_ctl_elem_info *uinfo)
2558 {
2559 	static char *texts[2] = { "Mic-In", "Center/LFE Output" };
2560 	uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
2561 	uinfo->count = 1;
2562 	uinfo->value.enumerated.items = 2;
2563 	if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items)
2564 		uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1;
2565 	strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
2566 	return 0;
2567 }
2568 
2569 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2570 				      struct snd_ctl_elem_value *ucontrol)
2571 {
2572 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2573 	/* same bit as spdi_phase */
2574 	spin_lock_irq(&cm->reg_lock);
2575 	ucontrol->value.enumerated.item[0] =
2576 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2577 	spin_unlock_irq(&cm->reg_lock);
2578 	return 0;
2579 }
2580 
2581 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2582 				      struct snd_ctl_elem_value *ucontrol)
2583 {
2584 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2585 	int change;
2586 
2587 	spin_lock_irq(&cm->reg_lock);
2588 	if (ucontrol->value.enumerated.item[0])
2589 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2590 	else
2591 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2592 	spin_unlock_irq(&cm->reg_lock);
2593 	return change;
2594 }
2595 
2596 /* both for CM8338/8738 */
2597 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2598 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2599 	{
2600 		.name = "Line-In Mode",
2601 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2602 		.info = snd_cmipci_line_in_mode_info,
2603 		.get = snd_cmipci_line_in_mode_get,
2604 		.put = snd_cmipci_line_in_mode_put,
2605 	},
2606 };
2607 
2608 /* for non-multichannel chips */
2609 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2610 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2611 
2612 /* only for CM8738 */
2613 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2614 #if 0 /* controlled in pcm device */
2615 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2616 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2617 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2618 #endif
2619 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2620 	{ .name = "IEC958 Output Switch",
2621 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2622 	  .info = snd_cmipci_uswitch_info,
2623 	  .get = snd_cmipci_spdout_enable_get,
2624 	  .put = snd_cmipci_spdout_enable_put,
2625 	},
2626 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2627 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2628 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2629 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2630 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2631 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2632 };
2633 
2634 /* only for model 033/037 */
2635 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2636 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2637 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2638 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2639 };
2640 
2641 /* only for model 039 or later */
2642 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2643 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2644 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2645 	{
2646 		.name = "Mic-In Mode",
2647 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2648 		.info = snd_cmipci_mic_in_mode_info,
2649 		.get = snd_cmipci_mic_in_mode_get,
2650 		.put = snd_cmipci_mic_in_mode_put,
2651 	}
2652 };
2653 
2654 /* card control switches */
2655 static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
2656 DEFINE_CARD_SWITCH("Modem", modem);
2657 
2658 
2659 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2660 {
2661 	struct snd_card *card;
2662 	struct snd_kcontrol_new *sw;
2663 	struct snd_kcontrol *kctl;
2664 	unsigned int idx;
2665 	int err;
2666 
2667 	if (snd_BUG_ON(!cm || !cm->card))
2668 		return -EINVAL;
2669 
2670 	card = cm->card;
2671 
2672 	strcpy(card->mixername, "CMedia PCI");
2673 
2674 	spin_lock_irq(&cm->reg_lock);
