1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 5 */ 6 7 /* Does not work. Warning may block system in capture mode */ 8 /* #define USE_VAR48KRATE */ 9 10 #include <linux/io.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/init.h> 14 #include <linux/pci.h> 15 #include <linux/slab.h> 16 #include <linux/gameport.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <sound/core.h> 20 #include <sound/info.h> 21 #include <sound/control.h> 22 #include <sound/pcm.h> 23 #include <sound/rawmidi.h> 24 #include <sound/mpu401.h> 25 #include <sound/opl3.h> 26 #include <sound/sb.h> 27 #include <sound/asoundef.h> 28 #include <sound/initval.h> 29 30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 32 MODULE_LICENSE("GPL"); 33 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738}," 34 "{C-Media,CMI8738B}," 35 "{C-Media,CMI8338A}," 36 "{C-Media,CMI8338B}}"); 37 38 #if IS_REACHABLE(CONFIG_GAMEPORT) 39 #define SUPPORT_JOYSTICK 1 40 #endif 41 42 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 43 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 44 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 45 static long mpu_port[SNDRV_CARDS]; 46 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 47 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 48 #ifdef SUPPORT_JOYSTICK 49 static int joystick_port[SNDRV_CARDS]; 50 #endif 51 52 module_param_array(index, int, NULL, 0444); 53 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 54 module_param_array(id, charp, NULL, 0444); 55 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 56 module_param_array(enable, bool, NULL, 0444); 57 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 58 module_param_hw_array(mpu_port, long, ioport, NULL, 0444); 59 MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 60 module_param_hw_array(fm_port, long, ioport, NULL, 0444); 61 MODULE_PARM_DESC(fm_port, "FM port."); 62 module_param_array(soft_ac3, bool, NULL, 0444); 63 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only)."); 64 #ifdef SUPPORT_JOYSTICK 65 module_param_hw_array(joystick_port, int, ioport, NULL, 0444); 66 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 67 #endif 68 69 /* 70 * CM8x38 registers definition 71 */ 72 73 #define CM_REG_FUNCTRL0 0x00 74 #define CM_RST_CH1 0x00080000 75 #define CM_RST_CH0 0x00040000 76 #define CM_CHEN1 0x00020000 /* ch1: enable */ 77 #define CM_CHEN0 0x00010000 /* ch0: enable */ 78 #define CM_PAUSE1 0x00000008 /* ch1: pause */ 79 #define CM_PAUSE0 0x00000004 /* ch0: pause */ 80 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 81 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 82 83 #define CM_REG_FUNCTRL1 0x04 84 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 85 #define CM_DSFC_SHIFT 13 86 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 87 #define CM_ASFC_SHIFT 10 88 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 89 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 90 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 91 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 92 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 93 #define CM_BREQ 0x00000010 /* bus master enabled */ 94 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 95 #define CM_UART_EN 0x00000004 /* legacy UART */ 96 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 97 #define CM_ZVPORT 0x00000001 /* ZVPORT */ 98 99 #define CM_REG_CHFORMAT 0x08 100 101 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 102 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 103 #define CM_CHB3D 0x20000000 /* 4 channels */ 104 105 #define CM_CHIP_MASK1 0x1f000000 106 #define CM_CHIP_037 0x01000000 107 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 108 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 109 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 110 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 111 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 112 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 113 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 114 115 #define CM_ADCBITLEN_MASK 0x0000C000 116 #define CM_ADCBITLEN_16 0x00000000 117 #define CM_ADCBITLEN_15 0x00004000 118 #define CM_ADCBITLEN_14 0x00008000 119 #define CM_ADCBITLEN_13 0x0000C000 120 121 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 122 #define CM_ADCDACLEN_060 0x00000000 123 #define CM_ADCDACLEN_066 0x00001000 124 #define CM_ADCDACLEN_130 0x00002000 125 #define CM_ADCDACLEN_280 0x00003000 126 127 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 128 #define CM_ADCDLEN_ORIGINAL 0x00000000 129 #define CM_ADCDLEN_EXTRA 0x00001000 130 #define CM_ADCDLEN_24K 0x00002000 131 #define CM_ADCDLEN_WEIGHT 0x00003000 132 133 #define CM_CH1_SRATE_176K 0x00000800 134 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 135 #define CM_CH1_SRATE_88K 0x00000400 136 #define CM_CH0_SRATE_176K 0x00000200 137 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 138 #define CM_CH0_SRATE_88K 0x00000100 139 #define CM_CH0_SRATE_128K 0x00000300 140 #define CM_CH0_SRATE_MASK 0x00000300 141 142 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 143 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 144 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 145 #define CM_SPDLOCKED 0x00000010 146 147 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 148 #define CM_CH1FMT_SHIFT 2 149 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 150 #define CM_CH0FMT_SHIFT 0 151 152 #define CM_REG_INT_HLDCLR 0x0C 153 #define CM_CHIP_MASK2 0xff000000 154 #define CM_CHIP_8768 0x20000000 155 #define CM_CHIP_055 0x08000000 156 #define CM_CHIP_039 0x04000000 157 #define CM_CHIP_039_6CH 0x01000000 158 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 159 #define CM_TDMA_INT_EN 0x00040000 160 #define CM_CH1_INT_EN 0x00020000 161 #define CM_CH0_INT_EN 0x00010000 162 163 #define CM_REG_INT_STATUS 0x10 164 #define CM_INTR 0x80000000 165 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 166 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 167 #define CM_UARTINT 0x00010000 168 #define CM_LTDMAINT 0x00008000 169 #define CM_HTDMAINT 0x00004000 170 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 171 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 172 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 173 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 174 #define CM_CH1BUSY 0x00000008 175 #define CM_CH0BUSY 0x00000004 176 #define CM_CHINT1 0x00000002 177 #define CM_CHINT0 0x00000001 178 179 #define CM_REG_LEGACY_CTRL 0x14 180 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 181 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 182 #define CM_VMPU_330 0x00000000 183 #define CM_VMPU_320 0x20000000 184 #define CM_VMPU_310 0x40000000 185 #define CM_VMPU_300 0x60000000 186 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 187 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 188 #define CM_VSBSEL_220 0x00000000 189 #define CM_VSBSEL_240 0x04000000 190 #define CM_VSBSEL_260 0x08000000 191 #define CM_VSBSEL_280 0x0C000000 192 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 193 #define CM_FMSEL_388 0x00000000 194 #define CM_FMSEL_3C8 0x01000000 195 #define CM_FMSEL_3E0 0x02000000 196 #define CM_FMSEL_3E8 0x03000000 197 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 198 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 199 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 200 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 201 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 202 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 203 #define CM_C_EECS 0x00040000 204 #define CM_C_EEDI46 0x00020000 205 #define CM_C_EECK46 0x00010000 206 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 207 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 208 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 209 #define CM_EXBASEN 0x00001000 /* external bass input enable */ 210 211 #define CM_REG_MISC_CTRL 0x18 212 #define CM_PWD 0x80000000 /* power down */ 213 #define CM_RESET 0x40000000 214 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 215 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 216 #define CM_TXVX 0x08000000 /* model 037? */ 217 #define CM_N4SPK3D 0x04000000 /* copy front to rear */ 218 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 219 #define CM_SPDIF48K 0x01000000 /* write */ 220 #define CM_SPATUS48K 0x01000000 /* read */ 221 #define CM_ENDBDAC 0x00800000 /* enable double dac */ 222 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 223 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 224 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 225 #define CM_FM_EN 0x00080000 /* enable legacy FM */ 226 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 227 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 228 #define CM_VIDWPDSB 0x00010000 /* model 037? */ 229 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 230 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 231 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 232 #define CM_VIDWPPRT 0x00002000 /* model 037? */ 233 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 234 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 235 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 236 #define CM_ENCENTER 0x00000080 237 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ 238 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 239 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ 240 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 241 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 242 #define CM_UPDDMA_2048 0x00000000 243 #define CM_UPDDMA_1024 0x00000004 244 #define CM_UPDDMA_512 0x00000008 245 #define CM_UPDDMA_256 0x0000000C 246 #define CM_TWAIT_MASK 0x00000003 /* model 037 */ 247 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 248 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 249 250 #define CM_REG_TDMA_POSITION 0x1C 251 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 252 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 253 254 /* byte */ 255 #define CM_REG_MIXER0 0x20 256 #define CM_REG_SBVR 0x20 /* write: sb16 version */ 257 #define CM_REG_DEV 0x20 /* read: hardware device version */ 258 259 #define CM_REG_MIXER21 0x21 260 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ 261 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 262 #define CM_PROINV 0x02 /* SBPro left/right channel switching */ 263 #define CM_X_SB16 0x01 /* SB16 compatible */ 264 265 #define CM_REG_SB16_DATA 0x22 266 #define CM_REG_SB16_ADDR 0x23 267 268 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 269 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 270 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 271 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 272 273 #define CM_REG_MIXER1 0x24 274 #define CM_FMMUTE 0x80 /* mute FM */ 275 #define CM_FMMUTE_SHIFT 7 276 #define CM_WSMUTE 0x40 /* mute PCM */ 277 #define CM_WSMUTE_SHIFT 6 278 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 279 #define CM_REAR2LIN_SHIFT 5 280 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ 281 #define CM_REAR2FRONT_SHIFT 4 282 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 283 #define CM_WAVEINL_SHIFT 3 284 #define CM_WAVEINR 0x04 /* digical wave rec. right */ 285 #define CM_WAVEINR_SHIFT 2 286 #define CM_X3DEN 0x02 /* 3D surround enable */ 287 #define CM_X3DEN_SHIFT 1 288 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 289 #define CM_CDPLAY_SHIFT 0 290 291 #define CM_REG_MIXER2 0x25 292 #define CM_RAUXREN 0x80 /* AUX right capture */ 293 #define CM_RAUXREN_SHIFT 7 294 #define CM_RAUXLEN 0x40 /* AUX left capture */ 295 #define CM_RAUXLEN_SHIFT 6 296 #define CM_VAUXRM 0x20 /* AUX right mute */ 297 #define CM_VAUXRM_SHIFT 5 298 #define CM_VAUXLM 0x10 /* AUX left mute */ 299 #define CM_VAUXLM_SHIFT 4 300 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 301 #define CM_VADMIC_SHIFT 1 302 #define CM_MICGAINZ 0x01 /* mic boost */ 303 #define CM_MICGAINZ_SHIFT 0 304 305 #define CM_REG_MIXER3 0x24 306 #define CM_REG_AUX_VOL 0x26 307 #define CM_VAUXL_MASK 0xf0 308 #define CM_VAUXR_MASK 0x0f 309 310 #define CM_REG_MISC 0x27 311 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 312 #define CM_XGPO1 0x20 313 // #define CM_XGPBIO 0x04 314 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 315 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 316 #define CM_SPDVALID 0x02 /* spdif input valid check */ 317 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 318 319 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 320 /* 321 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 322 * or identical with AC97 codec? 323 */ 324 #define CM_REG_EXTERN_CODEC CM_REG_AC97 325 326 /* 327 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 328 */ 329 #define CM_REG_MPU_PCI 0x40 330 331 /* 332 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 333 */ 334 #define CM_REG_FM_PCI 0x50 335 336 /* 337 * access from SB-mixer port 338 */ 339 #define CM_REG_EXTENT_IND 0xf0 340 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 341 #define CM_VPHONE_SHIFT 5 342 #define CM_VPHOM 0x10 /* Phone mute control */ 343 #define CM_VSPKM 0x08 /* Speaker mute control, default high */ 344 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 345 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 346 #define CM_VADMIC3 0x01 /* Mic record boost */ 347 348 /* 349 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 350 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 351 * unit (readonly?). 