xref: /openbmc/linux/sound/pci/cmipci.c (revision 95e9fd10)
1 /*
2  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
3  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
4  *
5  *   This program is free software; you can redistribute it and/or modify
6  *   it under the terms of the GNU General Public License as published by
7  *   the Free Software Foundation; either version 2 of the License, or
8  *   (at your option) any later version.
9  *
10  *   This program is distributed in the hope that it will be useful,
11  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *   GNU General Public License for more details.
14  *
15  *   You should have received a copy of the GNU General Public License
16  *   along with this program; if not, write to the Free Software
17  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
18  */
19 
20 /* Does not work. Warning may block system in capture mode */
21 /* #define USE_VAR48KRATE */
22 
23 #include <asm/io.h>
24 #include <linux/delay.h>
25 #include <linux/interrupt.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/gameport.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <sound/core.h>
33 #include <sound/info.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/rawmidi.h>
37 #include <sound/mpu401.h>
38 #include <sound/opl3.h>
39 #include <sound/sb.h>
40 #include <sound/asoundef.h>
41 #include <sound/initval.h>
42 
43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
45 MODULE_LICENSE("GPL");
46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
47 		"{C-Media,CMI8738B},"
48 		"{C-Media,CMI8338A},"
49 		"{C-Media,CMI8338B}}");
50 
51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE))
52 #define SUPPORT_JOYSTICK 1
53 #endif
54 
55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
57 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
58 static long mpu_port[SNDRV_CARDS];
59 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
60 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
61 #ifdef SUPPORT_JOYSTICK
62 static int joystick_port[SNDRV_CARDS];
63 #endif
64 
65 module_param_array(index, int, NULL, 0444);
66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
67 module_param_array(id, charp, NULL, 0444);
68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
69 module_param_array(enable, bool, NULL, 0444);
70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
71 module_param_array(mpu_port, long, NULL, 0444);
72 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
73 module_param_array(fm_port, long, NULL, 0444);
74 MODULE_PARM_DESC(fm_port, "FM port.");
75 module_param_array(soft_ac3, bool, NULL, 0444);
76 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
77 #ifdef SUPPORT_JOYSTICK
78 module_param_array(joystick_port, int, NULL, 0444);
79 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
80 #endif
81 
82 /*
83  * CM8x38 registers definition
84  */
85 
86 #define CM_REG_FUNCTRL0		0x00
87 #define CM_RST_CH1		0x00080000
88 #define CM_RST_CH0		0x00040000
89 #define CM_CHEN1		0x00020000	/* ch1: enable */
90 #define CM_CHEN0		0x00010000	/* ch0: enable */
91 #define CM_PAUSE1		0x00000008	/* ch1: pause */
92 #define CM_PAUSE0		0x00000004	/* ch0: pause */
93 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
94 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
95 
96 #define CM_REG_FUNCTRL1		0x04
97 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
98 #define CM_DSFC_SHIFT		13
99 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
100 #define CM_ASFC_SHIFT		10
101 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
102 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
103 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
104 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
105 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
106 #define CM_BREQ			0x00000010	/* bus master enabled */
107 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
108 #define CM_UART_EN		0x00000004	/* legacy UART */
109 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
110 #define CM_ZVPORT		0x00000001	/* ZVPORT */
111 
112 #define CM_REG_CHFORMAT		0x08
113 
114 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
115 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
116 #define CM_CHB3D		0x20000000	/* 4 channels */
117 
118 #define CM_CHIP_MASK1		0x1f000000
119 #define CM_CHIP_037		0x01000000
120 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
121 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
122 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
123 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
124 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
125 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
126 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
127 
128 #define CM_ADCBITLEN_MASK	0x0000C000
129 #define CM_ADCBITLEN_16		0x00000000
130 #define CM_ADCBITLEN_15		0x00004000
131 #define CM_ADCBITLEN_14		0x00008000
132 #define CM_ADCBITLEN_13		0x0000C000
133 
134 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
135 #define CM_ADCDACLEN_060	0x00000000
136 #define CM_ADCDACLEN_066	0x00001000
137 #define CM_ADCDACLEN_130	0x00002000
138 #define CM_ADCDACLEN_280	0x00003000
139 
140 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
141 #define CM_ADCDLEN_ORIGINAL	0x00000000
142 #define CM_ADCDLEN_EXTRA	0x00001000
143 #define CM_ADCDLEN_24K		0x00002000
144 #define CM_ADCDLEN_WEIGHT	0x00003000
145 
146 #define CM_CH1_SRATE_176K	0x00000800
147 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
148 #define CM_CH1_SRATE_88K	0x00000400
149 #define CM_CH0_SRATE_176K	0x00000200
150 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
151 #define CM_CH0_SRATE_88K	0x00000100
152 #define CM_CH0_SRATE_128K	0x00000300
153 #define CM_CH0_SRATE_MASK	0x00000300
154 
155 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
156 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
157 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
158 #define CM_SPDLOCKED		0x00000010
159 
160 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
161 #define CM_CH1FMT_SHIFT		2
162 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
163 #define CM_CH0FMT_SHIFT		0
164 
165 #define CM_REG_INT_HLDCLR	0x0C
166 #define CM_CHIP_MASK2		0xff000000
167 #define CM_CHIP_8768		0x20000000
168 #define CM_CHIP_055		0x08000000
169 #define CM_CHIP_039		0x04000000
170 #define CM_CHIP_039_6CH		0x01000000
171 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
172 #define CM_TDMA_INT_EN		0x00040000
173 #define CM_CH1_INT_EN		0x00020000
174 #define CM_CH0_INT_EN		0x00010000
175 
176 #define CM_REG_INT_STATUS	0x10
177 #define CM_INTR			0x80000000
178 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
179 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
180 #define CM_UARTINT		0x00010000
181 #define CM_LTDMAINT		0x00008000
182 #define CM_HTDMAINT		0x00004000
183 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
184 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
185 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
186 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
187 #define CM_CH1BUSY		0x00000008
188 #define CM_CH0BUSY		0x00000004
189 #define CM_CHINT1		0x00000002
190 #define CM_CHINT0		0x00000001
191 
192 #define CM_REG_LEGACY_CTRL	0x14
193 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
194 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
195 #define CM_VMPU_330		0x00000000
196 #define CM_VMPU_320		0x20000000
197 #define CM_VMPU_310		0x40000000
198 #define CM_VMPU_300		0x60000000
199 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
200 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
201 #define CM_VSBSEL_220		0x00000000
202 #define CM_VSBSEL_240		0x04000000
203 #define CM_VSBSEL_260		0x08000000
204 #define CM_VSBSEL_280		0x0C000000
205 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
206 #define CM_FMSEL_388		0x00000000
207 #define CM_FMSEL_3C8		0x01000000
208 #define CM_FMSEL_3E0		0x02000000
209 #define CM_FMSEL_3E8		0x03000000
210 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
211 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
212 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
213 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
214 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
215 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
216 #define CM_C_EECS		0x00040000
217 #define CM_C_EEDI46		0x00020000
218 #define CM_C_EECK46		0x00010000
219 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
220 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
221 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
222 #define CM_EXBASEN		0x00001000	/* external bass input enable */
223 
224 #define CM_REG_MISC_CTRL	0x18
225 #define CM_PWD			0x80000000	/* power down */
226 #define CM_RESET		0x40000000
227 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
228 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
229 #define CM_TXVX			0x08000000	/* model 037? */
230 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
231 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
232 #define CM_SPDIF48K		0x01000000	/* write */
233 #define CM_SPATUS48K		0x01000000	/* read */
234 #define CM_ENDBDAC		0x00800000	/* enable double dac */
235 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
236 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
237 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
238 #define CM_FM_EN		0x00080000	/* enable legacy FM */
239 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
240 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
241 #define CM_VIDWPDSB		0x00010000	/* model 037? */
242 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
243 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
244 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
245 #define CM_VIDWPPRT		0x00002000	/* model 037? */
246 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
247 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
248 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
249 #define CM_ENCENTER		0x00000080
250 #define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
251 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
252 #define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
253 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
254 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
255 #define CM_UPDDMA_2048		0x00000000
256 #define CM_UPDDMA_1024		0x00000004
257 #define CM_UPDDMA_512		0x00000008
258 #define CM_UPDDMA_256		0x0000000C
259 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
260 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
261 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
262 
263 #define CM_REG_TDMA_POSITION	0x1C
264 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
265 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
266 
267 	/* byte */
268 #define CM_REG_MIXER0		0x20
269 #define CM_REG_SBVR		0x20		/* write: sb16 version */
270 #define CM_REG_DEV		0x20		/* read: hardware device version */
271 
272 #define CM_REG_MIXER21		0x21
273 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
274 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
275 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
276 #define CM_X_SB16		0x01		/* SB16 compatible */
277 
278 #define CM_REG_SB16_DATA	0x22
279 #define CM_REG_SB16_ADDR	0x23
280 
281 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
282 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
283 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
284 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
285 
286 #define CM_REG_MIXER1		0x24
287 #define CM_FMMUTE		0x80	/* mute FM */
288 #define CM_FMMUTE_SHIFT		7
289 #define CM_WSMUTE		0x40	/* mute PCM */
290 #define CM_WSMUTE_SHIFT		6
291 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
292 #define CM_REAR2LIN_SHIFT	5
293 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
294 #define CM_REAR2FRONT_SHIFT	4
295 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
296 #define CM_WAVEINL_SHIFT	3
297 #define CM_WAVEINR		0x04	/* digical wave rec. right */
298 #define CM_WAVEINR_SHIFT	2
299 #define CM_X3DEN		0x02	/* 3D surround enable */
300 #define CM_X3DEN_SHIFT		1
301 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
302 #define CM_CDPLAY_SHIFT		0
303 
304 #define CM_REG_MIXER2		0x25
305 #define CM_RAUXREN		0x80	/* AUX right capture */
306 #define CM_RAUXREN_SHIFT	7
307 #define CM_RAUXLEN		0x40	/* AUX left capture */
308 #define CM_RAUXLEN_SHIFT	6
309 #define CM_VAUXRM		0x20	/* AUX right mute */
310 #define CM_VAUXRM_SHIFT		5
311 #define CM_VAUXLM		0x10	/* AUX left mute */
312 #define CM_VAUXLM_SHIFT		4
313 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
314 #define CM_VADMIC_SHIFT		1
315 #define CM_MICGAINZ		0x01	/* mic boost */
316 #define CM_MICGAINZ_SHIFT	0
317 
318 #define CM_REG_MIXER3		0x24
319 #define CM_REG_AUX_VOL		0x26
320 #define CM_VAUXL_MASK		0xf0
321 #define CM_VAUXR_MASK		0x0f
322 
323 #define CM_REG_MISC		0x27
324 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
325 #define CM_XGPO1		0x20
326 // #define CM_XGPBIO		0x04
327 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
328 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
329 #define CM_SPDVALID		0x02	/* spdif input valid check */
330 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
331 
332 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
333 /*
334  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
335  * or identical with AC97 codec?
336  */
337 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
338 
339 /*
340  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
341  */
342 #define CM_REG_MPU_PCI		0x40
343 
344 /*
345  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
346  */
347 #define CM_REG_FM_PCI		0x50
348 
349 /*
350  * access from SB-mixer port
351  */
352 #define CM_REG_EXTENT_IND	0xf0
353 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
354 #define CM_VPHONE_SHIFT		5
355 #define CM_VPHOM		0x10	/* Phone mute control */
356 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
357 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
358 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
359 #define CM_VADMIC3		0x01	/* Mic record boost */
360 
361 /*
362  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
363  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
364  * unit (readonly?).