2675 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2676 	spin_unlock_irq(&cm->reg_lock);
2677 
2678 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2679 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2680 			if (!strcmp(snd_cmipci_mixers[idx].name,
2681 				"PCM Playback Volume"))
2682 				continue;
2683 		}
2684 		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2685 			return err;
2686 	}
2687 
2688 	/* mixer switches */
2689 	sw = snd_cmipci_mixer_switches;
2690 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2691 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2692 		if (err < 0)
2693 			return err;
2694 	}
2695 	if (! cm->can_multi_ch) {
2696 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2697 		if (err < 0)
2698 			return err;
2699 	}
2700 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2701 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2702 		sw = snd_cmipci_8738_mixer_switches;
2703 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2704 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2705 			if (err < 0)
2706 				return err;
2707 		}
2708 		if (cm->can_ac3_hw) {
2709 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2710 				return err;
2711 			kctl->id.device = pcm_spdif_device;
2712 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2713 				return err;
2714 			kctl->id.device = pcm_spdif_device;
2715 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2716 				return err;
2717 			kctl->id.device = pcm_spdif_device;
2718 		}
2719 		if (cm->chip_version <= 37) {
2720 			sw = snd_cmipci_old_mixer_switches;
2721 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2722 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2723 				if (err < 0)
2724 					return err;
2725 			}
2726 		}
2727 	}
2728 	if (cm->chip_version >= 39) {
2729 		sw = snd_cmipci_extra_mixer_switches;
2730 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2731 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2732 			if (err < 0)
2733 				return err;
2734 		}
2735 	}
2736 
2737 	/* card switches */
2738 	/*
2739 	 * newer chips don't have the register bits to force modem link
2740 	 * detection; the bit that was FLINKON now mutes CH1
2741 	 */
2742 	if (cm->chip_version < 39) {
2743 		err = snd_ctl_add(cm->card,
2744 				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2745 		if (err < 0)
2746 			return err;
2747 	}
2748 
2749 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2750 		struct snd_ctl_elem_id elem_id;
2751 		struct snd_kcontrol *ctl;
2752 		memset(&elem_id, 0, sizeof(elem_id));
2753 		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2754 		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2755 		ctl = snd_ctl_find_id(cm->card, &elem_id);
2756 		if (ctl)
2757 			cm->mixer_res_ctl[idx] = ctl;
2758 	}
2759 
2760 	return 0;
2761 }
2762 
2763 
2764 /*
2765  * proc interface
2766  */
2767 
2768 #ifdef CONFIG_PROC_FS
2769 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2770 				 struct snd_info_buffer *buffer)
2771 {
2772 	struct cmipci *cm = entry->private_data;
2773 	int i, v;
2774 
2775 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2776 	for (i = 0; i < 0x94; i++) {
2777 		if (i == 0x28)
2778 			i = 0x90;
2779 		v = inb(cm->iobase + i);
2780 		if (i % 4 == 0)
2781 			snd_iprintf(buffer, "\n%02x:", i);
2782 		snd_iprintf(buffer, " %02x", v);
2783 	}
2784 	snd_iprintf(buffer, "\n");
2785 }
2786 
2787 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2788 {
2789 	struct snd_info_entry *entry;
2790 
2791 	if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2792 		snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2793 }
2794 #else /* !CONFIG_PROC_FS */
2795 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2796 #endif
2797 
2798 
2799 static struct pci_device_id snd_cmipci_ids[] = {
2800 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2801 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2802 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2803 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2804 	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2805 	{0,},
2806 };
2807 
2808 
2809 /*
2810  * check chip version and capabilities