352 */ 353 #define CM_REG_PLL 0xf8 354 355 /* 356 * extended registers 357 */ 358 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 359 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 360 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 361 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 362 363 #define CM_REG_EXT_MISC 0x90 364 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 365 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 366 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 367 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 368 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 369 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 370 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 371 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 372 373 /* 374 * size of i/o region 375 */ 376 #define CM_EXTENT_CODEC 0x100 377 #define CM_EXTENT_MIDI 0x2 378 #define CM_EXTENT_SYNTH 0x4 379 380 381 /* 382 * channels for playback / capture 383 */ 384 #define CM_CH_PLAY 0 385 #define CM_CH_CAPT 1 386 387 /* 388 * flags to check device open/close 389 */ 390 #define CM_OPEN_NONE 0 391 #define CM_OPEN_CH_MASK 0x01 392 #define CM_OPEN_DAC 0x10 393 #define CM_OPEN_ADC 0x20 394 #define CM_OPEN_SPDIF 0x40 395 #define CM_OPEN_MCHAN 0x80 396 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 397 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 398 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 399 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 400 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 401 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 402 403 404 #if CM_CH_PLAY == 1 405 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 406 #define CM_PLAYBACK_SPDF CM_SPDF_1 407 #define CM_CAPTURE_SPDF CM_SPDF_0 408 #else 409 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 410 #define CM_PLAYBACK_SPDF CM_SPDF_0 411 #define CM_CAPTURE_SPDF CM_SPDF_1 412 #endif 413 414 415 /* 416 * driver data 417 */ 418 419 struct cmipci_pcm { 420 struct snd_pcm_substream *substream; 421 u8 running; /* dac/adc running? */ 422 u8 fmt; /* format bits */ 423 u8 is_dac; 424 u8 needs_silencing; 425 unsigned int dma_size; /* in frames */ 426 unsigned int shift; 427 unsigned int ch; /* channel (0/1) */ 428 unsigned int offset; /* physical address of the buffer */ 429 }; 430 431 /* mixer elements toggled/resumed during ac3 playback */ 432 struct cmipci_mixer_auto_switches { 433 const char *name; /* switch to toggle */ 434 int toggle_on; /* value to change when ac3 mode */ 435 }; 436 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 437 {"PCM Playback Switch", 0}, 438 {"IEC958 Output Switch", 1}, 439 {"IEC958 Mix Analog", 0}, 440 // {"IEC958 Out To DAC", 1}, // no longer used 441 {"IEC958 Loop", 0}, 442 }; 443 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 444 445 struct cmipci { 446 struct snd_card *card; 447 448 struct pci_dev *pci; 449 unsigned int device; /* device ID */ 450 int irq; 451 452 unsigned long iobase; 453 unsigned int ctrl; /* FUNCTRL0 current value */ 454 455 struct snd_pcm *pcm; /* DAC/ADC PCM */ 456 struct snd_pcm *pcm2; /* 2nd DAC */ 457 struct snd_pcm *pcm_spdif; /* SPDIF */ 458 459 int chip_version; 460 int max_channels; 461 unsigned int can_ac3_sw: 1; 462 unsigned int can_ac3_hw: 1; 463 unsigned int can_multi_ch: 1; 464 unsigned int can_96k: 1; /* samplerate above 48k */ 465 unsigned int do_soft_ac3: 1; 466 467 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 468 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 469 int spdif_counter; /* for software AC3 */ 470 471 unsigned int dig_status; 472 unsigned int dig_pcm_status; 473 474 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 475 476 int opened[2]; /* open mode */ 477 struct mutex open_mutex; 478 479 unsigned int mixer_insensitive: 1; 480 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 481 int mixer_res_status[CM_SAVED_MIXERS]; 482 483 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 484 485 /* external MIDI */ 486 struct snd_rawmidi *rmidi; 487 488 #ifdef SUPPORT_JOYSTICK 489 struct gameport *gameport; 490 #endif 491 492 spinlock_t reg_lock; 493 494 #ifdef CONFIG_PM_SLEEP 495 unsigned int saved_regs[0x20]; 496 unsigned char saved_mixers[0x20]; 497 #endif 498 }; 499 500 501 /* read/write operations for dword register */ 502 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 503 { 504 outl(data, cm->iobase + cmd); 505 } 506 507 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 508 { 509 return inl(cm->iobase + cmd); 510 } 511 512 /* read/write operations for word register */ 513 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 514 { 515 outw(data, cm->iobase + cmd); 516 } 517 518 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 519 { 520 return inw(cm->iobase + cmd); 521 } 522 523 /* read/write operations for byte register */ 524 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 525 { 526 outb(data, cm->iobase + cmd); 527 } 528 529 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 530 { 531 return inb(cm->iobase + cmd); 532 } 533 534 /* bit operations for dword register */ 535 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 536 { 537 unsigned int val, oval; 538 val = oval = inl(cm->iobase + cmd); 539 val |= flag; 540 if (val == oval) 541 return 0; 542 outl(val, cm->iobase + cmd); 543 return 1; 544 } 545 546 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 547 { 548 unsigned int val, oval; 549 val = oval = inl(cm->iobase + cmd); 550 val &= ~flag; 551 if (val == oval) 552 return 0; 553 outl(val, cm->iobase + cmd); 554 return 1; 555 } 556 557 /* bit operations for byte register */ 558 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 559 { 560 unsigned char val, oval; 561 val = oval = inb(cm->iobase + cmd); 562 val |= flag; 563 if (val == oval) 564 return 0; 565 outb(val, cm->iobase + cmd); 566 return 1; 567 } 568 569 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 570 { 571 unsigned char val, oval; 572 val = oval = inb(cm->iobase + cmd); 573 val &= ~flag; 574 if (val == oval) 575 return 0; 576 outb(val, cm->iobase + cmd); 577 return 1; 578 } 579 580 581 /* 582 * PCM interface 583 */ 584 585 /* 586 * calculate frequency 587 */ 588 589 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 590 591 static unsigned int snd_cmipci_rate_freq(unsigned int rate) 592 { 593 unsigned int i; 594 595 for (i = 0; i < ARRAY_SIZE(rates); i++) { 596 if (rates[i] == rate) 597 return i; 598 } 599 snd_BUG(); 600 return 0; 601 } 602 603 #ifdef USE_VAR48KRATE 604 /* 605 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 606 * does it this way .. maybe not. Never get any information from C-Media about 607 * that <werner@suse.de>. 608 */ 609 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 610 { 611 unsigned int delta, tolerance; 612 int xm, xn, xr; 613 614 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 615 rate <<= 1; 616 *n = -1; 617 if (*r > 0xff) 618 goto out; 619 tolerance = rate*CM_TOLERANCE_RATE; 620 621 for (xn = (1+2); xn < (0x1f+2); xn++) { 622 for (xm = (1+2); xm < (0xff+2); xm++) { 623 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 624 625 if (xr < rate) 626 delta = rate - xr; 627 else 628 delta = xr - rate; 629 630 /* 631 * If we found one, remember this, 632 * and try to find a closer one 633 */ 634 if (delta < tolerance) { 635 tolerance = delta; 636 *m = xm - 2; 637 *n = xn - 2; 638 } 639 } 640 } 641 out: 642 return (*n > -1); 643 } 644 645 /* 646 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff 647 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen 648 * at the register CM_REG_FUNCTRL1 (0x04). 649 * Problem: other ways are also possible (any information about that?) 650 */ 651 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 652 { 653 unsigned int reg = CM_REG_PLL + slot; 654 /* 655 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 656 * for DSFC/ASFC (000 up to 111). 657 */ 658 659 /* FIXME: Init (Do we've to set an other register first before programming?) */ 660 661 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 662 snd_cmipci_write_b(cm, reg, rate>>8); 663 snd_cmipci_write_b(cm, reg, rate&0xff); 664 665 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 666 } 667 #endif /* USE_VAR48KRATE */ 668 669 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream, 670 struct snd_pcm_hw_params *hw_params) 671 { 672 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 673 } 674 675 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 676 struct snd_pcm_hw_params *hw_params) 677 { 678 struct cmipci *cm = snd_pcm_substream_chip(substream); 679 if (params_channels(hw_params) > 2) { 680 mutex_lock(&cm->open_mutex); 681 if (cm->opened[CM_CH_PLAY]) { 682 mutex_unlock(&cm->open_mutex); 683 return -EBUSY; 684 } 685 /* reserve the channel A */ 686 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 687 mutex_unlock(&cm->open_mutex); 688 } 689 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 690 } 691 692 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 693 { 694 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 695 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 696 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 697 udelay(10); 698 } 699 700 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream) 701 { 702 return snd_pcm_lib_free_pages(substream); 703 } 704 705 706 /* 707 */ 708 709 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 710 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 711 .count = 3, 712 .list = hw_channels, 713 .mask = 0, 714 }; 715 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 716 .count = 4, 717 .list = hw_channels, 718 .mask = 0, 719 }; 720 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 721 .count = 5, 722 .list = hw_channels, 723 .mask = 0, 724 }; 725 726 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 727 { 728 if (channels > 2) { 729 if (!cm->can_multi_ch || !rec->ch) 730 return -EINVAL; 731 if (rec->fmt != 0x03) /* stereo 16bit only */ 732 return -EINVAL; 733 } 734 735 if (cm->can_multi_ch) { 736 spin_lock_irq(&cm->reg_lock); 737 if (channels > 2) { 738 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 739 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 740 } else { 741 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 742 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 743 } 744 if (channels == 8) 745 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 746 else 747 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 748 if (channels == 6) { 749 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 750 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 751 } else { 752 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 753 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 754 } 755 if (channels == 4) 756 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 757 else 758 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 759 spin_unlock_irq(&cm->reg_lock); 760 } 761 return 0; 762 } 763 764 765 /* 766 * prepare playback/capture channel 767 * channel to be used must have been set in rec->ch. 768 */ 769 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 770 struct snd_pcm_substream *substream) 771 { 772 unsigned int reg, freq, freq_ext, val; 773 unsigned int period_size; 774 struct snd_pcm_runtime *runtime = substream->runtime; 775 776 rec->fmt = 0; 777 rec->shift = 0; 778 if (snd_pcm_format_width(runtime->format) >= 16) { 779 rec->fmt |= 0x02; 780 if (snd_pcm_format_width(runtime->format) > 16) 781 rec->shift++; /* 24/32bit */ 782 } 783 if (runtime->channels > 1) 784 rec->fmt |= 0x01; 785 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 786 dev_dbg(cm->card->dev, "cannot set dac channels\n"); 787 return -EINVAL; 788 } 789 790 rec->offset = runtime->dma_addr; 791 /* buffer and period sizes in frame */ 792 rec->dma_size = runtime->buffer_size << rec->shift; 793 period_size = runtime->period_size << rec->shift; 794 if (runtime->channels > 2) { 795 /* multi-channels */ 796 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 797 period_size = (period_size * runtime->channels) / 2; 798 } 799 800 spin_lock_irq(&cm->reg_lock); 801 802 /* set buffer address */ 803 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 804 snd_cmipci_write(cm, reg, rec->offset); 805 /* program sample counts */ 806 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 807 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 808 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 809 810 /* set adc/dac flag */ 811 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 812 if (rec->is_dac) 813 cm->ctrl &= ~val; 814 else 815 cm->ctrl |= val; 816 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 817 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */ 818 819 /* set sample rate */ 820 freq = 0; 821 freq_ext = 0; 822 if (runtime->rate > 48000) 823 switch (runtime->rate) { 824 case 88200: freq_ext = CM_CH0_SRATE_88K; break; 825 case 96000: freq_ext = CM_CH0_SRATE_96K; break; 826 case 128000: freq_ext = CM_CH0_SRATE_128K; break; 