xref: /openbmc/linux/sound/pci/cmipci.c (revision 83146efc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5  */
6 
7 /* Does not work. Warning may block system in capture mode */
8 /* #define USE_VAR48KRATE */
9 
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29 
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 
34 #if IS_REACHABLE(CONFIG_GAMEPORT)
35 #define SUPPORT_JOYSTICK 1
36 #endif
37 
38 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
39 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
40 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
41 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
42 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
43 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
44 #ifdef SUPPORT_JOYSTICK
45 static int joystick_port[SNDRV_CARDS];
46 #endif
47 
48 module_param_array(index, int, NULL, 0444);
49 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
50 module_param_array(id, charp, NULL, 0444);
51 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
52 module_param_array(enable, bool, NULL, 0444);
53 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
54 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
55 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
56 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
57 MODULE_PARM_DESC(fm_port, "FM port.");
58 module_param_array(soft_ac3, bool, NULL, 0444);
59 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
60 #ifdef SUPPORT_JOYSTICK
61 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
62 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
63 #endif
64 
65 /*
66  * CM8x38 registers definition
67  */
68 
69 #define CM_REG_FUNCTRL0		0x00
70 #define CM_RST_CH1		0x00080000
71 #define CM_RST_CH0		0x00040000
72 #define CM_CHEN1		0x00020000	/* ch1: enable */
73 #define CM_CHEN0		0x00010000	/* ch0: enable */
74 #define CM_PAUSE1		0x00000008	/* ch1: pause */
75 #define CM_PAUSE0		0x00000004	/* ch0: pause */
76 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
77 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
78 
79 #define CM_REG_FUNCTRL1		0x04
80 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
81 #define CM_DSFC_SHIFT		13
82 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
83 #define CM_ASFC_SHIFT		10
84 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
85 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
86 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
87 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
88 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
89 #define CM_BREQ			0x00000010	/* bus master enabled */
90 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
91 #define CM_UART_EN		0x00000004	/* legacy UART */
92 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
93 #define CM_ZVPORT		0x00000001	/* ZVPORT */
94 
95 #define CM_REG_CHFORMAT		0x08
96 
97 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
98 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
99 #define CM_CHB3D		0x20000000	/* 4 channels */
100 
101 #define CM_CHIP_MASK1		0x1f000000
102 #define CM_CHIP_037		0x01000000
103 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
104 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
105 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
106 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
107 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
108 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
109 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
110 
111 #define CM_ADCBITLEN_MASK	0x0000C000
112 #define CM_ADCBITLEN_16		0x00000000
113 #define CM_ADCBITLEN_15		0x00004000
114 #define CM_ADCBITLEN_14		0x00008000
115 #define CM_ADCBITLEN_13		0x0000C000
116 
117 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
118 #define CM_ADCDACLEN_060	0x00000000
119 #define CM_ADCDACLEN_066	0x00001000
120 #define CM_ADCDACLEN_130	0x00002000
121 #define CM_ADCDACLEN_280	0x00003000
122 
123 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
124 #define CM_ADCDLEN_ORIGINAL	0x00000000
125 #define CM_ADCDLEN_EXTRA	0x00001000
126 #define CM_ADCDLEN_24K		0x00002000
127 #define CM_ADCDLEN_WEIGHT	0x00003000
128 
129 #define CM_CH1_SRATE_176K	0x00000800
130 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
131 #define CM_CH1_SRATE_88K	0x00000400
132 #define CM_CH0_SRATE_176K	0x00000200
133 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
134 #define CM_CH0_SRATE_88K	0x00000100
135 #define CM_CH0_SRATE_128K	0x00000300
136 #define CM_CH0_SRATE_MASK	0x00000300
137 
138 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
139 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
140 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
141 #define CM_SPDLOCKED		0x00000010
142 
143 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
144 #define CM_CH1FMT_SHIFT		2
145 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
146 #define CM_CH0FMT_SHIFT		0
147 
148 #define CM_REG_INT_HLDCLR	0x0C
149 #define CM_CHIP_MASK2		0xff000000
150 #define CM_CHIP_8768		0x20000000
151 #define CM_CHIP_055		0x08000000
152 #define CM_CHIP_039		0x04000000
153 #define CM_CHIP_039_6CH		0x01000000
154 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
155 #define CM_TDMA_INT_EN		0x00040000
156 #define CM_CH1_INT_EN		0x00020000
157 #define CM_CH0_INT_EN		0x00010000
158 
159 #define CM_REG_INT_STATUS	0x10
160 #define CM_INTR			0x80000000
161 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
162 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
163 #define CM_UARTINT		0x00010000
164 #define CM_LTDMAINT		0x00008000
165 #define CM_HTDMAINT		0x00004000
166 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
167 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
168 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
169 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
170 #define CM_CH1BUSY		0x00000008
171 #define CM_CH0BUSY		0x00000004
172 #define CM_CHINT1		0x00000002
173 #define CM_CHINT0		0x00000001
174 
175 #define CM_REG_LEGACY_CTRL	0x14
176 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
177 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
178 #define CM_VMPU_330		0x00000000
179 #define CM_VMPU_320		0x20000000
180 #define CM_VMPU_310		0x40000000
181 #define CM_VMPU_300		0x60000000
182 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
183 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
184 #define CM_VSBSEL_220		0x00000000
185 #define CM_VSBSEL_240		0x04000000
186 #define CM_VSBSEL_260		0x08000000
187 #define CM_VSBSEL_280		0x0C000000
188 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
189 #define CM_FMSEL_388		0x00000000
190 #define CM_FMSEL_3C8		0x01000000
191 #define CM_FMSEL_3E0		0x02000000
192 #define CM_FMSEL_3E8		0x03000000
193 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
194 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
195 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
196 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
197 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
198 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
199 #define CM_C_EECS		0x00040000
200 #define CM_C_EEDI46		0x00020000
201 #define CM_C_EECK46		0x00010000
202 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
203 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
204 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
205 #define CM_EXBASEN		0x00001000	/* external bass input enable */
206 
207 #define CM_REG_MISC_CTRL	0x18
208 #define CM_PWD			0x80000000	/* power down */
209 #define CM_RESET		0x40000000
210 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
211 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
212 #define CM_TXVX			0x08000000	/* model 037? */
213 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
214 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
215 #define CM_SPDIF48K		0x01000000	/* write */
216 #define CM_SPATUS48K		0x01000000	/* read */
217 #define CM_ENDBDAC		0x00800000	/* enable double dac */
218 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
219 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
220 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
221 #define CM_FM_EN		0x00080000	/* enable legacy FM */
222 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
223 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
224 #define CM_VIDWPDSB		0x00010000	/* model 037? */
225 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
226 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
227 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
228 #define CM_VIDWPPRT		0x00002000	/* model 037? */
229 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
230 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
231 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
232 #define CM_ENCENTER		0x00000080
233 #define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
234 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
235 #define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
236 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
237 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
238 #define CM_UPDDMA_2048		0x00000000
239 #define CM_UPDDMA_1024		0x00000004
240 #define CM_UPDDMA_512		0x00000008
241 #define CM_UPDDMA_256		0x0000000C
242 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
243 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
244 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
245 
246 #define CM_REG_TDMA_POSITION	0x1C
247 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
248 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
249 
250 	/* byte */
251 #define CM_REG_MIXER0		0x20
252 #define CM_REG_SBVR		0x20		/* write: sb16 version */
253 #define CM_REG_DEV		0x20		/* read: hardware device version */
254 
255 #define CM_REG_MIXER21		0x21
256 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
257 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
258 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
259 #define CM_X_SB16		0x01		/* SB16 compatible */
260 
261 #define CM_REG_SB16_DATA	0x22
262 #define CM_REG_SB16_ADDR	0x23
263 
264 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
265 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
266 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
267 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
268 
269 #define CM_REG_MIXER1		0x24
270 #define CM_FMMUTE		0x80	/* mute FM */
271 #define CM_FMMUTE_SHIFT		7
272 #define CM_WSMUTE		0x40	/* mute PCM */
273 #define CM_WSMUTE_SHIFT		6
274 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
275 #define CM_REAR2LIN_SHIFT	5
276 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
277 #define CM_REAR2FRONT_SHIFT	4
278 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
279 #define CM_WAVEINL_SHIFT	3
280 #define CM_WAVEINR		0x04	/* digical wave rec. right */
281 #define CM_WAVEINR_SHIFT	2
282 #define CM_X3DEN		0x02	/* 3D surround enable */
283 #define CM_X3DEN_SHIFT		1
284 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
285 #define CM_CDPLAY_SHIFT		0
286 
287 #define CM_REG_MIXER2		0x25
288 #define CM_RAUXREN		0x80	/* AUX right capture */
289 #define CM_RAUXREN_SHIFT	7
290 #define CM_RAUXLEN		0x40	/* AUX left capture */
291 #define CM_RAUXLEN_SHIFT	6
292 #define CM_VAUXRM		0x20	/* AUX right mute */
293 #define CM_VAUXRM_SHIFT		5
294 #define CM_VAUXLM		0x10	/* AUX left mute */
295 #define CM_VAUXLM_SHIFT		4
296 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
297 #define CM_VADMIC_SHIFT		1
298 #define CM_MICGAINZ		0x01	/* mic boost */
299 #define CM_MICGAINZ_SHIFT	0
300 
301 #define CM_REG_AUX_VOL		0x26
302 #define CM_VAUXL_MASK		0xf0
303 #define CM_VAUXR_MASK		0x0f
304 
305 #define CM_REG_MISC		0x27
306 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
307 #define CM_XGPO1		0x20
308 // #define CM_XGPBIO		0x04
309 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
310 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
311 #define CM_SPDVALID		0x02	/* spdif input valid check */
312 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
313 
314 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
315 /*
316  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
317  * or identical with AC97 codec?
318  */
319 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
320 
321 /*
322  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
323  */
324 #define CM_REG_MPU_PCI		0x40
325 
326 /*
327  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
328  */
329 #define CM_REG_FM_PCI		0x50
330 
331 /*
332  * access from SB-mixer port
333  */
334 #define CM_REG_EXTENT_IND	0xf0
335 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
336 #define CM_VPHONE_SHIFT		5
337 #define CM_VPHOM		0x10	/* Phone mute control */
338 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
339 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
340 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
341 #define CM_VADMIC3		0x01	/* Mic record boost */
342 
343 /*
344  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
345  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
346  * unit (readonly?).