2811  * driver name is modified according to the chip model
2812  */
2813 static void __devinit query_chip(struct cmipci *cm)
2814 {
2815 	unsigned int detect;
2816 
2817 	/* check reg 0Ch, bit 24-31 */
2818 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2819 	if (! detect) {
2820 		/* check reg 08h, bit 24-28 */
2821 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2822 		switch (detect) {
2823 		case 0:
2824 			cm->chip_version = 33;
2825 			if (cm->do_soft_ac3)
2826 				cm->can_ac3_sw = 1;
2827 			else
2828 				cm->can_ac3_hw = 1;
2829 			break;
2830 		case CM_CHIP_037:
2831 			cm->chip_version = 37;
2832 			cm->can_ac3_hw = 1;
2833 			break;
2834 		default:
2835 			cm->chip_version = 39;
2836 			cm->can_ac3_hw = 1;
2837 			break;
2838 		}
2839 		cm->max_channels = 2;
2840 	} else {
2841 		if (detect & CM_CHIP_039) {
2842 			cm->chip_version = 39;
2843 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2844 				cm->max_channels = 6;
2845 			else
2846 				cm->max_channels = 4;
2847 		} else if (detect & CM_CHIP_8768) {
2848 			cm->chip_version = 68;
2849 			cm->max_channels = 8;
2850 			cm->can_96k = 1;
2851 		} else {
2852 			cm->chip_version = 55;
2853 			cm->max_channels = 6;
2854 			cm->can_96k = 1;
2855 		}
2856 		cm->can_ac3_hw = 1;
2857 		cm->can_multi_ch = 1;
2858 	}
2859 }
2860 
2861 #ifdef SUPPORT_JOYSTICK
2862 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2863 {
2864 	static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2865 	struct gameport *gp;
2866 	struct resource *r = NULL;
2867 	int i, io_port = 0;
2868 
2869 	if (joystick_port[dev] == 0)
2870 		return -ENODEV;
2871 
2872 	if (joystick_port[dev] == 1) { /* auto-detect */
2873 		for (i = 0; ports[i]; i++) {
2874 			io_port = ports[i];
2875 			r = request_region(io_port, 1, "CMIPCI gameport");
2876 			if (r)
2877 				break;
2878 		}
2879 	} else {
2880 		io_port = joystick_port[dev];
2881 		r = request_region(io_port, 1, "CMIPCI gameport");
2882 	}
2883 
2884 	if (!r) {
2885 		printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2886 		return -EBUSY;
2887 	}
2888 
2889 	cm->gameport = gp = gameport_allocate_port();
2890 	if (!gp) {
2891 		printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2892 		release_and_free_resource(r);
2893 		return -ENOMEM;
2894 	}
2895 	gameport_set_name(gp, "C-Media Gameport");
2896 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2897 	gameport_set_dev_parent(gp, &cm->pci->dev);
2898 	gp->io = io_port;
2899 	gameport_set_port_data(gp, r);
2900 
2901 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2902 
2903 	gameport_register_port(cm->gameport);
2904 
2905 	return 0;
2906 }
2907 
2908 static void snd_cmipci_free_gameport(struct cmipci *cm)
2909 {
2910 	if (cm->gameport) {
2911 		struct resource *r = gameport_get_port_data(cm->gameport);
2912 
2913 		gameport_unregister_port(cm->gameport);
2914 		cm->gameport = NULL;
2915 
2916 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2917 		release_and_free_resource(r);
2918 	}
2919 }
2920 #else
2921 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2922 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2923 #endif
2924 
2925 static int snd_cmipci_free(struct cmipci *cm)
2926 {
2927 	if (cm->irq >= 0) {
2928 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2929 		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2930 		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2931 		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2932 		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2933 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2934 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2935 
2936 		/* reset mixer */
2937 		snd_cmipci_mixer_write(cm, 0, 0);
2938 
2939 		free_irq(cm->irq, cm);
2940 	}
2941 
2942 	snd_cmipci_free_gameport(cm);
2943 	pci_release_regions(cm->pci);
2944 	pci_disable_device(cm->pci);
2945 	kfree(cm);
2946 	return 0;
2947 }
2948 
2949 static int snd_cmipci_dev_free(struct snd_device *device)
2950 {
2951 	struct cmipci *cm = device->device_data;
2952 	return snd_cmipci_free(cm);
2953 }
2954 
2955 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2956 {
2957 	long iosynth;