365  */
366 #define CM_REG_PLL		0xf8
367 
368 /*
369  * extended registers
370  */
371 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
372 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
373 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
374 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
375 
376 #define CM_REG_EXT_MISC		0x90
377 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
378 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
379 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
380 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
381 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
382 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
383 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
384 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
385 
386 /*
387  * size of i/o region
388  */
389 #define CM_EXTENT_CODEC	  0x100
390 #define CM_EXTENT_MIDI	  0x2
391 #define CM_EXTENT_SYNTH	  0x4
392 
393 
394 /*
395  * channels for playback / capture
396  */
397 #define CM_CH_PLAY	0
398 #define CM_CH_CAPT	1
399 
400 /*
401  * flags to check device open/close
402  */
403 #define CM_OPEN_NONE	0
404 #define CM_OPEN_CH_MASK	0x01
405 #define CM_OPEN_DAC	0x10
406 #define CM_OPEN_ADC	0x20
407 #define CM_OPEN_SPDIF	0x40
408 #define CM_OPEN_MCHAN	0x80
409 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
410 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
411 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
412 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
413 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
414 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
415 
416 
417 #if CM_CH_PLAY == 1
418 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
419 #define CM_PLAYBACK_SPDF	CM_SPDF_1
420 #define CM_CAPTURE_SPDF		CM_SPDF_0
421 #else
422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
423 #define CM_PLAYBACK_SPDF	CM_SPDF_0
424 #define CM_CAPTURE_SPDF		CM_SPDF_1
425 #endif
426 
427 
428 /*
429  * driver data
430  */
431 
432 struct cmipci_pcm {
433 	struct snd_pcm_substream *substream;
434 	u8 running;		/* dac/adc running? */
435 	u8 fmt;			/* format bits */
436 	u8 is_dac;
437 	u8 needs_silencing;
438 	unsigned int dma_size;	/* in frames */
439 	unsigned int shift;
440 	unsigned int ch;	/* channel (0/1) */
441 	unsigned int offset;	/* physical address of the buffer */
442 };
443 
444 /* mixer elements toggled/resumed during ac3 playback */
445 struct cmipci_mixer_auto_switches {
446 	const char *name;	/* switch to toggle */
447 	int toggle_on;		/* value to change when ac3 mode */
448 };
449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
450 	{"PCM Playback Switch", 0},
451 	{"IEC958 Output Switch", 1},
452 	{"IEC958 Mix Analog", 0},
453 	// {"IEC958 Out To DAC", 1}, // no longer used
454 	{"IEC958 Loop", 0},
455 };
456 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
457 
458 struct cmipci {
459 	struct snd_card *card;
460 
461 	struct pci_dev *pci;
462 	unsigned int device;	/* device ID */
463 	int irq;
464 
465 	unsigned long iobase;
466 	unsigned int ctrl;	/* FUNCTRL0 current value */
467 
468 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
469 	struct snd_pcm *pcm2;	/* 2nd DAC */
470 	struct snd_pcm *pcm_spdif;	/* SPDIF */
471 
472 	int chip_version;
473 	int max_channels;
474 	unsigned int can_ac3_sw: 1;
475 	unsigned int can_ac3_hw: 1;
476 	unsigned int can_multi_ch: 1;
477 	unsigned int can_96k: 1;	/* samplerate above 48k */
478 	unsigned int do_soft_ac3: 1;
479 
480 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
481 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
482 	int spdif_counter;	/* for software AC3 */
483 
484 	unsigned int dig_status;
485 	unsigned int dig_pcm_status;
486 
487 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
488 
489 	int opened[2];	/* open mode */
490 	struct mutex open_mutex;
491 
492 	unsigned int mixer_insensitive: 1;
493 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
494 	int mixer_res_status[CM_SAVED_MIXERS];
495 
496 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
497 
498 	/* external MIDI */
499 	struct snd_rawmidi *rmidi;
500 
501 #ifdef SUPPORT_JOYSTICK
502 	struct gameport *gameport;
503 #endif
504 
505 	spinlock_t reg_lock;
506 
507 #ifdef CONFIG_PM
508 	unsigned int saved_regs[0x20];
509 	unsigned char saved_mixers[0x20];
510 #endif
511 };
512 
513 
514 /* read/write operations for dword register */
515 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
516 {
517 	outl(data, cm->iobase + cmd);
518 }
519 
520 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
521 {
522 	return inl(cm->iobase + cmd);
523 }
524 
525 /* read/write operations for word register */
526 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
527 {
528 	outw(data, cm->iobase + cmd);
529 }
530 
531 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
532 {
533 	return inw(cm->iobase + cmd);
534 }
535 
536 /* read/write operations for byte register */
537 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
538 {
539 	outb(data, cm->iobase + cmd);
540 }
541 
542 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
543 {
544 	return inb(cm->iobase + cmd);
545 }
546 
547 /* bit operations for dword register */
548 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
549 {
550 	unsigned int val, oval;
551 	val = oval = inl(cm->iobase + cmd);
552 	val |= flag;
553 	if (val == oval)
554 		return 0;
555 	outl(val, cm->iobase + cmd);
556 	return 1;
557 }
558 
559 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
560 {
561 	unsigned int val, oval;
562 	val = oval = inl(cm->iobase + cmd);
563 	val &= ~flag;
564 	if (val == oval)
565 		return 0;
566 	outl(val, cm->iobase + cmd);
567 	return 1;
568 }
569 
570 /* bit operations for byte register */
571 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
572 {
573 	unsigned char val, oval;
574 	val = oval = inb(cm->iobase + cmd);
575 	val |= flag;
576 	if (val == oval)
577 		return 0;
578 	outb(val, cm->iobase + cmd);
579 	return 1;
580 }
581 
582 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
583 {
584 	unsigned char val, oval;
585 	val = oval = inb(cm->iobase + cmd);
586 	val &= ~flag;
587 	if (val == oval)
588 		return 0;
589 	outb(val, cm->iobase + cmd);
590 	return 1;
591 }
592 
593 
594 /*
595  * PCM interface
596  */
597 
598 /*
599  * calculate frequency
600  */
601 
602 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
603 
604 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
605 {
606 	unsigned int i;
607 
608 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
609 		if (rates[i] == rate)
610 			return i;
611 	}
612 	snd_BUG();
613 	return 0;
614 }
615 
616 #ifdef USE_VAR48KRATE
617 /*
618  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
619  * does it this way .. maybe not.  Never get any information from C-Media about
620  * that <werner@suse.de>.
621  */
622 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
623 {
624 	unsigned int delta, tolerance;
625 	int xm, xn, xr;
626 
627 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
628 		rate <<= 1;
629 	*n = -1;
630 	if (*r > 0xff)
631 		goto out;
632 	tolerance = rate*CM_TOLERANCE_RATE;
633 
634 	for (xn = (1+2); xn < (0x1f+2); xn++) {
635 		for (xm = (1+2); xm < (0xff+2); xm++) {
636 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
637 
638 			if (xr < rate)
639 				delta = rate - xr;
640 			else
641 				delta = xr - rate;
642 
643 			/*
644 			 * If we found one, remember this,
645 			 * and try to find a closer one
646 			 */
647 			if (delta < tolerance) {
648 				tolerance = delta;
649 				*m = xm - 2;
650 				*n = xn - 2;
651 			}
652 		}
653 	}
654 out:
655 	return (*n > -1);
656 }
657 
658 /*
659  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
660  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
661  * at the register CM_REG_FUNCTRL1 (0x04).
662  * Problem: other ways are also possible (any information about that?)
663  */
664 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
665 {
666 	unsigned int reg = CM_REG_PLL + slot;
667 	/*
668 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
669 	 * for DSFC/ASFC (000 up to 111).
670 	 */
671 
672 	/* FIXME: Init (Do we've to set an other register first before programming?) */
673 
674 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
675 	snd_cmipci_write_b(cm, reg, rate>>8);
676 	snd_cmipci_write_b(cm, reg, rate&0xff);
677 
678 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
679 }
680 #endif /* USE_VAR48KRATE */
681 
682 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
683 				struct snd_pcm_hw_params *hw_params)
684 {
685 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
686 }
687 
688 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
689 					  struct snd_pcm_hw_params *hw_params)
690 {
691 	struct cmipci *cm = snd_pcm_substream_chip(substream);
692 	if (params_channels(hw_params) > 2) {
693 		mutex_lock(&cm->open_mutex);
694 		if (cm->opened[CM_CH_PLAY]) {
695 			mutex_unlock(&cm->open_mutex);
696 			return -EBUSY;
697 		}
698 		/* reserve the channel A */
699 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
700 		mutex_unlock(&cm->open_mutex);
701 	}
702 	return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
703 }
704 
705 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
706 {
707 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
708 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
709 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
710 	udelay(10);
711 }
712 
713 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
714 {
715 	return snd_pcm_lib_free_pages(substream);
716 }
717 
718 
719 /*
720  */
721 
722 static unsigned int hw_channels[] = {1, 2, 4, 6, 8};
723 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
724 	.count = 3,
725 	.list = hw_channels,
726 	.mask = 0,
727 };
728 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
729 	.count = 4,
730 	.list = hw_channels,
731 	.mask = 0,
732 };
733 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
734 	.count = 5,
735 	.list = hw_channels,
736 	.mask = 0,
737 };
738 
739 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
740 {
741 	if (channels > 2) {
742 		if (!cm->can_multi_ch || !rec->ch)
743 			return -EINVAL;
744 		if (rec->fmt != 0x03) /* stereo 16bit only */
745 			return -EINVAL;
746 	}
747 
748 	if (cm->can_multi_ch) {
749 		spin_lock_irq(&cm->reg_lock);
750 		if (channels > 2) {
751 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
752 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
753 		} else {
754 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
755 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
756 		}
757 		if (channels == 8)
758 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
759 		else
760 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
761 		if (channels == 6) {
762 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
763 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
764 		} else {
765 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
766 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
767 		}
768 		if (channels == 4)
769 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
770 		else
771 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
772 		spin_unlock_irq(&cm->reg_lock);
773 	}
774 	return 0;
775 }
776 
777 
778 /*
779  * prepare playback/capture channel
780  * channel to be used must have been set in rec->ch.