347  */
348 #define CM_REG_PLL		0xf8
349 
350 /*
351  * extended registers
352  */
353 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
354 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
355 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
356 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
357 
358 #define CM_REG_EXT_MISC		0x90
359 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
360 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
361 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
362 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
363 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
364 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
365 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
366 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
367 
368 /*
369  * size of i/o region
370  */
371 #define CM_EXTENT_CODEC	  0x100
372 #define CM_EXTENT_MIDI	  0x2
373 #define CM_EXTENT_SYNTH	  0x4
374 
375 
376 /*
377  * channels for playback / capture
378  */
379 #define CM_CH_PLAY	0
380 #define CM_CH_CAPT	1
381 
382 /*
383  * flags to check device open/close
384  */
385 #define CM_OPEN_NONE	0
386 #define CM_OPEN_CH_MASK	0x01
387 #define CM_OPEN_DAC	0x10
388 #define CM_OPEN_ADC	0x20
389 #define CM_OPEN_SPDIF	0x40
390 #define CM_OPEN_MCHAN	0x80
391 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
392 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
393 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
394 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
395 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
396 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
397 
398 
399 #if CM_CH_PLAY == 1
400 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
401 #define CM_PLAYBACK_SPDF	CM_SPDF_1
402 #define CM_CAPTURE_SPDF		CM_SPDF_0
403 #else
404 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
405 #define CM_PLAYBACK_SPDF	CM_SPDF_0
406 #define CM_CAPTURE_SPDF		CM_SPDF_1
407 #endif
408 
409 
410 /*
411  * driver data
412  */
413 
414 struct cmipci_pcm {
415 	struct snd_pcm_substream *substream;
416 	u8 running;		/* dac/adc running? */
417 	u8 fmt;			/* format bits */
418 	u8 is_dac;
419 	u8 needs_silencing;
420 	unsigned int dma_size;	/* in frames */
421 	unsigned int shift;
422 	unsigned int ch;	/* channel (0/1) */
423 	unsigned int offset;	/* physical address of the buffer */
424 };
425 
426 /* mixer elements toggled/resumed during ac3 playback */
427 struct cmipci_mixer_auto_switches {
428 	const char *name;	/* switch to toggle */
429 	int toggle_on;		/* value to change when ac3 mode */
430 };
431 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
432 	{"PCM Playback Switch", 0},
433 	{"IEC958 Output Switch", 1},
434 	{"IEC958 Mix Analog", 0},
435 	// {"IEC958 Out To DAC", 1}, // no longer used
436 	{"IEC958 Loop", 0},
437 };
438 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
439 
440 struct cmipci {
441 	struct snd_card *card;
442 
443 	struct pci_dev *pci;
444 	unsigned int device;	/* device ID */
445 	int irq;
446 
447 	unsigned long iobase;
448 	unsigned int ctrl;	/* FUNCTRL0 current value */
449 
450 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
451 	struct snd_pcm *pcm2;	/* 2nd DAC */
452 	struct snd_pcm *pcm_spdif;	/* SPDIF */
453 
454 	int chip_version;
455 	int max_channels;
456 	unsigned int can_ac3_sw: 1;
457 	unsigned int can_ac3_hw: 1;
458 	unsigned int can_multi_ch: 1;
459 	unsigned int can_96k: 1;	/* samplerate above 48k */
460 	unsigned int do_soft_ac3: 1;
461 
462 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
463 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
464 	int spdif_counter;	/* for software AC3 */
465 
466 	unsigned int dig_status;
467 	unsigned int dig_pcm_status;
468 
469 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
470 
471 	int opened[2];	/* open mode */
472 	struct mutex open_mutex;
473 
474 	unsigned int mixer_insensitive: 1;
475 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
476 	int mixer_res_status[CM_SAVED_MIXERS];
477 
478 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
479 
480 	/* external MIDI */
481 	struct snd_rawmidi *rmidi;
482 
483 #ifdef SUPPORT_JOYSTICK
484 	struct gameport *gameport;
485 #endif
486 
487 	spinlock_t reg_lock;
488 
489 #ifdef CONFIG_PM_SLEEP
490 	unsigned int saved_regs[0x20];
491 	unsigned char saved_mixers[0x20];
492 #endif
493 };
494 
495 
496 /* read/write operations for dword register */
497 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
498 {
499 	outl(data, cm->iobase + cmd);
500 }
501 
502 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
503 {
504 	return inl(cm->iobase + cmd);
505 }
506 
507 /* read/write operations for word register */
508 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
509 {
510 	outw(data, cm->iobase + cmd);
511 }
512 
513 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
514 {
515 	return inw(cm->iobase + cmd);
516 }
517 
518 /* read/write operations for byte register */
519 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
520 {
521 	outb(data, cm->iobase + cmd);
522 }
523 
524 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
525 {
526 	return inb(cm->iobase + cmd);
527 }
528 
529 /* bit operations for dword register */
530 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
531 {
532 	unsigned int val, oval;
533 	val = oval = inl(cm->iobase + cmd);
534 	val |= flag;
535 	if (val == oval)
536 		return 0;
537 	outl(val, cm->iobase + cmd);
538 	return 1;
539 }
540 
541 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
542 {
543 	unsigned int val, oval;
544 	val = oval = inl(cm->iobase + cmd);
545 	val &= ~flag;
546 	if (val == oval)
547 		return 0;
548 	outl(val, cm->iobase + cmd);
549 	return 1;
550 }
551 
552 /* bit operations for byte register */
553 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
554 {
555 	unsigned char val, oval;
556 	val = oval = inb(cm->iobase + cmd);
557 	val |= flag;
558 	if (val == oval)
559 		return 0;
560 	outb(val, cm->iobase + cmd);
561 	return 1;
562 }
563 
564 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
565 {
566 	unsigned char val, oval;
567 	val = oval = inb(cm->iobase + cmd);
568 	val &= ~flag;
569 	if (val == oval)
570 		return 0;
571 	outb(val, cm->iobase + cmd);
572 	return 1;
573 }
574 
575 
576 /*
577  * PCM interface
578  */
579 
580 /*
581  * calculate frequency
582  */
583 
584 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
585 
586 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
587 {
588 	unsigned int i;
589 
590 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
591 		if (rates[i] == rate)
592 			return i;
593 	}
594 	snd_BUG();
595 	return 0;
596 }
597 
598 #ifdef USE_VAR48KRATE
599 /*
600  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
601  * does it this way .. maybe not.  Never get any information from C-Media about
602  * that <werner@suse.de>.
603  */
604 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
605 {
606 	unsigned int delta, tolerance;
607 	int xm, xn, xr;
608 
609 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
610 		rate <<= 1;
611 	*n = -1;
612 	if (*r > 0xff)
613 		goto out;
614 	tolerance = rate*CM_TOLERANCE_RATE;
615 
616 	for (xn = (1+2); xn < (0x1f+2); xn++) {
617 		for (xm = (1+2); xm < (0xff+2); xm++) {
618 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
619 
620 			if (xr < rate)
621 				delta = rate - xr;
622 			else
623 				delta = xr - rate;
624 
625 			/*
626 			 * If we found one, remember this,
627 			 * and try to find a closer one
628 			 */
629 			if (delta < tolerance) {
630 				tolerance = delta;
631 				*m = xm - 2;
632 				*n = xn - 2;
633 			}
634 		}
635 	}
636 out:
637 	return (*n > -1);
638 }
639 
640 /*
641  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
642  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
643  * at the register CM_REG_FUNCTRL1 (0x04).
644  * Problem: other ways are also possible (any information about that?)
645  */
646 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
647 {
648 	unsigned int reg = CM_REG_PLL + slot;
649 	/*
650 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
651 	 * for DSFC/ASFC (000 up to 111).
652 	 */
653 
654 	/* FIXME: Init (Do we've to set an other register first before programming?) */
655 
656 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
657 	snd_cmipci_write_b(cm, reg, rate>>8);
658 	snd_cmipci_write_b(cm, reg, rate&0xff);
659 
660 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
661 }
662 #endif /* USE_VAR48KRATE */
663 
664 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
665 					  struct snd_pcm_hw_params *hw_params)
666 {
667 	struct cmipci *cm = snd_pcm_substream_chip(substream);
668 	if (params_channels(hw_params) > 2) {
669 		mutex_lock(&cm->open_mutex);
670 		if (cm->opened[CM_CH_PLAY]) {
671 			mutex_unlock(&cm->open_mutex);
672 			return -EBUSY;
673 		}
674 		/* reserve the channel A */
675 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
676 		mutex_unlock(&cm->open_mutex);
677 	}
678 	return 0;
679 }
680 
681 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
682 {
683 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
684 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
685 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
686 	udelay(10);
687 }
688 
689 
690 /*
691  */
692 
693 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
694 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
695 	.count = 3,
696 	.list = hw_channels,
697 	.mask = 0,
698 };
699 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
700 	.count = 4,
701 	.list = hw_channels,
702 	.mask = 0,
703 };
704 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
705 	.count = 5,
706 	.list = hw_channels,
707 	.mask = 0,
708 };
709 
710 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
711 {
712 	if (channels > 2) {
713 		if (!cm->can_multi_ch || !rec->ch)
714 			return -EINVAL;
715 		if (rec->fmt != 0x03) /* stereo 16bit only */
716 			return -EINVAL;
717 	}
718 
719 	if (cm->can_multi_ch) {
720 		spin_lock_irq(&cm->reg_lock);
721 		if (channels > 2) {
722 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
723 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
724 		} else {
725 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
726 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
727 		}
728 		if (channels == 8)
729 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
730 		else
731 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
732 		if (channels == 6) {
733 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
734 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
735 		} else {
736 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
737 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
738 		}
739 		if (channels == 4)
740 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
741 		else
742 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
743 		spin_unlock_irq(&cm->reg_lock);
744 	}
745 	return 0;
746 }
747 
748 
749 /*
750  * prepare playback/capture channel
751  * channel to be used must have been set in rec->ch.
