1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 5 */ 6 7 /* Does not work. Warning may block system in capture mode */ 8 /* #define USE_VAR48KRATE */ 9 10 #include <linux/io.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/init.h> 14 #include <linux/pci.h> 15 #include <linux/slab.h> 16 #include <linux/gameport.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <sound/core.h> 20 #include <sound/info.h> 21 #include <sound/control.h> 22 #include <sound/pcm.h> 23 #include <sound/rawmidi.h> 24 #include <sound/mpu401.h> 25 #include <sound/opl3.h> 26 #include <sound/sb.h> 27 #include <sound/asoundef.h> 28 #include <sound/initval.h> 29 30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 32 MODULE_LICENSE("GPL"); 33 34 #if IS_REACHABLE(CONFIG_GAMEPORT) 35 #define SUPPORT_JOYSTICK 1 36 #endif 37 38 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 39 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 40 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 41 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1}; 42 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 43 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 44 #ifdef SUPPORT_JOYSTICK 45 static int joystick_port[SNDRV_CARDS]; 46 #endif 47 48 module_param_array(index, int, NULL, 0444); 49 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 50 module_param_array(id, charp, NULL, 0444); 51 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 52 module_param_array(enable, bool, NULL, 0444); 53 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 54 module_param_hw_array(mpu_port, long, ioport, NULL, 0444); 55 MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 56 module_param_hw_array(fm_port, long, ioport, NULL, 0444); 57 MODULE_PARM_DESC(fm_port, "FM port."); 58 module_param_array(soft_ac3, bool, NULL, 0444); 59 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only)."); 60 #ifdef SUPPORT_JOYSTICK 61 module_param_hw_array(joystick_port, int, ioport, NULL, 0444); 62 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 63 #endif 64 65 /* 66 * CM8x38 registers definition 67 */ 68 69 #define CM_REG_FUNCTRL0 0x00 70 #define CM_RST_CH1 0x00080000 71 #define CM_RST_CH0 0x00040000 72 #define CM_CHEN1 0x00020000 /* ch1: enable */ 73 #define CM_CHEN0 0x00010000 /* ch0: enable */ 74 #define CM_PAUSE1 0x00000008 /* ch1: pause */ 75 #define CM_PAUSE0 0x00000004 /* ch0: pause */ 76 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 77 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 78 79 #define CM_REG_FUNCTRL1 0x04 80 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 81 #define CM_DSFC_SHIFT 13 82 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 83 #define CM_ASFC_SHIFT 10 84 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 85 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 86 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 87 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 88 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 89 #define CM_BREQ 0x00000010 /* bus master enabled */ 90 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 91 #define CM_UART_EN 0x00000004 /* legacy UART */ 92 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 93 #define CM_ZVPORT 0x00000001 /* ZVPORT */ 94 95 #define CM_REG_CHFORMAT 0x08 96 97 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 98 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 99 #define CM_CHB3D 0x20000000 /* 4 channels */ 100 101 #define CM_CHIP_MASK1 0x1f000000 102 #define CM_CHIP_037 0x01000000 103 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 104 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 105 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 106 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 107 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 108 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 109 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 110 111 #define CM_ADCBITLEN_MASK 0x0000C000 112 #define CM_ADCBITLEN_16 0x00000000 113 #define CM_ADCBITLEN_15 0x00004000 114 #define CM_ADCBITLEN_14 0x00008000 115 #define CM_ADCBITLEN_13 0x0000C000 116 117 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 118 #define CM_ADCDACLEN_060 0x00000000 119 #define CM_ADCDACLEN_066 0x00001000 120 #define CM_ADCDACLEN_130 0x00002000 121 #define CM_ADCDACLEN_280 0x00003000 122 123 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 124 #define CM_ADCDLEN_ORIGINAL 0x00000000 125 #define CM_ADCDLEN_EXTRA 0x00001000 126 #define CM_ADCDLEN_24K 0x00002000 127 #define CM_ADCDLEN_WEIGHT 0x00003000 128 129 #define CM_CH1_SRATE_176K 0x00000800 130 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 131 #define CM_CH1_SRATE_88K 0x00000400 132 #define CM_CH0_SRATE_176K 0x00000200 133 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 134 #define CM_CH0_SRATE_88K 0x00000100 135 #define CM_CH0_SRATE_128K 0x00000300 136 #define CM_CH0_SRATE_MASK 0x00000300 137 138 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 139 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 140 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 141 #define CM_SPDLOCKED 0x00000010 142 143 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 144 #define CM_CH1FMT_SHIFT 2 145 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 146 #define CM_CH0FMT_SHIFT 0 147 148 #define CM_REG_INT_HLDCLR 0x0C 149 #define CM_CHIP_MASK2 0xff000000 150 #define CM_CHIP_8768 0x20000000 151 #define CM_CHIP_055 0x08000000 152 #define CM_CHIP_039 0x04000000 153 #define CM_CHIP_039_6CH 0x01000000 154 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 155 #define CM_TDMA_INT_EN 0x00040000 156 #define CM_CH1_INT_EN 0x00020000 157 #define CM_CH0_INT_EN 0x00010000 158 159 #define CM_REG_INT_STATUS 0x10 160 #define CM_INTR 0x80000000 161 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 162 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 163 #define CM_UARTINT 0x00010000 164 #define CM_LTDMAINT 0x00008000 165 #define CM_HTDMAINT 0x00004000 166 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 167 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 168 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 169 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 170 #define CM_CH1BUSY 0x00000008 171 #define CM_CH0BUSY 0x00000004 172 #define CM_CHINT1 0x00000002 173 #define CM_CHINT0 0x00000001 174 175 #define CM_REG_LEGACY_CTRL 0x14 176 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 177 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 178 #define CM_VMPU_330 0x00000000 179 #define CM_VMPU_320 0x20000000 180 #define CM_VMPU_310 0x40000000 181 #define CM_VMPU_300 0x60000000 182 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 183 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 184 #define CM_VSBSEL_220 0x00000000 185 #define CM_VSBSEL_240 0x04000000 186 #define CM_VSBSEL_260 0x08000000 187 #define CM_VSBSEL_280 0x0C000000 188 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 189 #define CM_FMSEL_388 0x00000000 190 #define CM_FMSEL_3C8 0x01000000 191 #define CM_FMSEL_3E0 0x02000000 192 #define CM_FMSEL_3E8 0x03000000 193 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 194 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 195 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 196 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 197 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 198 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 199 #define CM_C_EECS 0x00040000 200 #define CM_C_EEDI46 0x00020000 201 #define CM_C_EECK46 0x00010000 202 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 203 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 204 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 205 #define CM_EXBASEN 0x00001000 /* external bass input enable */ 206 207 #define CM_REG_MISC_CTRL 0x18 208 #define CM_PWD 0x80000000 /* power down */ 209 #define CM_RESET 0x40000000 210 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 211 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 212 #define CM_TXVX 0x08000000 /* model 037? */ 213 #define CM_N4SPK3D 0x04000000 /* copy front to rear */ 214 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 215 #define CM_SPDIF48K 0x01000000 /* write */ 216 #define CM_SPATUS48K 0x01000000 /* read */ 217 #define CM_ENDBDAC 0x00800000 /* enable double dac */ 218 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 219 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 220 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 221 #define CM_FM_EN 0x00080000 /* enable legacy FM */ 222 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 223 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 224 #define CM_VIDWPDSB 0x00010000 /* model 037? */ 225 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 226 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 227 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 228 #define CM_VIDWPPRT 0x00002000 /* model 037? */ 229 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 230 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 231 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 232 #define CM_ENCENTER 0x00000080 233 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ 234 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 235 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ 236 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 237 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 238 #define CM_UPDDMA_2048 0x00000000 239 #define CM_UPDDMA_1024 0x00000004 240 #define CM_UPDDMA_512 0x00000008 241 #define CM_UPDDMA_256 0x0000000C 242 #define CM_TWAIT_MASK 0x00000003 /* model 037 */ 243 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 244 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 245 246 #define CM_REG_TDMA_POSITION 0x1C 247 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 248 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 249 250 /* byte */ 251 #define CM_REG_MIXER0 0x20 252 #define CM_REG_SBVR 0x20 /* write: sb16 version */ 253 #define CM_REG_DEV 0x20 /* read: hardware device version */ 254 255 #define CM_REG_MIXER21 0x21 256 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ 257 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 258 #define CM_PROINV 0x02 /* SBPro left/right channel switching */ 259 #define CM_X_SB16 0x01 /* SB16 compatible */ 260 261 #define CM_REG_SB16_DATA 0x22 262 #define CM_REG_SB16_ADDR 0x23 263 264 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 265 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 266 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 267 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 268 269 #define CM_REG_MIXER1 0x24 270 #define CM_FMMUTE 0x80 /* mute FM */ 271 #define CM_FMMUTE_SHIFT 7 272 #define CM_WSMUTE 0x40 /* mute PCM */ 273 #define CM_WSMUTE_SHIFT 6 274 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 275 #define CM_REAR2LIN_SHIFT 5 276 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ 277 #define CM_REAR2FRONT_SHIFT 4 278 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 279 #define CM_WAVEINL_SHIFT 3 280 #define CM_WAVEINR 0x04 /* digical wave rec. right */ 281 #define CM_WAVEINR_SHIFT 2 282 #define CM_X3DEN 0x02 /* 3D surround enable */ 283 #define CM_X3DEN_SHIFT 1 284 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 285 #define CM_CDPLAY_SHIFT 0 286 287 #define CM_REG_MIXER2 0x25 288 #define CM_RAUXREN 0x80 /* AUX right capture */ 289 #define CM_RAUXREN_SHIFT 7 290 #define CM_RAUXLEN 0x40 /* AUX left capture */ 291 #define CM_RAUXLEN_SHIFT 6 292 #define CM_VAUXRM 0x20 /* AUX right mute */ 293 #define CM_VAUXRM_SHIFT 5 294 #define CM_VAUXLM 0x10 /* AUX left mute */ 295 #define CM_VAUXLM_SHIFT 4 296 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 297 #define CM_VADMIC_SHIFT 1 298 #define CM_MICGAINZ 0x01 /* mic boost */ 299 #define CM_MICGAINZ_SHIFT 0 300 301 #define CM_REG_MIXER3 0x24 302 #define CM_REG_AUX_VOL 0x26 303 #define CM_VAUXL_MASK 0xf0 304 #define CM_VAUXR_MASK 0x0f 305 306 #define CM_REG_MISC 0x27 307 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 308 #define CM_XGPO1 0x20 309 // #define CM_XGPBIO 0x04 310 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 311 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 312 #define CM_SPDVALID 0x02 /* spdif input valid check */ 313 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 314 315 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 316 /* 317 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 318 * or identical with AC97 codec? 319 */ 320 #define CM_REG_EXTERN_CODEC CM_REG_AC97 321 322 /* 323 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 324 */ 325 #define CM_REG_MPU_PCI 0x40 326 327 /* 328 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 329 */ 330 #define CM_REG_FM_PCI 0x50 331 332 /* 333 * access from SB-mixer port 334 */ 335 #define CM_REG_EXTENT_IND 0xf0 336 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 337 #define CM_VPHONE_SHIFT 5 338 #define CM_VPHOM 0x10 /* Phone mute control */ 339 #define CM_VSPKM 0x08 /* Speaker mute control, default high */ 340 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 341 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 342 #define CM_VADMIC3 0x01 /* Mic record boost */ 343 344 /* 345 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 346 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 347 * unit (readonly?). 