781  */
782 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
783 				 struct snd_pcm_substream *substream)
784 {
785 	unsigned int reg, freq, freq_ext, val;
786 	unsigned int period_size;
787 	struct snd_pcm_runtime *runtime = substream->runtime;
788 
789 	rec->fmt = 0;
790 	rec->shift = 0;
791 	if (snd_pcm_format_width(runtime->format) >= 16) {
792 		rec->fmt |= 0x02;
793 		if (snd_pcm_format_width(runtime->format) > 16)
794 			rec->shift++; /* 24/32bit */
795 	}
796 	if (runtime->channels > 1)
797 		rec->fmt |= 0x01;
798 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
799 		snd_printd("cannot set dac channels\n");
800 		return -EINVAL;
801 	}
802 
803 	rec->offset = runtime->dma_addr;
804 	/* buffer and period sizes in frame */
805 	rec->dma_size = runtime->buffer_size << rec->shift;
806 	period_size = runtime->period_size << rec->shift;
807 	if (runtime->channels > 2) {
808 		/* multi-channels */
809 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
810 		period_size = (period_size * runtime->channels) / 2;
811 	}
812 
813 	spin_lock_irq(&cm->reg_lock);
814 
815 	/* set buffer address */
816 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
817 	snd_cmipci_write(cm, reg, rec->offset);
818 	/* program sample counts */
819 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
820 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
821 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
822 
823 	/* set adc/dac flag */
824 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
825 	if (rec->is_dac)
826 		cm->ctrl &= ~val;
827 	else
828 		cm->ctrl |= val;
829 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
830 	//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
831 
832 	/* set sample rate */
833 	freq = 0;
834 	freq_ext = 0;
835 	if (runtime->rate > 48000)
836 		switch (runtime->rate) {
837 		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
838 		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
839 		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
840 		default:     snd_BUG(); break;
841 		}
842 	else
843 		freq = snd_cmipci_rate_freq(runtime->rate);
844 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
845 	if (rec->ch) {
846 		val &= ~CM_DSFC_MASK;
847 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
848 	} else {
849 		val &= ~CM_ASFC_MASK;
850 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
851 	}
852 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
853 	//snd_printd("cmipci: functrl1 = %08x\n", val);
854 
855 	/* set format */
856 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
857 	if (rec->ch) {
858 		val &= ~CM_CH1FMT_MASK;
859 		val |= rec->fmt << CM_CH1FMT_SHIFT;
860 	} else {
861 		val &= ~CM_CH0FMT_MASK;
862 		val |= rec->fmt << CM_CH0FMT_SHIFT;
863 	}
864 	if (cm->can_96k) {
865 		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
866 		val |= freq_ext << (rec->ch * 2);
867 	}
868 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
869 	//snd_printd("cmipci: chformat = %08x\n", val);
870 
871 	if (!rec->is_dac && cm->chip_version) {
872 		if (runtime->rate > 44100)
873 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
874 		else
875 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
876 	}
877 
878 	rec->running = 0;
879 	spin_unlock_irq(&cm->reg_lock);
880 
881 	return 0;
882 }
883 
884 /*
885  * PCM trigger/stop
886  */
887 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
888 				  int cmd)
889 {
890 	unsigned int inthld, chen, reset, pause;
891 	int result = 0;
892 
893 	inthld = CM_CH0_INT_EN << rec->ch;
894 	chen = CM_CHEN0 << rec->ch;
895 	reset = CM_RST_CH0 << rec->ch;
896 	pause = CM_PAUSE0 << rec->ch;
897 
898 	spin_lock(&cm->reg_lock);
899 	switch (cmd) {
900 	case SNDRV_PCM_TRIGGER_START:
901 		rec->running = 1;
902 		/* set interrupt */
903 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
904 		cm->ctrl |= chen;
905 		/* enable channel */
906 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
907 		//snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl);
908 		break;
909 	case SNDRV_PCM_TRIGGER_STOP:
910 		rec->running = 0;
911 		/* disable interrupt */
912 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
913 		/* reset */
914 		cm->ctrl &= ~chen;
915 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
916 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
917 		rec->needs_silencing = rec->is_dac;
918 		break;
919 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
920 	case SNDRV_PCM_TRIGGER_SUSPEND:
921 		cm->ctrl |= pause;
922 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
923 		break;
924 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
925 	case SNDRV_PCM_TRIGGER_RESUME:
926 		cm->ctrl &= ~pause;
927 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
928 		break;
929 	default:
930 		result = -EINVAL;
931 		break;
932 	}
933 	spin_unlock(&cm->reg_lock);
934 	return result;
935 }
936 
937 /*
938  * return the current pointer
939  */
940 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
941 						struct snd_pcm_substream *substream)
942 {
943 	size_t ptr;
944 	unsigned int reg, rem, tries;
945 
946 	if (!rec->running)
947 		return 0;
948 #if 1 // this seems better..
949 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
950 	for (tries = 0; tries < 3; tries++) {
951 		rem = snd_cmipci_read_w(cm, reg);
952 		if (rem < rec->dma_size)
953 			goto ok;
954 	}
955 	printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem);
956 	return SNDRV_PCM_POS_XRUN;
957 ok:
958 	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
959 #else
960 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
961 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
962 	ptr = bytes_to_frames(substream->runtime, ptr);
963 #endif
964 	if (substream->runtime->channels > 2)
965 		ptr = (ptr * 2) / substream->runtime->channels;
966 	return ptr;
967 }
968 
969 /*
970  * playback
971  */
972 
973 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
974 				       int cmd)
975 {
976 	struct cmipci *cm = snd_pcm_substream_chip(substream);
977 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
978 }
979 
980 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
981 {
982 	struct cmipci *cm = snd_pcm_substream_chip(substream);
983 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
984 }
985 
986 
987 
988 /*
989  * capture
990  */
991 
992 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
993 				     int cmd)
994 {
995 	struct cmipci *cm = snd_pcm_substream_chip(substream);
996 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
997 }
998 
999 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
1000 {
1001 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1002 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
1003 }
1004 
1005 
1006 /*
1007  * hw preparation for spdif
1008  */
1009 
1010 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
1011 					 struct snd_ctl_elem_info *uinfo)
1012 {
1013 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1014 	uinfo->count = 1;
1015 	return 0;
1016 }
1017 
1018 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1019 					struct snd_ctl_elem_value *ucontrol)
1020 {
1021 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022 	int i;
1023 
1024 	spin_lock_irq(&chip->reg_lock);
1025 	for (i = 0; i < 4; i++)
1026 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1027 	spin_unlock_irq(&chip->reg_lock);
1028 	return 0;
1029 }
1030 
1031 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1032 					 struct snd_ctl_elem_value *ucontrol)
1033 {
1034 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1035 	int i, change;
1036 	unsigned int val;
1037 
1038 	val = 0;
1039 	spin_lock_irq(&chip->reg_lock);
1040 	for (i = 0; i < 4; i++)
1041 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1042 	change = val != chip->dig_status;
1043 	chip->dig_status = val;
1044 	spin_unlock_irq(&chip->reg_lock);
1045 	return change;
1046 }
1047 
1048 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata =
1049 {
1050 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1051 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1052 	.info =		snd_cmipci_spdif_default_info,
1053 	.get =		snd_cmipci_spdif_default_get,
1054 	.put =		snd_cmipci_spdif_default_put
1055 };
1056 
1057 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1058 				      struct snd_ctl_elem_info *uinfo)
1059 {
1060 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1061 	uinfo->count = 1;
1062 	return 0;
1063 }
1064 
1065 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1066 				     struct snd_ctl_elem_value *ucontrol)
1067 {
1068 	ucontrol->value.iec958.status[0] = 0xff;
1069 	ucontrol->value.iec958.status[1] = 0xff;
1070 	ucontrol->value.iec958.status[2] = 0xff;
1071 	ucontrol->value.iec958.status[3] = 0xff;
1072 	return 0;
1073 }
1074 
1075 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata =
1076 {
1077 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1078 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1079 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1080 	.info =		snd_cmipci_spdif_mask_info,
1081 	.get =		snd_cmipci_spdif_mask_get,
1082 };
1083 
1084 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1085 					struct snd_ctl_elem_info *uinfo)
1086 {
1087 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1088 	uinfo->count = 1;
1089 	return 0;
1090 }
1091 
1092 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1093 				       struct snd_ctl_elem_value *ucontrol)
1094 {
1095 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096 	int i;
1097 
1098 	spin_lock_irq(&chip->reg_lock);
1099 	for (i = 0; i < 4; i++)
1100 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1101 	spin_unlock_irq(&chip->reg_lock);
1102 	return 0;
1103 }
1104 
1105 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1106 				       struct snd_ctl_elem_value *ucontrol)
1107 {
1108 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1109 	int i, change;
1110 	unsigned int val;
1111 
1112 	val = 0;
1113 	spin_lock_irq(&chip->reg_lock);
1114 	for (i = 0; i < 4; i++)
1115 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1116 	change = val != chip->dig_pcm_status;
1117 	chip->dig_pcm_status = val;
1118 	spin_unlock_irq(&chip->reg_lock);
1119 	return change;
1120 }
1121 
1122 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata =
1123 {
1124 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1125 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1126 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1127 	.info =		snd_cmipci_spdif_stream_info,
1128 	.get =		snd_cmipci_spdif_stream_get,
1129 	.put =		snd_cmipci_spdif_stream_put
1130 };
1131 
1132 /*
1133  */
1134 
1135 /* save mixer setting and mute for AC3 playback */
1136 static int save_mixer_state(struct cmipci *cm)
1137 {
1138 	if (! cm->mixer_insensitive) {
1139 		struct snd_ctl_elem_value *val;
1140 		unsigned int i;
1141 
1142 		val = kmalloc(sizeof(*val), GFP_ATOMIC);
1143 		if (!val)
1144 			return -ENOMEM;
1145 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1146 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1147 			if (ctl) {
1148 				int event;
1149 				memset(val, 0, sizeof(*val));
1150 				ctl->get(ctl, val);
1151 				cm->mixer_res_status[i] = val->value.integer.value[0];
1152 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1153 				event = SNDRV_CTL_EVENT_MASK_INFO;
1154 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1155 					ctl->put(ctl, val); /* toggle */
1156 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1157 				}
1158 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159 				snd_ctl_notify(cm->card, event, &ctl->id);
1160 			}
1161 		}
1162 		kfree(val);
1163 		cm->mixer_insensitive = 1;
1164 	}
1165 	return 0;
1166 }
1167 
1168 
1169 /* restore the previously saved mixer status */
1170 static void restore_mixer_state(struct cmipci *cm)
1171 {
1172 	if (cm->mixer_insensitive) {
1173 		struct snd_ctl_elem_value *val;
1174 		unsigned int i;
1175 
1176 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1177 		if (!val)
1178 			return;
1179 		cm->mixer_insensitive = 0; /* at first clear this;
1180 					      otherwise the changes will be ignored */
1181 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1182 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1183 			if (ctl) {
1184 				int event;
1185 
1186 				memset(val, 0, sizeof(*val));
1187 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1188 				ctl->get(ctl, val);
1189 				event = SNDRV_CTL_EVENT_MASK_INFO;
1190 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1191 					val->value.integer.value[0] = cm->mixer_res_status[i];
1192 					ctl->put(ctl, val);
1193 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1194 				}
1195 				snd_ctl_notify(cm->card, event, &ctl->id);
1196 			}
1197 		}
1198 		kfree(val);
1199 	}
1200 }
1201 
1202 /* spinlock held! */
1203 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1204 {
1205 	if (do_ac3) {
1206 		/* AC3EN for 037 */
1207 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1208 		/* AC3EN for 039 */
1209 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1210 
1211 		if (cm->can_ac3_hw) {
1212 			/* SPD24SEL for 037, 0x02 */
1213 			/* SPD24SEL for 039, 0x20, but cannot be set */
1214 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1215 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216 		} else { /* can_ac3_sw */
1217 			/* SPD32SEL for 037 & 039, 0x20 */
1218 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1219 			/* set 176K sample rate to fix 033 HW bug */
1220 			if (cm->chip_version == 33) {
1221 				if (rate >= 48000) {
1222 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1223 				} else {
1224 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1225 				}
1226 			}
1227 		}
1228 
1229 	} else {
1230 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1231 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1232 
1233 		if (cm->can_ac3_hw) {
1234 			/* chip model >= 37 */
1235 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1236 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1237 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1238 			} else {
1239 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1240 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1241 			}
1242 		} else {
1243 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1244 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1245 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1246 		}
1247 	}
1248 }
1249 
1250 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1251 {
1252 	int rate, err;
1253 
1254 	rate = subs->runtime->rate;
1255 
1256 	if (up && do_ac3)
1257 		if ((err = save_mixer_state(cm)) < 0)
1258 			return err;
1259 
1260 	spin_lock_irq(&cm->reg_lock);
1261 	cm->spdif_playback_avail = up;
1262 	if (up) {
1263 		/* they are controlled via "IEC958 Output Switch" */
1264 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1265 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1266 		if (cm->spdif_playback_enabled)
1267 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1268 		setup_ac3(cm, subs, do_ac3, rate);
1269 
1270 		if (rate == 48000 || rate == 96000)
1271 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1272 		else
1273 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1274 		if (rate > 48000)
1275 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1276 		else
1277 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1278 	} else {
1279 		/* they are controlled via "IEC958 Output Switch" */
1280 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1281 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1282 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1283 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1284 		setup_ac3(cm, subs, 0, 0);
1285 	}
1286 	spin_unlock_irq(&cm->reg_lock);
1287 	return 0;
1288 }
1289 
1290 
1291 /*
1292  * preparation
1293  */
1294 
1295 /* playback - enable spdif only on the certain condition */
1296 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1297 {
1298 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1299 	int rate = substream->runtime->rate;
1300 	int err, do_spdif, do_ac3 = 0;
1301 
1302 	do_spdif = (rate >= 44100 && rate <= 96000 &&
1303 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1304 		    substream->runtime->channels == 2);
1305 	if (do_spdif && cm->can_ac3_hw)
1306 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307 	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1308 		return err;
1309 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1310 }
1311 
1312 /* playback  (via device #2) - enable spdif always */
1313 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1314 {
1315 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1316 	int err, do_ac3;
1317 
1318 	if (cm->can_ac3_hw)
1319 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1320 	else
1321 		do_ac3 = 1; /* doesn't matter */
1322 	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1323 		return err;
1324 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1325 }
1326 
1327 /*
1328  * Apparently, the samples last played on channel A stay in some buffer, even
1329  * after the channel is reset, and get added to the data for the rear DACs when
1330  * playing a multichannel stream on channel B.  This is likely to generate
1331  * wraparounds and thus distortions.