752  */
753 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
754 				 struct snd_pcm_substream *substream)
755 {
756 	unsigned int reg, freq, freq_ext, val;
757 	unsigned int period_size;
758 	struct snd_pcm_runtime *runtime = substream->runtime;
759 
760 	rec->fmt = 0;
761 	rec->shift = 0;
762 	if (snd_pcm_format_width(runtime->format) >= 16) {
763 		rec->fmt |= 0x02;
764 		if (snd_pcm_format_width(runtime->format) > 16)
765 			rec->shift++; /* 24/32bit */
766 	}
767 	if (runtime->channels > 1)
768 		rec->fmt |= 0x01;
769 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
770 		dev_dbg(cm->card->dev, "cannot set dac channels\n");
771 		return -EINVAL;
772 	}
773 
774 	rec->offset = runtime->dma_addr;
775 	/* buffer and period sizes in frame */
776 	rec->dma_size = runtime->buffer_size << rec->shift;
777 	period_size = runtime->period_size << rec->shift;
778 	if (runtime->channels > 2) {
779 		/* multi-channels */
780 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
781 		period_size = (period_size * runtime->channels) / 2;
782 	}
783 
784 	spin_lock_irq(&cm->reg_lock);
785 
786 	/* set buffer address */
787 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
788 	snd_cmipci_write(cm, reg, rec->offset);
789 	/* program sample counts */
790 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
791 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
792 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
793 
794 	/* set adc/dac flag */
795 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
796 	if (rec->is_dac)
797 		cm->ctrl &= ~val;
798 	else
799 		cm->ctrl |= val;
800 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
801 	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
802 
803 	/* set sample rate */
804 	freq = 0;
805 	freq_ext = 0;
806 	if (runtime->rate > 48000)
807 		switch (runtime->rate) {
808 		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
809 		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
810 		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
811 		default:     snd_BUG(); break;
812 		}
813 	else
814 		freq = snd_cmipci_rate_freq(runtime->rate);
815 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
816 	if (rec->ch) {
817 		val &= ~CM_DSFC_MASK;
818 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
819 	} else {
820 		val &= ~CM_ASFC_MASK;
821 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
822 	}
823 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
824 	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
825 
826 	/* set format */
827 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
828 	if (rec->ch) {
829 		val &= ~CM_CH1FMT_MASK;
830 		val |= rec->fmt << CM_CH1FMT_SHIFT;
831 	} else {
832 		val &= ~CM_CH0FMT_MASK;
833 		val |= rec->fmt << CM_CH0FMT_SHIFT;
834 	}
835 	if (cm->can_96k) {
836 		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
837 		val |= freq_ext << (rec->ch * 2);
838 	}
839 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
840 	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
841 
842 	if (!rec->is_dac && cm->chip_version) {
843 		if (runtime->rate > 44100)
844 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
845 		else
846 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
847 	}
848 
849 	rec->running = 0;
850 	spin_unlock_irq(&cm->reg_lock);
851 
852 	return 0;
853 }
854 
855 /*
856  * PCM trigger/stop
857  */
858 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
859 				  int cmd)
860 {
861 	unsigned int inthld, chen, reset, pause;
862 	int result = 0;
863 
864 	inthld = CM_CH0_INT_EN << rec->ch;
865 	chen = CM_CHEN0 << rec->ch;
866 	reset = CM_RST_CH0 << rec->ch;
867 	pause = CM_PAUSE0 << rec->ch;
868 
869 	spin_lock(&cm->reg_lock);
870 	switch (cmd) {
871 	case SNDRV_PCM_TRIGGER_START:
872 		rec->running = 1;
873 		/* set interrupt */
874 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
875 		cm->ctrl |= chen;
876 		/* enable channel */
877 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
878 		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
879 		break;
880 	case SNDRV_PCM_TRIGGER_STOP:
881 		rec->running = 0;
882 		/* disable interrupt */
883 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
884 		/* reset */
885 		cm->ctrl &= ~chen;
886 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
887 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
888 		rec->needs_silencing = rec->is_dac;
889 		break;
890 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
891 	case SNDRV_PCM_TRIGGER_SUSPEND:
892 		cm->ctrl |= pause;
893 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
894 		break;
895 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
896 	case SNDRV_PCM_TRIGGER_RESUME:
897 		cm->ctrl &= ~pause;
898 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
899 		break;
900 	default:
901 		result = -EINVAL;
902 		break;
903 	}
904 	spin_unlock(&cm->reg_lock);
905 	return result;
906 }
907 
908 /*
909  * return the current pointer
910  */
911 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
912 						struct snd_pcm_substream *substream)
913 {
914 	size_t ptr;
915 	unsigned int reg, rem, tries;
916 
917 	if (!rec->running)
918 		return 0;
919 #if 1 // this seems better..
920 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
921 	for (tries = 0; tries < 3; tries++) {
922 		rem = snd_cmipci_read_w(cm, reg);
923 		if (rem < rec->dma_size)
924 			goto ok;
925 	}
926 	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
927 	return SNDRV_PCM_POS_XRUN;
928 ok:
929 	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
930 #else
931 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
932 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
933 	ptr = bytes_to_frames(substream->runtime, ptr);
934 #endif
935 	if (substream->runtime->channels > 2)
936 		ptr = (ptr * 2) / substream->runtime->channels;
937 	return ptr;
938 }
939 
940 /*
941  * playback
942  */
943 
944 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
945 				       int cmd)
946 {
947 	struct cmipci *cm = snd_pcm_substream_chip(substream);
948 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
949 }
950 
951 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
952 {
953 	struct cmipci *cm = snd_pcm_substream_chip(substream);
954 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
955 }
956 
957 
958 
959 /*
960  * capture
961  */
962 
963 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
964 				     int cmd)
965 {
966 	struct cmipci *cm = snd_pcm_substream_chip(substream);
967 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
968 }
969 
970 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
971 {
972 	struct cmipci *cm = snd_pcm_substream_chip(substream);
973 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
974 }
975 
976 
977 /*
978  * hw preparation for spdif
979  */
980 
981 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
982 					 struct snd_ctl_elem_info *uinfo)
983 {
984 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
985 	uinfo->count = 1;
986 	return 0;
987 }
988 
989 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
990 					struct snd_ctl_elem_value *ucontrol)
991 {
992 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
993 	int i;
994 
995 	spin_lock_irq(&chip->reg_lock);
996 	for (i = 0; i < 4; i++)
997 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
998 	spin_unlock_irq(&chip->reg_lock);
999 	return 0;
1000 }
1001 
1002 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1003 					 struct snd_ctl_elem_value *ucontrol)
1004 {
1005 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1006 	int i, change;
1007 	unsigned int val;
1008 
1009 	val = 0;
1010 	spin_lock_irq(&chip->reg_lock);
1011 	for (i = 0; i < 4; i++)
1012 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1013 	change = val != chip->dig_status;
1014 	chip->dig_status = val;
1015 	spin_unlock_irq(&chip->reg_lock);
1016 	return change;
1017 }
1018 
1019 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1020 {
1021 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1022 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1023 	.info =		snd_cmipci_spdif_default_info,
1024 	.get =		snd_cmipci_spdif_default_get,
1025 	.put =		snd_cmipci_spdif_default_put
1026 };
1027 
1028 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1029 				      struct snd_ctl_elem_info *uinfo)
1030 {
1031 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1032 	uinfo->count = 1;
1033 	return 0;
1034 }
1035 
1036 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1037 				     struct snd_ctl_elem_value *ucontrol)
1038 {
1039 	ucontrol->value.iec958.status[0] = 0xff;
1040 	ucontrol->value.iec958.status[1] = 0xff;
1041 	ucontrol->value.iec958.status[2] = 0xff;
1042 	ucontrol->value.iec958.status[3] = 0xff;
1043 	return 0;
1044 }
1045 
1046 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1047 {
1048 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1049 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1050 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1051 	.info =		snd_cmipci_spdif_mask_info,
1052 	.get =		snd_cmipci_spdif_mask_get,
1053 };
1054 
1055 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1056 					struct snd_ctl_elem_info *uinfo)
1057 {
1058 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1059 	uinfo->count = 1;
1060 	return 0;
1061 }
1062 
1063 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1064 				       struct snd_ctl_elem_value *ucontrol)
1065 {
1066 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1067 	int i;
1068 
1069 	spin_lock_irq(&chip->reg_lock);
1070 	for (i = 0; i < 4; i++)
1071 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1072 	spin_unlock_irq(&chip->reg_lock);
1073 	return 0;
1074 }
1075 
1076 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1077 				       struct snd_ctl_elem_value *ucontrol)
1078 {
1079 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1080 	int i, change;
1081 	unsigned int val;
1082 
1083 	val = 0;
1084 	spin_lock_irq(&chip->reg_lock);
1085 	for (i = 0; i < 4; i++)
1086 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1087 	change = val != chip->dig_pcm_status;
1088 	chip->dig_pcm_status = val;
1089 	spin_unlock_irq(&chip->reg_lock);
1090 	return change;
1091 }
1092 
1093 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1094 {
1095 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1096 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1097 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1098 	.info =		snd_cmipci_spdif_stream_info,
1099 	.get =		snd_cmipci_spdif_stream_get,
1100 	.put =		snd_cmipci_spdif_stream_put
1101 };
1102 
1103 /*
1104  */
1105 
1106 /* save mixer setting and mute for AC3 playback */
1107 static int save_mixer_state(struct cmipci *cm)
1108 {
1109 	if (! cm->mixer_insensitive) {
1110 		struct snd_ctl_elem_value *val;
1111 		unsigned int i;
1112 
1113 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1114 		if (!val)
1115 			return -ENOMEM;
1116 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1117 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1118 			if (ctl) {
1119 				int event;
1120 				memset(val, 0, sizeof(*val));
1121 				ctl->get(ctl, val);
1122 				cm->mixer_res_status[i] = val->value.integer.value[0];
1123 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1124 				event = SNDRV_CTL_EVENT_MASK_INFO;
1125 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1126 					ctl->put(ctl, val); /* toggle */
1127 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1128 				}
1129 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1130 				snd_ctl_notify(cm->card, event, &ctl->id);
1131 			}
1132 		}
1133 		kfree(val);
1134 		cm->mixer_insensitive = 1;
1135 	}
1136 	return 0;
1137 }
1138 
1139 
1140 /* restore the previously saved mixer status */
1141 static void restore_mixer_state(struct cmipci *cm)
1142 {
1143 	if (cm->mixer_insensitive) {
1144 		struct snd_ctl_elem_value *val;
1145 		unsigned int i;
1146 
1147 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1148 		if (!val)
1149 			return;
1150 		cm->mixer_insensitive = 0; /* at first clear this;
1151 					      otherwise the changes will be ignored */
1152 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1153 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1154 			if (ctl) {
1155 				int event;
1156 
1157 				memset(val, 0, sizeof(*val));
1158 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1159 				ctl->get(ctl, val);
1160 				event = SNDRV_CTL_EVENT_MASK_INFO;
1161 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1162 					val->value.integer.value[0] = cm->mixer_res_status[i];
1163 					ctl->put(ctl, val);
1164 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1165 				}
1166 				snd_ctl_notify(cm->card, event, &ctl->id);
1167 			}
1168 		}
1169 		kfree(val);
1170 	}
1171 }
1172 
1173 /* spinlock held! */
1174 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1175 {
1176 	if (do_ac3) {
1177 		/* AC3EN for 037 */
1178 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1179 		/* AC3EN for 039 */
1180 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1181 
1182 		if (cm->can_ac3_hw) {
1183 			/* SPD24SEL for 037, 0x02 */
1184 			/* SPD24SEL for 039, 0x20, but cannot be set */
1185 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1186 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1187 		} else { /* can_ac3_sw */
1188 			/* SPD32SEL for 037 & 039, 0x20 */
1189 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1190 			/* set 176K sample rate to fix 033 HW bug */
1191 			if (cm->chip_version == 33) {
1192 				if (rate >= 48000) {
1193 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1194 				} else {
1195 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1196 				}
1197 			}
1198 		}
1199 
1200 	} else {
1201 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1202 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1203 
1204 		if (cm->can_ac3_hw) {
1205 			/* chip model >= 37 */
1206 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1207 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1208 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1209 			} else {
1210 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1211 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1212 			}
1213 		} else {
1214 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1215 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1216 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1217 		}
1218 	}
1219 }
1220 
1221 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1222 {
1223 	int rate, err;
1224 
1225 	rate = subs->runtime->rate;
1226 
1227 	if (up && do_ac3) {
1228 		err = save_mixer_state(cm);
1229 		if (err < 0)
1230 			return err;
1231 	}
1232 
1233 	spin_lock_irq(&cm->reg_lock);
1234 	cm->spdif_playback_avail = up;
1235 	if (up) {
1236 		/* they are controlled via "IEC958 Output Switch" */
1237 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1238 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1239 		if (cm->spdif_playback_enabled)
1240 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1241 		setup_ac3(cm, subs, do_ac3, rate);
1242 
1243 		if (rate == 48000 || rate == 96000)
1244 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1245 		else
1246 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1247 		if (rate > 48000)
1248 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1249 		else
1250 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1251 	} else {
1252 		/* they are controlled via "IEC958 Output Switch" */
1253 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1254 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1255 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1256 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1257 		setup_ac3(cm, subs, 0, 0);
1258 	}
1259 	spin_unlock_irq(&cm->reg_lock);
1260 	return 0;
1261 }
1262 
1263 
1264 /*
1265  * preparation
1266  */
1267 
1268 /* playback - enable spdif only on the certain condition */
1269 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1270 {
1271 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1272 	int rate = substream->runtime->rate;
1273 	int err, do_spdif, do_ac3 = 0;
1274 
1275 	do_spdif = (rate >= 44100 && rate <= 96000 &&
1276 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1277 		    substream->runtime->channels == 2);
1278 	if (do_spdif && cm->can_ac3_hw)
1279 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1280 	err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1281 	if (err < 0)
1282 		return err;
1283 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1284 }
1285 
1286 /* playback  (via device #2) - enable spdif always */
1287 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1288 {
1289 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1290 	int err, do_ac3;
1291 
1292 	if (cm->can_ac3_hw)
1293 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1294 	else
1295 		do_ac3 = 1; /* doesn't matter */
1296 	err = setup_spdif_playback(cm, substream, 1, do_ac3);
1297 	if (err < 0)
1298 		return err;
1299 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1300 }
1301 
1302 /*
1303  * Apparently, the samples last played on channel A stay in some buffer, even
1304  * after the channel is reset, and get added to the data for the rear DACs when
1305  * playing a multichannel stream on channel B.  This is likely to generate
1306  * wraparounds and thus distortions.