348 */ 349 #define CM_REG_PLL 0xf8 350 351 /* 352 * extended registers 353 */ 354 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 355 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 356 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 357 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 358 359 #define CM_REG_EXT_MISC 0x90 360 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 361 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 362 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 363 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 364 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 365 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 366 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 367 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 368 369 /* 370 * size of i/o region 371 */ 372 #define CM_EXTENT_CODEC 0x100 373 #define CM_EXTENT_MIDI 0x2 374 #define CM_EXTENT_SYNTH 0x4 375 376 377 /* 378 * channels for playback / capture 379 */ 380 #define CM_CH_PLAY 0 381 #define CM_CH_CAPT 1 382 383 /* 384 * flags to check device open/close 385 */ 386 #define CM_OPEN_NONE 0 387 #define CM_OPEN_CH_MASK 0x01 388 #define CM_OPEN_DAC 0x10 389 #define CM_OPEN_ADC 0x20 390 #define CM_OPEN_SPDIF 0x40 391 #define CM_OPEN_MCHAN 0x80 392 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 393 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 394 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 395 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 396 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 397 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 398 399 400 #if CM_CH_PLAY == 1 401 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 402 #define CM_PLAYBACK_SPDF CM_SPDF_1 403 #define CM_CAPTURE_SPDF CM_SPDF_0 404 #else 405 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 406 #define CM_PLAYBACK_SPDF CM_SPDF_0 407 #define CM_CAPTURE_SPDF CM_SPDF_1 408 #endif 409 410 411 /* 412 * driver data 413 */ 414 415 struct cmipci_pcm { 416 struct snd_pcm_substream *substream; 417 u8 running; /* dac/adc running? */ 418 u8 fmt; /* format bits */ 419 u8 is_dac; 420 u8 needs_silencing; 421 unsigned int dma_size; /* in frames */ 422 unsigned int shift; 423 unsigned int ch; /* channel (0/1) */ 424 unsigned int offset; /* physical address of the buffer */ 425 }; 426 427 /* mixer elements toggled/resumed during ac3 playback */ 428 struct cmipci_mixer_auto_switches { 429 const char *name; /* switch to toggle */ 430 int toggle_on; /* value to change when ac3 mode */ 431 }; 432 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 433 {"PCM Playback Switch", 0}, 434 {"IEC958 Output Switch", 1}, 435 {"IEC958 Mix Analog", 0}, 436 // {"IEC958 Out To DAC", 1}, // no longer used 437 {"IEC958 Loop", 0}, 438 }; 439 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 440 441 struct cmipci { 442 struct snd_card *card; 443 444 struct pci_dev *pci; 445 unsigned int device; /* device ID */ 446 int irq; 447 448 unsigned long iobase; 449 unsigned int ctrl; /* FUNCTRL0 current value */ 450 451 struct snd_pcm *pcm; /* DAC/ADC PCM */ 452 struct snd_pcm *pcm2; /* 2nd DAC */ 453 struct snd_pcm *pcm_spdif; /* SPDIF */ 454 455 int chip_version; 456 int max_channels; 457 unsigned int can_ac3_sw: 1; 458 unsigned int can_ac3_hw: 1; 459 unsigned int can_multi_ch: 1; 460 unsigned int can_96k: 1; /* samplerate above 48k */ 461 unsigned int do_soft_ac3: 1; 462 463 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 464 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 465 int spdif_counter; /* for software AC3 */ 466 467 unsigned int dig_status; 468 unsigned int dig_pcm_status; 469 470 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 471 472 int opened[2]; /* open mode */ 473 struct mutex open_mutex; 474 475 unsigned int mixer_insensitive: 1; 476 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 477 int mixer_res_status[CM_SAVED_MIXERS]; 478 479 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 480 481 /* external MIDI */ 482 struct snd_rawmidi *rmidi; 483 484 #ifdef SUPPORT_JOYSTICK 485 struct gameport *gameport; 486 #endif 487 488 spinlock_t reg_lock; 489 490 #ifdef CONFIG_PM_SLEEP 491 unsigned int saved_regs[0x20]; 492 unsigned char saved_mixers[0x20]; 493 #endif 494 }; 495 496 497 /* read/write operations for dword register */ 498 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 499 { 500 outl(data, cm->iobase + cmd); 501 } 502 503 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 504 { 505 return inl(cm->iobase + cmd); 506 } 507 508 /* read/write operations for word register */ 509 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 510 { 511 outw(data, cm->iobase + cmd); 512 } 513 514 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 515 { 516 return inw(cm->iobase + cmd); 517 } 518 519 /* read/write operations for byte register */ 520 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 521 { 522 outb(data, cm->iobase + cmd); 523 } 524 525 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 526 { 527 return inb(cm->iobase + cmd); 528 } 529 530 /* bit operations for dword register */ 531 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 532 { 533 unsigned int val, oval; 534 val = oval = inl(cm->iobase + cmd); 535 val |= flag; 536 if (val == oval) 537 return 0; 538 outl(val, cm->iobase + cmd); 539 return 1; 540 } 541 542 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 543 { 544 unsigned int val, oval; 545 val = oval = inl(cm->iobase + cmd); 546 val &= ~flag; 547 if (val == oval) 548 return 0; 549 outl(val, cm->iobase + cmd); 550 return 1; 551 } 552 553 /* bit operations for byte register */ 554 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 555 { 556 unsigned char val, oval; 557 val = oval = inb(cm->iobase + cmd); 558 val |= flag; 559 if (val == oval) 560 return 0; 561 outb(val, cm->iobase + cmd); 562 return 1; 563 } 564 565 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 566 { 567 unsigned char val, oval; 568 val = oval = inb(cm->iobase + cmd); 569 val &= ~flag; 570 if (val == oval) 571 return 0; 572 outb(val, cm->iobase + cmd); 573 return 1; 574 } 575 576 577 /* 578 * PCM interface 579 */ 580 581 /* 582 * calculate frequency 583 */ 584 585 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 586 587 static unsigned int snd_cmipci_rate_freq(unsigned int rate) 588 { 589 unsigned int i; 590 591 for (i = 0; i < ARRAY_SIZE(rates); i++) { 592 if (rates[i] == rate) 593 return i; 594 } 595 snd_BUG(); 596 return 0; 597 } 598 599 #ifdef USE_VAR48KRATE 600 /* 601 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 602 * does it this way .. maybe not. Never get any information from C-Media about 603 * that <werner@suse.de>. 604 */ 605 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 606 { 607 unsigned int delta, tolerance; 608 int xm, xn, xr; 609 610 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 611 rate <<= 1; 612 *n = -1; 613 if (*r > 0xff) 614 goto out; 615 tolerance = rate*CM_TOLERANCE_RATE; 616 617 for (xn = (1+2); xn < (0x1f+2); xn++) { 618 for (xm = (1+2); xm < (0xff+2); xm++) { 619 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 620 621 if (xr < rate) 622 delta = rate - xr; 623 else 624 delta = xr - rate; 625 626 /* 627 * If we found one, remember this, 628 * and try to find a closer one 629 */ 630 if (delta < tolerance) { 631 tolerance = delta; 632 *m = xm - 2; 633 *n = xn - 2; 634 } 635 } 636 } 637 out: 638 return (*n > -1); 639 } 640 641 /* 642 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff 643 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen 644 * at the register CM_REG_FUNCTRL1 (0x04). 645 * Problem: other ways are also possible (any information about that?) 646 */ 647 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 648 { 649 unsigned int reg = CM_REG_PLL + slot; 650 /* 651 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 652 * for DSFC/ASFC (000 up to 111). 653 */ 654 655 /* FIXME: Init (Do we've to set an other register first before programming?) */ 656 657 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 658 snd_cmipci_write_b(cm, reg, rate>>8); 659 snd_cmipci_write_b(cm, reg, rate&0xff); 660 661 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 662 } 663 #endif /* USE_VAR48KRATE */ 664 665 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 666 struct snd_pcm_hw_params *hw_params) 667 { 668 struct cmipci *cm = snd_pcm_substream_chip(substream); 669 if (params_channels(hw_params) > 2) { 670 mutex_lock(&cm->open_mutex); 671 if (cm->opened[CM_CH_PLAY]) { 672 mutex_unlock(&cm->open_mutex); 673 return -EBUSY; 674 } 675 /* reserve the channel A */ 676 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 677 mutex_unlock(&cm->open_mutex); 678 } 679 return 0; 680 } 681 682 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 683 { 684 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 685 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 686 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 687 udelay(10); 688 } 689 690 691 /* 692 */ 693 694 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 695 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 696 .count = 3, 697 .list = hw_channels, 698 .mask = 0, 699 }; 700 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 701 .count = 4, 702 .list = hw_channels, 703 .mask = 0, 704 }; 705 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 706 .count = 5, 707 .list = hw_channels, 708 .mask = 0, 709 }; 710 711 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 712 { 713 if (channels > 2) { 714 if (!cm->can_multi_ch || !rec->ch) 715 return -EINVAL; 716 if (rec->fmt != 0x03) /* stereo 16bit only */ 717 return -EINVAL; 718 } 719 720 if (cm->can_multi_ch) { 721 spin_lock_irq(&cm->reg_lock); 722 if (channels > 2) { 723 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 724 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 725 } else { 726 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 727 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 728 } 729 if (channels == 8) 730 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 731 else 732 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 733 if (channels == 6) { 734 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 735 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 736 } else { 737 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 738 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 739 } 740 if (channels == 4) 741 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 742 else 743 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 744 spin_unlock_irq(&cm->reg_lock); 745 } 746 return 0; 747 } 748 749 750 /* 751 * prepare playback/capture channel 752 * channel to be used must have been set in rec->ch. 753 */ 754 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 755 struct snd_pcm_substream *substream) 756 { 757 unsigned int reg, freq, freq_ext, val; 758 unsigned int period_size; 759 struct snd_pcm_runtime *runtime = substream->runtime; 760 761 rec->fmt = 0; 762 rec->shift = 0; 763 if (snd_pcm_format_width(runtime->format) >= 16) { 764 rec->fmt |= 0x02; 765 if (snd_pcm_format_width(runtime->format) > 16) 766 rec->shift++; /* 24/32bit */ 767 } 768 if (runtime->channels > 1) 769 rec->fmt |= 0x01; 770 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 771 dev_dbg(cm->card->dev, "cannot set dac channels\n"); 772 return -EINVAL; 773 } 774 775 rec->offset = runtime->dma_addr; 776 /* buffer and period sizes in frame */ 777 rec->dma_size = runtime->buffer_size << rec->shift; 778 period_size = runtime->period_size << rec->shift; 779 if (runtime->channels > 2) { 780 /* multi-channels */ 781 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 782 period_size = (period_size * runtime->channels) / 2; 783 } 784 785 spin_lock_irq(&cm->reg_lock); 786 787 /* set buffer address */ 788 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 789 snd_cmipci_write(cm, reg, rec->offset); 790 /* program sample counts */ 791 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 792 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 793 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 794 795 /* set adc/dac flag */ 796 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 797 if (rec->is_dac) 798 cm->ctrl &= ~val; 799 else 800 cm->ctrl |= val; 801 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 802 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */ 803 804 /* set sample rate */ 805 freq = 0; 806 freq_ext = 0; 807 if (runtime->rate > 48000) 808 switch (runtime->rate) { 809 case 88200: freq_ext = CM_CH0_SRATE_88K; break; 810 case 96000: freq_ext = CM_CH0_SRATE_96K; break; 811 case 128000: freq_ext = CM_CH0_SRATE_128K; break; 812 default: snd_BUG(); break; 813 } 814 else 815 freq = snd_cmipci_rate_freq(runtime->rate); 816 