1332  * To avoid this, we play at least one zero sample after the actual stream has
1333  * stopped.
1334  */
1335 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1336 {
1337 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1338 	unsigned int reg, val;
1339 
1340 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1341 		/* set up a small silence buffer */
1342 		memset(runtime->dma_area, 0, PAGE_SIZE);
1343 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1344 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1345 		snd_cmipci_write(cm, reg, val);
1346 
1347 		/* configure for 16 bits, 2 channels, 8 kHz */
1348 		if (runtime->channels > 2)
1349 			set_dac_channels(cm, rec, 2);
1350 		spin_lock_irq(&cm->reg_lock);
1351 		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1352 		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1353 		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1354 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1355 		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1356 		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1357 		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1358 		if (cm->can_96k)
1359 			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1360 		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1361 
1362 		/* start stream (we don't need interrupts) */
1363 		cm->ctrl |= CM_CHEN0 << rec->ch;
1364 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1365 		spin_unlock_irq(&cm->reg_lock);
1366 
1367 		msleep(1);
1368 
1369 		/* stop and reset stream */
1370 		spin_lock_irq(&cm->reg_lock);
1371 		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1372 		val = CM_RST_CH0 << rec->ch;
1373 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1374 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1375 		spin_unlock_irq(&cm->reg_lock);
1376 
1377 		rec->needs_silencing = 0;
1378 	}
1379 }
1380 
1381 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1382 {
1383 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1384 	setup_spdif_playback(cm, substream, 0, 0);
1385 	restore_mixer_state(cm);
1386 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1387 	return snd_cmipci_hw_free(substream);
1388 }
1389 
1390 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1391 {
1392 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1393 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1394 	return snd_cmipci_hw_free(substream);
1395 }
1396 
1397 /* capture */
1398 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1399 {
1400 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1401 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1402 }
1403 
1404 /* capture with spdif (via device #2) */
1405 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1406 {
1407 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1408 
1409 	spin_lock_irq(&cm->reg_lock);
1410 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1411 	if (cm->can_96k) {
1412 		if (substream->runtime->rate > 48000)
1413 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1414 		else
1415 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1416 	}
1417 	if (snd_pcm_format_width(substream->runtime->format) > 16)
1418 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1419 	else
1420 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421 
1422 	spin_unlock_irq(&cm->reg_lock);
1423 
1424 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1425 }
1426 
1427 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1428 {
1429 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1430 
1431 	spin_lock_irq(&cm->reg_lock);
1432 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1433 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1434 	spin_unlock_irq(&cm->reg_lock);
1435 
1436 	return snd_cmipci_hw_free(subs);
1437 }
1438 
1439 
1440 /*
1441  * interrupt handler
1442  */
1443 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1444 {
1445 	struct cmipci *cm = dev_id;
1446 	unsigned int status, mask = 0;
1447 
1448 	/* fastpath out, to ease interrupt sharing */
1449 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1450 	if (!(status & CM_INTR))
1451 		return IRQ_NONE;
1452 
1453 	/* acknowledge interrupt */
1454 	spin_lock(&cm->reg_lock);
1455 	if (status & CM_CHINT0)
1456 		mask |= CM_CH0_INT_EN;
1457 	if (status & CM_CHINT1)
1458 		mask |= CM_CH1_INT_EN;
1459 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1460 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1461 	spin_unlock(&cm->reg_lock);
1462 
1463 	if (cm->rmidi && (status & CM_UARTINT))
1464 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1465 
1466 	if (cm->pcm) {
1467 		if ((status & CM_CHINT0) && cm->channel[0].running)
1468 			snd_pcm_period_elapsed(cm->channel[0].substream);
1469 		if ((status & CM_CHINT1) && cm->channel[1].running)
1470 			snd_pcm_period_elapsed(cm->channel[1].substream);
1471 	}
1472 	return IRQ_HANDLED;
1473 }
1474 
1475 /*
1476  * h/w infos
1477  */
1478 
1479 /* playback on channel A */
1480 static struct snd_pcm_hardware snd_cmipci_playback =
1481 {
1482 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1483 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1484 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1485 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1486 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1487 	.rate_min =		5512,
1488 	.rate_max =		48000,
1489 	.channels_min =		1,
1490 	.channels_max =		2,
1491 	.buffer_bytes_max =	(128*1024),
1492 	.period_bytes_min =	64,
1493 	.period_bytes_max =	(128*1024),
1494 	.periods_min =		2,
1495 	.periods_max =		1024,
1496 	.fifo_size =		0,
1497 };
1498 
1499 /* capture on channel B */
1500 static struct snd_pcm_hardware snd_cmipci_capture =
1501 {
1502 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1503 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1504 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1505 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1506 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1507 	.rate_min =		5512,
1508 	.rate_max =		48000,
1509 	.channels_min =		1,
1510 	.channels_max =		2,
1511 	.buffer_bytes_max =	(128*1024),
1512 	.period_bytes_min =	64,
1513 	.period_bytes_max =	(128*1024),
1514 	.periods_min =		2,
1515 	.periods_max =		1024,
1516 	.fifo_size =		0,
1517 };
1518 
1519 /* playback on channel B - stereo 16bit only? */
1520 static struct snd_pcm_hardware snd_cmipci_playback2 =
1521 {
1522 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1523 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1524 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1525 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1526 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1527 	.rate_min =		5512,
1528 	.rate_max =		48000,
1529 	.channels_min =		2,
1530 	.channels_max =		2,
1531 	.buffer_bytes_max =	(128*1024),
1532 	.period_bytes_min =	64,
1533 	.period_bytes_max =	(128*1024),
1534 	.periods_min =		2,
1535 	.periods_max =		1024,
1536 	.fifo_size =		0,
1537 };
1538 
1539 /* spdif playback on channel A */
1540 static struct snd_pcm_hardware snd_cmipci_playback_spdif =
1541 {
1542 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1543 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1544 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1545 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1546 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1547 	.rate_min =		44100,
1548 	.rate_max =		48000,
1549 	.channels_min =		2,
1550 	.channels_max =		2,
1551 	.buffer_bytes_max =	(128*1024),
1552 	.period_bytes_min =	64,
1553 	.period_bytes_max =	(128*1024),
1554 	.periods_min =		2,
1555 	.periods_max =		1024,
1556 	.fifo_size =		0,
1557 };
1558 
1559 /* spdif playback on channel A (32bit, IEC958 subframes) */
1560 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1561 {
1562 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1563 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1564 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1565 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1566 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1567 	.rate_min =		44100,
1568 	.rate_max =		48000,
1569 	.channels_min =		2,
1570 	.channels_max =		2,
1571 	.buffer_bytes_max =	(128*1024),
1572 	.period_bytes_min =	64,
1573 	.period_bytes_max =	(128*1024),
1574 	.periods_min =		2,
1575 	.periods_max =		1024,
1576 	.fifo_size =		0,
1577 };
1578 
1579 /* spdif capture on channel B */
1580 static struct snd_pcm_hardware snd_cmipci_capture_spdif =
1581 {
1582 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1583 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1584 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1585 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1586 				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1587 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1588 	.rate_min =		44100,
1589 	.rate_max =		48000,
1590 	.channels_min =		2,
1591 	.channels_max =		2,
1592 	.buffer_bytes_max =	(128*1024),
1593 	.period_bytes_min =	64,
1594 	.period_bytes_max =	(128*1024),
1595 	.periods_min =		2,
1596 	.periods_max =		1024,
1597 	.fifo_size =		0,
1598 };
1599 
1600 static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1601 			32000, 44100, 48000, 88200, 96000, 128000 };
1602 static struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1603 		.count = ARRAY_SIZE(rate_constraints),
1604 		.list = rate_constraints,
1605 		.mask = 0,
1606 };
1607 
1608 /*
1609  * check device open/close
1610  */
1611 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1612 {
1613 	int ch = mode & CM_OPEN_CH_MASK;
1614 
1615 	/* FIXME: a file should wait until the device becomes free
1616 	 * when it's opened on blocking mode.  however, since the current
1617 	 * pcm framework doesn't pass file pointer before actually opened,
1618 	 * we can't know whether blocking mode or not in open callback..