1307  * To avoid this, we play at least one zero sample after the actual stream has
1308  * stopped.
1309  */
1310 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1311 {
1312 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1313 	unsigned int reg, val;
1314 
1315 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1316 		/* set up a small silence buffer */
1317 		memset(runtime->dma_area, 0, PAGE_SIZE);
1318 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1319 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1320 		snd_cmipci_write(cm, reg, val);
1321 
1322 		/* configure for 16 bits, 2 channels, 8 kHz */
1323 		if (runtime->channels > 2)
1324 			set_dac_channels(cm, rec, 2);
1325 		spin_lock_irq(&cm->reg_lock);
1326 		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1327 		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1328 		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1329 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1330 		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1331 		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1332 		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1333 		if (cm->can_96k)
1334 			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1335 		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1336 
1337 		/* start stream (we don't need interrupts) */
1338 		cm->ctrl |= CM_CHEN0 << rec->ch;
1339 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1340 		spin_unlock_irq(&cm->reg_lock);
1341 
1342 		msleep(1);
1343 
1344 		/* stop and reset stream */
1345 		spin_lock_irq(&cm->reg_lock);
1346 		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1347 		val = CM_RST_CH0 << rec->ch;
1348 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1349 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1350 		spin_unlock_irq(&cm->reg_lock);
1351 
1352 		rec->needs_silencing = 0;
1353 	}
1354 }
1355 
1356 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1357 {
1358 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1359 	setup_spdif_playback(cm, substream, 0, 0);
1360 	restore_mixer_state(cm);
1361 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1362 	return 0;
1363 }
1364 
1365 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1366 {
1367 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1368 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1369 	return 0;
1370 }
1371 
1372 /* capture */
1373 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1374 {
1375 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1376 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1377 }
1378 
1379 /* capture with spdif (via device #2) */
1380 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1381 {
1382 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1383 
1384 	spin_lock_irq(&cm->reg_lock);
1385 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1386 	if (cm->can_96k) {
1387 		if (substream->runtime->rate > 48000)
1388 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1389 		else
1390 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1391 	}
1392 	if (snd_pcm_format_width(substream->runtime->format) > 16)
1393 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1394 	else
1395 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1396 
1397 	spin_unlock_irq(&cm->reg_lock);
1398 
1399 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1400 }
1401 
1402 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1403 {
1404 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1405 
1406 	spin_lock_irq(&cm->reg_lock);
1407 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1408 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1409 	spin_unlock_irq(&cm->reg_lock);
1410 
1411 	return 0;
1412 }
1413 
1414 
1415 /*
1416  * interrupt handler
1417  */
1418 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1419 {
1420 	struct cmipci *cm = dev_id;
1421 	unsigned int status, mask = 0;
1422 
1423 	/* fastpath out, to ease interrupt sharing */
1424 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1425 	if (!(status & CM_INTR))
1426 		return IRQ_NONE;
1427 
1428 	/* acknowledge interrupt */
1429 	spin_lock(&cm->reg_lock);
1430 	if (status & CM_CHINT0)
1431 		mask |= CM_CH0_INT_EN;
1432 	if (status & CM_CHINT1)
1433 		mask |= CM_CH1_INT_EN;
1434 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1435 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1436 	spin_unlock(&cm->reg_lock);
1437 
1438 	if (cm->rmidi && (status & CM_UARTINT))
1439 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1440 
1441 	if (cm->pcm) {
1442 		if ((status & CM_CHINT0) && cm->channel[0].running)
1443 			snd_pcm_period_elapsed(cm->channel[0].substream);
1444 		if ((status & CM_CHINT1) && cm->channel[1].running)
1445 			snd_pcm_period_elapsed(cm->channel[1].substream);
1446 	}
1447 	return IRQ_HANDLED;
1448 }
1449 
1450 /*
1451  * h/w infos
1452  */
1453 
1454 /* playback on channel A */
1455 static const struct snd_pcm_hardware snd_cmipci_playback =
1456 {
1457 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1458 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1459 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1460 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1461 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1462 	.rate_min =		5512,
1463 	.rate_max =		48000,
1464 	.channels_min =		1,
1465 	.channels_max =		2,
1466 	.buffer_bytes_max =	(128*1024),
1467 	.period_bytes_min =	64,
1468 	.period_bytes_max =	(128*1024),
1469 	.periods_min =		2,
1470 	.periods_max =		1024,
1471 	.fifo_size =		0,
1472 };
1473 
1474 /* capture on channel B */
1475 static const struct snd_pcm_hardware snd_cmipci_capture =
1476 {
1477 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1478 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1479 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1480 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1481 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1482 	.rate_min =		5512,
1483 	.rate_max =		48000,
1484 	.channels_min =		1,
1485 	.channels_max =		2,
1486 	.buffer_bytes_max =	(128*1024),
1487 	.period_bytes_min =	64,
1488 	.period_bytes_max =	(128*1024),
1489 	.periods_min =		2,
1490 	.periods_max =		1024,
1491 	.fifo_size =		0,
1492 };
1493 
1494 /* playback on channel B - stereo 16bit only? */
1495 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1496 {
1497 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1498 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1499 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1500 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1501 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1502 	.rate_min =		5512,
1503 	.rate_max =		48000,
1504 	.channels_min =		2,
1505 	.channels_max =		2,
1506 	.buffer_bytes_max =	(128*1024),
1507 	.period_bytes_min =	64,
1508 	.period_bytes_max =	(128*1024),
1509 	.periods_min =		2,
1510 	.periods_max =		1024,
1511 	.fifo_size =		0,
1512 };
1513 
1514 /* spdif playback on channel A */
1515 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1516 {
1517 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1518 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1519 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1520 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1521 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1522 	.rate_min =		44100,
1523 	.rate_max =		48000,
1524 	.channels_min =		2,
1525 	.channels_max =		2,
1526 	.buffer_bytes_max =	(128*1024),
1527 	.period_bytes_min =	64,
1528 	.period_bytes_max =	(128*1024),
1529 	.periods_min =		2,
1530 	.periods_max =		1024,
1531 	.fifo_size =		0,
1532 };
1533 
1534 /* spdif playback on channel A (32bit, IEC958 subframes) */
1535 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1536 {
1537 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1538 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1539 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1540 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1541 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1542 	.rate_min =		44100,
1543 	.rate_max =		48000,
1544 	.channels_min =		2,
1545 	.channels_max =		2,
1546 	.buffer_bytes_max =	(128*1024),
1547 	.period_bytes_min =	64,
1548 	.period_bytes_max =	(128*1024),
1549 	.periods_min =		2,
1550 	.periods_max =		1024,
1551 	.fifo_size =		0,
1552 };
1553 
1554 /* spdif capture on channel B */
1555 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1556 {
1557 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1558 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1559 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1560 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1561 				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1562 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1563 	.rate_min =		44100,
1564 	.rate_max =		48000,
1565 	.channels_min =		2,
1566 	.channels_max =		2,
1567 	.buffer_bytes_max =	(128*1024),
1568 	.period_bytes_min =	64,
1569 	.period_bytes_max =	(128*1024),
1570 	.periods_min =		2,
1571 	.periods_max =		1024,
1572 	.fifo_size =		0,
1573 };
1574 
1575 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1576 			32000, 44100, 48000, 88200, 96000, 128000 };
1577 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1578 		.count = ARRAY_SIZE(rate_constraints),
1579 		.list = rate_constraints,
1580 		.mask = 0,
1581 };
1582 
1583 /*
1584  * check device open/close
1585  */
1586 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1587 {
1588 	int ch = mode & CM_OPEN_CH_MASK;
1589 
1590 	/* FIXME: a file should wait until the device becomes free
1591 	 * when it's opened on blocking mode.  however, since the current
1592 	 * pcm framework doesn't pass file pointer before actually opened,
1593 	 * we can't know whether blocking mode or not in open callback..