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 817 if (rec->ch) { 818 val &= ~CM_DSFC_MASK; 819 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 820 } else { 821 val &= ~CM_ASFC_MASK; 822 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 823 } 824 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 825 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val); 826 827 /* set format */ 828 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 829 if (rec->ch) { 830 val &= ~CM_CH1FMT_MASK; 831 val |= rec->fmt << CM_CH1FMT_SHIFT; 832 } else { 833 val &= ~CM_CH0FMT_MASK; 834 val |= rec->fmt << CM_CH0FMT_SHIFT; 835 } 836 if (cm->can_96k) { 837 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 838 val |= freq_ext << (rec->ch * 2); 839 } 840 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 841 dev_dbg(cm->card->dev, "chformat = %08x\n", val); 842 843 if (!rec->is_dac && cm->chip_version) { 844 if (runtime->rate > 44100) 845 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 846 else 847 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 848 } 849 850 rec->running = 0; 851 spin_unlock_irq(&cm->reg_lock); 852 853 return 0; 854 } 855 856 /* 857 * PCM trigger/stop 858 */ 859 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 860 int cmd) 861 { 862 unsigned int inthld, chen, reset, pause; 863 int result = 0; 864 865 inthld = CM_CH0_INT_EN << rec->ch; 866 chen = CM_CHEN0 << rec->ch; 867 reset = CM_RST_CH0 << rec->ch; 868 pause = CM_PAUSE0 << rec->ch; 869 870 spin_lock(&cm->reg_lock); 871 switch (cmd) { 872 case SNDRV_PCM_TRIGGER_START: 873 rec->running = 1; 874 /* set interrupt */ 875 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 876 cm->ctrl |= chen; 877 /* enable channel */ 878 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 879 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); 880 break; 881 case SNDRV_PCM_TRIGGER_STOP: 882 rec->running = 0; 883 /* disable interrupt */ 884 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 885 /* reset */ 886 cm->ctrl &= ~chen; 887 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 888 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 889 rec->needs_silencing = rec->is_dac; 890 break; 891 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 892 case SNDRV_PCM_TRIGGER_SUSPEND: 893 cm->ctrl |= pause; 894 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 895 break; 896 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 897 case SNDRV_PCM_TRIGGER_RESUME: 898 cm->ctrl &= ~pause; 899 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 900 break; 901 default: 902 result = -EINVAL; 903 break; 904 } 905 spin_unlock(&cm->reg_lock); 906 return result; 907 } 908 909 /* 910 * return the current pointer 911 */ 912 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 913 struct snd_pcm_substream *substream) 914 { 915 size_t ptr; 916 unsigned int reg, rem, tries; 917 918 if (!rec->running) 919 return 0; 920 #if 1 // this seems better.. 921 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 922 for (tries = 0; tries < 3; tries++) { 923 rem = snd_cmipci_read_w(cm, reg); 924 if (rem < rec->dma_size) 925 goto ok; 926 } 927 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem); 928 return SNDRV_PCM_POS_XRUN; 929 ok: 930 ptr = (rec->dma_size - (rem + 1)) >> rec->shift; 931 #else 932 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 933 ptr = snd_cmipci_read(cm, reg) - rec->offset; 934 ptr = bytes_to_frames(substream->runtime, ptr); 935 #endif 936 if (substream->runtime->channels > 2) 937 ptr = (ptr * 2) / substream->runtime->channels; 938 return ptr; 939 } 940 941 /* 942 * playback 943 */ 944 945 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 946 int cmd) 947 { 948 struct cmipci *cm = snd_pcm_substream_chip(substream); 949 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 950 } 951 952 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 953 { 954 struct cmipci *cm = snd_pcm_substream_chip(substream); 955 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 956 } 957 958 959 960 /* 961 * capture 962 */ 963 964 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 965 int cmd) 966 { 967 struct cmipci *cm = snd_pcm_substream_chip(substream); 968 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 969 } 970 971 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 972 { 973 struct cmipci *cm = snd_pcm_substream_chip(substream); 974 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 975 } 976 977 978 /* 979 * hw preparation for spdif 980 */ 981 982 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 983 struct snd_ctl_elem_info *uinfo) 984 { 985 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 986 uinfo->count = 1; 987 return 0; 988 } 989 990 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 991 struct snd_ctl_elem_value *ucontrol) 992 { 993 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 994 int i; 995 996 spin_lock_irq(&chip->reg_lock); 997 for (i = 0; i < 4; i++) 998 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 999 spin_unlock_irq(&chip->reg_lock); 1000 return 0; 1001 } 1002 1003 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 1004 struct snd_ctl_elem_value *ucontrol) 1005 { 1006 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1007 int i, change; 1008 unsigned int val; 1009 1010 val = 0; 1011 spin_lock_irq(&chip->reg_lock); 1012 for (i = 0; i < 4; i++) 1013 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1014 change = val != chip->dig_status; 1015 chip->dig_status = val; 1016 spin_unlock_irq(&chip->reg_lock); 1017 return change; 1018 } 1019 1020 static const struct snd_kcontrol_new snd_cmipci_spdif_default = 1021 { 1022 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1023 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1024 .info = snd_cmipci_spdif_default_info, 1025 .get = snd_cmipci_spdif_default_get, 1026 .put = snd_cmipci_spdif_default_put 1027 }; 1028 1029 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1030 struct snd_ctl_elem_info *uinfo) 1031 { 1032 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1033 uinfo->count = 1; 1034 return 0; 1035 } 1036 1037 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1038 struct snd_ctl_elem_value *ucontrol) 1039 { 1040 ucontrol->value.iec958.status[0] = 0xff; 1041 ucontrol->value.iec958.status[1] = 0xff; 1042 ucontrol->value.iec958.status[2] = 0xff; 1043 ucontrol->value.iec958.status[3] = 0xff; 1044 return 0; 1045 } 1046 1047 static const struct snd_kcontrol_new snd_cmipci_spdif_mask = 1048 { 1049 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1050 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1051 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1052 .info = snd_cmipci_spdif_mask_info, 1053 .get = snd_cmipci_spdif_mask_get, 1054 }; 1055 1056 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1057 struct snd_ctl_elem_info *uinfo) 1058 { 1059 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1060 uinfo->count = 1; 1061 return 0; 1062 } 1063 1064 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1065 struct snd_ctl_elem_value *ucontrol) 1066 { 1067 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1068 int i; 1069 1070 spin_lock_irq(&chip->reg_lock); 1071 for (i = 0; i < 4; i++) 1072 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1073 spin_unlock_irq(&chip->reg_lock); 1074 return 0; 1075 } 1076 1077 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1078 struct snd_ctl_elem_value *ucontrol) 1079 { 1080 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1081 int i, change; 1082 unsigned int val; 1083 1084 val = 0; 1085 spin_lock_irq(&chip->reg_lock); 1086 for (i = 0; i < 4; i++) 1087 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1088 change = val != chip->dig_pcm_status; 1089 chip->dig_pcm_status = val; 1090 spin_unlock_irq(&chip->reg_lock); 1091 return change; 1092 } 1093 1094 static const struct snd_kcontrol_new snd_cmipci_spdif_stream = 1095 { 1096 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1097 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1098 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1099 .info = snd_cmipci_spdif_stream_info, 1100 .get = snd_cmipci_spdif_stream_get, 1101 .put = snd_cmipci_spdif_stream_put 1102 }; 1103 1104 /* 1105 */ 1106 1107 /* save mixer setting and mute for AC3 playback */ 1108 static int save_mixer_state(struct cmipci *cm) 1109 { 1110 if (! cm->mixer_insensitive) { 1111 struct snd_ctl_elem_value *val; 1112 unsigned int i; 1113 1114 val = kmalloc(sizeof(*val), GFP_KERNEL); 1115 if (!val) 1116 return -ENOMEM; 1117 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1118 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1119 if (ctl) { 1120 int event; 1121 memset(val, 0, sizeof(*val)); 1122 ctl->get(ctl, val); 1123 cm->mixer_res_status[i] = val->value.integer.value[0]; 1124 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1125 event = SNDRV_CTL_EVENT_MASK_INFO; 1126 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1127 ctl->put(ctl, val); /* toggle */ 1128 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1129 } 1130 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1131 snd_ctl_notify(cm->card, event, &ctl->id); 1132 } 1133 } 1134 kfree(val); 1135 cm->mixer_insensitive = 1; 1136 } 1137 return 0; 1138 } 1139 1140 1141 /* restore the previously saved mixer status */ 1142 static void restore_mixer_state(struct cmipci *cm) 1143 { 1144 if (cm->mixer_insensitive) { 1145 struct snd_ctl_elem_value *val; 1146 unsigned int i; 1147 1148 val = kmalloc(sizeof(*val), GFP_KERNEL); 1149 if (!val) 1150 return; 1151 cm->mixer_insensitive = 0; /* at first clear this; 1152 otherwise the changes will be ignored */ 1153 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1154 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1155 if (ctl) { 1156 int event; 1157 1158 memset(val, 0, sizeof(*val)); 1159 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1160 ctl->get(ctl, val); 1161 event = SNDRV_CTL_EVENT_MASK_INFO; 1162 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1163 val->value.integer.value[0] = cm->mixer_res_status[i]; 1164 ctl->put(ctl, val); 1165 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1166 } 1167 snd_ctl_notify(cm->card, event, &ctl->id); 1168 } 1169 } 1170 kfree(val); 1171 } 1172 } 1173 1174 /* spinlock held! */ 1175 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1176 { 1177 if (do_ac3) { 1178 /* AC3EN for 037 */ 1179 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1180 /* AC3EN for 039 */ 1181 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1182 1183 if (cm->can_ac3_hw) { 1184 /* SPD24SEL for 037, 0x02 */ 1185 /* SPD24SEL for 039, 0x20, but cannot be set */ 1186 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1187 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1188 } else { /* can_ac3_sw */ 1189 /* SPD32SEL for 037 & 039, 0x20 */ 1190 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1191 /* set 176K sample rate to fix 033 HW bug */ 1192 if (cm->chip_version == 33) { 1193 if (rate >= 48000) { 1194 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1195 } else { 1196 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1197 } 1198 } 1199 } 1200 1201 } else { 1202 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1203 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1204 1205 if (cm->can_ac3_hw) { 1206 /* chip model >= 37 */ 1207 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1208 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1209 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1210 } else { 1211 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1212 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1213 } 1214 } else { 1215 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1216 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1217 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1218 } 1219 } 1220 } 1221 1222 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1223 { 1224 int rate, err; 1225 1226 rate = subs->runtime->rate; 1227 1228 if (up && do_ac3) { 1229 err = save_mixer_state(cm); 1230 if (err < 0) 1231 return err; 1232 } 1233 1234 spin_lock_irq(&cm->reg_lock); 1235 cm->spdif_playback_avail = up; 1236 if (up) { 1237 /* they are controlled via "IEC958 Output Switch" */ 1238 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1239 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1240 if (cm->spdif_playback_enabled) 1241 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1242 setup_ac3(cm, subs, do_ac3, rate); 1243 1244 if (rate == 48000 || rate == 96000) 1245 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1246 else 1247 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1248 if (rate > 48000) 1249 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1250 else 1251 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1252 } else { 1253 /* they are controlled via "IEC958 Output Switch" */ 1254 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1255 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1256 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1257 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1258 setup_ac3(cm, subs, 0, 0); 1259 } 1260 spin_unlock_irq(&cm->reg_lock); 1261 return 0; 1262 } 1263 1264 1265 /* 1266 * preparation 1267 */ 1268 1269 /* playback - enable spdif only on the certain condition */ 1270 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1271 { 1272 struct cmipci *cm = snd_pcm_substream_chip(substream); 1273 int rate = substream->runtime->rate; 1274 int err, do_spdif, do_ac3 = 0; 1275 1276 do_spdif = (rate >= 44100 && rate <= 96000 && 1277 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1278 substream->runtime->channels == 2); 1279 if (do_spdif && cm->can_ac3_hw) 1280 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1281 err = setup_spdif_playback(cm, substream, do_spdif, do_ac3); 1282 if (err < 0) 1283 return err; 1284 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1285 } 1286 1287 /* playback (via device #2) - enable spdif always */ 1288 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1289 { 1290 struct cmipci *cm = snd_pcm_substream_chip(substream); 1291 int err, do_ac3; 1292 1293 if (cm->can_ac3_hw) 1294 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1295 else 1296 do_ac3 = 1; /* doesn't matter */ 1297 err = setup_spdif_playback(cm, substream, 1, do_ac3); 1298 if (err < 0) 1299 return err; 1300 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1301 } 1302 1303 /* 1304 * Apparently, the samples last played on channel A stay in some buffer, even 1305 * after the channel is reset, and get added to the data for the rear DACs when 1306 * playing a multichannel stream on channel B. This is likely to generate 1307 * wraparounds and thus distortions. 