xref: /openbmc/linux/sound/pci/cmipci.c (revision 74be2d3b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for C-Media CMI8338 and 8738 PCI soundcards.
4  * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
5  */
6 
7 /* Does not work. Warning may block system in capture mode */
8 /* #define USE_VAR48KRATE */
9 
10 #include <linux/io.h>
11 #include <linux/delay.h>
12 #include <linux/interrupt.h>
13 #include <linux/init.h>
14 #include <linux/pci.h>
15 #include <linux/slab.h>
16 #include <linux/gameport.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <sound/core.h>
20 #include <sound/info.h>
21 #include <sound/control.h>
22 #include <sound/pcm.h>
23 #include <sound/rawmidi.h>
24 #include <sound/mpu401.h>
25 #include <sound/opl3.h>
26 #include <sound/sb.h>
27 #include <sound/asoundef.h>
28 #include <sound/initval.h>
29 
30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
32 MODULE_LICENSE("GPL");
33 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
34 		"{C-Media,CMI8738B},"
35 		"{C-Media,CMI8338A},"
36 		"{C-Media,CMI8338B}}");
37 
38 #if IS_REACHABLE(CONFIG_GAMEPORT)
39 #define SUPPORT_JOYSTICK 1
40 #endif
41 
42 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
43 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
44 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
45 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
46 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
47 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
48 #ifdef SUPPORT_JOYSTICK
49 static int joystick_port[SNDRV_CARDS];
50 #endif
51 
52 module_param_array(index, int, NULL, 0444);
53 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
54 module_param_array(id, charp, NULL, 0444);
55 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
56 module_param_array(enable, bool, NULL, 0444);
57 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
58 module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
59 MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
60 module_param_hw_array(fm_port, long, ioport, NULL, 0444);
61 MODULE_PARM_DESC(fm_port, "FM port.");
62 module_param_array(soft_ac3, bool, NULL, 0444);
63 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
64 #ifdef SUPPORT_JOYSTICK
65 module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
66 MODULE_PARM_DESC(joystick_port, "Joystick port address.");
67 #endif
68 
69 /*
70  * CM8x38 registers definition
71  */
72 
73 #define CM_REG_FUNCTRL0		0x00
74 #define CM_RST_CH1		0x00080000
75 #define CM_RST_CH0		0x00040000
76 #define CM_CHEN1		0x00020000	/* ch1: enable */
77 #define CM_CHEN0		0x00010000	/* ch0: enable */
78 #define CM_PAUSE1		0x00000008	/* ch1: pause */
79 #define CM_PAUSE0		0x00000004	/* ch0: pause */
80 #define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
81 #define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
82 
83 #define CM_REG_FUNCTRL1		0x04
84 #define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
85 #define CM_DSFC_SHIFT		13
86 #define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
87 #define CM_ASFC_SHIFT		10
88 #define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
89 #define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
90 #define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
91 #define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
92 #define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
93 #define CM_BREQ			0x00000010	/* bus master enabled */
94 #define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
95 #define CM_UART_EN		0x00000004	/* legacy UART */
96 #define CM_JYSTK_EN		0x00000002	/* legacy joystick */
97 #define CM_ZVPORT		0x00000001	/* ZVPORT */
98 
99 #define CM_REG_CHFORMAT		0x08
100 
101 #define CM_CHB3D5C		0x80000000	/* 5,6 channels */
102 #define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
103 #define CM_CHB3D		0x20000000	/* 4 channels */
104 
105 #define CM_CHIP_MASK1		0x1f000000
106 #define CM_CHIP_037		0x01000000
107 #define CM_SETLAT48		0x00800000	/* set latency timer 48h */
108 #define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
109 #define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
110 #define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
111 #define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
112 #define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
113 /* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
114 
115 #define CM_ADCBITLEN_MASK	0x0000C000
116 #define CM_ADCBITLEN_16		0x00000000
117 #define CM_ADCBITLEN_15		0x00004000
118 #define CM_ADCBITLEN_14		0x00008000
119 #define CM_ADCBITLEN_13		0x0000C000
120 
121 #define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
122 #define CM_ADCDACLEN_060	0x00000000
123 #define CM_ADCDACLEN_066	0x00001000
124 #define CM_ADCDACLEN_130	0x00002000
125 #define CM_ADCDACLEN_280	0x00003000
126 