827 default: snd_BUG(); break; 828 } 829 else 830 freq = snd_cmipci_rate_freq(runtime->rate); 831 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 832 if (rec->ch) { 833 val &= ~CM_DSFC_MASK; 834 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 835 } else { 836 val &= ~CM_ASFC_MASK; 837 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 838 } 839 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 840 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val); 841 842 /* set format */ 843 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 844 if (rec->ch) { 845 val &= ~CM_CH1FMT_MASK; 846 val |= rec->fmt << CM_CH1FMT_SHIFT; 847 } else { 848 val &= ~CM_CH0FMT_MASK; 849 val |= rec->fmt << CM_CH0FMT_SHIFT; 850 } 851 if (cm->can_96k) { 852 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 853 val |= freq_ext << (rec->ch * 2); 854 } 855 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 856 dev_dbg(cm->card->dev, "chformat = %08x\n", val); 857 858 if (!rec->is_dac && cm->chip_version) { 859 if (runtime->rate > 44100) 860 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 861 else 862 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 863 } 864 865 rec->running = 0; 866 spin_unlock_irq(&cm->reg_lock); 867 868 return 0; 869 } 870 871 /* 872 * PCM trigger/stop 873 */ 874 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 875 int cmd) 876 { 877 unsigned int inthld, chen, reset, pause; 878 int result = 0; 879 880 inthld = CM_CH0_INT_EN << rec->ch; 881 chen = CM_CHEN0 << rec->ch; 882 reset = CM_RST_CH0 << rec->ch; 883 pause = CM_PAUSE0 << rec->ch; 884 885 spin_lock(&cm->reg_lock); 886 switch (cmd) { 887 case SNDRV_PCM_TRIGGER_START: 888 rec->running = 1; 889 /* set interrupt */ 890 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 891 cm->ctrl |= chen; 892 /* enable channel */ 893 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 894 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); 895 break; 896 case SNDRV_PCM_TRIGGER_STOP: 897 rec->running = 0; 898 /* disable interrupt */ 899 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 900 /* reset */ 901 cm->ctrl &= ~chen; 902 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 903 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 904 rec->needs_silencing = rec->is_dac; 905 break; 906 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 907 case SNDRV_PCM_TRIGGER_SUSPEND: 908 cm->ctrl |= pause; 909 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 910 break; 911 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 912 case SNDRV_PCM_TRIGGER_RESUME: 913 cm->ctrl &= ~pause; 914 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 915 break; 916 default: 917 result = -EINVAL; 918 break; 919 } 920 spin_unlock(&cm->reg_lock); 921 return result; 922 } 923 924 /* 925 * return the current pointer 926 */ 927 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 928 struct snd_pcm_substream *substream) 929 { 930 size_t ptr; 931 unsigned int reg, rem, tries; 932 933 if (!rec->running) 934 return 0; 935 #if 1 // this seems better.. 936 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 937 for (tries = 0; tries < 3; tries++) { 938 rem = snd_cmipci_read_w(cm, reg); 939 if (rem < rec->dma_size) 940 goto ok; 941 } 942 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem); 943 return SNDRV_PCM_POS_XRUN; 944 ok: 945 ptr = (rec->dma_size - (rem + 1)) >> rec->shift; 946 #else 947 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 948 ptr = snd_cmipci_read(cm, reg) - rec->offset; 949 ptr = bytes_to_frames(substream->runtime, ptr); 950 #endif 951 if (substream->runtime->channels > 2) 952 ptr = (ptr * 2) / substream->runtime->channels; 953 return ptr; 954 } 955 956 /* 957 * playback 958 */ 959 960 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 961 int cmd) 962 { 963 struct cmipci *cm = snd_pcm_substream_chip(substream); 964 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 965 } 966 967 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 968 { 969 struct cmipci *cm = snd_pcm_substream_chip(substream); 970 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 971 } 972 973 974 975 /* 976 * capture 977 */ 978 979 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 980 int cmd) 981 { 982 struct cmipci *cm = snd_pcm_substream_chip(substream); 983 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 984 } 985 986 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 987 { 988 struct cmipci *cm = snd_pcm_substream_chip(substream); 989 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 990 } 991 992 993 /* 994 * hw preparation for spdif 995 */ 996 997 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 998 struct snd_ctl_elem_info *uinfo) 999 { 1000 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1001 uinfo->count = 1; 1002 return 0; 1003 } 1004 1005 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 1006 struct snd_ctl_elem_value *ucontrol) 1007 { 1008 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1009 int i; 1010 1011 spin_lock_irq(&chip->reg_lock); 1012 for (i = 0; i < 4; i++) 1013 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 1014 spin_unlock_irq(&chip->reg_lock); 1015 return 0; 1016 } 1017 1018 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 1019 struct snd_ctl_elem_value *ucontrol) 1020 { 1021 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1022 int i, change; 1023 unsigned int val; 1024 1025 val = 0; 1026 spin_lock_irq(&chip->reg_lock); 1027 for (i = 0; i < 4; i++) 1028 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1029 change = val != chip->dig_status; 1030 chip->dig_status = val; 1031 spin_unlock_irq(&chip->reg_lock); 1032 return change; 1033 } 1034 1035 static const struct snd_kcontrol_new snd_cmipci_spdif_default = 1036 { 1037 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1038 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1039 .info = snd_cmipci_spdif_default_info, 1040 .get = snd_cmipci_spdif_default_get, 1041 .put = snd_cmipci_spdif_default_put 1042 }; 1043 1044 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1045 struct snd_ctl_elem_info *uinfo) 1046 { 1047 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1048 uinfo->count = 1; 1049 return 0; 1050 } 1051 1052 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1053 struct snd_ctl_elem_value *ucontrol) 1054 { 1055 ucontrol->value.iec958.status[0] = 0xff; 1056 ucontrol->value.iec958.status[1] = 0xff; 1057 ucontrol->value.iec958.status[2] = 0xff; 1058 ucontrol->value.iec958.status[3] = 0xff; 1059 return 0; 1060 } 1061 1062 static const struct snd_kcontrol_new snd_cmipci_spdif_mask = 1063 { 1064 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1065 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1066 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1067 .info = snd_cmipci_spdif_mask_info, 1068 .get = snd_cmipci_spdif_mask_get, 1069 }; 1070 1071 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1072 struct snd_ctl_elem_info *uinfo) 1073 { 1074 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1075 uinfo->count = 1; 1076 return 0; 1077 } 1078 1079 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1080 struct snd_ctl_elem_value *ucontrol) 1081 { 1082 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1083 int i; 1084 1085 spin_lock_irq(&chip->reg_lock); 1086 for (i = 0; i < 4; i++) 1087 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1088 spin_unlock_irq(&chip->reg_lock); 1089 return 0; 1090 } 1091 1092 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1093 struct snd_ctl_elem_value *ucontrol) 1094 { 1095 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1096 int i, change; 1097 unsigned int val; 1098 1099 val = 0; 1100 spin_lock_irq(&chip->reg_lock); 1101 for (i = 0; i < 4; i++) 1102 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1103 change = val != chip->dig_pcm_status; 1104 chip->dig_pcm_status = val; 1105 spin_unlock_irq(&chip->reg_lock); 1106 return change; 1107 } 1108 1109 static const struct snd_kcontrol_new snd_cmipci_spdif_stream = 1110 { 1111 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1112 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1113 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1114 .info = snd_cmipci_spdif_stream_info, 1115 .get = snd_cmipci_spdif_stream_get, 1116 .put = snd_cmipci_spdif_stream_put 1117 }; 1118 1119 /* 1120 */ 1121 1122 /* save mixer setting and mute for AC3 playback */ 1123 static int save_mixer_state(struct cmipci *cm) 1124 { 1125 if (! cm->mixer_insensitive) { 1126 struct snd_ctl_elem_value *val; 1127 unsigned int i; 1128 1129 val = kmalloc(sizeof(*val), GFP_KERNEL); 1130 if (!val) 1131 return -ENOMEM; 1132 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1133 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1134 if (ctl) { 1135 int event; 1136 memset(val, 0, sizeof(*val)); 1137 ctl->get(ctl, val); 1138 cm->mixer_res_status[i] = val->value.integer.value[0]; 1139 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1140 event = SNDRV_CTL_EVENT_MASK_INFO; 1141 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1142 ctl->put(ctl, val); /* toggle */ 1143 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1144 } 1145 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1146 snd_ctl_notify(cm->card, event, &ctl->id); 1147 } 1148 } 1149 kfree(val); 1150 cm->mixer_insensitive = 1; 1151 } 1152 return 0; 1153 } 1154 1155 1156 /* restore the previously saved mixer status */ 1157 static void restore_mixer_state(struct cmipci *cm) 1158 { 1159 if (cm->mixer_insensitive) { 1160 struct snd_ctl_elem_value *val; 1161 unsigned int i; 1162 1163 val = kmalloc(sizeof(*val), GFP_KERNEL); 1164 if (!val) 1165 return; 1166 cm->mixer_insensitive = 0; /* at first clear this; 1167 otherwise the changes will be ignored */ 1168 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1169 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1170 if (ctl) { 1171 int event; 1172 1173 memset(val, 0, sizeof(*val)); 1174 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1175 ctl->get(ctl, val); 1176 event = SNDRV_CTL_EVENT_MASK_INFO; 1177 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1178 val->value.integer.value[0] = cm->mixer_res_status[i]; 1179 ctl->put(ctl, val); 1180 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1181 } 1182 snd_ctl_notify(cm->card, event, &ctl->id); 1183 } 1184 } 1185 kfree(val); 1186 } 1187 } 1188 1189 /* spinlock held! */ 1190 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1191 { 1192 if (do_ac3) { 1193 /* AC3EN for 037 */ 1194 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1195 /* AC3EN for 039 */ 1196 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1197 1198 if (cm->can_ac3_hw) { 1199 /* SPD24SEL for 037, 0x02 */ 1200 /* SPD24SEL for 039, 0x20, but cannot be set */ 1201 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1202 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1203 } else { /* can_ac3_sw */ 1204 /* SPD32SEL for 037 & 039, 0x20 */ 1205 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1206 /* set 176K sample rate to fix 033 HW bug */ 1207 if (cm->chip_version == 33) { 1208 if (rate >= 48000) { 1209 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1210 } else { 1211 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1212 } 1213 } 1214 } 1215 1216 } else { 1217 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1218 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1219 1220 if (cm->can_ac3_hw) { 1221 /* chip model >= 37 */ 1222 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1223 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1224 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1225 } else { 1226 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1227 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1228 } 1229 } else { 1230 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1231 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1232 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1233 } 1234 } 1235 } 1236 1237 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1238 { 1239 int rate, err; 1240 1241 rate = subs->runtime->rate; 1242 1243 if (up && do_ac3) 1244 if ((err = save_mixer_state(cm)) < 0) 1245 return err; 1246 1247 spin_lock_irq(&cm->reg_lock); 1248 cm->spdif_playback_avail = up; 1249 if (up) { 1250 /* they are controlled via "IEC958 Output Switch" */ 1251 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1252 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1253 if (cm->spdif_playback_enabled) 1254 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1255 setup_ac3(cm, subs, do_ac3, rate); 1256 1257 if (rate == 48000 || rate == 96000) 1258 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1259 else 1260 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1261 if (rate > 48000) 1262 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1263 else 1264 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1265 } else { 1266 /* they are controlled via "IEC958 Output Switch" */ 1267 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1268 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1269 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1270 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1271 setup_ac3(cm, subs, 0, 0); 1272 } 1273 spin_unlock_irq(&cm->reg_lock); 1274 return 0; 1275 } 1276 1277 1278 /* 1279 * preparation 1280 */ 1281 1282 /* playback - enable spdif only on the certain condition */ 1283 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1284 { 1285 struct cmipci *cm = snd_pcm_substream_chip(substream); 1286 int rate = substream->runtime->rate; 1287 int err, do_spdif, do_ac3 = 0; 1288 1289 do_spdif = (rate >= 44100 && rate <= 96000 && 1290 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1291 substream->runtime->channels == 2); 1292 if (do_spdif && cm->can_ac3_hw) 1293 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1294 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0) 1295 return err; 1296 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1297 } 1298 1299 /* playback (via device #2) - enable spdif always */ 1300 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1301 { 1302 struct cmipci *cm = snd_pcm_substream_chip(substream); 1303 int err, do_ac3; 1304 1305 if (cm->can_ac3_hw) 1306 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1307 else 1308 do_ac3 = 1; /* doesn't matter */ 1309 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0) 1310 return err; 1311 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1312 } 1313 1314 /* 1315 * Apparently, the samples last played on channel A stay in some buffer, even 1316 * after the channel is reset, and get added to the data for the rear DACs when 1317 * playing a multichannel stream on channel B. This is likely to generate 1318 * wraparounds and thus distortions. 