1594 	 */
1595 	mutex_lock(&cm->open_mutex);
1596 	if (cm->opened[ch]) {
1597 		mutex_unlock(&cm->open_mutex);
1598 		return -EBUSY;
1599 	}
1600 	cm->opened[ch] = mode;
1601 	cm->channel[ch].substream = subs;
1602 	if (! (mode & CM_OPEN_DAC)) {
1603 		/* disable dual DAC mode */
1604 		cm->channel[ch].is_dac = 0;
1605 		spin_lock_irq(&cm->reg_lock);
1606 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1607 		spin_unlock_irq(&cm->reg_lock);
1608 	}
1609 	mutex_unlock(&cm->open_mutex);
1610 	return 0;
1611 }
1612 
1613 static void close_device_check(struct cmipci *cm, int mode)
1614 {
1615 	int ch = mode & CM_OPEN_CH_MASK;
1616 
1617 	mutex_lock(&cm->open_mutex);
1618 	if (cm->opened[ch] == mode) {
1619 		if (cm->channel[ch].substream) {
1620 			snd_cmipci_ch_reset(cm, ch);
1621 			cm->channel[ch].running = 0;
1622 			cm->channel[ch].substream = NULL;
1623 		}
1624 		cm->opened[ch] = 0;
1625 		if (! cm->channel[ch].is_dac) {
1626 			/* enable dual DAC mode again */
1627 			cm->channel[ch].is_dac = 1;
1628 			spin_lock_irq(&cm->reg_lock);
1629 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1630 			spin_unlock_irq(&cm->reg_lock);
1631 		}
1632 	}
1633 	mutex_unlock(&cm->open_mutex);
1634 }
1635 
1636 /*
1637  */
1638 
1639 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1640 {
1641 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1642 	struct snd_pcm_runtime *runtime = substream->runtime;
1643 	int err;
1644 
1645 	err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1646 	if (err < 0)
1647 		return err;
1648 	runtime->hw = snd_cmipci_playback;
1649 	if (cm->chip_version == 68) {
1650 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1651 				     SNDRV_PCM_RATE_96000;
1652 		runtime->hw.rate_max = 96000;
1653 	} else if (cm->chip_version == 55) {
1654 		err = snd_pcm_hw_constraint_list(runtime, 0,
1655 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1656 		if (err < 0)
1657 			return err;
1658 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1659 		runtime->hw.rate_max = 128000;
1660 	}
1661 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1662 	cm->dig_pcm_status = cm->dig_status;
1663 	return 0;
1664 }
1665 
1666 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1667 {
1668 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1669 	struct snd_pcm_runtime *runtime = substream->runtime;
1670 	int err;
1671 
1672 	err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1673 	if (err < 0)
1674 		return err;
1675 	runtime->hw = snd_cmipci_capture;
1676 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1677 		runtime->hw.rate_min = 41000;
1678 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1679 	} else if (cm->chip_version == 55) {
1680 		err = snd_pcm_hw_constraint_list(runtime, 0,
1681 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1682 		if (err < 0)
1683 			return err;
1684 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1685 		runtime->hw.rate_max = 128000;
1686 	}
1687 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1688 	return 0;
1689 }
1690 
1691 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1692 {
1693 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1694 	struct snd_pcm_runtime *runtime = substream->runtime;
1695 	int err;
1696 
1697 	/* use channel B */
1698 	err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1699 	if (err < 0)
1700 		return err;
1701 	runtime->hw = snd_cmipci_playback2;
1702 	mutex_lock(&cm->open_mutex);
1703 	if (! cm->opened[CM_CH_PLAY]) {
1704 		if (cm->can_multi_ch) {
1705 			runtime->hw.channels_max = cm->max_channels;
1706 			if (cm->max_channels == 4)
1707 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1708 			else if (cm->max_channels == 6)
1709 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1710 			else if (cm->max_channels == 8)
1711 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1712 		}
1713 	}
1714 	mutex_unlock(&cm->open_mutex);
1715 	if (cm->chip_version == 68) {
1716 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1717 				     SNDRV_PCM_RATE_96000;
1718 		runtime->hw.rate_max = 96000;
1719 	} else if (cm->chip_version == 55) {
1720 		err = snd_pcm_hw_constraint_list(runtime, 0,
1721 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1722 		if (err < 0)
1723 			return err;
1724 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1725 		runtime->hw.rate_max = 128000;
1726 	}
1727 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1728 	return 0;
1729 }
1730 
1731 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1732 {
1733 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1734 	struct snd_pcm_runtime *runtime = substream->runtime;
1735 	int err;
1736 
1737 	/* use channel A */
1738 	err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1739 	if (err < 0)
1740 		return err;
1741 	if (cm->can_ac3_hw) {
1742 		runtime->hw = snd_cmipci_playback_spdif;
1743 		if (cm->chip_version >= 37) {
1744 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1745 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1746 		}
1747 		if (cm->can_96k) {
1748 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1749 					     SNDRV_PCM_RATE_96000;
1750 			runtime->hw.rate_max = 96000;
1751 		}
1752 	} else {
1753 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1754 	}
1755 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1756 	cm->dig_pcm_status = cm->dig_status;
1757 	return 0;
1758 }
1759 
1760 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1761 {
1762 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1763 	struct snd_pcm_runtime *runtime = substream->runtime;
1764 	int err;
1765 
1766 	/* use channel B */
1767 	err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1768 	if (err < 0)
1769 		return err;
1770 	runtime->hw = snd_cmipci_capture_spdif;
1771 	if (cm->can_96k && !(cm->chip_version == 68)) {
1772 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1773 				     SNDRV_PCM_RATE_96000;
1774 		runtime->hw.rate_max = 96000;
1775 	}
1776 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1777 	return 0;
1778 }
1779 
1780 
1781 /*
1782  */
1783 
1784 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1785 {
1786 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1787 	close_device_check(cm, CM_OPEN_PLAYBACK);
1788 	return 0;
1789 }
1790 
1791 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1792 {
1793 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1794 	close_device_check(cm, CM_OPEN_CAPTURE);
1795 	return 0;
1796 }
1797 
1798 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1799 {
1800 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1801 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1802 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1803 	return 0;
1804 }
1805 
1806 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1807 {
1808 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1809 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1810 	return 0;
1811 }
1812 
1813 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1814 {
1815 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1816 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1817 	return 0;
1818 }
1819 
1820 
1821 /*
1822  */
1823 
1824 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1825 	.open =		snd_cmipci_playback_open,
1826 	.close =	snd_cmipci_playback_close,
1827 	.hw_free =	snd_cmipci_playback_hw_free,
1828 	.prepare =	snd_cmipci_playback_prepare,
1829 	.trigger =	snd_cmipci_playback_trigger,
1830 	.pointer =	snd_cmipci_playback_pointer,
1831 };
1832 
1833 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1834 	.open =		snd_cmipci_capture_open,
1835 	.close =	snd_cmipci_capture_close,
1836 	.prepare =	snd_cmipci_capture_prepare,
1837 	.trigger =	snd_cmipci_capture_trigger,
1838 	.pointer =	snd_cmipci_capture_pointer,
1839 };
1840 
1841 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1842 	.open =		snd_cmipci_playback2_open,
1843 	.close =	snd_cmipci_playback2_close,
1844 	.hw_params =	snd_cmipci_playback2_hw_params,
1845 	.hw_free =	snd_cmipci_playback2_hw_free,
1846 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1847 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1848 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1849 };
1850 
1851 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1852 	.open =		snd_cmipci_playback_spdif_open,
1853 	.close =	snd_cmipci_playback_spdif_close,
1854 	.hw_free =	snd_cmipci_playback_hw_free,
1855 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1856 	.trigger =	snd_cmipci_playback_trigger,
1857 	.pointer =	snd_cmipci_playback_pointer,
1858 };
1859 
1860 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1861 	.open =		snd_cmipci_capture_spdif_open,
1862 	.close =	snd_cmipci_capture_spdif_close,
1863 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1864 	.prepare =	snd_cmipci_capture_spdif_prepare,
1865 	.trigger =	snd_cmipci_capture_trigger,
1866 	.pointer =	snd_cmipci_capture_pointer,
1867 };
1868 
1869 
1870 /*
1871  */
1872 
1873 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1874 {
1875 	struct snd_pcm *pcm;
1876 	int err;
1877 
1878 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1879 	if (err < 0)
1880 		return err;
1881 
1882 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1883 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1884 
1885 	pcm->private_data = cm;
1886 	pcm->info_flags = 0;
1887 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1888 	cm->pcm = pcm;
1889 
1890 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1891 				       &cm->pci->dev, 64*1024, 128*1024);
1892 
1893 	return 0;
1894 }
1895 
1896 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1897 {
1898 	struct snd_pcm *pcm;
1899 	int err;
1900 
1901 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1902 	if (err < 0)
1903 		return err;
1904 
1905 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1906 
1907 	pcm->private_data = cm;
1908 	pcm->info_flags = 0;
1909 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1910 	cm->pcm2 = pcm;
1911 
1912 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1913 				       &cm->pci->dev, 64*1024, 128*1024);
1914 
1915 	return 0;
1916 }
1917 
1918 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1919 {
1920 	struct snd_pcm *pcm;
1921 	int err;
1922 
1923 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1924 	if (err < 0)
1925 		return err;
1926 
1927 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1928 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1929 
1930 	pcm->private_data = cm;
1931 	pcm->info_flags = 0;
1932 	strcpy(pcm->name, "C-Media PCI IEC958");
1933 	cm->pcm_spdif = pcm;
1934 
1935 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1936 				       &cm->pci->dev, 64*1024, 128*1024);
1937 
1938 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1939 				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1940 				     NULL);
1941 	if (err < 0)
1942 		return err;
1943 
1944 	return 0;
1945 }
1946 
1947 /*
1948  * mixer interface:
1949  * - CM8338/8738 has a compatible mixer interface with SB16, but
1950  *   lack of some elements like tone control, i/o gain and AGC.