1308 * To avoid this, we play at least one zero sample after the actual stream has 1309 * stopped. 1310 */ 1311 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1312 { 1313 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1314 unsigned int reg, val; 1315 1316 if (rec->needs_silencing && runtime && runtime->dma_area) { 1317 /* set up a small silence buffer */ 1318 memset(runtime->dma_area, 0, PAGE_SIZE); 1319 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1320 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1321 snd_cmipci_write(cm, reg, val); 1322 1323 /* configure for 16 bits, 2 channels, 8 kHz */ 1324 if (runtime->channels > 2) 1325 set_dac_channels(cm, rec, 2); 1326 spin_lock_irq(&cm->reg_lock); 1327 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1328 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1329 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1330 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1331 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1332 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1333 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1334 if (cm->can_96k) 1335 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 1336 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1337 1338 /* start stream (we don't need interrupts) */ 1339 cm->ctrl |= CM_CHEN0 << rec->ch; 1340 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1341 spin_unlock_irq(&cm->reg_lock); 1342 1343 msleep(1); 1344 1345 /* stop and reset stream */ 1346 spin_lock_irq(&cm->reg_lock); 1347 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1348 val = CM_RST_CH0 << rec->ch; 1349 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1350 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1351 spin_unlock_irq(&cm->reg_lock); 1352 1353 rec->needs_silencing = 0; 1354 } 1355 } 1356 1357 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1358 { 1359 struct cmipci *cm = snd_pcm_substream_chip(substream); 1360 setup_spdif_playback(cm, substream, 0, 0); 1361 restore_mixer_state(cm); 1362 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1363 return 0; 1364 } 1365 1366 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1367 { 1368 struct cmipci *cm = snd_pcm_substream_chip(substream); 1369 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1370 return 0; 1371 } 1372 1373 /* capture */ 1374 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1375 { 1376 struct cmipci *cm = snd_pcm_substream_chip(substream); 1377 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1378 } 1379 1380 /* capture with spdif (via device #2) */ 1381 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1382 { 1383 struct cmipci *cm = snd_pcm_substream_chip(substream); 1384 1385 spin_lock_irq(&cm->reg_lock); 1386 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1387 if (cm->can_96k) { 1388 if (substream->runtime->rate > 48000) 1389 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1390 else 1391 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1392 } 1393 if (snd_pcm_format_width(substream->runtime->format) > 16) 1394 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1395 else 1396 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1397 1398 spin_unlock_irq(&cm->reg_lock); 1399 1400 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1401 } 1402 1403 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1404 { 1405 struct cmipci *cm = snd_pcm_substream_chip(subs); 1406 1407 spin_lock_irq(&cm->reg_lock); 1408 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1409 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1410 spin_unlock_irq(&cm->reg_lock); 1411 1412 return 0; 1413 } 1414 1415 1416 /* 1417 * interrupt handler 1418 */ 1419 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1420 { 1421 struct cmipci *cm = dev_id; 1422 unsigned int status, mask = 0; 1423 1424 /* fastpath out, to ease interrupt sharing */ 1425 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1426 if (!(status & CM_INTR)) 1427 return IRQ_NONE; 1428 1429 /* acknowledge interrupt */ 1430 spin_lock(&cm->reg_lock); 1431 if (status & CM_CHINT0) 1432 mask |= CM_CH0_INT_EN; 1433 if (status & CM_CHINT1) 1434 mask |= CM_CH1_INT_EN; 1435 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1436 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1437 spin_unlock(&cm->reg_lock); 1438 1439 if (cm->rmidi && (status & CM_UARTINT)) 1440 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1441 1442 if (cm->pcm) { 1443 if ((status & CM_CHINT0) && cm->channel[0].running) 1444 snd_pcm_period_elapsed(cm->channel[0].substream); 1445 if ((status & CM_CHINT1) && cm->channel[1].running) 1446 snd_pcm_period_elapsed(cm->channel[1].substream); 1447 } 1448 return IRQ_HANDLED; 1449 } 1450 1451 /* 1452 * h/w infos 1453 */ 1454 1455 /* playback on channel A */ 1456 static const struct snd_pcm_hardware snd_cmipci_playback = 1457 { 1458 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1459 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1460 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1461 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1462 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1463 .rate_min = 5512, 1464 .rate_max = 48000, 1465 .channels_min = 1, 1466 .channels_max = 2, 1467 .buffer_bytes_max = (128*1024), 1468 .period_bytes_min = 64, 1469 .period_bytes_max = (128*1024), 1470 .periods_min = 2, 1471 .periods_max = 1024, 1472 .fifo_size = 0, 1473 }; 1474 1475 /* capture on channel B */ 1476 static const struct snd_pcm_hardware snd_cmipci_capture = 1477 { 1478 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1479 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1480 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1481 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1482 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1483 .rate_min = 5512, 1484 .rate_max = 48000, 1485 .channels_min = 1, 1486 .channels_max = 2, 1487 .buffer_bytes_max = (128*1024), 1488 .period_bytes_min = 64, 1489 .period_bytes_max = (128*1024), 1490 .periods_min = 2, 1491 .periods_max = 1024, 1492 .fifo_size = 0, 1493 }; 1494 1495 /* playback on channel B - stereo 16bit only? */ 1496 static const struct snd_pcm_hardware snd_cmipci_playback2 = 1497 { 1498 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1499 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1500 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1501 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1502 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1503 .rate_min = 5512, 1504 .rate_max = 48000, 1505 .channels_min = 2, 1506 .channels_max = 2, 1507 .buffer_bytes_max = (128*1024), 1508 .period_bytes_min = 64, 1509 .period_bytes_max = (128*1024), 1510 .periods_min = 2, 1511 .periods_max = 1024, 1512 .fifo_size = 0, 1513 }; 1514 1515 /* spdif playback on channel A */ 1516 static const struct snd_pcm_hardware snd_cmipci_playback_spdif = 1517 { 1518 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1519 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1520 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1521 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1522 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1523 .rate_min = 44100, 1524 .rate_max = 48000, 1525 .channels_min = 2, 1526 .channels_max = 2, 1527 .buffer_bytes_max = (128*1024), 1528 .period_bytes_min = 64, 1529 .period_bytes_max = (128*1024), 1530 .periods_min = 2, 1531 .periods_max = 1024, 1532 .fifo_size = 0, 1533 }; 1534 1535 /* spdif playback on channel A (32bit, IEC958 subframes) */ 1536 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1537 { 1538 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1539 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1540 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1541 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1542 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1543 .rate_min = 44100, 1544 .rate_max = 48000, 1545 .channels_min = 2, 1546 .channels_max = 2, 1547 .buffer_bytes_max = (128*1024), 1548 .period_bytes_min = 64, 1549 .period_bytes_max = (128*1024), 1550 .periods_min = 2, 1551 .periods_max = 1024, 1552 .fifo_size = 0, 1553 }; 1554 1555 /* spdif capture on channel B */ 1556 static const struct snd_pcm_hardware snd_cmipci_capture_spdif = 1557 { 1558 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1559 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1560 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1561 .formats = SNDRV_PCM_FMTBIT_S16_LE | 1562 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1563 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1564 .rate_min = 44100, 1565 .rate_max = 48000, 1566 .channels_min = 2, 1567 .channels_max = 2, 1568 .buffer_bytes_max = (128*1024), 1569 .period_bytes_min = 64, 1570 .period_bytes_max = (128*1024), 1571 .periods_min = 2, 1572 .periods_max = 1024, 1573 .fifo_size = 0, 1574 }; 1575 1576 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050, 1577 32000, 44100, 48000, 88200, 96000, 128000 }; 1578 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = { 1579 .count = ARRAY_SIZE(rate_constraints), 1580 .list = rate_constraints, 1581 .mask = 0, 1582 }; 1583 1584 /* 1585 * check device open/close 1586 */ 1587 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1588 { 1589 int ch = mode & CM_OPEN_CH_MASK; 1590 1591 /* FIXME: a file should wait until the device becomes free 1592 * when it's opened on blocking mode. however, since the current 1593 * pcm framework doesn't pass file pointer before actually opened, 1594 * we can't know whether blocking mode or not in open callback.. 