1319 * To avoid this, we play at least one zero sample after the actual stream has 1320 * stopped. 1321 */ 1322 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1323 { 1324 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1325 unsigned int reg, val; 1326 1327 if (rec->needs_silencing && runtime && runtime->dma_area) { 1328 /* set up a small silence buffer */ 1329 memset(runtime->dma_area, 0, PAGE_SIZE); 1330 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1331 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1332 snd_cmipci_write(cm, reg, val); 1333 1334 /* configure for 16 bits, 2 channels, 8 kHz */ 1335 if (runtime->channels > 2) 1336 set_dac_channels(cm, rec, 2); 1337 spin_lock_irq(&cm->reg_lock); 1338 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1339 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1340 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1341 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1342 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1343 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1344 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1345 if (cm->can_96k) 1346 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 1347 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1348 1349 /* start stream (we don't need interrupts) */ 1350 cm->ctrl |= CM_CHEN0 << rec->ch; 1351 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1352 spin_unlock_irq(&cm->reg_lock); 1353 1354 msleep(1); 1355 1356 /* stop and reset stream */ 1357 spin_lock_irq(&cm->reg_lock); 1358 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1359 val = CM_RST_CH0 << rec->ch; 1360 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1361 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1362 spin_unlock_irq(&cm->reg_lock); 1363 1364 rec->needs_silencing = 0; 1365 } 1366 } 1367 1368 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1369 { 1370 struct cmipci *cm = snd_pcm_substream_chip(substream); 1371 setup_spdif_playback(cm, substream, 0, 0); 1372 restore_mixer_state(cm); 1373 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1374 return snd_cmipci_hw_free(substream); 1375 } 1376 1377 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1378 { 1379 struct cmipci *cm = snd_pcm_substream_chip(substream); 1380 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1381 return snd_cmipci_hw_free(substream); 1382 } 1383 1384 /* capture */ 1385 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1386 { 1387 struct cmipci *cm = snd_pcm_substream_chip(substream); 1388 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1389 } 1390 1391 /* capture with spdif (via device #2) */ 1392 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1393 { 1394 struct cmipci *cm = snd_pcm_substream_chip(substream); 1395 1396 spin_lock_irq(&cm->reg_lock); 1397 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1398 if (cm->can_96k) { 1399 if (substream->runtime->rate > 48000) 1400 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1401 else 1402 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1403 } 1404 if (snd_pcm_format_width(substream->runtime->format) > 16) 1405 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1406 else 1407 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1408 1409 spin_unlock_irq(&cm->reg_lock); 1410 1411 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1412 } 1413 1414 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1415 { 1416 struct cmipci *cm = snd_pcm_substream_chip(subs); 1417 1418 spin_lock_irq(&cm->reg_lock); 1419 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1420 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1421 spin_unlock_irq(&cm->reg_lock); 1422 1423 return snd_cmipci_hw_free(subs); 1424 } 1425 1426 1427 /* 1428 * interrupt handler 1429 */ 1430 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1431 { 1432 struct cmipci *cm = dev_id; 1433 unsigned int status, mask = 0; 1434 1435 /* fastpath out, to ease interrupt sharing */ 1436 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1437 if (!(status & CM_INTR)) 1438 return IRQ_NONE; 1439 1440 /* acknowledge interrupt */ 1441 spin_lock(&cm->reg_lock); 1442 if (status & CM_CHINT0) 1443 mask |= CM_CH0_INT_EN; 1444 if (status & CM_CHINT1) 1445 mask |= CM_CH1_INT_EN; 1446 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1447 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1448 spin_unlock(&cm->reg_lock); 1449 1450 if (cm->rmidi && (status & CM_UARTINT)) 1451 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1452 1453 if (cm->pcm) { 1454 if ((status & CM_CHINT0) && cm->channel[0].running) 1455 snd_pcm_period_elapsed(cm->channel[0].substream); 1456 if ((status & CM_CHINT1) && cm->channel[1].running) 1457 snd_pcm_period_elapsed(cm->channel[1].substream); 1458 } 1459 return IRQ_HANDLED; 1460 } 1461 1462 /* 1463 * h/w infos 1464 */ 1465 1466 /* playback on channel A */ 1467 static const struct snd_pcm_hardware snd_cmipci_playback = 1468 { 1469 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1470 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1471 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1472 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1473 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1474 .rate_min = 5512, 1475 .rate_max = 48000, 1476 .channels_min = 1, 1477 .channels_max = 2, 1478 .buffer_bytes_max = (128*1024), 1479 .period_bytes_min = 64, 1480 .period_bytes_max = (128*1024), 1481 .periods_min = 2, 1482 .periods_max = 1024, 1483 .fifo_size = 0, 1484 }; 1485 1486 /* capture on channel B */ 1487 static const struct snd_pcm_hardware snd_cmipci_capture = 1488 { 1489 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1490 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1491 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1492 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1493 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1494 .rate_min = 5512, 1495 .rate_max = 48000, 1496 .channels_min = 1, 1497 .channels_max = 2, 1498 .buffer_bytes_max = (128*1024), 1499 .period_bytes_min = 64, 1500 .period_bytes_max = (128*1024), 1501 .periods_min = 2, 1502 .periods_max = 1024, 1503 .fifo_size = 0, 1504 }; 1505 1506 /* playback on channel B - stereo 16bit only? */ 1507 static const struct snd_pcm_hardware snd_cmipci_playback2 = 1508 { 1509 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1510 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1511 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1512 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1513 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1514 .rate_min = 5512, 1515 .rate_max = 48000, 1516 .channels_min = 2, 1517 .channels_max = 2, 1518 .buffer_bytes_max = (128*1024), 1519 .period_bytes_min = 64, 1520 .period_bytes_max = (128*1024), 1521 .periods_min = 2, 1522 .periods_max = 1024, 1523 .fifo_size = 0, 1524 }; 1525 1526 /* spdif playback on channel A */ 1527 static const struct snd_pcm_hardware snd_cmipci_playback_spdif = 1528 { 1529 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1530 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1531 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1532 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1533 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1534 .rate_min = 44100, 1535 .rate_max = 48000, 1536 .channels_min = 2, 1537 .channels_max = 2, 1538 .buffer_bytes_max = (128*1024), 1539 .period_bytes_min = 64, 1540 .period_bytes_max = (128*1024), 1541 .periods_min = 2, 1542 .periods_max = 1024, 1543 .fifo_size = 0, 1544 }; 1545 1546 /* spdif playback on channel A (32bit, IEC958 subframes) */ 1547 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1548 { 1549 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1550 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1551 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1552 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1553 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1554 .rate_min = 44100, 1555 .rate_max = 48000, 1556 .channels_min = 2, 1557 .channels_max = 2, 1558 .buffer_bytes_max = (128*1024), 1559 .period_bytes_min = 64, 1560 .period_bytes_max = (128*1024), 1561 .periods_min = 2, 1562 .periods_max = 1024, 1563 .fifo_size = 0, 1564 }; 1565 1566 /* spdif capture on channel B */ 1567 static const struct snd_pcm_hardware snd_cmipci_capture_spdif = 1568 { 1569 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1570 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1571 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1572 .formats = SNDRV_PCM_FMTBIT_S16_LE | 1573 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1574 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1575 .rate_min = 44100, 1576 .rate_max = 48000, 1577 .channels_min = 2, 1578 .channels_max = 2, 1579 .buffer_bytes_max = (128*1024), 1580 .period_bytes_min = 64, 1581 .period_bytes_max = (128*1024), 1582 .periods_min = 2, 1583 .periods_max = 1024, 1584 .fifo_size = 0, 1585 }; 1586 1587 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050, 1588 32000, 44100, 48000, 88200, 96000, 128000 }; 1589 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = { 1590 .count = ARRAY_SIZE(rate_constraints), 1591 .list = rate_constraints, 1592 .mask = 0, 1593 }; 1594 1595 /* 1596 * check device open/close 1597 */ 1598 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1599 { 1600 int ch = mode & CM_OPEN_CH_MASK; 1601 1602 /* FIXME: a file should wait until the device becomes free 1603 * when it's opened on blocking mode. however, since the current 1604 * pcm framework doesn't pass file pointer before actually opened, 1605 * we can't know whether blocking mode or not in open callback.. 1606 */ 1607 mutex_lock(&cm->open_mutex); 1608 if (cm->opened[ch]) { 1609 mutex_unlock(&cm->open_mutex); 1610 return -EBUSY; 1611 } 1612 cm->opened[ch] = mode; 1613 cm->channel[ch].substream = subs; 1614 if (! (mode & CM_OPEN_DAC)) { 1615 /* disable dual DAC mode */ 1616 cm->channel[ch].is_dac = 0; 1617 spin_lock_irq(&cm->reg_lock); 1618 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1619 spin_unlock_irq(&cm->reg_lock); 1620 } 1621 mutex_unlock(&cm->open_mutex); 1622 return 0; 1623 } 1624 1625 static void close_device_check(struct cmipci *cm, int mode) 1626 { 1627 int ch = mode & CM_OPEN_CH_MASK; 1628 1629 mutex_lock(&cm->open_mutex); 1630 if (cm->opened[ch] == mode) { 1631 if (cm->channel[ch].substream) { 1632 snd_cmipci_ch_reset(cm, ch); 1633 cm->channel[ch].running = 0; 1634 cm->channel[ch].substream = NULL; 1635 } 1636 cm->opened[ch] = 0; 1637 if (! cm->channel[ch].is_dac) { 1638 /* enable dual DAC mode again */ 1639 cm->channel[ch].is_dac = 1; 1640 spin_lock_irq(&cm->reg_lock); 1641 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1642 spin_unlock_irq(&cm->reg_lock); 1643 } 1644 } 1645 mutex_unlock(&cm->open_mutex); 1646 } 1647 1648 /* 1649 */ 1650 1651 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1652 { 1653 struct cmipci *cm = snd_pcm_substream_chip(substream); 1654 struct snd_pcm_runtime *runtime = substream->runtime; 1655 int err; 1656 1657 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0) 1658 return err; 1659 runtime->hw = snd_cmipci_playback; 1660 if (cm->chip_version == 68) { 1661 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1662 SNDRV_PCM_RATE_96000; 1663 runtime->hw.rate_max = 96000; 1664 } else if (cm->chip_version == 55) { 1665 err = snd_pcm_hw_constraint_list(runtime, 0, 1666 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1667 if (err < 0) 1668 return err; 1669 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1670 runtime->hw.rate_max = 128000; 1671 } 1672 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1673 cm->dig_pcm_status = cm->dig_status; 1674 return 0; 1675 } 1676 1677 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1678 { 1679 struct cmipci *cm = snd_pcm_substream_chip(substream); 1680 struct snd_pcm_runtime *runtime = substream->runtime; 1681 int err; 1682 1683 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0) 1684 return err; 1685 runtime->hw = snd_cmipci_capture; 1686 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1687 runtime->hw.rate_min = 41000; 1688 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1689 } else if (cm->chip_version == 55) { 1690 err = snd_pcm_hw_constraint_list(runtime, 0, 1691 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1692 if (err < 0) 1693 return err; 1694 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1695 runtime->hw.rate_max = 128000; 1696 } 1697 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1698 return 0; 1699 } 1700 1701 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1702 { 1703 struct cmipci *cm = snd_pcm_substream_chip(substream); 1704 struct snd_pcm_runtime *runtime = substream->runtime; 1705 int err; 1706 1707 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */ 1708 return err; 1709 runtime->hw = snd_cmipci_playback2; 1710 mutex_lock(&cm->open_mutex); 1711 if (! cm->opened[CM_CH_PLAY]) { 1712 if (cm->can_multi_ch) { 1713 runtime->hw.channels_max = cm->max_channels; 1714 if (cm->max_channels == 4) 1715 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1716 else if (cm->max_channels == 6) 1717 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1718 else if (cm->max_channels == 8) 1719 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1720 } 1721 } 1722 mutex_unlock(&cm->open_mutex); 1723 if (cm->chip_version == 68) { 1724 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1725 SNDRV_PCM_RATE_96000; 1726 runtime->hw.rate_max = 96000; 1727 } else if (cm->chip_version == 55) { 1728 err = snd_pcm_hw_constraint_list(runtime, 0, 1729 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1730 if (err < 0) 1731 return err; 1732 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1733 runtime->hw.rate_max = 128000; 1734 } 1735 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1736 return 0; 1737 } 1738 1739 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1740 { 1741 struct cmipci *cm = snd_pcm_substream_chip(substream); 1742 struct snd_pcm_runtime *runtime = substream->runtime; 1743 int err; 1744 1745 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */ 1746 return err; 1747 if (cm->can_ac3_hw) { 1748 runtime->hw = snd_cmipci_playback_spdif; 1749 if (cm->chip_version >= 37) { 1750 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1751 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1752 } 1753 if (cm->can_96k) { 1754 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1755 SNDRV_PCM_RATE_96000; 1756 runtime->hw.rate_max = 96000; 1757 } 1758 } else { 1759 runtime->hw = snd_cmipci_playback_iec958_subframe; 1760 } 1761 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1762 cm->dig_pcm_status = cm->dig_status; 1763 return 0; 1764 } 1765 1766 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1767 { 1768 struct cmipci *cm = snd_pcm_substream_chip(substream); 1769 struct snd_pcm_runtime *runtime = substream->runtime; 1770 int err; 1771 1772 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */ 1773 return err; 1774 runtime->hw = snd_cmipci_capture_spdif; 1775 if (cm->can_96k && !(cm->chip_version == 68)) { 1776 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1777 SNDRV_PCM_RATE_96000; 1778 runtime->hw.rate_max = 96000; 1779 } 1780 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1781 return 0; 1782 } 1783 1784 1785 /* 1786 */ 1787 1788 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1789 { 1790 struct cmipci *cm = snd_pcm_substream_chip(substream); 1791 close_device_check(cm, CM_OPEN_PLAYBACK); 1792 return 0; 1793 } 1794 1795 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1796 { 1797 struct cmipci *cm = snd_pcm_substream_chip(substream); 1798 close_device_check(cm, CM_OPEN_CAPTURE); 1799 return 0; 1800 } 1801 1802 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1803 { 1804 struct cmipci *cm = snd_pcm_substream_chip(substream); 1805 close_device_check(cm, CM_OPEN_PLAYBACK2); 1806 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1807 return 0; 1808 } 1809 1810 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1811 { 1812 struct cmipci *cm = snd_pcm_substream_chip(substream); 1813 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1814 return 0; 1815 } 1816 1817 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1818 { 1819 struct cmipci *cm = snd_pcm_substream_chip(substream); 1820 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1821 return 0; 1822 } 1823 1824 1825 /* 1826 */ 1827 1828 static const struct snd_pcm_ops snd_cmipci_playback_ops = { 1829 .open = snd_cmipci_playback_open, 1830 .close = snd_cmipci_playback_close, 1831 .ioctl = snd_pcm_lib_ioctl, 1832 .hw_params = snd_cmipci_hw_params, 1833 .hw_free = snd_cmipci_playback_hw_free, 1834 .prepare = snd_cmipci_playback_prepare, 1835 .trigger = snd_cmipci_playback_trigger, 1836 .pointer = snd_cmipci_playback_pointer, 1837 }; 1838 1839 static const struct snd_pcm_ops snd_cmipci_capture_ops = { 1840 .open = snd_cmipci_capture_open, 1841 .close = snd_cmipci_capture_close, 1842 .ioctl = snd_pcm_lib_ioctl, 1843 .hw_params = snd_cmipci_hw_params, 1844 .hw_free = snd_cmipci_hw_free, 1845 .prepare = snd_cmipci_capture_prepare, 1846 .trigger = snd_cmipci_capture_trigger, 1847 .pointer = snd_cmipci_capture_pointer, 1848 }; 1849 1850 static const struct snd_pcm_ops snd_cmipci_playback2_ops = { 1851 .open = snd_cmipci_playback2_open, 1852 .close = snd_cmipci_playback2_close, 1853 .ioctl = snd_pcm_lib_ioctl, 1854 .hw_params = snd_cmipci_playback2_hw_params, 1855 .hw_free = snd_cmipci_playback2_hw_free, 1856 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1857 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1858 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1859 }; 1860 1861 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1862 .open = snd_cmipci_playback_spdif_open, 1863 .close = snd_cmipci_playback_spdif_close, 1864 .ioctl = snd_pcm_lib_ioctl, 1865 .hw_params = snd_cmipci_hw_params, 1866 .hw_free = snd_cmipci_playback_hw_free, 1867 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1868 .trigger = snd_cmipci_playback_trigger, 1869 .pointer = snd_cmipci_playback_pointer, 1870 }; 1871 1872 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1873 .open = snd_cmipci_capture_spdif_open, 1874 .close = snd_cmipci_capture_spdif_close, 1875 .ioctl = snd_pcm_lib_ioctl, 1876 .hw_params = snd_cmipci_hw_params, 1877 .hw_free = snd_cmipci_capture_spdif_hw_free, 1878 .prepare = snd_cmipci_capture_spdif_prepare, 1879 .trigger = snd_cmipci_capture_trigger, 1880 .pointer = snd_cmipci_capture_pointer, 1881 }; 1882 1883 1884 /* 1885 */ 1886 1887 static int snd_cmipci_pcm_new(struct cmipci *cm, int device) 1888 { 1889 struct snd_pcm *pcm; 1890 int err; 1891 1892 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1893 if (err < 0) 1894 return err; 1895 1896 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1897 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1898 1899 pcm->private_data = cm; 1900 pcm->info_flags = 0; 1901 strcpy(pcm->name, "C-Media PCI DAC/ADC"); 1902 cm->pcm = pcm; 1903 1904 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1905 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1906 1907 return 0; 1908 } 1909 1910 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1911 { 1912 struct snd_pcm *pcm; 1913 int err; 1914 1915 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1916 if (err < 0) 1917 return err; 1918 1919 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1920 1921 pcm->private_data = cm; 1922 pcm->info_flags = 0; 1923 strcpy(pcm->name, "C-Media PCI 2nd DAC"); 1924 cm->pcm2 = pcm; 1925 1926 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1927 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1928 1929 return 0; 1930 } 1931 1932 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1933 { 1934 struct snd_pcm *pcm; 1935 int err; 1936 1937 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1938 if (err < 0) 1939 return err; 1940 1941 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1942 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1943 1944 pcm->private_data = cm; 1945 pcm->info_flags = 0; 1946 strcpy(pcm->name, "C-Media PCI IEC958"); 1947 cm->pcm_spdif = pcm; 1948 1949 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1950 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1951 1952 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1953 snd_pcm_alt_chmaps, cm->max_channels, 0, 1954 NULL); 1955 if (err < 0) 1956 return err; 1957 1958 return 0; 1959 } 1960 1961 /* 1962 * mixer interface: 1963 * - CM8338/8738 has a compatible mixer interface with SB16, but 1964 * lack of some elements like tone control, i/o gain and AGC. 1965 * - Access to native registers: 1966 * - A 3D switch 1967 * - Output mute switches 1968 */ 1969 1970 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1971 { 1972 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1973 outb(data, s->iobase + CM_REG_SB16_DATA); 1974 } 1975 1976 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1977 { 1978 unsigned char v; 1979 1980 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1981 v = inb(s->iobase + CM_REG_SB16_DATA); 1982 return v; 1983 } 1984 1985 /* 1986 * general mixer element 1987 */ 1988 struct cmipci_sb_reg { 1989 unsigned int left_reg, right_reg; 1990 unsigned int left_shift, right_shift; 1991 unsigned int mask; 1992 unsigned int invert: 1; 1993 unsigned int stereo: 1; 1994 }; 1995 1996 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 1997 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 1998 1999 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 2000 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2001 .info = snd_cmipci_info_volume, \ 2002 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 2003 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 2004 } 2005 2006 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 2007 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 2008 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 2009 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 2010 2011 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 2012 { 2013 r->left_reg = val & 0xff; 2014 r->right_reg = (val >> 8) & 0xff; 2015 r->left_shift = (val >> 16) & 0x07; 2016 r->right_shift = (val >> 19) & 0x07; 2017 r->invert = (val >> 22) & 1; 2018 r->stereo = (val >> 23) & 1; 2019 r->mask = (val >> 24) & 0xff; 2020 } 2021 2022 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 2023 struct snd_ctl_elem_info *uinfo) 2024 { 2025 struct cmipci_sb_reg reg; 2026 2027 cmipci_sb_reg_decode(®, kcontrol->private_value); 2028 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2029 uinfo->count = reg.stereo + 1; 2030 uinfo->value.integer.min = 0; 2031 uinfo->value.integer.max = reg.mask; 2032 return 0; 2033 } 2034 2035 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 2036 struct snd_ctl_elem_value *ucontrol) 2037 { 2038 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2039 struct cmipci_sb_reg reg; 2040 int val; 2041 2042 cmipci_sb_reg_decode(®, kcontrol->private_value); 2043 spin_lock_irq(&cm->reg_lock); 2044 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 2045 if (reg.invert) 2046 val = reg.mask - val; 2047 ucontrol->value.integer.value[0] = val; 2048 if (reg.stereo) { 2049 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 2050 if (reg.invert) 2051 val = reg.mask - val; 2052 ucontrol->value.integer.value[1] = val; 2053 } 2054 spin_unlock_irq(&cm->reg_lock); 2055 return 0; 2056 } 2057 2058 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2059 struct snd_ctl_elem_value *ucontrol) 2060 { 2061 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2062 struct cmipci_sb_reg reg; 2063 int change; 2064 int left, right, oleft, oright; 2065 2066 cmipci_sb_reg_decode(®, kcontrol->private_value); 2067 left = ucontrol->value.integer.value[0] & reg.mask; 2068 if (reg.invert) 2069 left = reg.mask - left; 2070 left <<= reg.left_shift; 2071 if (reg.stereo) { 2072 right = ucontrol->value.integer.value[1] & reg.mask; 2073 if (reg.invert) 2074 right = reg.mask - right; 2075 right <<= reg.right_shift; 2076 } else 2077 right = 0; 2078 spin_lock_irq(&cm->reg_lock); 2079 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2080 left |= oleft & ~(reg.mask << reg.left_shift); 2081 change = left != oleft; 2082 if (reg.stereo) { 2083 if (reg.left_reg != reg.right_reg) { 2084 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2085 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2086 } else 2087 oright = left; 2088 right |= oright & ~(reg.mask << reg.right_shift); 2089 change |= right != oright; 2090 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2091 } else 2092 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2093 spin_unlock_irq(&cm->reg_lock); 2094 return change; 2095 } 2096 2097 /* 2098 * input route (left,right) -> (left,right) 2099 */ 2100 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2101 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2102 .info = snd_cmipci_info_input_sw, \ 2103 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2104 