127 #define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
128 #define CM_ADCDLEN_ORIGINAL	0x00000000
129 #define CM_ADCDLEN_EXTRA	0x00001000
130 #define CM_ADCDLEN_24K		0x00002000
131 #define CM_ADCDLEN_WEIGHT	0x00003000
132 
133 #define CM_CH1_SRATE_176K	0x00000800
134 #define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
135 #define CM_CH1_SRATE_88K	0x00000400
136 #define CM_CH0_SRATE_176K	0x00000200
137 #define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
138 #define CM_CH0_SRATE_88K	0x00000100
139 #define CM_CH0_SRATE_128K	0x00000300
140 #define CM_CH0_SRATE_MASK	0x00000300
141 
142 #define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
143 #define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
144 #define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
145 #define CM_SPDLOCKED		0x00000010
146 
147 #define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
148 #define CM_CH1FMT_SHIFT		2
149 #define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
150 #define CM_CH0FMT_SHIFT		0
151 
152 #define CM_REG_INT_HLDCLR	0x0C
153 #define CM_CHIP_MASK2		0xff000000
154 #define CM_CHIP_8768		0x20000000
155 #define CM_CHIP_055		0x08000000
156 #define CM_CHIP_039		0x04000000
157 #define CM_CHIP_039_6CH		0x01000000
158 #define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
159 #define CM_TDMA_INT_EN		0x00040000
160 #define CM_CH1_INT_EN		0x00020000
161 #define CM_CH0_INT_EN		0x00010000
162 
163 #define CM_REG_INT_STATUS	0x10
164 #define CM_INTR			0x80000000
165 #define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
166 #define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
167 #define CM_UARTINT		0x00010000
168 #define CM_LTDMAINT		0x00008000
169 #define CM_HTDMAINT		0x00004000
170 #define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
171 #define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
172 #define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
173 #define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
174 #define CM_CH1BUSY		0x00000008
175 #define CM_CH0BUSY		0x00000004
176 #define CM_CHINT1		0x00000002
177 #define CM_CHINT0		0x00000001
178 
179 #define CM_REG_LEGACY_CTRL	0x14
180 #define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
181 #define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
182 #define CM_VMPU_330		0x00000000
183 #define CM_VMPU_320		0x20000000
184 #define CM_VMPU_310		0x40000000
185 #define CM_VMPU_300		0x60000000
186 #define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
187 #define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
188 #define CM_VSBSEL_220		0x00000000
189 #define CM_VSBSEL_240		0x04000000
190 #define CM_VSBSEL_260		0x08000000
191 #define CM_VSBSEL_280		0x0C000000
192 #define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
193 #define CM_FMSEL_388		0x00000000
194 #define CM_FMSEL_3C8		0x01000000
195 #define CM_FMSEL_3E0		0x02000000
196 #define CM_FMSEL_3E8		0x03000000
197 #define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
198 #define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
199 #define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
200 #define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
201 #define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
202 #define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
203 #define CM_C_EECS		0x00040000
204 #define CM_C_EEDI46		0x00020000
205 #define CM_C_EECK46		0x00010000
206 #define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
207 #define CM_CENTR2LIN		0x00004000	/* line-in as center out */
208 #define CM_BASE2LIN		0x00002000	/* line-in as bass out */
209 #define CM_EXBASEN		0x00001000	/* external bass input enable */
210 
211 #define CM_REG_MISC_CTRL	0x18
212 #define CM_PWD			0x80000000	/* power down */
213 #define CM_RESET		0x40000000
214 #define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
215 #define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
216 #define CM_TXVX			0x08000000	/* model 037? */
217 #define CM_N4SPK3D		0x04000000	/* copy front to rear */
218 #define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
219 #define CM_SPDIF48K		0x01000000	/* write */
220 #define CM_SPATUS48K		0x01000000	/* read */
221 #define CM_ENDBDAC		0x00800000	/* enable double dac */
222 #define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
223 #define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
224 #define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
225 #define CM_FM_EN		0x00080000	/* enable legacy FM */
226 #define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
227 #define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
228 #define CM_VIDWPDSB		0x00010000	/* model 037? */
229 #define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
230 #define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