1595 */ 1596 mutex_lock(&cm->open_mutex); 1597 if (cm->opened[ch]) { 1598 mutex_unlock(&cm->open_mutex); 1599 return -EBUSY; 1600 } 1601 cm->opened[ch] = mode; 1602 cm->channel[ch].substream = subs; 1603 if (! (mode & CM_OPEN_DAC)) { 1604 /* disable dual DAC mode */ 1605 cm->channel[ch].is_dac = 0; 1606 spin_lock_irq(&cm->reg_lock); 1607 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1608 spin_unlock_irq(&cm->reg_lock); 1609 } 1610 mutex_unlock(&cm->open_mutex); 1611 return 0; 1612 } 1613 1614 static void close_device_check(struct cmipci *cm, int mode) 1615 { 1616 int ch = mode & CM_OPEN_CH_MASK; 1617 1618 mutex_lock(&cm->open_mutex); 1619 if (cm->opened[ch] == mode) { 1620 if (cm->channel[ch].substream) { 1621 snd_cmipci_ch_reset(cm, ch); 1622 cm->channel[ch].running = 0; 1623 cm->channel[ch].substream = NULL; 1624 } 1625 cm->opened[ch] = 0; 1626 if (! cm->channel[ch].is_dac) { 1627 /* enable dual DAC mode again */ 1628 cm->channel[ch].is_dac = 1; 1629 spin_lock_irq(&cm->reg_lock); 1630 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1631 spin_unlock_irq(&cm->reg_lock); 1632 } 1633 } 1634 mutex_unlock(&cm->open_mutex); 1635 } 1636 1637 /* 1638 */ 1639 1640 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1641 { 1642 struct cmipci *cm = snd_pcm_substream_chip(substream); 1643 struct snd_pcm_runtime *runtime = substream->runtime; 1644 int err; 1645 1646 err = open_device_check(cm, CM_OPEN_PLAYBACK, substream); 1647 if (err < 0) 1648 return err; 1649 runtime->hw = snd_cmipci_playback; 1650 if (cm->chip_version == 68) { 1651 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1652 SNDRV_PCM_RATE_96000; 1653 runtime->hw.rate_max = 96000; 1654 } else if (cm->chip_version == 55) { 1655 err = snd_pcm_hw_constraint_list(runtime, 0, 1656 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1657 if (err < 0) 1658 return err; 1659 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1660 runtime->hw.rate_max = 128000; 1661 } 1662 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1663 cm->dig_pcm_status = cm->dig_status; 1664 return 0; 1665 } 1666 1667 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1668 { 1669 struct cmipci *cm = snd_pcm_substream_chip(substream); 1670 struct snd_pcm_runtime *runtime = substream->runtime; 1671 int err; 1672 1673 err = open_device_check(cm, CM_OPEN_CAPTURE, substream); 1674 if (err < 0) 1675 return err; 1676 runtime->hw = snd_cmipci_capture; 1677 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1678 runtime->hw.rate_min = 41000; 1679 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1680 } else if (cm->chip_version == 55) { 1681 err = snd_pcm_hw_constraint_list(runtime, 0, 1682 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1683 if (err < 0) 1684 return err; 1685 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1686 runtime->hw.rate_max = 128000; 1687 } 1688 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1689 return 0; 1690 } 1691 1692 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1693 { 1694 struct cmipci *cm = snd_pcm_substream_chip(substream); 1695 struct snd_pcm_runtime *runtime = substream->runtime; 1696 int err; 1697 1698 /* use channel B */ 1699 err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream); 1700 if (err < 0) 1701 return err; 1702 runtime->hw = snd_cmipci_playback2; 1703 mutex_lock(&cm->open_mutex); 1704 if (! cm->opened[CM_CH_PLAY]) { 1705 if (cm->can_multi_ch) { 1706 runtime->hw.channels_max = cm->max_channels; 1707 if (cm->max_channels == 4) 1708 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1709 else if (cm->max_channels == 6) 1710 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1711 else if (cm->max_channels == 8) 1712 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1713 } 1714 } 1715 mutex_unlock(&cm->open_mutex); 1716 if (cm->chip_version == 68) { 1717 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1718 SNDRV_PCM_RATE_96000; 1719 runtime->hw.rate_max = 96000; 1720 } else if (cm->chip_version == 55) { 1721 err = snd_pcm_hw_constraint_list(runtime, 0, 1722 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1723 if (err < 0) 1724 return err; 1725 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1726 runtime->hw.rate_max = 128000; 1727 } 1728 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1729 return 0; 1730 } 1731 1732 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1733 { 1734 struct cmipci *cm = snd_pcm_substream_chip(substream); 1735 struct snd_pcm_runtime *runtime = substream->runtime; 1736 int err; 1737 1738 /* use channel A */ 1739 err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream); 1740 if (err < 0) 1741 return err; 1742 if (cm->can_ac3_hw) { 1743 runtime->hw = snd_cmipci_playback_spdif; 1744 if (cm->chip_version >= 37) { 1745 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1746 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1747 } 1748 if (cm->can_96k) { 1749 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1750 SNDRV_PCM_RATE_96000; 1751 runtime->hw.rate_max = 96000; 1752 } 1753 } else { 1754 runtime->hw = snd_cmipci_playback_iec958_subframe; 1755 } 1756 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1757 cm->dig_pcm_status = cm->dig_status; 1758 return 0; 1759 } 1760 1761 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1762 { 1763 struct cmipci *cm = snd_pcm_substream_chip(substream); 1764 struct snd_pcm_runtime *runtime = substream->runtime; 1765 int err; 1766 1767 /* use channel B */ 1768 err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream); 1769 if (err < 0) 1770 return err; 1771 runtime->hw = snd_cmipci_capture_spdif; 1772 if (cm->can_96k && !(cm->chip_version == 68)) { 1773 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1774 SNDRV_PCM_RATE_96000; 1775 runtime->hw.rate_max = 96000; 1776 } 1777 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1778 return 0; 1779 } 1780 1781 1782 /* 1783 */ 1784 1785 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1786 { 1787 struct cmipci *cm = snd_pcm_substream_chip(substream); 1788 close_device_check(cm, CM_OPEN_PLAYBACK); 1789 return 0; 1790 } 1791 1792 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1793 { 1794 struct cmipci *cm = snd_pcm_substream_chip(substream); 1795 close_device_check(cm, CM_OPEN_CAPTURE); 1796 return 0; 1797 } 1798 1799 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1800 { 1801 struct cmipci *cm = snd_pcm_substream_chip(substream); 1802 close_device_check(cm, CM_OPEN_PLAYBACK2); 1803 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1804 return 0; 1805 } 1806 1807 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1808 { 1809 struct cmipci *cm = snd_pcm_substream_chip(substream); 1810 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1811 return 0; 1812 } 1813 1814 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1815 { 1816 struct cmipci *cm = snd_pcm_substream_chip(substream); 1817 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1818 return 0; 1819 } 1820 1821 1822 /* 1823 */ 1824 1825 static const struct snd_pcm_ops snd_cmipci_playback_ops = { 1826 .open = snd_cmipci_playback_open, 1827 .close = snd_cmipci_playback_close, 1828 .hw_free = snd_cmipci_playback_hw_free, 1829 .prepare = snd_cmipci_playback_prepare, 1830 .trigger = snd_cmipci_playback_trigger, 1831 .pointer = snd_cmipci_playback_pointer, 1832 }; 1833 1834 static const struct snd_pcm_ops snd_cmipci_capture_ops = { 1835 .open = snd_cmipci_capture_open, 1836 .close = snd_cmipci_capture_close, 1837 .prepare = snd_cmipci_capture_prepare, 1838 .trigger = snd_cmipci_capture_trigger, 1839 .pointer = snd_cmipci_capture_pointer, 1840 }; 1841 1842 static const struct snd_pcm_ops snd_cmipci_playback2_ops = { 1843 .open = snd_cmipci_playback2_open, 1844 .close = snd_cmipci_playback2_close, 1845 .hw_params = snd_cmipci_playback2_hw_params, 1846 .hw_free = snd_cmipci_playback2_hw_free, 1847 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1848 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1849 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1850 }; 1851 1852 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1853 .open = snd_cmipci_playback_spdif_open, 1854 .close = snd_cmipci_playback_spdif_close, 1855 .hw_free = snd_cmipci_playback_hw_free, 1856 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1857 .trigger = snd_cmipci_playback_trigger, 1858 .pointer = snd_cmipci_playback_pointer, 1859 }; 1860 1861 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1862 .open = snd_cmipci_capture_spdif_open, 1863 .close = snd_cmipci_capture_spdif_close, 1864 .hw_free = snd_cmipci_capture_spdif_hw_free, 1865 .prepare = snd_cmipci_capture_spdif_prepare, 1866 .trigger = snd_cmipci_capture_trigger, 1867 .pointer = snd_cmipci_capture_pointer, 1868 }; 1869 1870 1871 /* 1872 */ 1873 1874 static int snd_cmipci_pcm_new(struct cmipci *cm, int device) 1875 { 1876 struct snd_pcm *pcm; 1877 int err; 1878 1879 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1880 if (err < 0) 1881 return err; 1882 1883 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1884 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1885 1886 pcm->private_data = cm; 1887 pcm->info_flags = 0; 1888 strcpy(pcm->name, "C-Media PCI DAC/ADC"); 1889 cm->pcm = pcm; 1890 1891 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1892 &cm->pci->dev, 64*1024, 128*1024); 1893 1894 return 0; 1895 } 1896 1897 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1898 { 1899 struct snd_pcm *pcm; 1900 int err; 1901 1902 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1903 if (err < 0) 1904 return err; 1905 1906 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1907 1908 pcm->private_data = cm; 1909 pcm->info_flags = 0; 1910 strcpy(pcm->name, "C-Media PCI 2nd DAC"); 1911 cm->pcm2 = pcm; 1912 1913 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1914 &cm->pci->dev, 64*1024, 128*1024); 1915 1916 return 0; 1917 } 1918 1919 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1920 { 1921 struct snd_pcm *pcm; 1922 int err; 1923 1924 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1925 if (err < 0) 1926 return err; 1927 1928 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1929 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1930 1931 pcm->private_data = cm; 1932 pcm->info_flags = 0; 1933 strcpy(pcm->name, "C-Media PCI IEC958"); 1934 cm->pcm_spdif = pcm; 1935 1936 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1937 &cm->pci->dev, 64*1024, 128*1024); 1938 1939 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1940 snd_pcm_alt_chmaps, cm->max_channels, 0, 1941 NULL); 1942 if (err < 0) 1943 return err; 1944 1945 return 0; 1946 } 1947 1948 /* 1949 * mixer interface: 1950 * - CM8338/8738 has a compatible mixer interface with SB16, but 1951 * lack of some elements like tone control, i/o gain and AGC. 1952 * - Access to native registers: 1953 * - A 3D switch 1954 * - Output mute switches 1955 */ 1956 1957 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1958 { 1959 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1960 outb(data, s->iobase + CM_REG_SB16_DATA); 1961 } 1962 1963 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1964 { 1965 unsigned char v; 1966 1967 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1968 v = inb(s->iobase + CM_REG_SB16_DATA); 1969 return v; 1970 } 1971 1972 /* 1973 * general mixer element 1974 */ 1975 struct cmipci_sb_reg { 1976 unsigned int left_reg, right_reg; 1977 unsigned int left_shift, right_shift; 1978 unsigned int mask; 1979 unsigned int invert: 1; 1980 unsigned int stereo: 1; 1981 }; 1982 1983 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 1984 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 1985 1986 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 1987 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 1988 .info = snd_cmipci_info_volume, \ 1989 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 1990 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 1991 } 1992 1993 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 1994 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 1995 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 1996 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 1997 1998 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 1999 { 2000 r->left_reg = val & 0xff; 2001 r->right_reg = (val >> 8) & 0xff; 2002 r->left_shift = (val >> 16) & 0x07; 2003 r->right_shift = (val >> 19) & 0x07; 2004 r->invert = (val >> 22) & 1; 2005 r->stereo = (val >> 23) & 1; 2006 r->mask = (val >> 24) & 0xff; 2007 } 2008 2009 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 2010 struct snd_ctl_elem_info *uinfo) 2011 { 2012 struct cmipci_sb_reg reg; 2013 2014 cmipci_sb_reg_decode(®, kcontrol->private_value); 2015 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2016 uinfo->count = reg.stereo + 1; 2017 uinfo->value.integer.min = 0; 2018 uinfo->value.integer.max = reg.mask; 2019 return 0; 2020 } 2021 2022 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 2023 struct snd_ctl_elem_value *ucontrol) 2024 { 2025 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2026 struct cmipci_sb_reg reg; 2027 int val; 2028 2029 cmipci_sb_reg_decode(®, kcontrol->private_value); 2030 spin_lock_irq(&cm->reg_lock); 2031 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 2032 if (reg.invert) 2033 val = reg.mask - val; 2034 ucontrol->value.integer.value[0] = val; 2035 if (reg.stereo) { 2036 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 2037 if (reg.invert) 2038 val = reg.mask - val; 2039 ucontrol->value.integer.value[1] = val; 2040 } 2041 spin_unlock_irq(&cm->reg_lock); 2042 return 0; 2043 } 2044 2045 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2046 struct snd_ctl_elem_value *ucontrol) 2047 { 2048 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2049 struct cmipci_sb_reg reg; 2050 int change; 2051 int left, right, oleft, oright; 2052 2053 cmipci_sb_reg_decode(®, kcontrol->private_value); 2054 left = ucontrol->value.integer.value[0] & reg.mask; 2055 if (reg.invert) 2056 left = reg.mask - left; 2057 left <<= reg.left_shift; 2058 if (reg.stereo) { 2059 right = ucontrol->value.integer.value[1] & reg.mask; 2060 if (reg.invert) 2061 right = reg.mask - right; 2062 right <<= reg.right_shift; 2063 } else 2064 right = 0; 2065 spin_lock_irq(&cm->reg_lock); 2066 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2067 left |= oleft & ~(reg.mask << reg.left_shift); 2068 change = left != oleft; 2069 if (reg.stereo) { 2070 if (reg.left_reg != reg.right_reg) { 2071 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2072 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2073 } else 2074 oright = left; 2075 right |= oright & ~(reg.mask << reg.right_shift); 2076 change |= right != oright; 2077 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2078 } else 2079 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2080 spin_unlock_irq(&cm->reg_lock); 2081 return change; 2082 } 2083 2084 /* 2085 * input route (left,right) -> (left,right) 2086 */ 2087 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2088 