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2105 } 2106 2107 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2108 struct snd_ctl_elem_info *uinfo) 2109 { 2110 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2111 uinfo->count = 4; 2112 uinfo->value.integer.min = 0; 2113 uinfo->value.integer.max = 1; 2114 return 0; 2115 } 2116 2117 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2118 struct snd_ctl_elem_value *ucontrol) 2119 { 2120 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2121 struct cmipci_sb_reg reg; 2122 int val1, val2; 2123 2124 cmipci_sb_reg_decode(®, kcontrol->private_value); 2125 spin_lock_irq(&cm->reg_lock); 2126 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2127 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2128 spin_unlock_irq(&cm->reg_lock); 2129 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2130 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2131 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2132 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2133 return 0; 2134 } 2135 2136 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2137 struct snd_ctl_elem_value *ucontrol) 2138 { 2139 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2140 struct cmipci_sb_reg reg; 2141 int change; 2142 int val1, val2, oval1, oval2; 2143 2144 cmipci_sb_reg_decode(®, kcontrol->private_value); 2145 spin_lock_irq(&cm->reg_lock); 2146 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2147 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2148 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2149 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2150 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2151 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2152 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2153 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2154 change = val1 != oval1 || val2 != oval2; 2155 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2156 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2157 spin_unlock_irq(&cm->reg_lock); 2158 return change; 2159 } 2160 2161 /* 2162 * native mixer switches/volumes 2163 */ 2164 2165 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2166 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2167 .info = snd_cmipci_info_native_mixer, \ 2168 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2169 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2170 } 2171 2172 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2174 .info = snd_cmipci_info_native_mixer, \ 2175 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2176 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2177 } 2178 2179 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2180 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2181 .info = snd_cmipci_info_native_mixer, \ 2182 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2183 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2184 } 2185 2186 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2187 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2188 .info = snd_cmipci_info_native_mixer, \ 2189 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2190 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2191 } 2192 2193 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2194 struct snd_ctl_elem_info *uinfo) 2195 { 2196 struct cmipci_sb_reg reg; 2197 2198 cmipci_sb_reg_decode(®, kcontrol->private_value); 2199 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2200 uinfo->count = reg.stereo + 1; 2201 uinfo->value.integer.min = 0; 2202 uinfo->value.integer.max = reg.mask; 2203 return 0; 2204 2205 } 2206 2207 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2208 struct snd_ctl_elem_value *ucontrol) 2209 { 2210 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2211 struct cmipci_sb_reg reg; 2212 unsigned char oreg, val; 2213 2214 cmipci_sb_reg_decode(®, kcontrol->private_value); 2215 spin_lock_irq(&cm->reg_lock); 2216 oreg = inb(cm->iobase + reg.left_reg); 2217 val = (oreg >> reg.left_shift) & reg.mask; 2218 if (reg.invert) 2219 val = reg.mask - val; 2220 ucontrol->value.integer.value[0] = val; 2221 if (reg.stereo) { 2222 val = (oreg >> reg.right_shift) & reg.mask; 2223 if (reg.invert) 2224 val = reg.mask - val; 2225 ucontrol->value.integer.value[1] = val; 2226 } 2227 spin_unlock_irq(&cm->reg_lock); 2228 return 0; 2229 } 2230 2231 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2232 struct snd_ctl_elem_value *ucontrol) 2233 { 2234 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2235 struct cmipci_sb_reg reg; 2236 unsigned char oreg, nreg, val; 2237 2238 cmipci_sb_reg_decode(®, kcontrol->private_value); 2239 spin_lock_irq(&cm->reg_lock); 2240 oreg = inb(cm->iobase + reg.left_reg); 2241 val = ucontrol->value.integer.value[0] & reg.mask; 2242 if (reg.invert) 2243 val = reg.mask - val; 2244 nreg = oreg & ~(reg.mask << reg.left_shift); 2245 nreg |= (val << reg.left_shift); 2246 if (reg.stereo) { 2247 val = ucontrol->value.integer.value[1] & reg.mask; 2248 if (reg.invert) 2249 val = reg.mask - val; 2250 nreg &= ~(reg.mask << reg.right_shift); 2251 nreg |= (val << reg.right_shift); 2252 } 2253 outb(nreg, cm->iobase + reg.left_reg); 2254 spin_unlock_irq(&cm->reg_lock); 2255 return (nreg != oreg); 2256 } 2257 2258 /* 2259 * special case - check mixer sensitivity 2260 */ 2261 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2262 struct snd_ctl_elem_value *ucontrol) 2263 { 2264 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2265 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2266 } 2267 2268 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2269 struct snd_ctl_elem_value *ucontrol) 2270 { 2271 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2272 if (cm->mixer_insensitive) { 2273 /* ignored */ 2274 return 0; 2275 } 2276 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2277 } 2278 2279 2280 static struct snd_kcontrol_new snd_cmipci_mixers[] = { 2281 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2282 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2283 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2284 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2285 { /* switch with sensitivity */ 2286 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2287 .name = "PCM Playback Switch", 2288 .info = snd_cmipci_info_native_mixer, 2289 .get = snd_cmipci_get_native_mixer_sensitive, 2290 .put = snd_cmipci_put_native_mixer_sensitive, 2291 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2292 }, 2293 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2294 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2295 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2296 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2297 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2298 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2299 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2300 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2301 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2302 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2303 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2304 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2305 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2306 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2307 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2308 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2309 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2310 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2311 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2312 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2313 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2314 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2315 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2316 }; 2317 2318 /* 2319 * other switches 2320 */ 2321 2322 struct cmipci_switch_args { 2323 int reg; /* register index */ 2324 unsigned int mask; /* mask bits */ 2325 unsigned int mask_on; /* mask bits to turn on */ 2326 unsigned int is_byte: 1; /* byte access? */ 2327 unsigned int ac3_sensitive: 1; /* access forbidden during 2328 * non-audio operation? 2329 */ 2330 }; 2331 2332 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2333 2334 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2335 struct snd_ctl_elem_value *ucontrol, 2336 struct cmipci_switch_args *args) 2337 { 2338 unsigned int val; 2339 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2340 2341 spin_lock_irq(&cm->reg_lock); 2342 if (args->ac3_sensitive && cm->mixer_insensitive) { 2343 ucontrol->value.integer.value[0] = 0; 2344 spin_unlock_irq(&cm->reg_lock); 2345 return 0; 2346 } 2347 if (args->is_byte) 2348 val = inb(cm->iobase + args->reg); 2349 else 2350 val = snd_cmipci_read(cm, args->reg); 2351 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2352 spin_unlock_irq(&cm->reg_lock); 2353 return 0; 2354 } 2355 2356 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2357 struct snd_ctl_elem_value *ucontrol) 2358 { 2359 struct cmipci_switch_args *args; 2360 args = (struct cmipci_switch_args *)kcontrol->private_value; 2361 if (snd_BUG_ON(!args)) 2362 return -EINVAL; 2363 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2364 } 2365 2366 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2367 struct snd_ctl_elem_value *ucontrol, 2368 struct cmipci_switch_args *args) 2369 { 2370 unsigned int val; 2371 int change; 2372 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2373 2374 spin_lock_irq(&cm->reg_lock); 2375 if (args->ac3_sensitive && cm->mixer_insensitive) { 2376 /* ignored */ 2377 spin_unlock_irq(&cm->reg_lock); 2378 return 0; 2379 } 2380 if (args->is_byte) 2381 val = inb(cm->iobase + args->reg); 2382 else 2383 val = snd_cmipci_read(cm, args->reg); 2384 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2385 args->mask_on : (args->mask & ~args->mask_on)); 2386 if (change) { 2387 val &= ~args->mask; 2388 if (ucontrol->value.integer.value[0]) 2389 val |= args->mask_on; 2390 else 2391 val |= (args->mask & ~args->mask_on); 2392 if (args->is_byte) 2393 outb((unsigned char)val, cm->iobase + args->reg); 2394 else 2395 snd_cmipci_write(cm, args->reg, val); 2396 } 2397 spin_unlock_irq(&cm->reg_lock); 2398 return change; 2399 } 2400 2401 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2402 struct snd_ctl_elem_value *ucontrol) 2403 { 2404 struct cmipci_switch_args *args; 2405 args = (struct cmipci_switch_args *)kcontrol->private_value; 2406 if (snd_BUG_ON(!args)) 2407 return -EINVAL; 2408 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2409 } 2410 2411 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2412 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2413 .reg = xreg, \ 2414 .mask = xmask, \ 2415 .mask_on = xmask_on, \ 2416 .is_byte = xis_byte, \ 2417 .ac3_sensitive = xac3, \ 2418 } 2419 2420 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2421 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2422 2423 #if 0 /* these will be controlled in pcm device */ 2424 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2425 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2426 #endif 2427 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2428 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2429 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2430 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2431 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2432 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2433 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2434 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2435 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2436 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2437 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2438 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2439 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2440 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2441 #if CM_CH_PLAY == 1 2442 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2443 #else 2444 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2445 #endif 2446 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2447 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2448 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2449 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2450 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2451 2452 #define DEFINE_SWITCH(sname, stype, sarg) \ 2453 { .name = sname, \ 2454 .iface = stype, \ 2455 .info = snd_cmipci_uswitch_info, \ 2456 .get = snd_cmipci_uswitch_get, \ 2457 .put = snd_cmipci_uswitch_put, \ 2458 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2459 } 2460 2461 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2462 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2463 2464 2465 /* 2466 * callbacks for spdif output switch 2467 * needs toggle two registers.. 