1619 	 */
1620 	mutex_lock(&cm->open_mutex);
1621 	if (cm->opened[ch]) {
1622 		mutex_unlock(&cm->open_mutex);
1623 		return -EBUSY;
1624 	}
1625 	cm->opened[ch] = mode;
1626 	cm->channel[ch].substream = subs;
1627 	if (! (mode & CM_OPEN_DAC)) {
1628 		/* disable dual DAC mode */
1629 		cm->channel[ch].is_dac = 0;
1630 		spin_lock_irq(&cm->reg_lock);
1631 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1632 		spin_unlock_irq(&cm->reg_lock);
1633 	}
1634 	mutex_unlock(&cm->open_mutex);
1635 	return 0;
1636 }
1637 
1638 static void close_device_check(struct cmipci *cm, int mode)
1639 {
1640 	int ch = mode & CM_OPEN_CH_MASK;
1641 
1642 	mutex_lock(&cm->open_mutex);
1643 	if (cm->opened[ch] == mode) {
1644 		if (cm->channel[ch].substream) {
1645 			snd_cmipci_ch_reset(cm, ch);
1646 			cm->channel[ch].running = 0;
1647 			cm->channel[ch].substream = NULL;
1648 		}
1649 		cm->opened[ch] = 0;
1650 		if (! cm->channel[ch].is_dac) {
1651 			/* enable dual DAC mode again */
1652 			cm->channel[ch].is_dac = 1;
1653 			spin_lock_irq(&cm->reg_lock);
1654 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1655 			spin_unlock_irq(&cm->reg_lock);
1656 		}
1657 	}
1658 	mutex_unlock(&cm->open_mutex);
1659 }
1660 
1661 /*
1662  */
1663 
1664 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1665 {
1666 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1667 	struct snd_pcm_runtime *runtime = substream->runtime;
1668 	int err;
1669 
1670 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1671 		return err;
1672 	runtime->hw = snd_cmipci_playback;
1673 	if (cm->chip_version == 68) {
1674 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1675 				     SNDRV_PCM_RATE_96000;
1676 		runtime->hw.rate_max = 96000;
1677 	} else if (cm->chip_version == 55) {
1678 		err = snd_pcm_hw_constraint_list(runtime, 0,
1679 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1680 		if (err < 0)
1681 			return err;
1682 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1683 		runtime->hw.rate_max = 128000;
1684 	}
1685 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1686 	cm->dig_pcm_status = cm->dig_status;
1687 	return 0;
1688 }
1689 
1690 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1691 {
1692 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1693 	struct snd_pcm_runtime *runtime = substream->runtime;
1694 	int err;
1695 
1696 	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1697 		return err;
1698 	runtime->hw = snd_cmipci_capture;
1699 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1700 		runtime->hw.rate_min = 41000;
1701 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1702 	} else if (cm->chip_version == 55) {
1703 		err = snd_pcm_hw_constraint_list(runtime, 0,
1704 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1705 		if (err < 0)
1706 			return err;
1707 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1708 		runtime->hw.rate_max = 128000;
1709 	}
1710 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1711 	return 0;
1712 }
1713 
1714 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1715 {
1716 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1717 	struct snd_pcm_runtime *runtime = substream->runtime;
1718 	int err;
1719 
1720 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1721 		return err;
1722 	runtime->hw = snd_cmipci_playback2;
1723 	mutex_lock(&cm->open_mutex);
1724 	if (! cm->opened[CM_CH_PLAY]) {
1725 		if (cm->can_multi_ch) {
1726 			runtime->hw.channels_max = cm->max_channels;
1727 			if (cm->max_channels == 4)
1728 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1729 			else if (cm->max_channels == 6)
1730 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1731 			else if (cm->max_channels == 8)
1732 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1733 		}
1734 	}
1735 	mutex_unlock(&cm->open_mutex);
1736 	if (cm->chip_version == 68) {
1737 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1738 				     SNDRV_PCM_RATE_96000;
1739 		runtime->hw.rate_max = 96000;
1740 	} else if (cm->chip_version == 55) {
1741 		err = snd_pcm_hw_constraint_list(runtime, 0,
1742 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1743 		if (err < 0)
1744 			return err;
1745 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1746 		runtime->hw.rate_max = 128000;
1747 	}
1748 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1749 	return 0;
1750 }
1751 
1752 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1753 {
1754 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1755 	struct snd_pcm_runtime *runtime = substream->runtime;
1756 	int err;
1757 
1758 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1759 		return err;
1760 	if (cm->can_ac3_hw) {
1761 		runtime->hw = snd_cmipci_playback_spdif;
1762 		if (cm->chip_version >= 37) {
1763 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1764 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1765 		}
1766 		if (cm->can_96k) {
1767 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1768 					     SNDRV_PCM_RATE_96000;
1769 			runtime->hw.rate_max = 96000;
1770 		}
1771 	} else {
1772 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1773 	}
1774 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1775 	cm->dig_pcm_status = cm->dig_status;
1776 	return 0;
1777 }
1778 
1779 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1780 {
1781 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1782 	struct snd_pcm_runtime *runtime = substream->runtime;
1783 	int err;
1784 
1785 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1786 		return err;
1787 	runtime->hw = snd_cmipci_capture_spdif;
1788 	if (cm->can_96k && !(cm->chip_version == 68)) {
1789 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1790 				     SNDRV_PCM_RATE_96000;
1791 		runtime->hw.rate_max = 96000;
1792 	}
1793 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1794 	return 0;
1795 }
1796 
1797 
1798 /*
1799  */
1800 
1801 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1802 {
1803 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1804 	close_device_check(cm, CM_OPEN_PLAYBACK);
1805 	return 0;
1806 }
1807 
1808 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1809 {
1810 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1811 	close_device_check(cm, CM_OPEN_CAPTURE);
1812 	return 0;
1813 }
1814 
1815 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1816 {
1817 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1818 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1819 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1820 	return 0;
1821 }
1822 
1823 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1824 {
1825 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1826 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1827 	return 0;
1828 }
1829 
1830 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1831 {
1832 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1833 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1834 	return 0;
1835 }
1836 
1837 
1838 /*
1839  */
1840 
1841 static struct snd_pcm_ops snd_cmipci_playback_ops = {
1842 	.open =		snd_cmipci_playback_open,
1843 	.close =	snd_cmipci_playback_close,
1844 	.ioctl =	snd_pcm_lib_ioctl,
1845 	.hw_params =	snd_cmipci_hw_params,
1846 	.hw_free =	snd_cmipci_playback_hw_free,
1847 	.prepare =	snd_cmipci_playback_prepare,
1848 	.trigger =	snd_cmipci_playback_trigger,
1849 	.pointer =	snd_cmipci_playback_pointer,
1850 };
1851 
1852 static struct snd_pcm_ops snd_cmipci_capture_ops = {
1853 	.open =		snd_cmipci_capture_open,
1854 	.close =	snd_cmipci_capture_close,
1855 	.ioctl =	snd_pcm_lib_ioctl,
1856 	.hw_params =	snd_cmipci_hw_params,
1857 	.hw_free =	snd_cmipci_hw_free,
1858 	.prepare =	snd_cmipci_capture_prepare,
1859 	.trigger =	snd_cmipci_capture_trigger,
1860 	.pointer =	snd_cmipci_capture_pointer,
1861 };
1862 
1863 static struct snd_pcm_ops snd_cmipci_playback2_ops = {
1864 	.open =		snd_cmipci_playback2_open,
1865 	.close =	snd_cmipci_playback2_close,
1866 	.ioctl =	snd_pcm_lib_ioctl,
1867 	.hw_params =	snd_cmipci_playback2_hw_params,
1868 	.hw_free =	snd_cmipci_playback2_hw_free,
1869 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1870 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1871 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1872 };
1873 
1874 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1875 	.open =		snd_cmipci_playback_spdif_open,
1876 	.close =	snd_cmipci_playback_spdif_close,
1877 	.ioctl =	snd_pcm_lib_ioctl,
1878 	.hw_params =	snd_cmipci_hw_params,
1879 	.hw_free =	snd_cmipci_playback_hw_free,
1880 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1881 	.trigger =	snd_cmipci_playback_trigger,
1882 	.pointer =	snd_cmipci_playback_pointer,
1883 };
1884 
1885 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1886 	.open =		snd_cmipci_capture_spdif_open,
1887 	.close =	snd_cmipci_capture_spdif_close,
1888 	.ioctl =	snd_pcm_lib_ioctl,
1889 	.hw_params =	snd_cmipci_hw_params,
1890 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1891 	.prepare =	snd_cmipci_capture_spdif_prepare,
1892 	.trigger =	snd_cmipci_capture_trigger,
1893 	.pointer =	snd_cmipci_capture_pointer,
1894 };
1895 
1896 
1897 /*
1898  */
1899 
1900 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device)
1901 {
1902 	struct snd_pcm *pcm;
1903 	int err;
1904 
1905 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1906 	if (err < 0)
1907 		return err;
1908 
1909 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1910 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1911 
1912 	pcm->private_data = cm;
1913 	pcm->info_flags = 0;
1914 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1915 	cm->pcm = pcm;
1916 
1917 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1918 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1919 
1920 	return 0;
1921 }
1922 
1923 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1924 {
1925 	struct snd_pcm *pcm;
1926 	int err;
1927 
1928 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1929 	if (err < 0)
1930 		return err;
1931 
1932 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1933 
1934 	pcm->private_data = cm;
1935 	pcm->info_flags = 0;
1936 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1937 	cm->pcm2 = pcm;
1938 
1939 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1940 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1941 
1942 	return 0;
1943 }
1944 
1945 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1946 {
1947 	struct snd_pcm *pcm;
1948 	int err;
1949 
1950 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1951 	if (err < 0)
1952 		return err;
1953 
1954 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1955 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1956 
1957 	pcm->private_data = cm;
1958 	pcm->info_flags = 0;
1959 	strcpy(pcm->name, "C-Media PCI IEC958");
1960 	cm->pcm_spdif = pcm;
1961 
1962 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1963 					      snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1964 
1965 	return 0;
1966 }
1967 
1968 /*
1969  * mixer interface:
1970  * - CM8338/8738 has a compatible mixer interface with SB16, but
1971  *   lack of some elements like tone control, i/o gain and AGC.