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2089 .info = snd_cmipci_info_input_sw, \ 2090 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2091 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2092 } 2093 2094 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2095 struct snd_ctl_elem_info *uinfo) 2096 { 2097 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2098 uinfo->count = 4; 2099 uinfo->value.integer.min = 0; 2100 uinfo->value.integer.max = 1; 2101 return 0; 2102 } 2103 2104 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2105 struct snd_ctl_elem_value *ucontrol) 2106 { 2107 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2108 struct cmipci_sb_reg reg; 2109 int val1, val2; 2110 2111 cmipci_sb_reg_decode(®, kcontrol->private_value); 2112 spin_lock_irq(&cm->reg_lock); 2113 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2114 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2115 spin_unlock_irq(&cm->reg_lock); 2116 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2117 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2118 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2119 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2120 return 0; 2121 } 2122 2123 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2124 struct snd_ctl_elem_value *ucontrol) 2125 { 2126 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2127 struct cmipci_sb_reg reg; 2128 int change; 2129 int val1, val2, oval1, oval2; 2130 2131 cmipci_sb_reg_decode(®, kcontrol->private_value); 2132 spin_lock_irq(&cm->reg_lock); 2133 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2134 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2135 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2136 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2137 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2138 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2139 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2140 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2141 change = val1 != oval1 || val2 != oval2; 2142 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2143 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2144 spin_unlock_irq(&cm->reg_lock); 2145 return change; 2146 } 2147 2148 /* 2149 * native mixer switches/volumes 2150 */ 2151 2152 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2153 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2154 .info = snd_cmipci_info_native_mixer, \ 2155 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2156 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2157 } 2158 2159 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2160 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2161 .info = snd_cmipci_info_native_mixer, \ 2162 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2163 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2164 } 2165 2166 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2167 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2168 .info = snd_cmipci_info_native_mixer, \ 2169 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2170 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2171 } 2172 2173 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2174 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2175 .info = snd_cmipci_info_native_mixer, \ 2176 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2177 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2178 } 2179 2180 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2181 struct snd_ctl_elem_info *uinfo) 2182 { 2183 struct cmipci_sb_reg reg; 2184 2185 cmipci_sb_reg_decode(®, kcontrol->private_value); 2186 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2187 uinfo->count = reg.stereo + 1; 2188 uinfo->value.integer.min = 0; 2189 uinfo->value.integer.max = reg.mask; 2190 return 0; 2191 2192 } 2193 2194 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2195 struct snd_ctl_elem_value *ucontrol) 2196 { 2197 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2198 struct cmipci_sb_reg reg; 2199 unsigned char oreg, val; 2200 2201 cmipci_sb_reg_decode(®, kcontrol->private_value); 2202 spin_lock_irq(&cm->reg_lock); 2203 oreg = inb(cm->iobase + reg.left_reg); 2204 val = (oreg >> reg.left_shift) & reg.mask; 2205 if (reg.invert) 2206 val = reg.mask - val; 2207 ucontrol->value.integer.value[0] = val; 2208 if (reg.stereo) { 2209 val = (oreg >> reg.right_shift) & reg.mask; 2210 if (reg.invert) 2211 val = reg.mask - val; 2212 ucontrol->value.integer.value[1] = val; 2213 } 2214 spin_unlock_irq(&cm->reg_lock); 2215 return 0; 2216 } 2217 2218 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2219 struct snd_ctl_elem_value *ucontrol) 2220 { 2221 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2222 struct cmipci_sb_reg reg; 2223 unsigned char oreg, nreg, val; 2224 2225 cmipci_sb_reg_decode(®, kcontrol->private_value); 2226 spin_lock_irq(&cm->reg_lock); 2227 oreg = inb(cm->iobase + reg.left_reg); 2228 val = ucontrol->value.integer.value[0] & reg.mask; 2229 if (reg.invert) 2230 val = reg.mask - val; 2231 nreg = oreg & ~(reg.mask << reg.left_shift); 2232 nreg |= (val << reg.left_shift); 2233 if (reg.stereo) { 2234 val = ucontrol->value.integer.value[1] & reg.mask; 2235 if (reg.invert) 2236 val = reg.mask - val; 2237 nreg &= ~(reg.mask << reg.right_shift); 2238 nreg |= (val << reg.right_shift); 2239 } 2240 outb(nreg, cm->iobase + reg.left_reg); 2241 spin_unlock_irq(&cm->reg_lock); 2242 return (nreg != oreg); 2243 } 2244 2245 /* 2246 * special case - check mixer sensitivity 2247 */ 2248 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2249 struct snd_ctl_elem_value *ucontrol) 2250 { 2251 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2252 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2253 } 2254 2255 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2256 struct snd_ctl_elem_value *ucontrol) 2257 { 2258 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2259 if (cm->mixer_insensitive) { 2260 /* ignored */ 2261 return 0; 2262 } 2263 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2264 } 2265 2266 2267 static const struct snd_kcontrol_new snd_cmipci_mixers[] = { 2268 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2269 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2270 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2271 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2272 { /* switch with sensitivity */ 2273 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2274 .name = "PCM Playback Switch", 2275 .info = snd_cmipci_info_native_mixer, 2276 .get = snd_cmipci_get_native_mixer_sensitive, 2277 .put = snd_cmipci_put_native_mixer_sensitive, 2278 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2279 }, 2280 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2281 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2282 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2283 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2284 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2285 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2286 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2287 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2288 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2289 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2290 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2291 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2292 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2293 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2294 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2295 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2296 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2297 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2298 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2299 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2300 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2301 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2302 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2303 }; 2304 2305 /* 2306 * other switches 2307 */ 2308 2309 struct cmipci_switch_args { 2310 int reg; /* register index */ 2311 unsigned int mask; /* mask bits */ 2312 unsigned int mask_on; /* mask bits to turn on */ 2313 unsigned int is_byte: 1; /* byte access? */ 2314 unsigned int ac3_sensitive: 1; /* access forbidden during 2315 * non-audio operation? 2316 */ 2317 }; 2318 2319 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2320 2321 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2322 struct snd_ctl_elem_value *ucontrol, 2323 struct cmipci_switch_args *args) 2324 { 2325 unsigned int val; 2326 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2327 2328 spin_lock_irq(&cm->reg_lock); 2329 if (args->ac3_sensitive && cm->mixer_insensitive) { 2330 ucontrol->value.integer.value[0] = 0; 2331 spin_unlock_irq(&cm->reg_lock); 2332 return 0; 2333 } 2334 if (args->is_byte) 2335 val = inb(cm->iobase + args->reg); 2336 else 2337 val = snd_cmipci_read(cm, args->reg); 2338 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2339 spin_unlock_irq(&cm->reg_lock); 2340 return 0; 2341 } 2342 2343 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2344 struct snd_ctl_elem_value *ucontrol) 2345 { 2346 struct cmipci_switch_args *args; 2347 args = (struct cmipci_switch_args *)kcontrol->private_value; 2348 if (snd_BUG_ON(!args)) 2349 return -EINVAL; 2350 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2351 } 2352 2353 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2354 struct snd_ctl_elem_value *ucontrol, 2355 struct cmipci_switch_args *args) 2356 { 2357 unsigned int val; 2358 int change; 2359 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2360 2361 spin_lock_irq(&cm->reg_lock); 2362 if (args->ac3_sensitive && cm->mixer_insensitive) { 2363 /* ignored */ 2364 spin_unlock_irq(&cm->reg_lock); 2365 return 0; 2366 } 2367 if (args->is_byte) 2368 val = inb(cm->iobase + args->reg); 2369 else 2370 val = snd_cmipci_read(cm, args->reg); 2371 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2372 args->mask_on : (args->mask & ~args->mask_on)); 2373 if (change) { 2374 val &= ~args->mask; 2375 if (ucontrol->value.integer.value[0]) 2376 val |= args->mask_on; 2377 else 2378 val |= (args->mask & ~args->mask_on); 2379 if (args->is_byte) 2380 outb((unsigned char)val, cm->iobase + args->reg); 2381 else 2382 snd_cmipci_write(cm, args->reg, val); 2383 } 2384 spin_unlock_irq(&cm->reg_lock); 2385 return change; 2386 } 2387 2388 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2389 struct snd_ctl_elem_value *ucontrol) 2390 { 2391 struct cmipci_switch_args *args; 2392 args = (struct cmipci_switch_args *)kcontrol->private_value; 2393 if (snd_BUG_ON(!args)) 2394 return -EINVAL; 2395 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2396 } 2397 2398 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2399 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2400 .reg = xreg, \ 2401 .mask = xmask, \ 2402 .mask_on = xmask_on, \ 2403 .is_byte = xis_byte, \ 2404 .ac3_sensitive = xac3, \ 2405 } 2406 2407 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2408 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2409 2410 #if 0 /* these will be controlled in pcm device */ 2411 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2412 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2413 #endif 2414 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2415 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2416 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2417 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2418 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2419 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2420 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2421 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2422 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2423 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2424 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2425 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2426 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2427 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2428 #if CM_CH_PLAY == 1 2429 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2430 #else 2431 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2432 #endif 2433 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2434 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2435 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2436 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2437 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2438 2439 #define DEFINE_SWITCH(sname, stype, sarg) \ 2440 { .name = sname, \ 2441 .iface = stype, \ 2442 .info = snd_cmipci_uswitch_info, \ 2443 .get = snd_cmipci_uswitch_get, \ 2444 .put = snd_cmipci_uswitch_put, \ 2445 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2446 } 2447 2448 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2449 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2450 2451 2452 /* 2453 * callbacks for spdif output switch 2454 * needs toggle two registers.. 