2468 */ 2469 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2470 struct snd_ctl_elem_value *ucontrol) 2471 { 2472 int changed; 2473 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2474 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2475 return changed; 2476 } 2477 2478 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2479 struct snd_ctl_elem_value *ucontrol) 2480 { 2481 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2482 int changed; 2483 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2484 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2485 if (changed) { 2486 if (ucontrol->value.integer.value[0]) { 2487 if (chip->spdif_playback_avail) 2488 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2489 } else { 2490 if (chip->spdif_playback_avail) 2491 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2492 } 2493 } 2494 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2495 return changed; 2496 } 2497 2498 2499 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2500 struct snd_ctl_elem_info *uinfo) 2501 { 2502 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2503 static const char *const texts[3] = { 2504 "Line-In", "Rear Output", "Bass Output" 2505 }; 2506 2507 return snd_ctl_enum_info(uinfo, 1, 2508 cm->chip_version >= 39 ? 3 : 2, texts); 2509 } 2510 2511 static inline unsigned int get_line_in_mode(struct cmipci *cm) 2512 { 2513 unsigned int val; 2514 if (cm->chip_version >= 39) { 2515 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2516 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2517 return 2; 2518 } 2519 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2520 if (val & CM_REAR2LIN) 2521 return 1; 2522 return 0; 2523 } 2524 2525 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2526 struct snd_ctl_elem_value *ucontrol) 2527 { 2528 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2529 2530 spin_lock_irq(&cm->reg_lock); 2531 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2532 spin_unlock_irq(&cm->reg_lock); 2533 return 0; 2534 } 2535 2536 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2537 struct snd_ctl_elem_value *ucontrol) 2538 { 2539 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2540 int change; 2541 2542 spin_lock_irq(&cm->reg_lock); 2543 if (ucontrol->value.enumerated.item[0] == 2) 2544 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2545 else 2546 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2547 if (ucontrol->value.enumerated.item[0] == 1) 2548 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2549 else 2550 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2551 spin_unlock_irq(&cm->reg_lock); 2552 return change; 2553 } 2554 2555 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2556 struct snd_ctl_elem_info *uinfo) 2557 { 2558 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" }; 2559 2560 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2561 } 2562 2563 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2564 struct snd_ctl_elem_value *ucontrol) 2565 { 2566 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2567 /* same bit as spdi_phase */ 2568 spin_lock_irq(&cm->reg_lock); 2569 ucontrol->value.enumerated.item[0] = 2570 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2571 spin_unlock_irq(&cm->reg_lock); 2572 return 0; 2573 } 2574 2575 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2576 struct snd_ctl_elem_value *ucontrol) 2577 { 2578 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2579 int change; 2580 2581 spin_lock_irq(&cm->reg_lock); 2582 if (ucontrol->value.enumerated.item[0]) 2583 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2584 else 2585 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2586 spin_unlock_irq(&cm->reg_lock); 2587 return change; 2588 } 2589 2590 /* both for CM8338/8738 */ 2591 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = { 2592 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2593 { 2594 .name = "Line-In Mode", 2595 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2596 .info = snd_cmipci_line_in_mode_info, 2597 .get = snd_cmipci_line_in_mode_get, 2598 .put = snd_cmipci_line_in_mode_put, 2599 }, 2600 }; 2601 2602 /* for non-multichannel chips */ 2603 static struct snd_kcontrol_new snd_cmipci_nomulti_switch = 2604 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2605 2606 /* only for CM8738 */ 2607 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = { 2608 #if 0 /* controlled in pcm device */ 2609 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2610 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2611 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2612 #endif 2613 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2614 { .name = "IEC958 Output Switch", 2615 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2616 .info = snd_cmipci_uswitch_info, 2617 .get = snd_cmipci_spdout_enable_get, 2618 .put = snd_cmipci_spdout_enable_put, 2619 }, 2620 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2621 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2622 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2623 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2624 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2625 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2626 }; 2627 2628 /* only for model 033/037 */ 2629 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = { 2630 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2631 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2632 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2633 }; 2634 2635 /* only for model 039 or later */ 2636 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = { 2637 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2638 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2639 { 2640 .name = "Mic-In Mode", 2641 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2642 .info = snd_cmipci_mic_in_mode_info, 2643 .get = snd_cmipci_mic_in_mode_get, 2644 .put = snd_cmipci_mic_in_mode_put, 2645 } 2646 }; 2647 2648 /* card control switches */ 2649 static struct snd_kcontrol_new snd_cmipci_modem_switch = 2650 DEFINE_CARD_SWITCH("Modem", modem); 2651 2652 2653 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2654 { 2655 struct snd_card *card; 2656 struct snd_kcontrol_new *sw; 2657 struct snd_kcontrol *kctl; 2658 unsigned int idx; 2659 int err; 2660 2661 if (snd_BUG_ON(!cm || !cm->card)) 2662 return -EINVAL; 2663 2664 card = cm->card; 2665 2666 strcpy(card->mixername, "CMedia PCI"); 2667 2668 spin_lock_irq(&cm->reg_lock); 2669 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2670 spin_unlock_irq(&cm->reg_lock); 2671 2672 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2673 if (cm->chip_version == 68) { // 8768 has no PCM volume 2674 if (!strcmp(snd_cmipci_mixers[idx].name, 2675 "PCM Playback Volume")) 2676 continue; 2677 } 2678 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0) 2679 return err; 2680 } 2681 2682 /* mixer switches */ 2683 sw = snd_cmipci_mixer_switches; 2684 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2685 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2686 if (err < 0) 2687 return err; 2688 } 2689 if (! cm->can_multi_ch) { 2690 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2691 if (err < 0) 2692 return err; 2693 } 2694 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2695 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2696 sw = snd_cmipci_8738_mixer_switches; 2697 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2698 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2699 if (err < 0) 2700 return err; 2701 } 2702 if (cm->can_ac3_hw) { 2703 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0) 2704 return err; 2705 kctl->id.device = pcm_spdif_device; 2706 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0) 2707 return err; 2708 kctl->id.device = pcm_spdif_device; 2709 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0) 2710 return err; 2711 kctl->id.device = pcm_spdif_device; 2712 } 2713 if (cm->chip_version <= 37) { 2714 sw = snd_cmipci_old_mixer_switches; 2715 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2716 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2717 if (err < 0) 2718 return err; 2719 } 2720 } 2721 } 2722 if (cm->chip_version >= 39) { 2723 sw = snd_cmipci_extra_mixer_switches; 2724 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2725 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2726 if (err < 0) 2727 return err; 2728 } 2729 } 2730 2731 /* card switches */ 2732 /* 2733 * newer chips don't have the register bits to force modem link 2734 * detection; the bit that was FLINKON now mutes CH1 2735 */ 2736 if (cm->chip_version < 39) { 2737 err = snd_ctl_add(cm->card, 2738 snd_ctl_new1(&snd_cmipci_modem_switch, cm)); 2739 if (err < 0) 2740 return err; 2741 } 2742 2743 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2744 struct snd_ctl_elem_id elem_id; 2745 struct snd_kcontrol *ctl; 2746 memset(&elem_id, 0, sizeof(elem_id)); 2747 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 2748 strcpy(elem_id.name, cm_saved_mixer[idx].name); 2749 ctl = snd_ctl_find_id(cm->card, &elem_id); 2750 if (ctl) 2751 cm->mixer_res_ctl[idx] = ctl; 2752 } 2753 2754 return 0; 2755 } 2756 2757 2758 /* 2759 * proc interface 2760 */ 2761 2762 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2763 struct snd_info_buffer *buffer) 2764 { 2765 struct cmipci *cm = entry->private_data; 2766 int i, v; 2767 2768 snd_iprintf(buffer, "%s\n", cm->card->longname); 2769 for (i = 0; i < 0x94; i++) { 2770 if (i == 0x28) 2771 i = 0x90; 2772 v = inb(cm->iobase + i); 2773 if (i % 4 == 0) 2774 snd_iprintf(buffer, "\n%02x:", i); 2775 snd_iprintf(buffer, " %02x", v); 2776 } 2777 snd_iprintf(buffer, "\n"); 2778 } 2779 2780 static void snd_cmipci_proc_init(struct cmipci *cm) 2781 { 2782 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read); 2783 } 2784 2785 static const struct pci_device_id snd_cmipci_ids[] = { 2786 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0}, 2787 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0}, 2788 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2789 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0}, 2790 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2791 {0,}, 2792 }; 2793 2794 2795 /* 2796 * check chip version and capabilities 2797 * driver name is modified according to the chip model 2798 */ 2799 static void query_chip(struct cmipci *cm) 2800 { 2801 unsigned int detect; 2802 2803 /* check reg 0Ch, bit 24-31 */ 2804 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2805 if (! detect) { 2806 /* check reg 08h, bit 24-28 */ 2807 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2808 switch (detect) { 2809 case 0: 2810 cm->chip_version = 33; 2811 if (cm->do_soft_ac3) 2812 cm->can_ac3_sw = 1; 2813 else 2814 cm->can_ac3_hw = 1; 2815 break; 2816 case CM_CHIP_037: 2817 cm->chip_version = 37; 2818 cm->can_ac3_hw = 1; 2819 break; 2820 default: 2821 cm->chip_version = 39; 2822 cm->can_ac3_hw = 1; 2823 break; 2824 } 2825 cm->max_channels = 2; 2826 } else { 2827 if (detect & CM_CHIP_039) { 2828 cm->chip_version = 39; 2829 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2830 cm->max_channels = 6; 2831 else 2832 cm->max_channels = 4; 2833 } else if (detect & CM_CHIP_8768) { 2834 cm->chip_version = 68; 2835 cm->max_channels = 8; 2836 cm->can_96k = 1; 2837 } else { 2838 cm->chip_version = 55; 2839 cm->max_channels = 6; 2840 cm->can_96k = 1; 2841 } 2842 cm->can_ac3_hw = 1; 2843 cm->can_multi_ch = 1; 2844 } 2845 } 2846 2847 #ifdef SUPPORT_JOYSTICK 2848 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2849 { 2850 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2851 struct gameport *gp; 2852 struct resource *r = NULL; 2853 int i, io_port = 0; 2854 2855 if (joystick_port[dev] == 0) 2856 return -ENODEV; 2857 2858 if (joystick_port[dev] == 1) { /* auto-detect */ 2859 for (i = 0; ports[i]; i++) { 2860 io_port = ports[i]; 2861 r = request_region(io_port, 1, "CMIPCI gameport"); 2862 if (r) 2863 break; 2864 } 2865 } else { 2866 io_port = joystick_port[dev]; 2867 r = request_region(io_port, 1, "CMIPCI gameport"); 2868 } 2869 2870 if (!r) { 2871 dev_warn(cm->card->dev, "cannot reserve joystick ports\n"); 2872 return -EBUSY; 2873 } 2874 2875 cm->gameport = gp = gameport_allocate_port(); 2876 if (!gp) { 2877 dev_err(cm->card->dev, "cannot allocate memory for gameport\n"); 2878 release_and_free_resource(r); 2879 return -ENOMEM; 2880 } 2881 gameport_set_name(gp, "C-Media Gameport"); 2882 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2883 gameport_set_dev_parent(gp, &cm->pci->dev); 2884 gp->io = io_port; 2885 gameport_set_port_data(gp, r); 2886 2887 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2888 2889 gameport_register_port(cm->gameport); 2890 2891 return 0; 2892 } 2893 2894 static void snd_cmipci_free_gameport(struct cmipci *cm) 2895 { 2896 if (cm->gameport) { 2897 struct resource *r = gameport_get_port_data(cm->gameport); 2898 2899 gameport_unregister_port(cm->gameport); 2900 cm->gameport = NULL; 2901 2902 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2903 release_and_free_resource(r); 2904 } 2905 } 2906 #else 2907 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2908 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2909 #endif 2910 2911 static int snd_cmipci_free(struct cmipci *cm) 2912 { 2913 if (cm->irq >= 0) { 2914 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2915 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2916 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2917 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2918 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2919 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2920 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2921 2922 /* reset mixer */ 2923 snd_cmipci_mixer_write(cm, 0, 0); 2924 2925 free_irq(cm->irq, cm); 2926 } 2927 2928 snd_cmipci_free_gameport(cm); 2929 pci_release_regions(cm->pci); 2930 pci_disable_device(cm->pci); 2931 kfree(cm); 2932 return 0; 2933 } 2934 2935 static int snd_cmipci_dev_free(struct snd_device *device) 2936 { 2937 struct cmipci *cm = device->device_data; 2938 return snd_cmipci_free(cm); 2939 } 2940 2941 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2942 { 2943 long iosynth; 2944 unsigned int val; 2945 struct snd_opl3 *opl3; 2946 int err; 2947 2948 if (!fm_port) 2949 goto disable_fm; 2950 2951 if (cm->chip_version >= 39) { 2952 /* first try FM regs in PCI port range */ 2953 iosynth = cm->iobase + CM_REG_FM_PCI; 2954 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2955 OPL3_HW_OPL3, 1, &opl3); 2956 } else { 2957 err = -EIO; 2958 } 2959 if (err < 0) { 2960 /* then try legacy ports */ 2961 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2962 iosynth = fm_port; 2963 switch (iosynth) { 2964 case 0x3E8: val |= CM_FMSEL_3E8; break; 2965 case 0x3E0: val |= CM_FMSEL_3E0; break; 2966 case 0x3C8: val |= CM_FMSEL_3C8; break; 2967 case 0x388: val |= CM_FMSEL_388; break; 2968 default: 2969 goto disable_fm; 2970 } 2971 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2972 /* enable FM */ 2973 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2974 2975 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2976 OPL3_HW_OPL3, 0, &opl3) < 0) { 2977 dev_err(cm->card->dev, 2978 "no OPL device at %#lx, skipping...