2958 	unsigned int val;
2959 	struct snd_opl3 *opl3;
2960 	int err;
2961 
2962 	if (!fm_port)
2963 		goto disable_fm;
2964 
2965 	if (cm->chip_version >= 39) {
2966 		/* first try FM regs in PCI port range */
2967 		iosynth = cm->iobase + CM_REG_FM_PCI;
2968 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2969 				      OPL3_HW_OPL3, 1, &opl3);
2970 	} else {
2971 		err = -EIO;
2972 	}
2973 	if (err < 0) {
2974 		/* then try legacy ports */
2975 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2976 		iosynth = fm_port;
2977 		switch (iosynth) {
2978 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2979 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2980 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2981 		case 0x388: val |= CM_FMSEL_388; break;
2982 		default:
2983 			goto disable_fm;
2984 		}
2985 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2986 		/* enable FM */
2987 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2988 
2989 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2990 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2991 			printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2992 			       "skipping...\n", iosynth);
2993 			goto disable_fm;
2994 		}
2995 	}
2996 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2997 		printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2998 		return err;
2999 	}
3000 	return 0;
3001 
3002  disable_fm:
3003 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3004 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3005 	return 0;
3006 }
3007 
3008 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3009 				       int dev, struct cmipci **rcmipci)
3010 {
3011 	struct cmipci *cm;
3012 	int err;
3013 	static struct snd_device_ops ops = {
3014 		.dev_free =	snd_cmipci_dev_free,
3015 	};
3016 	unsigned int val;
3017 	long iomidi = 0;
3018 	int integrated_midi = 0;
3019 	char modelstr[16];
3020 	int pcm_index, pcm_spdif_index;
3021 	static struct pci_device_id intel_82437vx[] = {
3022 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3023 		{ },
3024 	};
3025 
3026 	*rcmipci = NULL;
3027 
3028 	if ((err = pci_enable_device(pci)) < 0)
3029 		return err;
3030 
3031 	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3032 	if (cm == NULL) {
3033 		pci_disable_device(pci);
3034 		return -ENOMEM;
3035 	}
3036 
3037 	spin_lock_init(&cm->reg_lock);
3038 	mutex_init(&cm->open_mutex);
3039 	cm->device = pci->device;
3040 	cm->card = card;
3041 	cm->pci = pci;
3042 	cm->irq = -1;
3043 	cm->channel[0].ch = 0;
3044 	cm->channel[1].ch = 1;
3045 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3046 
3047 	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3048 		kfree(cm);
3049 		pci_disable_device(pci);
3050 		return err;
3051 	}
3052 	cm->iobase = pci_resource_start(pci, 0);
3053 
3054 	if (request_irq(pci->irq, snd_cmipci_interrupt,
3055 			IRQF_SHARED, card->driver, cm)) {
3056 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3057 		snd_cmipci_free(cm);
3058 		return -EBUSY;
3059 	}
3060 	cm->irq = pci->irq;
3061 
3062 	pci_set_master(cm->pci);
3063 
3064 	/*
3065 	 * check chip version, max channels and capabilities
3066 	 */
3067 
3068 	cm->chip_version = 0;
3069 	cm->max_channels = 2;
3070 	cm->do_soft_ac3 = soft_ac3[dev];
3071 
3072 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3073 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3074 		query_chip(cm);
3075 	/* added -MCx suffix for chip supporting multi-channels */
3076 	if (cm->can_multi_ch)
3077 		sprintf(cm->card->driver + strlen(cm->card->driver),
3078 			"-MC%d", cm->max_channels);
3079 	else if (cm->can_ac3_sw)
3080 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3081 
3082 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3083 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3084 
3085 #if CM_CH_PLAY == 1
3086 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3087 #else
3088 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3089 #endif
3090 
3091 	/* initialize codec registers */