1951  * - Access to native registers:
1952  *   - A 3D switch
1953  *   - Output mute switches
1954  */
1955 
1956 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1957 {
1958 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1959 	outb(data, s->iobase + CM_REG_SB16_DATA);
1960 }
1961 
1962 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1963 {
1964 	unsigned char v;
1965 
1966 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1967 	v = inb(s->iobase + CM_REG_SB16_DATA);
1968 	return v;
1969 }
1970 
1971 /*
1972  * general mixer element
1973  */
1974 struct cmipci_sb_reg {
1975 	unsigned int left_reg, right_reg;
1976 	unsigned int left_shift, right_shift;
1977 	unsigned int mask;
1978 	unsigned int invert: 1;
1979 	unsigned int stereo: 1;
1980 };
1981 
1982 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1983  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1984 
1985 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1986 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1987   .info = snd_cmipci_info_volume, \
1988   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1989   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1990 }
1991 
1992 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1993 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1994 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1995 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1996 
1997 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1998 {
1999 	r->left_reg = val & 0xff;
2000 	r->right_reg = (val >> 8) & 0xff;
2001 	r->left_shift = (val >> 16) & 0x07;
2002 	r->right_shift = (val >> 19) & 0x07;
2003 	r->invert = (val >> 22) & 1;
2004 	r->stereo = (val >> 23) & 1;
2005 	r->mask = (val >> 24) & 0xff;
2006 }
2007 
2008 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2009 				  struct snd_ctl_elem_info *uinfo)
2010 {
2011 	struct cmipci_sb_reg reg;
2012 
2013 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2014 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2015 	uinfo->count = reg.stereo + 1;
2016 	uinfo->value.integer.min = 0;
2017 	uinfo->value.integer.max = reg.mask;
2018 	return 0;
2019 }
2020 
2021 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2022 				 struct snd_ctl_elem_value *ucontrol)
2023 {
2024 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2025 	struct cmipci_sb_reg reg;
2026 	int val;
2027 
2028 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2029 	spin_lock_irq(&cm->reg_lock);
2030 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2031 	if (reg.invert)
2032 		val = reg.mask - val;
2033 	ucontrol->value.integer.value[0] = val;
2034 	if (reg.stereo) {
2035 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2036 		if (reg.invert)
2037 			val = reg.mask - val;
2038 		ucontrol->value.integer.value[1] = val;
2039 	}
2040 	spin_unlock_irq(&cm->reg_lock);
2041 	return 0;
2042 }
2043 
2044 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2045 				 struct snd_ctl_elem_value *ucontrol)
2046 {
2047 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2048 	struct cmipci_sb_reg reg;
2049 	int change;
2050 	int left, right, oleft, oright;
2051 
2052 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2053 	left = ucontrol->value.integer.value[0] & reg.mask;
2054 	if (reg.invert)
2055 		left = reg.mask - left;
2056 	left <<= reg.left_shift;
2057 	if (reg.stereo) {
2058 		right = ucontrol->value.integer.value[1] & reg.mask;
2059 		if (reg.invert)
2060 			right = reg.mask - right;
2061 		right <<= reg.right_shift;
2062 	} else
2063 		right = 0;
2064 	spin_lock_irq(&cm->reg_lock);
2065 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2066 	left |= oleft & ~(reg.mask << reg.left_shift);
2067 	change = left != oleft;
2068 	if (reg.stereo) {
2069 		if (reg.left_reg != reg.right_reg) {
2070 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2071 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2072 		} else
2073 			oright = left;
2074 		right |= oright & ~(reg.mask << reg.right_shift);
2075 		change |= right != oright;
2076 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2077 	} else
2078 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2079 	spin_unlock_irq(&cm->reg_lock);
2080 	return change;
2081 }
2082 
2083 /*
2084  * input route (left,right) -> (left,right)
2085  */
2086 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2087 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2088   .info = snd_cmipci_info_input_sw, \
2089   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2090   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2091 }
2092 
2093 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2094 				    struct snd_ctl_elem_info *uinfo)
2095 {
2096 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2097 	uinfo->count = 4;
2098 	uinfo->value.integer.min = 0;
2099 	uinfo->value.integer.max = 1;
2100 	return 0;
2101 }
2102 
2103 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2104 				   struct snd_ctl_elem_value *ucontrol)
2105 {
2106 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2107 	struct cmipci_sb_reg reg;
2108 	int val1, val2;
2109 
2110 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2111 	spin_lock_irq(&cm->reg_lock);
2112 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2113 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2114 	spin_unlock_irq(&cm->reg_lock);
2115 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2116 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2117 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2118 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2119 	return 0;
2120 }
2121 
2122 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2123 				   struct snd_ctl_elem_value *ucontrol)
2124 {
2125 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2126 	struct cmipci_sb_reg reg;
2127 	int change;
2128 	int val1, val2, oval1, oval2;
2129 
2130 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2131 	spin_lock_irq(&cm->reg_lock);
2132 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2133 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2134 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2135 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2136 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2137 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2138 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2139 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2140 	change = val1 != oval1 || val2 != oval2;
2141 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2142 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2143 	spin_unlock_irq(&cm->reg_lock);
2144 	return change;
2145 }
2146 
2147 /*
2148  * native mixer switches/volumes
2149  */
2150 
2151 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2152 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2153   .info = snd_cmipci_info_native_mixer, \
2154   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2155   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2156 }
2157 
2158 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2159 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2160   .info = snd_cmipci_info_native_mixer, \
2161   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2162   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2163 }
2164 
2165 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2166 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167   .info = snd_cmipci_info_native_mixer, \
2168   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2170 }
2171 
2172 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174   .info = snd_cmipci_info_native_mixer, \
2175   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2177 }
2178 
2179 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2180 					struct snd_ctl_elem_info *uinfo)
2181 {
2182 	struct cmipci_sb_reg reg;
2183 
2184 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2185 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2186 	uinfo->count = reg.stereo + 1;
2187 	uinfo->value.integer.min = 0;
2188 	uinfo->value.integer.max = reg.mask;
2189 	return 0;
2190 
2191 }
2192 
2193 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2194 				       struct snd_ctl_elem_value *ucontrol)
2195 {
2196 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2197 	struct cmipci_sb_reg reg;
2198 	unsigned char oreg, val;
2199 
2200 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2201 	spin_lock_irq(&cm->reg_lock);
2202 	oreg = inb(cm->iobase + reg.left_reg);
2203 	val = (oreg >> reg.left_shift) & reg.mask;
2204 	if (reg.invert)
2205 		val = reg.mask - val;
2206 	ucontrol->value.integer.value[0] = val;
2207 	if (reg.stereo) {
2208 		val = (oreg >> reg.right_shift) & reg.mask;
2209 		if (reg.invert)
2210 			val = reg.mask - val;
2211 		ucontrol->value.integer.value[1] = val;
2212 	}
2213 	spin_unlock_irq(&cm->reg_lock);
2214 	return 0;
2215 }
2216 
2217 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2218 				       struct snd_ctl_elem_value *ucontrol)
2219 {
2220 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2221 	struct cmipci_sb_reg reg;
2222 	unsigned char oreg, nreg, val;
2223 
2224 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2225 	spin_lock_irq(&cm->reg_lock);
2226 	oreg = inb(cm->iobase + reg.left_reg);
2227 	val = ucontrol->value.integer.value[0] & reg.mask;
2228 	if (reg.invert)
2229 		val = reg.mask - val;
2230 	nreg = oreg & ~(reg.mask << reg.left_shift);
2231 	nreg |= (val << reg.left_shift);
2232 	if (reg.stereo) {
2233 		val = ucontrol->value.integer.value[1] & reg.mask;
2234 		if (reg.invert)
2235 			val = reg.mask - val;
2236 		nreg &= ~(reg.mask << reg.right_shift);
2237 		nreg |= (val << reg.right_shift);
2238 	}
2239 	outb(nreg, cm->iobase + reg.left_reg);
2240 	spin_unlock_irq(&cm->reg_lock);
2241 	return (nreg != oreg);
2242 }
2243 
2244 /*
2245  * special case - check mixer sensitivity
2246  */
2247 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2248 						 struct snd_ctl_elem_value *ucontrol)
2249 {
2250 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2251 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2252 }
2253 
2254 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2255 						 struct snd_ctl_elem_value *ucontrol)
2256 {
2257 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2258 	if (cm->mixer_insensitive) {
2259 		/* ignored */
2260 		return 0;
2261 	}
2262 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2263 }
2264 
2265 
2266 static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2267 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2268 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2269 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2270 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2271 	{ /* switch with sensitivity */
2272 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2273 		.name = "PCM Playback Switch",
2274 		.info = snd_cmipci_info_native_mixer,
2275 		.get = snd_cmipci_get_native_mixer_sensitive,
2276 		.put = snd_cmipci_put_native_mixer_sensitive,
2277 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2278 	},
2279 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2280 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2281 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2282 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2283 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2284 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2285 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2286 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2287 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2288 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2289 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2290 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2291 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2292 	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2293 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2294 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2295 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2296 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2297 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2298 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2299 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2300 	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2301 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2302 };
2303 
2304 /*
2305  * other switches
2306  */
2307 
2308 struct cmipci_switch_args {
2309 	int reg;		/* register index */
2310 	unsigned int mask;	/* mask bits */
2311 	unsigned int mask_on;	/* mask bits to turn on */
2312 	unsigned int is_byte: 1;		/* byte access? */
2313 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2314 					 * non-audio operation?
2315 					 */
2316 };
2317 
2318 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2319 
2320 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2321 				   struct snd_ctl_elem_value *ucontrol,
2322 				   struct cmipci_switch_args *args)
2323 {
2324 	unsigned int val;
2325 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2326 
2327 	spin_lock_irq(&cm->reg_lock);
2328 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2329 		ucontrol->value.integer.value[0] = 0;
2330 		spin_unlock_irq(&cm->reg_lock);
2331 		return 0;
2332 	}
2333 	if (args->is_byte)
2334 		val = inb(cm->iobase + args->reg);
2335 	else
2336 		val = snd_cmipci_read(cm, args->reg);
2337 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2338 	spin_unlock_irq(&cm->reg_lock);
2339 	return 0;
2340 }
2341 
2342 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2343 				  struct snd_ctl_elem_value *ucontrol)
2344 {
2345 	struct cmipci_switch_args *args;
2346 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2347 	if (snd_BUG_ON(!args))
2348 		return -EINVAL;
2349 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2350 }
2351 
2352 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2353 				   struct snd_ctl_elem_value *ucontrol,
2354 				   struct cmipci_switch_args *args)
2355 {
2356 	unsigned int val;
2357 	int change;
2358 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2359 
2360 	spin_lock_irq(&cm->reg_lock);
2361 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2362 		/* ignored */
2363 		spin_unlock_irq(&cm->reg_lock);
2364 		return 0;
2365 	}
2366 	if (args->is_byte)
2367 		val = inb(cm->iobase + args->reg);
2368 	else
2369 		val = snd_cmipci_read(cm, args->reg);
2370 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2371 			args->mask_on : (args->mask & ~args->mask_on));
2372 	if (change) {
2373 		val &= ~args->mask;
2374 		if (ucontrol->value.integer.value[0])
2375 			val |= args->mask_on;
2376 		else
2377 			val |= (args->mask & ~args->mask_on);
2378 		if (args->is_byte)
2379 			outb((unsigned char)val, cm->iobase + args->reg);
2380 		else
2381 			snd_cmipci_write(cm, args->reg, val);
2382 	}
2383 	spin_unlock_irq(&cm->reg_lock);
2384 	return change;
2385 }
2386 
2387 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2388 				  struct snd_ctl_elem_value *ucontrol)
2389 {
2390 	struct cmipci_switch_args *args;
2391 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2392 	if (snd_BUG_ON(!args))
2393 		return -EINVAL;
2394 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2395 }
2396 
2397 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2398 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2399   .reg = xreg, \
2400   .mask = xmask, \
2401   .mask_on = xmask_on, \
2402   .is_byte = xis_byte, \
2403   .ac3_sensitive = xac3, \
2404 }
2405 
2406 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2407 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2408 
2409 #if 0 /* these will be controlled in pcm device */
2410 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2411 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2412 #endif
2413 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2414 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2415 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2416 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2417 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2418 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2419 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2420 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2421 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2422 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2423 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2424 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2425 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2426 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2427 #if CM_CH_PLAY == 1
2428 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2429 #else
2430 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2431 #endif
2432 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2433 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2434 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2435 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2436 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2437 
2438 #define DEFINE_SWITCH(sname, stype, sarg) \
2439 { .name = sname, \
2440   .iface = stype, \
2441   .info = snd_cmipci_uswitch_info, \
2442   .get = snd_cmipci_uswitch_get, \
2443   .put = snd_cmipci_uswitch_put, \
2444   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2445 }
2446 
2447 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2448 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2449 
2450 
2451 /*
2452  * callbacks for spdif output switch
2453  * needs toggle two registers..