\n", 2979 iosynth); 2980 goto disable_fm; 2981 } 2982 } 2983 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { 2984 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n"); 2985 return err; 2986 } 2987 return 0; 2988 2989 disable_fm: 2990 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 2991 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2992 return 0; 2993 } 2994 2995 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 2996 int dev, struct cmipci **rcmipci) 2997 { 2998 struct cmipci *cm; 2999 int err; 3000 static struct snd_device_ops ops = { 3001 .dev_free = snd_cmipci_dev_free, 3002 }; 3003 unsigned int val; 3004 long iomidi = 0; 3005 int integrated_midi = 0; 3006 char modelstr[16]; 3007 int pcm_index, pcm_spdif_index; 3008 static const struct pci_device_id intel_82437vx[] = { 3009 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 3010 { }, 3011 }; 3012 3013 *rcmipci = NULL; 3014 3015 if ((err = pci_enable_device(pci)) < 0) 3016 return err; 3017 3018 cm = kzalloc(sizeof(*cm), GFP_KERNEL); 3019 if (cm == NULL) { 3020 pci_disable_device(pci); 3021 return -ENOMEM; 3022 } 3023 3024 spin_lock_init(&cm->reg_lock); 3025 mutex_init(&cm->open_mutex); 3026 cm->device = pci->device; 3027 cm->card = card; 3028 cm->pci = pci; 3029 cm->irq = -1; 3030 cm->channel[0].ch = 0; 3031 cm->channel[1].ch = 1; 3032 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 3033 3034 if ((err = pci_request_regions(pci, card->driver)) < 0) { 3035 kfree(cm); 3036 pci_disable_device(pci); 3037 return err; 3038 } 3039 cm->iobase = pci_resource_start(pci, 0); 3040 3041 if (request_irq(pci->irq, snd_cmipci_interrupt, 3042 IRQF_SHARED, KBUILD_MODNAME, cm)) { 3043 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); 3044 snd_cmipci_free(cm); 3045 return -EBUSY; 3046 } 3047 cm->irq = pci->irq; 3048 3049 pci_set_master(cm->pci); 3050 3051 /* 3052 * check chip version, max channels and capabilities 3053 */ 3054 3055 cm->chip_version = 0; 3056 cm->max_channels = 2; 3057 cm->do_soft_ac3 = soft_ac3[dev]; 3058 3059 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 3060 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 3061 query_chip(cm); 3062 /* added -MCx suffix for chip supporting multi-channels */ 3063 if (cm->can_multi_ch) 3064 sprintf(cm->card->driver + strlen(cm->card->driver), 3065 "-MC%d", cm->max_channels); 3066 else if (cm->can_ac3_sw) 3067 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); 3068 3069 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3070 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3071 3072 #if CM_CH_PLAY == 1 3073 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 3074 #else 3075 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 3076 #endif 3077 3078 /* initialize codec registers */ 3079 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3080 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3081 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 3082 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3083 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3084 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 3085 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3086 3087 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3088 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3089 #if CM_CH_PLAY == 1 3090 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3091 #else 3092 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3093 #endif 3094 if (cm->chip_version) { 3095 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3096 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3097 } 3098 /* Set Bus Master Request */ 3099 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3100 3101 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3102 switch (pci->device) { 3103 case PCI_DEVICE_ID_CMEDIA_CM8738: 3104 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3105 if (!pci_dev_present(intel_82437vx)) 3106 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3107 break; 3108 default: 3109 break; 3110 } 3111 3112 if (cm->chip_version < 68) { 3113 val = pci->device < 0x110 ? 8338 : 8738; 3114 } else { 3115 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3116 case 0: 3117 val = 8769; 3118 break; 3119 case 2: 3120 val = 8762; 3121 break; 3122 default: 3123 switch ((pci->subsystem_vendor << 16) | 3124 pci->subsystem_device) { 3125 case 0x13f69761: 3126 case 0x584d3741: 3127 case 0x584d3751: 3128 case 0x584d3761: 3129 case 0x584d3771: 3130 case 0x72848384: 3131 val = 8770; 3132 break; 3133 default: 3134 val = 8768; 3135 break; 3136 } 3137 } 3138 } 3139 sprintf(card->shortname, "C-Media CMI%d", val); 3140 if (cm->chip_version < 68) 3141 sprintf(modelstr, " (model %d)", cm->chip_version); 3142 else 3143 modelstr[0] = '\0'; 3144 sprintf(card->longname, "%s%s at %#lx, irq %i", 3145 card->shortname, modelstr, cm->iobase, cm->irq); 3146 3147 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) { 3148 snd_cmipci_free(cm); 3149 return err; 3150 } 3151 3152 if (cm->chip_version >= 39) { 3153 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3154 if (val != 0x00 && val != 0xff) { 3155 iomidi = cm->iobase + CM_REG_MPU_PCI; 3156 integrated_midi = 1; 3157 } 3158 } 3159 if (!integrated_midi) { 3160 val = 0; 3161 iomidi = mpu_port[dev]; 3162 switch (iomidi) { 3163 case 0x320: val = CM_VMPU_320; break; 3164 case 0x310: val = CM_VMPU_310; break; 3165 case 0x300: val = CM_VMPU_300; break; 3166 case 0x330: val = CM_VMPU_330; break; 3167 default: 3168 iomidi = 0; break; 3169 } 3170 if (iomidi > 0) { 3171 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3172 /* enable UART */ 3173 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3174 if (inb(iomidi + 1) == 0xff) { 3175 dev_err(cm->card->dev, 3176 "cannot enable MPU-401 port at %#lx\n", 3177 iomidi); 3178 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3179 CM_UART_EN); 3180 iomidi = 0; 3181 } 3182 } 3183 } 3184 3185 if (cm->chip_version < 68) { 3186 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3187 if (err < 0) 3188 return err; 3189 } 3190 3191 /* reset mixer */ 3192 snd_cmipci_mixer_write(cm, 0, 0); 3193 3194 snd_cmipci_proc_init(cm); 3195 3196 /* create pcm devices */ 3197 pcm_index = pcm_spdif_index = 0; 3198 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0) 3199 return err; 3200 pcm_index++; 3201 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0) 3202 return err; 3203 pcm_index++; 3204 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3205 pcm_spdif_index = pcm_index; 3206 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0) 3207 return err; 3208 } 3209 3210 /* create mixer interface & switches */ 3211 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0) 3212 return err; 3213 3214 if (iomidi > 0) { 3215 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3216 iomidi, 3217 (integrated_midi ? 3218 MPU401_INFO_INTEGRATED : 0) | 3219 MPU401_INFO_IRQ_HOOK, 3220 -1, &cm->rmidi)) < 0) { 3221 dev_err(cm->card->dev, 3222 "no UART401 device at 0x%lx\n", iomidi); 3223 } 3224 } 3225 3226 #ifdef USE_VAR48KRATE 3227 for (val = 0; val < ARRAY_SIZE(rates); val++) 3228 snd_cmipci_set_pll(cm, rates[val], val); 3229 3230 /* 3231 * (Re-)Enable external switch spdo_48k 3232 */ 3233 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3234 #endif /* USE_VAR48KRATE */ 3235 3236 if (snd_cmipci_create_gameport(cm, dev) < 0) 3237 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3238 3239 *rcmipci = cm; 3240 return 0; 3241 } 3242 3243 /* 3244 */ 3245 3246 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3247 3248 static int snd_cmipci_probe(struct pci_dev *pci, 3249 const struct pci_device_id *pci_id) 3250 { 3251 static int dev; 3252 struct snd_card *card; 3253 struct cmipci *cm; 3254 int err; 3255 3256 if (dev >= SNDRV_CARDS) 3257 return -ENODEV; 3258 if (! enable[dev]) { 3259 dev++; 3260 return -ENOENT; 3261 } 3262 3263 err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 3264 0, &card); 3265 if (err < 0) 3266 return err; 3267 3268 switch (pci->device) { 3269 case PCI_DEVICE_ID_CMEDIA_CM8738: 3270 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3271 strcpy(card->driver, "CMI8738"); 3272 break; 3273 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3274 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3275 strcpy(card->driver, "CMI8338"); 3276 break; 3277 default: 3278 strcpy(card->driver, "CMIPCI"); 3279 break; 3280 } 3281 3282 err = snd_cmipci_create(card, pci, dev, &cm); 3283 if (err < 0) 3284 goto free_card; 3285 3286 card->private_data = cm; 3287 3288 err = snd_card_register(card); 3289 if (err < 0) 3290 goto free_card; 3291 3292 pci_set_drvdata(pci, card); 3293 dev++; 3294 return 0; 3295 3296 free_card: 3297 snd_card_free(card); 3298 return err; 3299 } 3300 3301 static void snd_cmipci_remove(struct pci_dev *pci) 3302 { 3303 snd_card_free(pci_get_drvdata(pci)); 3304 } 3305 3306 3307 #ifdef CONFIG_PM_SLEEP 3308 /* 3309 * power management 3310 */ 3311 static unsigned char saved_regs[] = { 3312 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3313 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL, 3314 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3315 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3316 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3317 }; 3318 3319 static unsigned char saved_mixers[] = { 3320 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3321 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3322 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3323 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3324 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3325 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3326 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3327 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3328 }; 3329 3330 static int snd_cmipci_suspend(struct device *dev) 3331 { 3332 struct snd_card *card = dev_get_drvdata(dev); 3333 struct cmipci *cm = card->private_data; 3334 int i; 3335 3336 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3337 3338 /* save registers */ 3339 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3340 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3341 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3342 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3343 3344 /* disable ints */ 3345 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3346 return 0; 3347 } 3348 3349 static int snd_cmipci_resume(struct device *dev) 3350 { 3351 struct snd_card *card = dev_get_drvdata(dev); 3352 struct cmipci *cm = card->private_data; 3353 int i; 3354 3355 /* reset / initialize to a sane state */ 3356 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3357 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3358 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3359 snd_cmipci_mixer_write(cm, 0, 0); 3360 3361 /* restore registers */ 3362 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3363 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3364 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3365 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3366 3367 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3368 return 0; 3369 } 3370 3371 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume); 3372 #define SND_CMIPCI_PM_OPS &snd_cmipci_pm 3373 #else 3374 #define SND_CMIPCI_PM_OPS NULL 3375 #endif /* CONFIG_PM_SLEEP */ 3376 3377 static struct pci_driver cmipci_driver = { 3378 .name = KBUILD_MODNAME, 3379 .id_table = snd_cmipci_ids, 3380 .probe = snd_cmipci_probe, 3381 .remove = snd_cmipci_remove, 3382 .driver = { 3383 .pm = SND_CMIPCI_PM_OPS, 3384 }, 3385 }; 3386 3387 module_pci_driver(cmipci_driver); 3388