3092 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3093 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3094 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3095 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3096 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3097 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3098 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3099 
3100 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3101 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3102 #if CM_CH_PLAY == 1
3103 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3104 #else
3105 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3106 #endif
3107 	if (cm->chip_version) {
3108 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3109 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3110 	}
3111 	/* Set Bus Master Request */
3112 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3113 
3114 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3115 	switch (pci->device) {
3116 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3117 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3118 		if (!pci_dev_present(intel_82437vx))
3119 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3120 		break;
3121 	default:
3122 		break;
3123 	}
3124 
3125 	if (cm->chip_version < 68) {
3126 		val = pci->device < 0x110 ? 8338 : 8738;
3127 	} else {
3128 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3129 		case 0:
3130 			val = 8769;
3131 			break;
3132 		case 2:
3133 			val = 8762;
3134 			break;
3135 		default:
3136 			switch ((pci->subsystem_vendor << 16) |
3137 				pci->subsystem_device) {
3138 			case 0x13f69761:
3139 			case 0x584d3741:
3140 			case 0x584d3751:
3141 			case 0x584d3761:
3142 			case 0x584d3771:
3143 			case 0x72848384:
3144 				val = 8770;
3145 				break;
3146 			default:
3147 				val = 8768;
3148 				break;
3149 			}
3150 		}
3151 	}
3152 	sprintf(card->shortname, "C-Media CMI%d", val);
3153 	if (cm->chip_version < 68)
3154 		sprintf(modelstr, " (model %d)", cm->chip_version);
3155 	else
3156 		modelstr[0] = '\0';
3157 	sprintf(card->longname, "%s%s at %#lx, irq %i",
3158 		card->shortname, modelstr, cm->iobase, cm->irq);
3159 
3160 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3161 		snd_cmipci_free(cm);
3162 		return err;
3163 	}
3164 
3165 	if (cm->chip_version >= 39) {
3166 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3167 		if (val != 0x00 && val != 0xff) {
3168 			iomidi = cm->iobase + CM_REG_MPU_PCI;
3169 			integrated_midi = 1;
3170 		}
3171 	}
3172 	if (!integrated_midi) {
3173 		val = 0;
3174 		iomidi = mpu_port[dev];
3175 		switch (iomidi) {
3176 		case 0x320: val = CM_VMPU_320; break;
3177 		case 0x310: val = CM_VMPU_310; break;
3178 		case 0x300: val = CM_VMPU_300; break;
3179 		case 0x330: val = CM_VMPU_330; break;
3180 		default:
3181 			    iomidi = 0; break;
3182 		}
3183 		if (iomidi > 0) {
3184 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3185 			/* enable UART */
3186 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3187 			if (inb(iomidi + 1) == 0xff) {
3188 				snd_printk(KERN_ERR "cannot enable MPU-401 port"
3189 					   " at %#lx\n", iomidi);
3190 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3191 						     CM_UART_EN);
3192 				iomidi = 0;
3193 			}
3194 		}
3195 	}
3196 
3197 	if (cm->chip_version < 68) {
3198 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3199 		if (err < 0)
3200 			return err;
3201 	}
3202 
3203 	/* reset mixer */
3204 	snd_cmipci_mixer_write(cm, 0, 0);
3205 
3206 	snd_cmipci_proc_init(cm);
3207 
3208 	/* create pcm devices */
3209 	pcm_index = pcm_spdif_index = 0;
3210 	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3211 		return err;
3212 	pcm_index++;
3213 	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3214 		return err;
3215 	pcm_index++;
3216 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3217 		pcm_spdif_index = pcm_index;
3218 		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3219 			return err;
3220 	}
3221 
3222 	/* create mixer interface & switches */
3223 	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3224 		return err;
3225 
3226 	if (iomidi > 0) {
3227 		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3228 					       iomidi,
3229 					       (integrated_midi ?