2455 */ 2456 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2457 struct snd_ctl_elem_value *ucontrol) 2458 { 2459 int changed; 2460 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2461 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2462 return changed; 2463 } 2464 2465 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2466 struct snd_ctl_elem_value *ucontrol) 2467 { 2468 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2469 int changed; 2470 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2471 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2472 if (changed) { 2473 if (ucontrol->value.integer.value[0]) { 2474 if (chip->spdif_playback_avail) 2475 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2476 } else { 2477 if (chip->spdif_playback_avail) 2478 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2479 } 2480 } 2481 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2482 return changed; 2483 } 2484 2485 2486 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2487 struct snd_ctl_elem_info *uinfo) 2488 { 2489 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2490 static const char *const texts[3] = { 2491 "Line-In", "Rear Output", "Bass Output" 2492 }; 2493 2494 return snd_ctl_enum_info(uinfo, 1, 2495 cm->chip_version >= 39 ? 3 : 2, texts); 2496 } 2497 2498 static inline unsigned int get_line_in_mode(struct cmipci *cm) 2499 { 2500 unsigned int val; 2501 if (cm->chip_version >= 39) { 2502 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2503 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2504 return 2; 2505 } 2506 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2507 if (val & CM_REAR2LIN) 2508 return 1; 2509 return 0; 2510 } 2511 2512 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2513 struct snd_ctl_elem_value *ucontrol) 2514 { 2515 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2516 2517 spin_lock_irq(&cm->reg_lock); 2518 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2519 spin_unlock_irq(&cm->reg_lock); 2520 return 0; 2521 } 2522 2523 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2524 struct snd_ctl_elem_value *ucontrol) 2525 { 2526 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2527 int change; 2528 2529 spin_lock_irq(&cm->reg_lock); 2530 if (ucontrol->value.enumerated.item[0] == 2) 2531 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2532 else 2533 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2534 if (ucontrol->value.enumerated.item[0] == 1) 2535 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2536 else 2537 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2538 spin_unlock_irq(&cm->reg_lock); 2539 return change; 2540 } 2541 2542 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2543 struct snd_ctl_elem_info *uinfo) 2544 { 2545 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" }; 2546 2547 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2548 } 2549 2550 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2551 struct snd_ctl_elem_value *ucontrol) 2552 { 2553 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2554 /* same bit as spdi_phase */ 2555 spin_lock_irq(&cm->reg_lock); 2556 ucontrol->value.enumerated.item[0] = 2557 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2558 spin_unlock_irq(&cm->reg_lock); 2559 return 0; 2560 } 2561 2562 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2563 struct snd_ctl_elem_value *ucontrol) 2564 { 2565 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2566 int change; 2567 2568 spin_lock_irq(&cm->reg_lock); 2569 if (ucontrol->value.enumerated.item[0]) 2570 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2571 else 2572 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2573 spin_unlock_irq(&cm->reg_lock); 2574 return change; 2575 } 2576 2577 /* both for CM8338/8738 */ 2578 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = { 2579 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2580 { 2581 .name = "Line-In Mode", 2582 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2583 .info = snd_cmipci_line_in_mode_info, 2584 .get = snd_cmipci_line_in_mode_get, 2585 .put = snd_cmipci_line_in_mode_put, 2586 }, 2587 }; 2588 2589 /* for non-multichannel chips */ 2590 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch = 2591 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2592 2593 /* only for CM8738 */ 2594 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = { 2595 #if 0 /* controlled in pcm device */ 2596 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2597 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2598 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2599 #endif 2600 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2601 { .name = "IEC958 Output Switch", 2602 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2603 .info = snd_cmipci_uswitch_info, 2604 .get = snd_cmipci_spdout_enable_get, 2605 .put = snd_cmipci_spdout_enable_put, 2606 }, 2607 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2608 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2609 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2610 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2611 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2612 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2613 }; 2614 2615 /* only for model 033/037 */ 2616 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = { 2617 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2618 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2619 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2620 }; 2621 2622 /* only for model 039 or later */ 2623 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = { 2624 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2625 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2626 { 2627 .name = "Mic-In Mode", 2628 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2629 .info = snd_cmipci_mic_in_mode_info, 2630 .get = snd_cmipci_mic_in_mode_get, 2631 .put = snd_cmipci_mic_in_mode_put, 2632 } 2633 }; 2634 2635 /* card control switches */ 2636 static const struct snd_kcontrol_new snd_cmipci_modem_switch = 2637 DEFINE_CARD_SWITCH("Modem", modem); 2638 2639 2640 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2641 { 2642 struct snd_card *card; 2643 const struct snd_kcontrol_new *sw; 2644 struct snd_kcontrol *kctl; 2645 unsigned int idx; 2646 int err; 2647 2648 if (snd_BUG_ON(!cm || !cm->card)) 2649 return -EINVAL; 2650 2651 card = cm->card; 2652 2653 strcpy(card->mixername, "CMedia PCI"); 2654 2655 spin_lock_irq(&cm->reg_lock); 2656 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2657 spin_unlock_irq(&cm->reg_lock); 2658 2659 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2660 if (cm->chip_version == 68) { // 8768 has no PCM volume 2661 if (!strcmp(snd_cmipci_mixers[idx].name, 2662 "PCM Playback Volume")) 2663 continue; 2664 } 2665 err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm)); 2666 if (err < 0) 2667 return err; 2668 } 2669 2670 /* mixer switches */ 2671 sw = snd_cmipci_mixer_switches; 2672 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2673 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2674 if (err < 0) 2675 return err; 2676 } 2677 if (! cm->can_multi_ch) { 2678 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2679 if (err < 0) 2680 return err; 2681 } 2682 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2683 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2684 sw = snd_cmipci_8738_mixer_switches; 2685 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2686 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2687 if (err < 0) 2688 return err; 2689 } 2690 if (cm->can_ac3_hw) { 2691 kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm); 2692 err = snd_ctl_add(card, kctl); 2693 if (err < 0) 2694 return err; 2695 kctl->id.device = pcm_spdif_device; 2696 kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm); 2697 err = snd_ctl_add(card, kctl); 2698 if (err < 0) 2699 return err; 2700 kctl->id.device = pcm_spdif_device; 2701 kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm); 2702 err = snd_ctl_add(card, kctl); 2703 if (err < 0) 2704 return err; 2705 kctl->id.device = pcm_spdif_device; 2706 } 2707 if (cm->chip_version <= 37) { 2708 sw = snd_cmipci_old_mixer_switches; 2709 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2710 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2711 if (err < 0) 2712 return err; 2713 } 2714 } 2715 } 2716 if (cm->chip_version >= 39) { 2717 sw = snd_cmipci_extra_mixer_switches; 2718 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2719 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2720 if (err < 0) 2721 return err; 2722 } 2723 } 2724 2725 /* card switches */ 2726 /* 2727 * newer chips don't have the register bits to force modem link 2728 * detection; the bit that was FLINKON now mutes CH1 2729 */ 2730 if (cm->chip_version < 39) { 2731 err = snd_ctl_add(cm->card, 2732 snd_ctl_new1(&snd_cmipci_modem_switch, cm)); 2733 if (err < 0) 2734 return err; 2735 } 2736 2737 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2738 struct snd_ctl_elem_id elem_id; 2739 struct snd_kcontrol *ctl; 2740 memset(&elem_id, 0, sizeof(elem_id)); 2741 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 2742 strcpy(elem_id.name, cm_saved_mixer[idx].name); 2743 ctl = snd_ctl_find_id(cm->card, &elem_id); 2744 if (ctl) 2745 cm->mixer_res_ctl[idx] = ctl; 2746 } 2747 2748 return 0; 2749 } 2750 2751 2752 /* 2753 * proc interface 2754 */ 2755 2756 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2757 struct snd_info_buffer *buffer) 2758 { 2759 struct cmipci *cm = entry->private_data; 2760 int i, v; 2761 2762 snd_iprintf(buffer, "%s\n", cm->card->longname); 2763 for (i = 0; i < 0x94; i++) { 2764 if (i == 0x28) 2765 i = 0x90; 2766 v = inb(cm->iobase + i); 2767 if (i % 4 == 0) 2768 snd_iprintf(buffer, "\n%02x:", i); 2769 snd_iprintf(buffer, " %02x", v); 2770 } 2771 snd_iprintf(buffer, "\n"); 2772 } 2773 2774 static void snd_cmipci_proc_init(struct cmipci *cm) 2775 { 2776 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read); 2777 } 2778 2779 static const struct pci_device_id snd_cmipci_ids[] = { 2780 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0}, 2781 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0}, 2782 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2783 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0}, 2784 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2785 {0,}, 2786 }; 2787 2788 2789 /* 2790 * check chip version and capabilities 2791 * driver name is modified according to the chip model 2792 */ 2793 static void query_chip(struct cmipci *cm) 2794 { 2795 unsigned int detect; 2796 2797 /* check reg 0Ch, bit 24-31 */ 2798 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2799 if (! detect) { 2800 /* check reg 08h, bit 24-28 */ 2801 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2802 switch (detect) { 2803 case 0: 2804 cm->chip_version = 33; 2805 if (cm->do_soft_ac3) 2806 cm->can_ac3_sw = 1; 2807 else 2808 cm->can_ac3_hw = 1; 2809 break; 2810 case CM_CHIP_037: 2811 cm->chip_version = 37; 2812 cm->can_ac3_hw = 1; 2813 break; 2814 default: 2815 cm->chip_version = 39; 2816 cm->can_ac3_hw = 1; 2817 break; 2818 } 2819 cm->max_channels = 2; 2820 } else { 2821 if (detect & CM_CHIP_039) { 2822 cm->chip_version = 39; 2823 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2824 cm->max_channels = 6; 2825 else 2826 cm->max_channels = 4; 2827 } else if (detect & CM_CHIP_8768) { 2828 cm->chip_version = 68; 2829 cm->max_channels = 8; 2830 cm->can_96k = 1; 2831 } else { 2832 cm->chip_version = 55; 2833 cm->max_channels = 6; 2834 cm->can_96k = 1; 2835 } 2836 cm->can_ac3_hw = 1; 2837 cm->can_multi_ch = 1; 2838 } 2839 } 2840 2841 #ifdef SUPPORT_JOYSTICK 2842 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2843 { 2844 static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2845 struct gameport *gp; 2846 struct resource *r = NULL; 2847 int i, io_port = 0; 2848 2849 if (joystick_port[dev] == 0) 2850 return -ENODEV; 2851 2852 if (joystick_port[dev] == 1) { /* auto-detect */ 2853 for (i = 0; ports[i]; i++) { 2854 io_port = ports[i]; 2855 r = devm_request_region(&cm->pci->dev, io_port, 1, 2856 "CMIPCI gameport"); 2857 if (r) 2858 break; 2859 } 2860 } else { 2861 io_port = joystick_port[dev]; 2862 r = devm_request_region(&cm->pci->dev, io_port, 1, 2863 "CMIPCI gameport"); 2864 } 2865 2866 if (!r) { 2867 dev_warn(cm->card->dev, "cannot reserve joystick ports\n"); 2868 return -EBUSY; 2869 } 2870 2871 cm->gameport = gp = gameport_allocate_port(); 2872 if (!gp) { 2873 dev_err(cm->card->dev, "cannot allocate memory for gameport\n"); 2874 return -ENOMEM; 2875 } 2876 gameport_set_name(gp, "C-Media Gameport"); 2877 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2878 gameport_set_dev_parent(gp, &cm->pci->dev); 2879 gp->io = io_port; 2880 2881 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2882 2883 gameport_register_port(cm->gameport); 2884 2885 return 0; 2886 } 2887 2888 static void snd_cmipci_free_gameport(struct cmipci *cm) 2889 { 2890 if (cm->gameport) { 2891 gameport_unregister_port(cm->gameport); 