231 #define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
232 #define CM_VIDWPPRT		0x00002000	/* model 037? */
233 #define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
234 #define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
235 #define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
236 #define CM_ENCENTER		0x00000080
237 #define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
238 #define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
239 #define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
240 #define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
241 #define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
242 #define CM_UPDDMA_2048		0x00000000
243 #define CM_UPDDMA_1024		0x00000004
244 #define CM_UPDDMA_512		0x00000008
245 #define CM_UPDDMA_256		0x0000000C
246 #define CM_TWAIT_MASK		0x00000003	/* model 037 */
247 #define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
248 #define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
249 
250 #define CM_REG_TDMA_POSITION	0x1C
251 #define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
252 #define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
253 
254 	/* byte */
255 #define CM_REG_MIXER0		0x20
256 #define CM_REG_SBVR		0x20		/* write: sb16 version */
257 #define CM_REG_DEV		0x20		/* read: hardware device version */
258 
259 #define CM_REG_MIXER21		0x21
260 #define CM_UNKNOWN_21_MASK	0x78		/* ? */
261 #define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
262 #define CM_PROINV		0x02		/* SBPro left/right channel switching */
263 #define CM_X_SB16		0x01		/* SB16 compatible */
264 
265 #define CM_REG_SB16_DATA	0x22
266 #define CM_REG_SB16_ADDR	0x23
267 
268 #define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
269 #define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
270 #define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
271 #define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
272 
273 #define CM_REG_MIXER1		0x24
274 #define CM_FMMUTE		0x80	/* mute FM */
275 #define CM_FMMUTE_SHIFT		7
276 #define CM_WSMUTE		0x40	/* mute PCM */
277 #define CM_WSMUTE_SHIFT		6
278 #define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
279 #define CM_REAR2LIN_SHIFT	5
280 #define CM_REAR2FRONT		0x10	/* exchange rear/front */
281 #define CM_REAR2FRONT_SHIFT	4
282 #define CM_WAVEINL		0x08	/* digital wave rec. left chan */
283 #define CM_WAVEINL_SHIFT	3
284 #define CM_WAVEINR		0x04	/* digical wave rec. right */
285 #define CM_WAVEINR_SHIFT	2
286 #define CM_X3DEN		0x02	/* 3D surround enable */
287 #define CM_X3DEN_SHIFT		1
288 #define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
289 #define CM_CDPLAY_SHIFT		0
290 
291 #define CM_REG_MIXER2		0x25
292 #define CM_RAUXREN		0x80	/* AUX right capture */
293 #define CM_RAUXREN_SHIFT	7
294 #define CM_RAUXLEN		0x40	/* AUX left capture */
295 #define CM_RAUXLEN_SHIFT	6
296 #define CM_VAUXRM		0x20	/* AUX right mute */
297 #define CM_VAUXRM_SHIFT		5
298 #define CM_VAUXLM		0x10	/* AUX left mute */
299 #define CM_VAUXLM_SHIFT		4
300 #define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
301 #define CM_VADMIC_SHIFT		1
302 #define CM_MICGAINZ		0x01	/* mic boost */
303 #define CM_MICGAINZ_SHIFT	0
304 
305 #define CM_REG_MIXER3		0x24
306 #define CM_REG_AUX_VOL		0x26
307 #define CM_VAUXL_MASK		0xf0
308 #define CM_VAUXR_MASK		0x0f
309 
310 #define CM_REG_MISC		0x27
311 #define CM_UNKNOWN_27_MASK	0xd8	/* ? */
312 #define CM_XGPO1		0x20
313 // #define CM_XGPBIO		0x04
314 #define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
315 #define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
316 #define CM_SPDVALID		0x02	/* spdif input valid check */
317 #define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
318 
319 #define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
320 /*
321  * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
322  * or identical with AC97 codec?
323  */
324 #define CM_REG_EXTERN_CODEC	CM_REG_AC97
325 
326 /*
327  * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
328  */
329 #define CM_REG_MPU_PCI		0x40
330 
331 /*
332  * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
333  */
334 #define CM_REG_FM_PCI		0x50
335 
336 /*
337  * access from SB-mixer port
338  */
339 #define CM_REG_EXTENT_IND	0xf0
340 #define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
341 #define CM_VPHONE_SHIFT		5
342 #define CM_VPHOM		0x10	/* Phone mute control */
343 #define CM_VSPKM		0x08	/* Speaker mute control, default high */
344 #define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
345 #define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
346 #define CM_VADMIC3		0x01	/* Mic record boost */
347 
348 /*
349  * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
350  * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
351  * unit (readonly?).