3230 						MPU401_INFO_INTEGRATED : 0),
3231 					       cm->irq, 0, &cm->rmidi)) < 0) {
3232 			printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3233 		}
3234 	}
3235 
3236 #ifdef USE_VAR48KRATE
3237 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3238 		snd_cmipci_set_pll(cm, rates[val], val);
3239 
3240 	/*
3241 	 * (Re-)Enable external switch spdo_48k
3242 	 */
3243 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3244 #endif /* USE_VAR48KRATE */
3245 
3246 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3247 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3248 
3249 	snd_card_set_dev(card, &pci->dev);
3250 
3251 	*rcmipci = cm;
3252 	return 0;
3253 }
3254 
3255 /*
3256  */
3257 
3258 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3259 
3260 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3261 				      const struct pci_device_id *pci_id)
3262 {
3263 	static int dev;
3264 	struct snd_card *card;
3265 	struct cmipci *cm;
3266 	int err;
3267 
3268 	if (dev >= SNDRV_CARDS)
3269 		return -ENODEV;
3270 	if (! enable[dev]) {
3271 		dev++;
3272 		return -ENOENT;
3273 	}
3274 
3275 	err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
3276 	if (err < 0)
3277 		return err;
3278 
3279 	switch (pci->device) {
3280 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3281 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3282 		strcpy(card->driver, "CMI8738");
3283 		break;
3284 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3285 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3286 		strcpy(card->driver, "CMI8338");
3287 		break;
3288 	default:
3289 		strcpy(card->driver, "CMIPCI");
3290 		break;
3291 	}
3292 
3293 	if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3294 		snd_card_free(card);
3295 		return err;
3296 	}
3297 	card->private_data = cm;
3298 
3299 	if ((err = snd_card_register(card)) < 0) {
3300 		snd_card_free(card);
3301 		return err;
3302 	}
3303 	pci_set_drvdata(pci, card);
3304 	dev++;
3305 	return 0;
3306 
3307 }
3308 
3309 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3310 {
3311 	snd_card_free(pci_get_drvdata(pci));
3312 	pci_set_drvdata(pci, NULL);
3313 }
3314 
3315 
3316 #ifdef CONFIG_PM
3317 /*
3318  * power management
3319  */
3320 static unsigned char saved_regs[] = {
3321 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3322 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3323 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3324 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3325 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3326 };
3327 
3328 static unsigned char saved_mixers[] = {
3329 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3330 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3331 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3332 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3333 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3334 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3335 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3336 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3337 };
3338 
3339 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state)
3340 {
3341 	struct snd_card *card = pci_get_drvdata(pci);
3342 	struct cmipci *cm = card->private_data;
3343 	int i;
3344 
3345 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3346 
3347 	snd_pcm_suspend_all(cm->pcm);
3348 	snd_pcm_suspend_all(cm->pcm2);
3349 	snd_pcm_suspend_all(cm->pcm_spdif);
3350 
3351 	/* save registers */
3352 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3353 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3354 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3355 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3356 
3357 	/* disable ints */
3358 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3359 
3360 	pci_disable_device(pci);
3361 	pci_save_state(pci);
3362 	pci_set_power_state(pci, pci_choose_state(pci, state));
3363 	return 0;
3364 }
3365 
3366 static int snd_cmipci_resume(struct pci_dev *pci)
3367 {
3368 	struct snd_card *card = pci_get_drvdata(pci);
3369 	struct cmipci *cm = card->private_data;
3370 	int i;
3371 
3372 	pci_set_power_state(pci, PCI_D0);
3373 	pci_restore_state(pci);
3374 	if (pci_enable_device(pci) < 0) {
3375 		printk(KERN_ERR "cmipci: pci_enable_device failed, "
3376 		       "disabling device\n");
3377 		snd_card_disconnect(card);
3378 		return -EIO;
3379 	}
3380 	pci_set_master(pci);
3381 
3382 	/* reset / initialize to a sane state */
3383 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3384 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3385 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3386 	snd_cmipci_mixer_write(cm, 0, 0);
3387 
3388 	/* restore registers */
3389 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3390 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3391 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3392 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3393 
3394 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3395 	return 0;
3396 }
3397 #endif /* CONFIG_PM */
3398 
3399 static struct pci_driver driver = {
3400 	.name = "C-Media PCI",
3401 	.id_table = snd_cmipci_ids,
3402 	.probe = snd_cmipci_probe,
3403 	.remove = __devexit_p(snd_cmipci_remove),
3404 #ifdef CONFIG_PM
3405 	.suspend = snd_cmipci_suspend,
3406 	.resume = snd_cmipci_resume,
3407 #endif
3408 };
3409 
3410 static int __init alsa_card_cmipci_init(void)
3411 {
3412 	return pci_register_driver(&driver);
3413 }
3414 
3415 static void __exit alsa_card_cmipci_exit(void)
3416 {
3417 	pci_unregister_driver(&driver);
3418 }
3419 
3420 module_init(alsa_card_cmipci_init)
3421 module_exit(alsa_card_cmipci_exit)
3422