2454  */
2455 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2456 					struct snd_ctl_elem_value *ucontrol)
2457 {
2458 	int changed;
2459 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2460 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2461 	return changed;
2462 }
2463 
2464 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2465 					struct snd_ctl_elem_value *ucontrol)
2466 {
2467 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2468 	int changed;
2469 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2470 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2471 	if (changed) {
2472 		if (ucontrol->value.integer.value[0]) {
2473 			if (chip->spdif_playback_avail)
2474 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2475 		} else {
2476 			if (chip->spdif_playback_avail)
2477 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2478 		}
2479 	}
2480 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2481 	return changed;
2482 }
2483 
2484 
2485 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2486 					struct snd_ctl_elem_info *uinfo)
2487 {
2488 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2489 	static const char *const texts[3] = {
2490 		"Line-In", "Rear Output", "Bass Output"
2491 	};
2492 
2493 	return snd_ctl_enum_info(uinfo, 1,
2494 				 cm->chip_version >= 39 ? 3 : 2, texts);
2495 }
2496 
2497 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2498 {
2499 	unsigned int val;
2500 	if (cm->chip_version >= 39) {
2501 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2502 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2503 			return 2;
2504 	}
2505 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2506 	if (val & CM_REAR2LIN)
2507 		return 1;
2508 	return 0;
2509 }
2510 
2511 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2512 				       struct snd_ctl_elem_value *ucontrol)
2513 {
2514 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2515 
2516 	spin_lock_irq(&cm->reg_lock);
2517 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2518 	spin_unlock_irq(&cm->reg_lock);
2519 	return 0;
2520 }
2521 
2522 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2523 				       struct snd_ctl_elem_value *ucontrol)
2524 {
2525 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2526 	int change;
2527 
2528 	spin_lock_irq(&cm->reg_lock);
2529 	if (ucontrol->value.enumerated.item[0] == 2)
2530 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2531 	else
2532 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2533 	if (ucontrol->value.enumerated.item[0] == 1)
2534 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2535 	else
2536 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2537 	spin_unlock_irq(&cm->reg_lock);
2538 	return change;
2539 }
2540 
2541 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2542 				       struct snd_ctl_elem_info *uinfo)
2543 {
2544 	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2545 
2546 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2547 }
2548 
2549 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2550 				      struct snd_ctl_elem_value *ucontrol)
2551 {
2552 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2553 	/* same bit as spdi_phase */
2554 	spin_lock_irq(&cm->reg_lock);
2555 	ucontrol->value.enumerated.item[0] =
2556 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2557 	spin_unlock_irq(&cm->reg_lock);
2558 	return 0;
2559 }
2560 
2561 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2562 				      struct snd_ctl_elem_value *ucontrol)
2563 {
2564 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2565 	int change;
2566 
2567 	spin_lock_irq(&cm->reg_lock);
2568 	if (ucontrol->value.enumerated.item[0])
2569 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2570 	else
2571 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2572 	spin_unlock_irq(&cm->reg_lock);
2573 	return change;
2574 }
2575 
2576 /* both for CM8338/8738 */
2577 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2578 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2579 	{
2580 		.name = "Line-In Mode",
2581 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2582 		.info = snd_cmipci_line_in_mode_info,
2583 		.get = snd_cmipci_line_in_mode_get,
2584 		.put = snd_cmipci_line_in_mode_put,
2585 	},
2586 };
2587 
2588 /* for non-multichannel chips */
2589 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2590 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2591 
2592 /* only for CM8738 */
2593 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2594 #if 0 /* controlled in pcm device */
2595 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2596 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2597 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2598 #endif
2599 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2600 	{ .name = "IEC958 Output Switch",
2601 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2602 	  .info = snd_cmipci_uswitch_info,
2603 	  .get = snd_cmipci_spdout_enable_get,
2604 	  .put = snd_cmipci_spdout_enable_put,
2605 	},
2606 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2607 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2608 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2609 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2610 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2611 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2612 };
2613 
2614 /* only for model 033/037 */
2615 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2616 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2617 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2618 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2619 };
2620 
2621 /* only for model 039 or later */
2622 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2623 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2624 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2625 	{
2626 		.name = "Mic-In Mode",
2627 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2628 		.info = snd_cmipci_mic_in_mode_info,
2629 		.get = snd_cmipci_mic_in_mode_get,
2630 		.put = snd_cmipci_mic_in_mode_put,
2631 	}
2632 };
2633 
2634 /* card control switches */
2635 static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2636 DEFINE_CARD_SWITCH("Modem", modem);
2637 
2638 
2639 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2640 {
2641 	struct snd_card *card;
2642 	const struct snd_kcontrol_new *sw;
2643 	struct snd_kcontrol *kctl;
2644 	unsigned int idx;
2645 	int err;
2646 
2647 	if (snd_BUG_ON(!cm || !cm->card))
2648 		return -EINVAL;
2649 
2650 	card = cm->card;
2651 
2652 	strcpy(card->mixername, "CMedia PCI");
2653 
2654 	spin_lock_irq(&cm->reg_lock);
2655 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2656 	spin_unlock_irq(&cm->reg_lock);
2657 
2658 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2659 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2660 			if (!strcmp(snd_cmipci_mixers[idx].name,
2661 				"PCM Playback Volume"))
2662 				continue;
2663 		}
2664 		err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2665 		if (err < 0)
2666 			return err;
2667 	}
2668 
2669 	/* mixer switches */
2670 	sw = snd_cmipci_mixer_switches;
2671 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2672 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2673 		if (err < 0)
2674 			return err;
2675 	}
2676 	if (! cm->can_multi_ch) {
2677 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2678 		if (err < 0)
2679 			return err;
2680 	}
2681 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2682 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2683 		sw = snd_cmipci_8738_mixer_switches;
2684 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2685 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2686 			if (err < 0)
2687 				return err;
2688 		}
2689 		if (cm->can_ac3_hw) {
2690 			kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2691 			kctl->id.device = pcm_spdif_device;
2692 			err = snd_ctl_add(card, kctl);
2693 			if (err < 0)
2694 				return err;
2695 			kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2696 			kctl->id.device = pcm_spdif_device;
2697 			err = snd_ctl_add(card, kctl);
2698 			if (err < 0)
2699 				return err;
2700 			kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2701 			kctl->id.device = pcm_spdif_device;
2702 			err = snd_ctl_add(card, kctl);
2703 			if (err < 0)
2704 				return err;
2705 		}
2706 		if (cm->chip_version <= 37) {
2707 			sw = snd_cmipci_old_mixer_switches;
2708 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2709 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2710 				if (err < 0)
2711 					return err;
2712 			}
2713 		}
2714 	}
2715 	if (cm->chip_version >= 39) {
2716 		sw = snd_cmipci_extra_mixer_switches;
2717 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2718 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2719 			if (err < 0)
2720 				return err;
2721 		}
2722 	}
2723 
2724 	/* card switches */
2725 	/*
2726 	 * newer chips don't have the register bits to force modem link
2727 	 * detection; the bit that was FLINKON now mutes CH1
2728 	 */
2729 	if (cm->chip_version < 39) {
2730 		err = snd_ctl_add(cm->card,
2731 				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2732 		if (err < 0)
2733 			return err;
2734 	}
2735 
2736 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2737 		struct snd_kcontrol *ctl;
2738 		ctl = snd_ctl_find_id_mixer(cm->card, cm_saved_mixer[idx].name);
2739 		if (ctl)
2740 			cm->mixer_res_ctl[idx] = ctl;
2741 	}
2742 
2743 	return 0;
2744 }
2745 
2746 
2747 /*
2748  * proc interface
2749  */
2750 
2751 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2752 				 struct snd_info_buffer *buffer)
2753 {
2754 	struct cmipci *cm = entry->private_data;
2755 	int i, v;
2756 
2757 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2758 	for (i = 0; i < 0x94; i++) {
2759 		if (i == 0x28)
2760 			i = 0x90;
2761 		v = inb(cm->iobase + i);
2762 		if (i % 4 == 0)
2763 			snd_iprintf(buffer, "\n%02x:", i);
2764 		snd_iprintf(buffer, " %02x", v);
2765 	}
2766 	snd_iprintf(buffer, "\n");
2767 }
2768 
2769 static void snd_cmipci_proc_init(struct cmipci *cm)
2770 {
2771 	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2772 }
2773 
2774 static const struct pci_device_id snd_cmipci_ids[] = {
2775 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2776 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2777 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2778 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2779 	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2780 	{0,},
2781 };
2782 
2783 
2784 /*
2785  * check chip version and capabilities
2786  * driver name is modified according to the chip model
2787  */
2788 static void query_chip(struct cmipci *cm)
2789 {
2790 	unsigned int detect;
2791 
2792 	/* check reg 0Ch, bit 24-31 */
2793 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2794 	if (! detect) {
2795 		/* check reg 08h, bit 24-28 */
2796 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2797 		switch (detect) {
2798 		case 0:
2799 			cm->chip_version = 33;
2800 			if (cm->do_soft_ac3)
2801 				cm->can_ac3_sw = 1;
2802 			else
2803 				cm->can_ac3_hw = 1;
2804 			break;
2805 		case CM_CHIP_037:
2806 			cm->chip_version = 37;
2807 			cm->can_ac3_hw = 1;
2808 			break;
2809 		default:
2810 			cm->chip_version = 39;
2811 			cm->can_ac3_hw = 1;
2812 			break;
2813 		}
2814 		cm->max_channels = 2;
2815 	} else {
2816 		if (detect & CM_CHIP_039) {
2817 			cm->chip_version = 39;
2818 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2819 				cm->max_channels = 6;
2820 			else
2821 				cm->max_channels = 4;
2822 		} else if (detect & CM_CHIP_8768) {
2823 			cm->chip_version = 68;
2824 			cm->max_channels = 8;
2825 			cm->can_96k = 1;
2826 		} else {
2827 			cm->chip_version = 55;
2828 			cm->max_channels = 6;
2829 			cm->can_96k = 1;
2830 		}
2831 		cm->can_ac3_hw = 1;
2832 		cm->can_multi_ch = 1;
2833 	}
2834 }
2835 
2836 #ifdef SUPPORT_JOYSTICK
2837 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2838 {
2839 	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2840 	struct gameport *gp;
2841 	struct resource *r = NULL;
2842 	int i, io_port = 0;
2843 
2844 	if (joystick_port[dev] == 0)
2845 		return -ENODEV;
2846 
2847 	if (joystick_port[dev] == 1) { /* auto-detect */
2848 		for (i = 0; ports[i]; i++) {
2849 			io_port = ports[i];
2850 			r = devm_request_region(&cm->pci->dev, io_port, 1,
2851 						"CMIPCI gameport");
2852 			if (r)
2853 				break;
2854 		}
2855 	} else {
2856 		io_port = joystick_port[dev];
2857 		r = devm_request_region(&cm->pci->dev, io_port, 1,
2858 					"CMIPCI gameport");
2859 	}
2860 
2861 	if (!r) {
2862 		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2863 		return -EBUSY;
2864 	}
2865 
2866 	cm->gameport = gp = gameport_allocate_port();
2867 	if (!gp) {
2868 		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2869 		return -ENOMEM;
2870 	}
2871 	gameport_set_name(gp, "C-Media Gameport");
2872 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2873 	gameport_set_dev_parent(gp, &cm->pci->dev);
2874 	gp->io = io_port;
2875 
2876 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2877 
2878 	gameport_register_port(cm->gameport);
2879 
2880 	return 0;
2881 }
2882 
2883 static void snd_cmipci_free_gameport(struct cmipci *cm)
2884 {
2885 	if (cm->gameport) {
2886 		gameport_unregister_port(cm->gameport);
2887 		cm->gameport = NULL;
2888 
2889 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2890 	}
2891 }
2892 #else
2893 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2894 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2895 #endif