1972  * - Access to native registers:
1973  *   - A 3D switch
1974  *   - Output mute switches
1975  */
1976 
1977 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1978 {
1979 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1980 	outb(data, s->iobase + CM_REG_SB16_DATA);
1981 }
1982 
1983 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1984 {
1985 	unsigned char v;
1986 
1987 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1988 	v = inb(s->iobase + CM_REG_SB16_DATA);
1989 	return v;
1990 }
1991 
1992 /*
1993  * general mixer element
1994  */
1995 struct cmipci_sb_reg {
1996 	unsigned int left_reg, right_reg;
1997 	unsigned int left_shift, right_shift;
1998 	unsigned int mask;
1999 	unsigned int invert: 1;
2000 	unsigned int stereo: 1;
2001 };
2002 
2003 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
2004  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
2005 
2006 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2007 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2008   .info = snd_cmipci_info_volume, \
2009   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2010   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2011 }
2012 
2013 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2014 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2015 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2016 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2017 
2018 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2019 {
2020 	r->left_reg = val & 0xff;
2021 	r->right_reg = (val >> 8) & 0xff;
2022 	r->left_shift = (val >> 16) & 0x07;
2023 	r->right_shift = (val >> 19) & 0x07;
2024 	r->invert = (val >> 22) & 1;
2025 	r->stereo = (val >> 23) & 1;
2026 	r->mask = (val >> 24) & 0xff;
2027 }
2028 
2029 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2030 				  struct snd_ctl_elem_info *uinfo)
2031 {
2032 	struct cmipci_sb_reg reg;
2033 
2034 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2035 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2036 	uinfo->count = reg.stereo + 1;
2037 	uinfo->value.integer.min = 0;
2038 	uinfo->value.integer.max = reg.mask;
2039 	return 0;
2040 }
2041 
2042 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2043 				 struct snd_ctl_elem_value *ucontrol)
2044 {
2045 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2046 	struct cmipci_sb_reg reg;
2047 	int val;
2048 
2049 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2050 	spin_lock_irq(&cm->reg_lock);
2051 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2052 	if (reg.invert)
2053 		val = reg.mask - val;
2054 	ucontrol->value.integer.value[0] = val;
2055 	if (reg.stereo) {
2056 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2057 		if (reg.invert)
2058 			val = reg.mask - val;
2059 		 ucontrol->value.integer.value[1] = val;
2060 	}
2061 	spin_unlock_irq(&cm->reg_lock);
2062 	return 0;
2063 }
2064 
2065 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2066 				 struct snd_ctl_elem_value *ucontrol)
2067 {
2068 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2069 	struct cmipci_sb_reg reg;
2070 	int change;
2071 	int left, right, oleft, oright;
2072 
2073 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2074 	left = ucontrol->value.integer.value[0] & reg.mask;
2075 	if (reg.invert)
2076 		left = reg.mask - left;
2077 	left <<= reg.left_shift;
2078 	if (reg.stereo) {
2079 		right = ucontrol->value.integer.value[1] & reg.mask;
2080 		if (reg.invert)
2081 			right = reg.mask - right;
2082 		right <<= reg.right_shift;
2083 	} else
2084 		right = 0;
2085 	spin_lock_irq(&cm->reg_lock);
2086 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2087 	left |= oleft & ~(reg.mask << reg.left_shift);
2088 	change = left != oleft;
2089 	if (reg.stereo) {
2090 		if (reg.left_reg != reg.right_reg) {
2091 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2092 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2093 		} else
2094 			oright = left;
2095 		right |= oright & ~(reg.mask << reg.right_shift);
2096 		change |= right != oright;
2097 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2098 	} else
2099 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2100 	spin_unlock_irq(&cm->reg_lock);
2101 	return change;
2102 }
2103 
2104 /*
2105  * input route (left,right) -> (left,right)
2106  */
2107 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2108 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2109   .info = snd_cmipci_info_input_sw, \
2110   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2111   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2112 }
2113 
2114 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2115 				    struct snd_ctl_elem_info *uinfo)
2116 {
2117 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2118 	uinfo->count = 4;
2119 	uinfo->value.integer.min = 0;
2120 	uinfo->value.integer.max = 1;
2121 	return 0;
2122 }
2123 
2124 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2125 				   struct snd_ctl_elem_value *ucontrol)
2126 {
2127 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2128 	struct cmipci_sb_reg reg;
2129 	int val1, val2;
2130 
2131 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2132 	spin_lock_irq(&cm->reg_lock);
2133 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2134 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2135 	spin_unlock_irq(&cm->reg_lock);
2136 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2137 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2138 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2139 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2140 	return 0;
2141 }
2142 
2143 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2144 				   struct snd_ctl_elem_value *ucontrol)
2145 {
2146 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2147 	struct cmipci_sb_reg reg;
2148 	int change;
2149 	int val1, val2, oval1, oval2;
2150 
2151 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2152 	spin_lock_irq(&cm->reg_lock);
2153 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2154 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2155 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2156 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2157 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2158 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2159 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2160 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2161 	change = val1 != oval1 || val2 != oval2;
2162 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2163 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2164 	spin_unlock_irq(&cm->reg_lock);
2165 	return change;
2166 }
2167 
2168 /*
2169  * native mixer switches/volumes
2170  */
2171 
2172 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174   .info = snd_cmipci_info_native_mixer, \
2175   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2177 }
2178 
2179 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2180 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2181   .info = snd_cmipci_info_native_mixer, \
2182   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2183   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2184 }
2185 
2186 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2187 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2188   .info = snd_cmipci_info_native_mixer, \
2189   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2190   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2191 }
2192 
2193 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2194 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2195   .info = snd_cmipci_info_native_mixer, \
2196   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2197   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2198 }
2199 
2200 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2201 					struct snd_ctl_elem_info *uinfo)
2202 {
2203 	struct cmipci_sb_reg reg;
2204 
2205 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2206 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2207 	uinfo->count = reg.stereo + 1;
2208 	uinfo->value.integer.min = 0;
2209 	uinfo->value.integer.max = reg.mask;
2210 	return 0;
2211 
2212 }
2213 
2214 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2215 				       struct snd_ctl_elem_value *ucontrol)
2216 {
2217 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2218 	struct cmipci_sb_reg reg;
2219 	unsigned char oreg, val;
2220 
2221 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2222 	spin_lock_irq(&cm->reg_lock);
2223 	oreg = inb(cm->iobase + reg.left_reg);
2224 	val = (oreg >> reg.left_shift) & reg.mask;
2225 	if (reg.invert)
2226 		val = reg.mask - val;
2227 	ucontrol->value.integer.value[0] = val;
2228 	if (reg.stereo) {
2229 		val = (oreg >> reg.right_shift) & reg.mask;
2230 		if (reg.invert)
2231 			val = reg.mask - val;
2232 		ucontrol->value.integer.value[1] = val;
2233 	}
2234 	spin_unlock_irq(&cm->reg_lock);
2235 	return 0;
2236 }
2237 
2238 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2239 				       struct snd_ctl_elem_value *ucontrol)
2240 {
2241 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2242 	struct cmipci_sb_reg reg;
2243 	unsigned char oreg, nreg, val;
2244 
2245 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2246 	spin_lock_irq(&cm->reg_lock);
2247 	oreg = inb(cm->iobase + reg.left_reg);
2248 	val = ucontrol->value.integer.value[0] & reg.mask;
2249 	if (reg.invert)
2250 		val = reg.mask - val;
2251 	nreg = oreg & ~(reg.mask << reg.left_shift);
2252 	nreg |= (val << reg.left_shift);
2253 	if (reg.stereo) {
2254 		val = ucontrol->value.integer.value[1] & reg.mask;
2255 		if (reg.invert)
2256 			val = reg.mask - val;
2257 		nreg &= ~(reg.mask << reg.right_shift);
2258 		nreg |= (val << reg.right_shift);
2259 	}
2260 	outb(nreg, cm->iobase + reg.left_reg);
2261 	spin_unlock_irq(&cm->reg_lock);
2262 	return (nreg != oreg);
2263 }
2264 
2265 /*
2266  * special case - check mixer sensitivity
2267  */
2268 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2269 						 struct snd_ctl_elem_value *ucontrol)
2270 {
2271 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2272 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2273 }
2274 
2275 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2276 						 struct snd_ctl_elem_value *ucontrol)
2277 {
2278 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2279 	if (cm->mixer_insensitive) {
2280 		/* ignored */
2281 		return 0;
2282 	}
2283 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2284 }
2285 
2286 
2287 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = {
2288 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2289 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2290 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2291 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2292 	{ /* switch with sensitivity */
2293 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2294 		.name = "PCM Playback Switch",
2295 		.info = snd_cmipci_info_native_mixer,
2296 		.get = snd_cmipci_get_native_mixer_sensitive,
2297 		.put = snd_cmipci_put_native_mixer_sensitive,
2298 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2299 	},
2300 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2301 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2302 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2303 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2304 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2305 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2306 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2307 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2308 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2309 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2310 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2311 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2312 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2313 	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2314 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2315 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2316 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2317 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2318 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2319 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2320 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2321 	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2322 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2323 };
2324 
2325 /*
2326  * other switches
2327  */
2328 
2329 struct cmipci_switch_args {
2330 	int reg;		/* register index */
2331 	unsigned int mask;	/* mask bits */
2332 	unsigned int mask_on;	/* mask bits to turn on */
2333 	unsigned int is_byte: 1;		/* byte access? */
2334 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2335 					 * non-audio operation?
2336 					 */
2337 };
2338 
2339 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2340 
2341 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2342 				   struct snd_ctl_elem_value *ucontrol,
2343 				   struct cmipci_switch_args *args)
2344 {
2345 	unsigned int val;
2346 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2347 
2348 	spin_lock_irq(&cm->reg_lock);
2349 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2350 		ucontrol->value.integer.value[0] = 0;
2351 		spin_unlock_irq(&cm->reg_lock);
2352 		return 0;
2353 	}
2354 	if (args->is_byte)
2355 		val = inb(cm->iobase + args->reg);
2356 	else
2357 		val = snd_cmipci_read(cm, args->reg);
2358 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2359 	spin_unlock_irq(&cm->reg_lock);
2360 	return 0;
2361 }
2362 
2363 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2364 				  struct snd_ctl_elem_value *ucontrol)
2365 {
2366 	struct cmipci_switch_args *args;
2367 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2368 	if (snd_BUG_ON(!args))
2369 		return -EINVAL;
2370 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2371 }
2372 
2373 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2374 				   struct snd_ctl_elem_value *ucontrol,
2375 				   struct cmipci_switch_args *args)
2376 {
2377 	unsigned int val;
2378 	int change;
2379 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2380 
2381 	spin_lock_irq(&cm->reg_lock);
2382 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2383 		/* ignored */
2384 		spin_unlock_irq(&cm->reg_lock);
2385 		return 0;
2386 	}
2387 	if (args->is_byte)
2388 		val = inb(cm->iobase + args->reg);
2389 	else
2390 		val = snd_cmipci_read(cm, args->reg);
2391 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2392 			args->mask_on : (args->mask & ~args->mask_on));
2393 	if (change) {
2394 		val &= ~args->mask;
2395 		if (ucontrol->value.integer.value[0])
2396 			val |= args->mask_on;
2397 		else
2398 			val |= (args->mask & ~args->mask_on);
2399 		if (args->is_byte)
2400 			outb((unsigned char)val, cm->iobase + args->reg);
2401 		else
2402 			snd_cmipci_write(cm, args->reg, val);
2403 	}
2404 	spin_unlock_irq(&cm->reg_lock);
2405 	return change;
2406 }
2407 
2408 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2409 				  struct snd_ctl_elem_value *ucontrol)
2410 {
2411 	struct cmipci_switch_args *args;
2412 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2413 	if (snd_BUG_ON(!args))
2414 		return -EINVAL;
2415 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2416 }
2417 
2418 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2419 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2420   .reg = xreg, \
2421   .mask = xmask, \
2422   .mask_on = xmask_on, \
2423   .is_byte = xis_byte, \
2424   .ac3_sensitive = xac3, \
2425 }
2426 
2427 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2428 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2429 
2430 #if 0 /* these will be controlled in pcm device */
2431 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2432 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2433 #endif
2434 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2435 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2436 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2437 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2438 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2439 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2440 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2441 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2442 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2443 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2444 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2445 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2446 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2447 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2448 #if CM_CH_PLAY == 1
2449 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2450 #else
2451 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2452 #endif
2453 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2454 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2455 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2456 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2457 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2458 
2459 #define DEFINE_SWITCH(sname, stype, sarg) \
2460 { .name = sname, \
2461   .iface = stype, \
2462   .info = snd_cmipci_uswitch_info, \
2463   .get = snd_cmipci_uswitch_get, \
2464   .put = snd_cmipci_uswitch_put, \
2465   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2466 }
2467 
2468 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2469 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2470 
2471 
2472 /*
2473  * callbacks for spdif output switch
2474  * needs toggle two registers..