2892 cm->gameport = NULL; 2893 2894 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2895 } 2896 } 2897 #else 2898 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2899 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2900 #endif 2901 2902 static void snd_cmipci_free(struct snd_card *card) 2903 { 2904 struct cmipci *cm = card->private_data; 2905 2906 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2907 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2908 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2909 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2910 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2911 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2912 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2913 2914 /* reset mixer */ 2915 snd_cmipci_mixer_write(cm, 0, 0); 2916 2917 snd_cmipci_free_gameport(cm); 2918 } 2919 2920 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2921 { 2922 long iosynth; 2923 unsigned int val; 2924 struct snd_opl3 *opl3; 2925 int err; 2926 2927 if (!fm_port) 2928 goto disable_fm; 2929 2930 if (cm->chip_version >= 39) { 2931 /* first try FM regs in PCI port range */ 2932 iosynth = cm->iobase + CM_REG_FM_PCI; 2933 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2934 OPL3_HW_OPL3, 1, &opl3); 2935 } else { 2936 err = -EIO; 2937 } 2938 if (err < 0) { 2939 /* then try legacy ports */ 2940 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2941 iosynth = fm_port; 2942 switch (iosynth) { 2943 case 0x3E8: val |= CM_FMSEL_3E8; break; 2944 case 0x3E0: val |= CM_FMSEL_3E0; break; 2945 case 0x3C8: val |= CM_FMSEL_3C8; break; 2946 case 0x388: val |= CM_FMSEL_388; break; 2947 default: 2948 goto disable_fm; 2949 } 2950 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2951 /* enable FM */ 2952 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2953 2954 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2955 OPL3_HW_OPL3, 0, &opl3) < 0) { 2956 dev_err(cm->card->dev, 2957 "no OPL device at %#lx, skipping...\n", 2958 iosynth); 2959 goto disable_fm; 2960 } 2961 } 2962 err = snd_opl3_hwdep_new(opl3, 0, 1, NULL); 2963 if (err < 0) { 2964 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n"); 2965 return err; 2966 } 2967 return 0; 2968 2969 disable_fm: 2970 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 2971 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2972 return 0; 2973 } 2974 2975 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 2976 int dev) 2977 { 2978 struct cmipci *cm = card->private_data; 2979 int err; 2980 unsigned int val; 2981 long iomidi = 0; 2982 int integrated_midi = 0; 2983 char modelstr[16]; 2984 int pcm_index, pcm_spdif_index; 2985 static const struct pci_device_id intel_82437vx[] = { 2986 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 2987 { }, 2988 }; 2989 2990 err = pcim_enable_device(pci); 2991 if (err < 0) 2992 return err; 2993 2994 spin_lock_init(&cm->reg_lock); 2995 mutex_init(&cm->open_mutex); 2996 cm->device = pci->device; 2997 cm->card = card; 2998 cm->pci = pci; 2999 cm->irq = -1; 3000 cm->channel[0].ch = 0; 3001 cm->channel[1].ch = 1; 3002 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 3003 3004 err = pci_request_regions(pci, card->driver); 3005 if (err < 0) 3006 return err; 3007 cm->iobase = pci_resource_start(pci, 0); 3008 3009 if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt, 3010 IRQF_SHARED, KBUILD_MODNAME, cm)) { 3011 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); 3012 return -EBUSY; 3013 } 3014 cm->irq = pci->irq; 3015 card->sync_irq = cm->irq; 3016 card->private_free = snd_cmipci_free; 3017 3018 pci_set_master(cm->pci); 3019 3020 /* 3021 * check chip version, max channels and capabilities 3022 */ 3023 3024 cm->chip_version = 0; 3025 cm->max_channels = 2; 3026 cm->do_soft_ac3 = soft_ac3[dev]; 3027 3028 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 3029 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 3030 query_chip(cm); 3031 /* added -MCx suffix for chip supporting multi-channels */ 3032 if (cm->can_multi_ch) 3033 sprintf(cm->card->driver + strlen(cm->card->driver), 3034 "-MC%d", cm->max_channels); 3035 else if (cm->can_ac3_sw) 3036 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); 3037 3038 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3039 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3040 3041 #if CM_CH_PLAY == 1 3042 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 3043 #else 3044 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 3045 #endif 3046 3047 /* initialize codec registers */ 3048 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3049 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3050 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 3051 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3052 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3053 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 3054 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3055 3056 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3057 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3058 #if CM_CH_PLAY == 1 3059 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3060 #else 3061 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3062 #endif 3063 if (cm->chip_version) { 3064 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3065 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3066 } 3067 /* Set Bus Master Request */ 3068 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3069 3070 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3071 switch (pci->device) { 3072 case PCI_DEVICE_ID_CMEDIA_CM8738: 3073 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3074 if (!pci_dev_present(intel_82437vx)) 3075 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3076 break; 3077 default: 3078 break; 3079 } 3080 3081 if (cm->chip_version < 68) { 3082 val = pci->device < 0x110 ? 8338 : 8738; 3083 } else { 3084 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3085 case 0: 3086 val = 8769; 3087 break; 3088 case 2: 3089 val = 8762; 3090 break; 3091 default: 3092 switch ((pci->subsystem_vendor << 16) | 3093 pci->subsystem_device) { 3094 case 0x13f69761: 3095 case 0x584d3741: 3096 case 0x584d3751: 3097 case 0x584d3761: 3098 case 0x584d3771: 3099 case 0x72848384: 3100 val = 8770; 3101 break; 3102 default: 3103 val = 8768; 3104 break; 3105 } 3106 } 3107 } 3108 sprintf(card->shortname, "C-Media CMI%d", val); 3109 if (cm->chip_version < 68) 3110 sprintf(modelstr, " (model %d)", cm->chip_version); 3111 else 3112 modelstr[0] = '\0'; 3113 sprintf(card->longname, "%s%s at %#lx, irq %i", 3114 card->shortname, modelstr, cm->iobase, cm->irq); 3115 3116 if (cm->chip_version >= 39) { 3117 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3118 if (val != 0x00 && val != 0xff) { 3119 if (mpu_port[dev]) 3120 iomidi = cm->iobase + CM_REG_MPU_PCI; 3121 integrated_midi = 1; 3122 } 3123 } 3124 if (!integrated_midi) { 3125 val = 0; 3126 iomidi = mpu_port[dev]; 3127 switch (iomidi) { 3128 case 0x320: val = CM_VMPU_320; break; 3129 case 0x310: val = CM_VMPU_310; break; 3130 case 0x300: val = CM_VMPU_300; break; 3131 case 0x330: val = CM_VMPU_330; break; 3132 default: 3133 iomidi = 0; break; 3134 } 3135 if (iomidi > 0) { 3136 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3137 /* enable UART */ 3138 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3139 if (inb(iomidi + 1) == 0xff) { 3140 dev_err(cm->card->dev, 3141 "cannot enable MPU-401 port at %#lx\n", 3142 iomidi); 3143 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3144 CM_UART_EN); 3145 iomidi = 0; 3146 } 3147 } 3148 } 3149 3150 if (cm->chip_version < 68) { 3151 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3152 if (err < 0) 3153 return err; 3154 } 3155 3156 /* reset mixer */ 3157 snd_cmipci_mixer_write(cm, 0, 0); 3158 3159 snd_cmipci_proc_init(cm); 3160 3161 /* create pcm devices */ 3162 pcm_index = pcm_spdif_index = 0; 3163 err = snd_cmipci_pcm_new(cm, pcm_index); 3164 if (err < 0) 3165 return err; 3166 pcm_index++; 3167 err = snd_cmipci_pcm2_new(cm, pcm_index); 3168 if (err < 0) 3169 return err; 3170 pcm_index++; 3171 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3172 pcm_spdif_index = pcm_index; 3173 err = snd_cmipci_pcm_spdif_new(cm, pcm_index); 3174 if (err < 0) 3175 return err; 3176 } 3177 3178 /* create mixer interface & switches */ 3179 err = snd_cmipci_mixer_new(cm, pcm_spdif_index); 3180 if (err < 0) 3181 return err; 3182 3183 if (iomidi > 0) { 3184 err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3185 iomidi, 3186 (integrated_midi ? 3187 MPU401_INFO_INTEGRATED : 0) | 3188 MPU401_INFO_IRQ_HOOK, 3189 -1, &cm->rmidi); 3190 if (err < 0) 3191 dev_err(cm->card->dev, 3192 "no UART401 device at 0x%lx\n", iomidi); 3193 } 3194 3195 #ifdef USE_VAR48KRATE 3196 for (val = 0; val < ARRAY_SIZE(rates); val++) 3197 snd_cmipci_set_pll(cm, rates[val], val); 3198 3199 /* 3200 * (Re-)Enable external switch spdo_48k 3201 */ 3202 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3203 #endif /* USE_VAR48KRATE */ 3204 3205 if (snd_cmipci_create_gameport(cm, dev) < 0) 3206 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3207 3208 return 0; 3209 } 3210 3211 /* 3212 */ 3213 3214 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3215 3216 static int snd_cmipci_probe(struct pci_dev *pci, 3217 const struct pci_device_id *pci_id) 3218 { 3219 static int dev; 3220 struct snd_card *card; 3221 int err; 3222 3223 if (dev >= SNDRV_CARDS) 3224 return -ENODEV; 3225 if (! enable[dev]) { 3226 dev++; 3227 return -ENOENT; 3228 } 3229 3230 err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 3231 sizeof(struct cmipci), &card); 3232 if (err < 0) 3233 return err; 3234 3235 switch (pci->device) { 3236 case PCI_DEVICE_ID_CMEDIA_CM8738: 3237 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3238 strcpy(card->driver, "CMI8738"); 3239 break; 3240 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3241 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3242 strcpy(card->driver, "CMI8338"); 3243 break; 3244 default: 3245 strcpy(card->driver, "CMIPCI"); 3246 break; 3247 } 3248 3249 err = snd_cmipci_create(card, pci, dev); 3250 if (err < 0) 3251 return err; 3252 3253 err = snd_card_register(card); 3254 if (err < 0) 3255 return err; 3256 3257 pci_set_drvdata(pci, card); 3258 dev++; 3259 return 0; 3260 } 3261 3262 #ifdef CONFIG_PM_SLEEP 3263 /* 3264 * power management 3265 */ 3266 static const unsigned char saved_regs[] = { 3267 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3268 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL, 3269 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3270 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3271 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3272 }; 3273 3274 static const unsigned char saved_mixers[] = { 3275 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3276 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3277 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3278 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3279 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3280 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3281 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3282 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3283 }; 3284 3285 static int snd_cmipci_suspend(struct device *dev) 3286 { 3287 struct snd_card *card = dev_get_drvdata(dev); 3288 struct cmipci *cm = card->private_data; 3289 int i; 3290 3291 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3292 3293 /* save registers */ 3294 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3295 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3296 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3297 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3298 3299 /* disable ints */ 3300 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3301 return 0; 3302 } 3303 3304 static int snd_cmipci_resume(struct device *dev) 3305 { 3306 struct snd_card *card = dev_get_drvdata(dev); 3307 struct cmipci *cm = card->private_data; 3308 int i; 3309 3310 /* reset / initialize to a sane state */ 3311 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3312 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3313 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3314 snd_cmipci_mixer_write(cm, 0, 0); 3315 3316 /* restore registers */ 3317 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3318 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3319 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3320 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3321 3322 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3323 return 0; 3324 } 3325 3326 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume); 3327 #define SND_CMIPCI_PM_OPS &snd_cmipci_pm 3328 #else 3329 #define SND_CMIPCI_PM_OPS NULL 3330 #endif /* CONFIG_PM_SLEEP */ 3331 3332 static struct pci_driver cmipci_driver = { 3333 .name = KBUILD_MODNAME, 3334 .id_table = snd_cmipci_ids, 3335 .probe = snd_cmipci_probe, 3336 .driver = { 3337 .pm = SND_CMIPCI_PM_OPS, 3338 }, 3339 }; 3340 3341 module_pci_driver(cmipci_driver); 3342