2896 
2897 static void snd_cmipci_free(struct snd_card *card)
2898 {
2899 	struct cmipci *cm = card->private_data;
2900 
2901 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2902 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2903 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2904 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2905 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2906 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2907 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2908 
2909 	/* reset mixer */
2910 	snd_cmipci_mixer_write(cm, 0, 0);
2911 
2912 	snd_cmipci_free_gameport(cm);
2913 }
2914 
2915 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2916 {
2917 	long iosynth;
2918 	unsigned int val;
2919 	struct snd_opl3 *opl3;
2920 	int err;
2921 
2922 	if (!fm_port)
2923 		goto disable_fm;
2924 
2925 	if (cm->chip_version >= 39) {
2926 		/* first try FM regs in PCI port range */
2927 		iosynth = cm->iobase + CM_REG_FM_PCI;
2928 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2929 				      OPL3_HW_OPL3, 1, &opl3);
2930 	} else {
2931 		err = -EIO;
2932 	}
2933 	if (err < 0) {
2934 		/* then try legacy ports */
2935 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2936 		iosynth = fm_port;
2937 		switch (iosynth) {
2938 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2939 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2940 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2941 		case 0x388: val |= CM_FMSEL_388; break;
2942 		default:
2943 			goto disable_fm;
2944 		}
2945 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2946 		/* enable FM */
2947 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2948 
2949 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2950 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2951 			dev_err(cm->card->dev,
2952 				"no OPL device at %#lx, skipping...\n",
2953 				iosynth);
2954 			goto disable_fm;
2955 		}
2956 	}
2957 	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2958 	if (err < 0) {
2959 		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2960 		return err;
2961 	}
2962 	return 0;
2963 
2964  disable_fm:
2965 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2966 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2967 	return 0;
2968 }
2969 
2970 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2971 			     int dev)
2972 {
2973 	struct cmipci *cm = card->private_data;
2974 	int err;
2975 	unsigned int val;
2976 	long iomidi = 0;
2977 	int integrated_midi = 0;
2978 	char modelstr[16];
2979 	int pcm_index, pcm_spdif_index;
2980 	static const struct pci_device_id intel_82437vx[] = {
2981 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2982 		{ },
2983 	};
2984 
2985 	err = pcim_enable_device(pci);
2986 	if (err < 0)
2987 		return err;
2988 
2989 	spin_lock_init(&cm->reg_lock);
2990 	mutex_init(&cm->open_mutex);
2991 	cm->device = pci->device;
2992 	cm->card = card;
2993 	cm->pci = pci;
2994 	cm->irq = -1;
2995 	cm->channel[0].ch = 0;
2996 	cm->channel[1].ch = 1;
2997 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
2998 
2999 	err = pci_request_regions(pci, card->driver);
3000 	if (err < 0)
3001 		return err;
3002 	cm->iobase = pci_resource_start(pci, 0);
3003 
3004 	if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt,
3005 			     IRQF_SHARED, KBUILD_MODNAME, cm)) {
3006 		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3007 		return -EBUSY;
3008 	}
3009 	cm->irq = pci->irq;
3010 	card->sync_irq = cm->irq;
3011 	card->private_free = snd_cmipci_free;
3012 
3013 	pci_set_master(cm->pci);
3014 
3015 	/*
3016 	 * check chip version, max channels and capabilities
3017 	 */
3018 
3019 	cm->chip_version = 0;
3020 	cm->max_channels = 2;
3021 	cm->do_soft_ac3 = soft_ac3[dev];
3022 
3023 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3024 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3025 		query_chip(cm);
3026 	/* added -MCx suffix for chip supporting multi-channels */
3027 	if (cm->can_multi_ch)
3028 		sprintf(cm->card->driver + strlen(cm->card->driver),
3029 			"-MC%d", cm->max_channels);
3030 	else if (cm->can_ac3_sw)
3031 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3032 
3033 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3034 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3035 
3036 #if CM_CH_PLAY == 1
3037 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3038 #else
3039 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3040 #endif
3041 
3042 	/* initialize codec registers */
3043 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3044 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3045 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3046 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3047 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3048 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3049 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3050 
3051 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3052 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3053 #if CM_CH_PLAY == 1
3054 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3055 #else
3056 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3057 #endif
3058 	if (cm->chip_version) {
3059 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3060 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3061 	}
3062 	/* Set Bus Master Request */
3063 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3064 
3065 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3066 	switch (pci->device) {
3067 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3068 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3069 		if (!pci_dev_present(intel_82437vx))
3070 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3071 		break;
3072 	default:
3073 		break;
3074 	}
3075 
3076 	if (cm->chip_version < 68) {
3077 		val = pci->device < 0x110 ? 8338 : 8738;
3078 	} else {
3079 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3080 		case 0:
3081 			val = 8769;
3082 			break;
3083 		case 2:
3084 			val = 8762;
3085 			break;
3086 		default:
3087 			switch ((pci->subsystem_vendor << 16) |
3088 				pci->subsystem_device) {
3089 			case 0x13f69761:
3090 			case 0x584d3741:
3091 			case 0x584d3751:
3092 			case 0x584d3761:
3093 			case 0x584d3771:
3094 			case 0x72848384:
3095 				val = 8770;
3096 				break;
3097 			default:
3098 				val = 8768;
3099 				break;
3100 			}
3101 		}
3102 	}
3103 	sprintf(card->shortname, "C-Media CMI%d", val);
3104 	if (cm->chip_version < 68)
3105 		scnprintf(modelstr, sizeof(modelstr),
3106 			  " (model %d)", cm->chip_version);
3107 	else
3108 		modelstr[0] = '\0';
3109 	scnprintf(card->longname, sizeof(card->longname),
3110 		  "%s%s at %#lx, irq %i",
3111 		  card->shortname, modelstr, cm->iobase, cm->irq);
3112 
3113 	if (cm->chip_version >= 39) {
3114 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3115 		if (val != 0x00 && val != 0xff) {
3116 			if (mpu_port[dev])
3117 				iomidi = cm->iobase + CM_REG_MPU_PCI;
3118 			integrated_midi = 1;
3119 		}
3120 	}
3121 	if (!integrated_midi) {
3122 		val = 0;
3123 		iomidi = mpu_port[dev];
3124 		switch (iomidi) {
3125 		case 0x320: val = CM_VMPU_320; break;
3126 		case 0x310: val = CM_VMPU_310; break;
3127 		case 0x300: val = CM_VMPU_300; break;
3128 		case 0x330: val = CM_VMPU_330; break;
3129 		default:
3130 			    iomidi = 0; break;
3131 		}
3132 		if (iomidi > 0) {
3133 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3134 			/* enable UART */
3135 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3136 			if (inb(iomidi + 1) == 0xff) {
3137 				dev_err(cm->card->dev,
3138 					"cannot enable MPU-401 port at %#lx\n",
3139 					iomidi);
3140 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3141 						     CM_UART_EN);
3142 				iomidi = 0;
3143 			}
3144 		}
3145 	}
3146 
3147 	if (cm->chip_version < 68) {
3148 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3149 		if (err < 0)
3150 			return err;
3151 	}
3152 
3153 	/* reset mixer */
3154 	snd_cmipci_mixer_write(cm, 0, 0);
3155 
3156 	snd_cmipci_proc_init(cm);
3157 
3158 	/* create pcm devices */
3159 	pcm_index = pcm_spdif_index = 0;
3160 	err = snd_cmipci_pcm_new(cm, pcm_index);
3161 	if (err < 0)
3162 		return err;
3163 	pcm_index++;
3164 	err = snd_cmipci_pcm2_new(cm, pcm_index);
3165 	if (err < 0)
3166 		return err;
3167 	pcm_index++;
3168 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3169 		pcm_spdif_index = pcm_index;
3170 		err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3171 		if (err < 0)
3172 			return err;
3173 	}
3174 
3175 	/* create mixer interface & switches */
3176 	err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3177 	if (err < 0)
3178 		return err;
3179 
3180 	if (iomidi > 0) {
3181 		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3182 					  iomidi,
3183 					  (integrated_midi ?
3184 					   MPU401_INFO_INTEGRATED : 0) |
3185 					  MPU401_INFO_IRQ_HOOK,
3186 					  -1, &cm->rmidi);
3187 		if (err < 0)
3188 			dev_err(cm->card->dev,
3189 				"no UART401 device at 0x%lx\n", iomidi);
3190 	}
3191 
3192 #ifdef USE_VAR48KRATE
3193 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3194 		snd_cmipci_set_pll(cm, rates[val], val);
3195 
3196 	/*
3197 	 * (Re-)Enable external switch spdo_48k
3198 	 */
3199 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3200 #endif /* USE_VAR48KRATE */
3201 
3202 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3203 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3204 
3205 	return 0;
3206 }
3207 
3208 /*
3209  */
3210 
3211 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3212 
3213 static int snd_cmipci_probe(struct pci_dev *pci,
3214 			    const struct pci_device_id *pci_id)
3215 {
3216 	static int dev;
3217 	struct snd_card *card;
3218 	int err;
3219 
3220 	if (dev >= SNDRV_CARDS)
3221 		return -ENODEV;
3222 	if (! enable[dev]) {
3223 		dev++;
3224 		return -ENOENT;
3225 	}
3226 
3227 	err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3228 				sizeof(struct cmipci), &card);
3229 	if (err < 0)
3230 		return err;
3231 
3232 	switch (pci->device) {
3233 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3234 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3235 		strcpy(card->driver, "CMI8738");
3236 		break;
3237 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3238 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3239 		strcpy(card->driver, "CMI8338");
3240 		break;
3241 	default:
3242 		strcpy(card->driver, "CMIPCI");
3243 		break;
3244 	}
3245 
3246 	err = snd_cmipci_create(card, pci, dev);
3247 	if (err < 0)
3248 		goto error;
3249 
3250 	err = snd_card_register(card);
3251 	if (err < 0)
3252 		goto error;
3253 
3254 	pci_set_drvdata(pci, card);
3255 	dev++;
3256 	return 0;
3257 
3258  error:
3259 	snd_card_free(card);
3260 	return err;
3261 }
3262 
3263 #ifdef CONFIG_PM_SLEEP
3264 /*
3265  * power management
3266  */
3267 static const unsigned char saved_regs[] = {
3268 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3269 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL,
3270 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3271 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3272 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3273 };
3274 
3275 static const unsigned char saved_mixers[] = {
3276 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3277 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3278 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3279 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3280 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3281 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3282 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3283 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3284 };
3285 
3286 static int snd_cmipci_suspend(struct device *dev)
3287 {
3288 	struct snd_card *card = dev_get_drvdata(dev);
3289 	struct cmipci *cm = card->private_data;
3290 	int i;
3291 
3292 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3293 
3294 	/* save registers */
3295 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3296 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3297 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3298 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3299 
3300 	/* disable ints */
3301 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3302 	return 0;
3303 }
3304 
3305 static int snd_cmipci_resume(struct device *dev)
3306 {
3307 	struct snd_card *card = dev_get_drvdata(dev);
3308 	struct cmipci *cm = card->private_data;
3309 	int i;
3310 
3311 	/* reset / initialize to a sane state */
3312 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3313 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3314 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3315 	snd_cmipci_mixer_write(cm, 0, 0);
3316 
3317 	/* restore registers */
3318 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3319 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3320 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3321 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3322 
3323 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3324 	return 0;
3325 }
3326 
3327 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3328 #define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3329 #else
3330 #define SND_CMIPCI_PM_OPS	NULL
3331 #endif /* CONFIG_PM_SLEEP */
3332 
3333 static struct pci_driver cmipci_driver = {
3334 	.name = KBUILD_MODNAME,
3335 	.id_table = snd_cmipci_ids,
3336 	.probe = snd_cmipci_probe,
3337 	.driver = {
3338 		.pm = SND_CMIPCI_PM_OPS,
3339 	},
3340 };
3341 
3342 module_pci_driver(cmipci_driver);
3343