2475  */
2476 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2477 					struct snd_ctl_elem_value *ucontrol)
2478 {
2479 	int changed;
2480 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2481 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2482 	return changed;
2483 }
2484 
2485 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2486 					struct snd_ctl_elem_value *ucontrol)
2487 {
2488 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2489 	int changed;
2490 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2491 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2492 	if (changed) {
2493 		if (ucontrol->value.integer.value[0]) {
2494 			if (chip->spdif_playback_avail)
2495 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2496 		} else {
2497 			if (chip->spdif_playback_avail)
2498 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2499 		}
2500 	}
2501 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2502 	return changed;
2503 }
2504 
2505 
2506 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2507 					struct snd_ctl_elem_info *uinfo)
2508 {
2509 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2510 	static const char *const texts[3] = {
2511 		"Line-In", "Rear Output", "Bass Output"
2512 	};
2513 
2514 	return snd_ctl_enum_info(uinfo, 1,
2515 				 cm->chip_version >= 39 ? 3 : 2, texts);
2516 }
2517 
2518 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2519 {
2520 	unsigned int val;
2521 	if (cm->chip_version >= 39) {
2522 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2523 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2524 			return 2;
2525 	}
2526 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2527 	if (val & CM_REAR2LIN)
2528 		return 1;
2529 	return 0;
2530 }
2531 
2532 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2533 				       struct snd_ctl_elem_value *ucontrol)
2534 {
2535 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2536 
2537 	spin_lock_irq(&cm->reg_lock);
2538 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2539 	spin_unlock_irq(&cm->reg_lock);
2540 	return 0;
2541 }
2542 
2543 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2544 				       struct snd_ctl_elem_value *ucontrol)
2545 {
2546 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2547 	int change;
2548 
2549 	spin_lock_irq(&cm->reg_lock);
2550 	if (ucontrol->value.enumerated.item[0] == 2)
2551 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2552 	else
2553 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2554 	if (ucontrol->value.enumerated.item[0] == 1)
2555 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2556 	else
2557 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2558 	spin_unlock_irq(&cm->reg_lock);
2559 	return change;
2560 }
2561 
2562 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2563 				       struct snd_ctl_elem_info *uinfo)
2564 {
2565 	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2566 
2567 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2568 }
2569 
2570 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2571 				      struct snd_ctl_elem_value *ucontrol)
2572 {
2573 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2574 	/* same bit as spdi_phase */
2575 	spin_lock_irq(&cm->reg_lock);
2576 	ucontrol->value.enumerated.item[0] =
2577 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2578 	spin_unlock_irq(&cm->reg_lock);
2579 	return 0;
2580 }
2581 
2582 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2583 				      struct snd_ctl_elem_value *ucontrol)
2584 {
2585 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2586 	int change;
2587 
2588 	spin_lock_irq(&cm->reg_lock);
2589 	if (ucontrol->value.enumerated.item[0])
2590 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2591 	else
2592 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2593 	spin_unlock_irq(&cm->reg_lock);
2594 	return change;
2595 }
2596 
2597 /* both for CM8338/8738 */
2598 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = {
2599 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2600 	{
2601 		.name = "Line-In Mode",
2602 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2603 		.info = snd_cmipci_line_in_mode_info,
2604 		.get = snd_cmipci_line_in_mode_get,
2605 		.put = snd_cmipci_line_in_mode_put,
2606 	},
2607 };
2608 
2609 /* for non-multichannel chips */
2610 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata =
2611 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2612 
2613 /* only for CM8738 */
2614 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = {
2615 #if 0 /* controlled in pcm device */
2616 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2617 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2618 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2619 #endif
2620 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2621 	{ .name = "IEC958 Output Switch",
2622 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2623 	  .info = snd_cmipci_uswitch_info,
2624 	  .get = snd_cmipci_spdout_enable_get,
2625 	  .put = snd_cmipci_spdout_enable_put,
2626 	},
2627 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2628 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2629 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2630 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2631 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2632 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2633 };
2634 
2635 /* only for model 033/037 */
2636 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = {
2637 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2638 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2639 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2640 };
2641 
2642 /* only for model 039 or later */
2643 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = {
2644 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2645 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2646 	{
2647 		.name = "Mic-In Mode",
2648 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2649 		.info = snd_cmipci_mic_in_mode_info,
2650 		.get = snd_cmipci_mic_in_mode_get,
2651 		.put = snd_cmipci_mic_in_mode_put,
2652 	}
2653 };
2654 
2655 /* card control switches */
2656 static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata =
2657 DEFINE_CARD_SWITCH("Modem", modem);
2658 
2659 
2660 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2661 {
2662 	struct snd_card *card;
2663 	struct snd_kcontrol_new *sw;
2664 	struct snd_kcontrol *kctl;
2665 	unsigned int idx;
2666 	int err;
2667 
2668 	if (snd_BUG_ON(!cm || !cm->card))
2669 		return -EINVAL;
2670 
2671 	card = cm->card;
2672 
2673 	strcpy(card->mixername, "CMedia PCI");
2674 
2675 	spin_lock_irq(&cm->reg_lock);
2676 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2677 	spin_unlock_irq(&cm->reg_lock);
2678 
2679 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2680 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2681 			if (!strcmp(snd_cmipci_mixers[idx].name,
2682 				"PCM Playback Volume"))
2683 				continue;
2684 		}
2685 		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2686 			return err;
2687 	}
2688 
2689 	/* mixer switches */
2690 	sw = snd_cmipci_mixer_switches;
2691 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2692 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2693 		if (err < 0)
2694 			return err;
2695 	}
2696 	if (! cm->can_multi_ch) {
2697 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2698 		if (err < 0)
2699 			return err;
2700 	}
2701 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2702 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2703 		sw = snd_cmipci_8738_mixer_switches;
2704 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2705 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2706 			if (err < 0)
2707 				return err;
2708 		}
2709 		if (cm->can_ac3_hw) {
2710 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2711 				return err;
2712 			kctl->id.device = pcm_spdif_device;
2713 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2714 				return err;
2715 			kctl->id.device = pcm_spdif_device;
2716 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2717 				return err;
2718 			kctl->id.device = pcm_spdif_device;
2719 		}
2720 		if (cm->chip_version <= 37) {
2721 			sw = snd_cmipci_old_mixer_switches;
2722 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2723 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2724 				if (err < 0)
2725 					return err;
2726 			}
2727 		}
2728 	}
2729 	if (cm->chip_version >= 39) {
2730 		sw = snd_cmipci_extra_mixer_switches;
2731 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2732 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2733 			if (err < 0)
2734 				return err;
2735 		}
2736 	}
2737 
2738 	/* card switches */
2739 	/*
2740 	 * newer chips don't have the register bits to force modem link
2741 	 * detection; the bit that was FLINKON now mutes CH1
2742 	 */
2743 	if (cm->chip_version < 39) {
2744 		err = snd_ctl_add(cm->card,
2745 				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2746 		if (err < 0)
2747 			return err;
2748 	}
2749 
2750 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2751 		struct snd_ctl_elem_id elem_id;
2752 		struct snd_kcontrol *ctl;
2753 		memset(&elem_id, 0, sizeof(elem_id));
2754 		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2755 		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2756 		ctl = snd_ctl_find_id(cm->card, &elem_id);
2757 		if (ctl)
2758 			cm->mixer_res_ctl[idx] = ctl;
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 
2765 /*
2766  * proc interface
2767  */
2768 
2769 #ifdef CONFIG_PROC_FS
2770 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2771 				 struct snd_info_buffer *buffer)
2772 {
2773 	struct cmipci *cm = entry->private_data;
2774 	int i, v;
2775 
2776 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2777 	for (i = 0; i < 0x94; i++) {
2778 		if (i == 0x28)
2779 			i = 0x90;
2780 		v = inb(cm->iobase + i);
2781 		if (i % 4 == 0)
2782 			snd_iprintf(buffer, "\n%02x:", i);
2783 		snd_iprintf(buffer, " %02x", v);
2784 	}
2785 	snd_iprintf(buffer, "\n");
2786 }
2787 
2788 static void __devinit snd_cmipci_proc_init(struct cmipci *cm)
2789 {
2790 	struct snd_info_entry *entry;
2791 
2792 	if (! snd_card_proc_new(cm->card, "cmipci", &entry))
2793 		snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read);
2794 }
2795 #else /* !CONFIG_PROC_FS */
2796 static inline void snd_cmipci_proc_init(struct cmipci *cm) {}
2797 #endif
2798 
2799 
2800 static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = {
2801 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2802 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2803 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2804 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2805 	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2806 	{0,},
2807 };
2808 
2809 
2810 /*
2811  * check chip version and capabilities
2812  * driver name is modified according to the chip model
2813  */
2814 static void __devinit query_chip(struct cmipci *cm)
2815 {
2816 	unsigned int detect;
2817 
2818 	/* check reg 0Ch, bit 24-31 */
2819 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2820 	if (! detect) {
2821 		/* check reg 08h, bit 24-28 */
2822 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2823 		switch (detect) {
2824 		case 0:
2825 			cm->chip_version = 33;
2826 			if (cm->do_soft_ac3)
2827 				cm->can_ac3_sw = 1;
2828 			else
2829 				cm->can_ac3_hw = 1;
2830 			break;
2831 		case CM_CHIP_037:
2832 			cm->chip_version = 37;
2833 			cm->can_ac3_hw = 1;
2834 			break;
2835 		default:
2836 			cm->chip_version = 39;
2837 			cm->can_ac3_hw = 1;
2838 			break;
2839 		}
2840 		cm->max_channels = 2;
2841 	} else {
2842 		if (detect & CM_CHIP_039) {
2843 			cm->chip_version = 39;
2844 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2845 				cm->max_channels = 6;
2846 			else
2847 				cm->max_channels = 4;
2848 		} else if (detect & CM_CHIP_8768) {
2849 			cm->chip_version = 68;
2850 			cm->max_channels = 8;
2851 			cm->can_96k = 1;
2852 		} else {
2853 			cm->chip_version = 55;
2854 			cm->max_channels = 6;
2855 			cm->can_96k = 1;
2856 		}
2857 		cm->can_ac3_hw = 1;
2858 		cm->can_multi_ch = 1;
2859 	}
2860 }
2861 
2862 #ifdef SUPPORT_JOYSTICK
2863 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2864 {
2865 	static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2866 	struct gameport *gp;
2867 	struct resource *r = NULL;
2868 	int i, io_port = 0;
2869 
2870 	if (joystick_port[dev] == 0)
2871 		return -ENODEV;
2872 
2873 	if (joystick_port[dev] == 1) { /* auto-detect */
2874 		for (i = 0; ports[i]; i++) {
2875 			io_port = ports[i];
2876 			r = request_region(io_port, 1, "CMIPCI gameport");
2877 			if (r)
2878 				break;
2879 		}
2880 	} else {
2881 		io_port = joystick_port[dev];
2882 		r = request_region(io_port, 1, "CMIPCI gameport");
2883 	}
2884 
2885 	if (!r) {
2886 		printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n");
2887 		return -EBUSY;
2888 	}
2889 
2890 	cm->gameport = gp = gameport_allocate_port();
2891 	if (!gp) {
2892 		printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n");
2893 		release_and_free_resource(r);
2894 		return -ENOMEM;
2895 	}
2896 	gameport_set_name(gp, "C-Media Gameport");
2897 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2898 	gameport_set_dev_parent(gp, &cm->pci->dev);
2899 	gp->io = io_port;
2900 	gameport_set_port_data(gp, r);
2901 
2902 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2903 
2904 	gameport_register_port(cm->gameport);
2905 
2906 	return 0;
2907 }
2908 
2909 static void snd_cmipci_free_gameport(struct cmipci *cm)
2910 {
2911 	if (cm->gameport) {
2912 		struct resource *r = gameport_get_port_data(cm->gameport);
2913 
2914 		gameport_unregister_port(cm->gameport);
2915 		cm->gameport = NULL;
2916 
2917 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2918 		release_and_free_resource(r);
2919 	}
2920 }
2921 #else
2922 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2923 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2924 #endif
2925 
2926 static int snd_cmipci_free(struct cmipci *cm)
2927 {
2928 	if (cm->irq >= 0) {
2929 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2930 		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2931 		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2932 		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2933 		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2934 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2935 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2936 
2937 		/* reset mixer */
2938 		snd_cmipci_mixer_write(cm, 0, 0);
2939 
2940 		free_irq(cm->irq, cm);
2941 	}
2942 
2943 	snd_cmipci_free_gameport(cm);
2944 	pci_release_regions(cm->pci);
2945 	pci_disable_device(cm->pci);
2946 	kfree(cm);
2947 	return 0;
2948 }
2949 
2950 static int snd_cmipci_dev_free(struct snd_device *device)
2951 {
2952 	struct cmipci *cm = device->device_data;
2953 	return snd_cmipci_free(cm);
2954 }
2955 
2956 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2957 {
2958 	long iosynth;
2959 	unsigned int val;
2960 	struct snd_opl3 *opl3;
2961 	int err;
2962 
2963 	if (!fm_port)
2964 		goto disable_fm;
2965 
2966 	if (cm->chip_version >= 39) {
2967 		/* first try FM regs in PCI port range */
2968 		iosynth = cm->iobase + CM_REG_FM_PCI;
2969 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2970 				      OPL3_HW_OPL3, 1, &opl3);
2971 	} else {
2972 		err = -EIO;
2973 	}
2974 	if (err < 0) {
2975 		/* then try legacy ports */
2976 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2977 		iosynth = fm_port;
2978 		switch (iosynth) {
2979 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2980 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2981 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2982 		case 0x388: val |= CM_FMSEL_388; break;
2983 		default:
2984 			goto disable_fm;
2985 		}
2986 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2987 		/* enable FM */
2988 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2989 
2990 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2991 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2992 			printk(KERN_ERR "cmipci: no OPL device at %#lx, "
2993 			       "skipping...\n", iosynth);
2994 			goto disable_fm;
2995 		}
2996 	}
2997 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2998 		printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n");
2999 		return err;
3000 	}
3001 	return 0;
3002 
3003  disable_fm:
3004 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
3005 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
3006 	return 0;
3007 }
3008 
3009 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
3010 				       int dev, struct cmipci **rcmipci)
3011 {
3012 	struct cmipci *cm;
3013 	int err;
3014 	static struct snd_device_ops ops = {
3015 		.dev_free =	snd_cmipci_dev_free,
3016 	};
3017 	unsigned int val;
3018 	long iomidi = 0;
3019 	int integrated_midi = 0;
3020 	char modelstr[16];
3021 	int pcm_index, pcm_spdif_index;
3022 	static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = {
3023 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3024 		{ },
3025 	};
3026 
3027 	*rcmipci = NULL;
3028 
3029 	if ((err = pci_enable_device(pci)) < 0)
3030 		return err;
3031 
3032 	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3033 	if (cm == NULL) {
3034 		pci_disable_device(pci);
3035 		return -ENOMEM;
3036 	}
3037 
3038 	spin_lock_init(&cm->reg_lock);
3039 	mutex_init(&cm->open_mutex);
3040 	cm->device = pci->device;
3041 	cm->card = card;
3042 	cm->pci = pci;
3043 	cm->irq = -1;
3044 	cm->channel[0].ch = 0;
3045 	cm->channel[1].ch = 1;
3046 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3047 
3048 	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3049 		kfree(cm);
3050 		pci_disable_device(pci);
3051 		return err;
3052 	}
3053 	cm->iobase = pci_resource_start(pci, 0);
3054 
3055 	if (request_irq(pci->irq, snd_cmipci_interrupt,
3056 			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3057 		snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq);
3058 		snd_cmipci_free(cm);
3059 		return -EBUSY;
3060 	}
3061 	cm->irq = pci->irq;
3062 
3063 	pci_set_master(cm->pci);
3064 
3065 	/*
3066 	 * check chip version, max channels and capabilities
3067 	 */
3068 
3069 	cm->chip_version = 0;
3070 	cm->max_channels = 2;
3071 	cm->do_soft_ac3 = soft_ac3[dev];
3072 
3073 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3074 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3075 		query_chip(cm);
3076 	/* added -MCx suffix for chip supporting multi-channels */
3077 	if (cm->can_multi_ch)
3078 		sprintf(cm->card->driver + strlen(cm->card->driver),
3079 			"-MC%d", cm->max_channels);
3080 	else if (cm->can_ac3_sw)
3081 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3082 
3083 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3084 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3085 
3086 #if CM_CH_PLAY == 1
3087 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3088 #else
3089 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3090 #endif
3091 
3092 	/* initialize codec registers */
3093 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3094 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3095 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3096 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3097 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3098 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3099 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3100 
3101 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3102 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3103 #if CM_CH_PLAY == 1
3104 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3105 #else
3106 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3107 #endif
3108 	if (cm->chip_version) {
3109 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3110 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3111 	}
3112 	/* Set Bus Master Request */
3113 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3114 
3115 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3116 	switch (pci->device) {
3117 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3118 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3119 		if (!pci_dev_present(intel_82437vx))
3120 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3121 		break;
3122 	default:
3123 		break;
3124 	}
3125 
3126 	if (cm->chip_version < 68) {
3127 		val = pci->device < 0x110 ? 8338 : 8738;
3128 	} else {
3129 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3130 		case 0:
3131 			val = 8769;
3132 			break;
3133 		case 2:
3134 			val = 8762;
3135 			break;
3136 		default:
3137 			switch ((pci->subsystem_vendor << 16) |
3138 				pci->subsystem_device) {
3139 			case 0x13f69761:
3140 			case 0x584d3741:
3141 			case 0x584d3751:
3142 			case 0x584d3761:
3143 			case 0x584d3771:
3144 			case 0x72848384:
3145 				val = 8770;
3146 				break;
3147 			default:
3148 				val = 8768;
3149 				break;
3150 			}
3151 		}
3152 	}
3153 	sprintf(card->shortname, "C-Media CMI%d", val);
3154 	if (cm->chip_version < 68)
3155 		sprintf(modelstr, " (model %d)", cm->chip_version);
3156 	else
3157 		modelstr[0] = '\0';
3158 	sprintf(card->longname, "%s%s at %#lx, irq %i",
3159 		card->shortname, modelstr, cm->iobase, cm->irq);
3160 
3161 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3162 		snd_cmipci_free(cm);
3163 		return err;
3164 	}
3165 
3166 	if (cm->chip_version >= 39) {
3167 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3168 		if (val != 0x00 && val != 0xff) {
3169 			iomidi = cm->iobase + CM_REG_MPU_PCI;
3170 			integrated_midi = 1;
3171 		}
3172 	}
3173 	if (!integrated_midi) {
3174 		val = 0;
3175 		iomidi = mpu_port[dev];
3176 		switch (iomidi) {
3177 		case 0x320: val = CM_VMPU_320; break;
3178 		case 0x310: val = CM_VMPU_310; break;
3179 		case 0x300: val = CM_VMPU_300; break;
3180 		case 0x330: val = CM_VMPU_330; break;
3181 		default:
3182 			    iomidi = 0; break;
3183 		}
3184 		if (iomidi > 0) {
3185 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3186 			/* enable UART */
3187 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3188 			if (inb(iomidi + 1) == 0xff) {
3189 				snd_printk(KERN_ERR "cannot enable MPU-401 port"
3190 					   " at %#lx\n", iomidi);
3191 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3192 						     CM_UART_EN);
3193 				iomidi = 0;
3194 			}
3195 		}
3196 	}
3197 
3198 	if (cm->chip_version < 68) {
3199 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3200 		if (err < 0)
3201 			return err;
3202 	}
3203 
3204 	/* reset mixer */
3205 	snd_cmipci_mixer_write(cm, 0, 0);
3206 
3207 	snd_cmipci_proc_init(cm);
3208 
3209 	/* create pcm devices */
3210 	pcm_index = pcm_spdif_index = 0;
3211 	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3212 		return err;
3213 	pcm_index++;
3214 	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3215 		return err;
3216 	pcm_index++;
3217 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3218 		pcm_spdif_index = pcm_index;
3219 		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3220 			return err;
3221 	}
3222 
3223 	/* create mixer interface & switches */
3224 	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3225 		return err;
3226 
3227 	if (iomidi > 0) {
3228 		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3229 					       iomidi,
3230 					       (integrated_midi ?
3231 						MPU401_INFO_INTEGRATED : 0) |
3232 					       MPU401_INFO_IRQ_HOOK,
3233 					       -1, &cm->rmidi)) < 0) {
3234 			printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi);
3235 		}
3236 	}
3237 
3238 #ifdef USE_VAR48KRATE
3239 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3240 		snd_cmipci_set_pll(cm, rates[val], val);
3241 
3242 	/*
3243 	 * (Re-)Enable external switch spdo_48k
3244 	 */
3245 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3246 #endif /* USE_VAR48KRATE */
3247 
3248 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3249 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3250 
3251 	snd_card_set_dev(card, &pci->dev);
3252 
3253 	*rcmipci = cm;
3254 	return 0;
3255 }
3256 
3257 /*
3258  */
3259 
3260 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3261 
3262 static int __devinit snd_cmipci_probe(struct pci_dev *pci,
3263 				      const struct pci_device_id *pci_id)
3264 {
3265 	static int dev;
3266 	struct snd_card *card;
3267 	struct cmipci *cm;
3268 	int err;
3269 
3270 	if (dev >= SNDRV_CARDS)
3271 		return -ENODEV;
3272 	if (! enable[dev]) {
3273 		dev++;
3274 		return -ENOENT;
3275 	}
3276 
3277 	err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card);
3278 	if (err < 0)
3279 		return err;
3280 
3281 	switch (pci->device) {
3282 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3283 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3284 		strcpy(card->driver, "CMI8738");
3285 		break;
3286 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3287 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3288 		strcpy(card->driver, "CMI8338");
3289 		break;
3290 	default:
3291 		strcpy(card->driver, "CMIPCI");
3292 		break;
3293 	}
3294 
3295 	if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) {
3296 		snd_card_free(card);
3297 		return err;
3298 	}
3299 	card->private_data = cm;
3300 
3301 	if ((err = snd_card_register(card)) < 0) {
3302 		snd_card_free(card);
3303 		return err;
3304 	}
3305 	pci_set_drvdata(pci, card);
3306 	dev++;
3307 	return 0;
3308 
3309 }
3310 
3311 static void __devexit snd_cmipci_remove(struct pci_dev *pci)
3312 {
3313 	snd_card_free(pci_get_drvdata(pci));
3314 	pci_set_drvdata(pci, NULL);
3315 }
3316 
3317 
3318 #ifdef CONFIG_PM
3319 /*
3320  * power management
3321  */
3322 static unsigned char saved_regs[] = {
3323 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3324 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3325 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3326 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3327 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3328 };
3329 
3330 static unsigned char saved_mixers[] = {
3331 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3332 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3333 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3334 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3335 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3336 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3337 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3338 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3339 };
3340 
3341 static int snd_cmipci_suspend(struct device *dev)
3342 {
3343 	struct pci_dev *pci = to_pci_dev(dev);
3344 	struct snd_card *card = dev_get_drvdata(dev);
3345 	struct cmipci *cm = card->private_data;
3346 	int i;
3347 
3348 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3349 
3350 	snd_pcm_suspend_all(cm->pcm);
3351 	snd_pcm_suspend_all(cm->pcm2);
3352 	snd_pcm_suspend_all(cm->pcm_spdif);
3353 
3354 	/* save registers */
3355 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3356 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3357 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3358 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3359 
3360 	/* disable ints */
3361 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3362 
3363 	pci_disable_device(pci);
3364 	pci_save_state(pci);
3365 	pci_set_power_state(pci, PCI_D3hot);
3366 	return 0;
3367 }
3368 
3369 static int snd_cmipci_resume(struct device *dev)
3370 {
3371 	struct pci_dev *pci = to_pci_dev(dev);
3372 	struct snd_card *card = dev_get_drvdata(dev);
3373 	struct cmipci *cm = card->private_data;
3374 	int i;
3375 
3376 	pci_set_power_state(pci, PCI_D0);
3377 	pci_restore_state(pci);
3378 	if (pci_enable_device(pci) < 0) {
3379 		printk(KERN_ERR "cmipci: pci_enable_device failed, "
3380 		       "disabling device\n");
3381 		snd_card_disconnect(card);
3382 		return -EIO;
3383 	}
3384 	pci_set_master(pci);
3385 
3386 	/* reset / initialize to a sane state */
3387 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3388 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3389 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3390 	snd_cmipci_mixer_write(cm, 0, 0);
3391 
3392 	/* restore registers */
3393 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3394 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3395 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3396 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3397 
3398 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3399 	return 0;
3400 }
3401 
3402 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3403 #define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3404 #else
3405 #define SND_CMIPCI_PM_OPS	NULL
3406 #endif /* CONFIG_PM */
3407 
3408 static struct pci_driver cmipci_driver = {
3409 	.name = KBUILD_MODNAME,
3410 	.id_table = snd_cmipci_ids,
3411 	.probe = snd_cmipci_probe,
3412 	.remove = __devexit_p(snd_cmipci_remove),
3413 	.driver = {
3414 		.pm = SND_CMIPCI_PM_OPS,
3415 	},
3416 };
3417 
3418 module_pci_driver(cmipci_driver);
3419