352  */
353 #define CM_REG_PLL		0xf8
354 
355 /*
356  * extended registers
357  */
358 #define CM_REG_CH0_FRAME1	0x80	/* write: base address */
359 #define CM_REG_CH0_FRAME2	0x84	/* read: current address */
360 #define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
361 #define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
362 
363 #define CM_REG_EXT_MISC		0x90
364 #define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
365 #define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
366 #define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
367 #define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
368 #define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
369 #define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
370 #define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
371 #define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
372 
373 /*
374  * size of i/o region
375  */
376 #define CM_EXTENT_CODEC	  0x100
377 #define CM_EXTENT_MIDI	  0x2
378 #define CM_EXTENT_SYNTH	  0x4
379 
380 
381 /*
382  * channels for playback / capture
383  */
384 #define CM_CH_PLAY	0
385 #define CM_CH_CAPT	1
386 
387 /*
388  * flags to check device open/close
389  */
390 #define CM_OPEN_NONE	0
391 #define CM_OPEN_CH_MASK	0x01
392 #define CM_OPEN_DAC	0x10
393 #define CM_OPEN_ADC	0x20
394 #define CM_OPEN_SPDIF	0x40
395 #define CM_OPEN_MCHAN	0x80
396 #define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
397 #define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
398 #define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
399 #define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
400 #define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
401 #define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
402 
403 
404 #if CM_CH_PLAY == 1
405 #define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
406 #define CM_PLAYBACK_SPDF	CM_SPDF_1
407 #define CM_CAPTURE_SPDF		CM_SPDF_0
408 #else
409 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
410 #define CM_PLAYBACK_SPDF	CM_SPDF_0
411 #define CM_CAPTURE_SPDF		CM_SPDF_1
412 #endif
413 
414 
415 /*
416  * driver data
417  */
418 
419 struct cmipci_pcm {
420 	struct snd_pcm_substream *substream;
421 	u8 running;		/* dac/adc running? */
422 	u8 fmt;			/* format bits */
423 	u8 is_dac;
424 	u8 needs_silencing;
425 	unsigned int dma_size;	/* in frames */
426 	unsigned int shift;
427 	unsigned int ch;	/* channel (0/1) */
428 	unsigned int offset;	/* physical address of the buffer */
429 };
430 
431 /* mixer elements toggled/resumed during ac3 playback */
432 struct cmipci_mixer_auto_switches {
433 	const char *name;	/* switch to toggle */
434 	int toggle_on;		/* value to change when ac3 mode */
435 };
436 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
437 	{"PCM Playback Switch", 0},
438 	{"IEC958 Output Switch", 1},
439 	{"IEC958 Mix Analog", 0},
440 	// {"IEC958 Out To DAC", 1}, // no longer used
441 	{"IEC958 Loop", 0},
442 };
443 #define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
444 
445 struct cmipci {
446 	struct snd_card *card;
447 
448 	struct pci_dev *pci;
449 	unsigned int device;	/* device ID */
450 	int irq;
451 
452 	unsigned long iobase;
453 	unsigned int ctrl;	/* FUNCTRL0 current value */
454 
455 	struct snd_pcm *pcm;		/* DAC/ADC PCM */
456 	struct snd_pcm *pcm2;	/* 2nd DAC */
457 	struct snd_pcm *pcm_spdif;	/* SPDIF */
458 
459 	int chip_version;
460 	int max_channels;
461 	unsigned int can_ac3_sw: 1;
462 	unsigned int can_ac3_hw: 1;
463 	unsigned int can_multi_ch: 1;
464 	unsigned int can_96k: 1;	/* samplerate above 48k */
465 	unsigned int do_soft_ac3: 1;
466 
467 	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
468 	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
469 	int spdif_counter;	/* for software AC3 */
470 
471 	unsigned int dig_status;
472 	unsigned int dig_pcm_status;
473 
474 	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
475 
476 	int opened[2];	/* open mode */
477 	struct mutex open_mutex;
478 
479 	unsigned int mixer_insensitive: 1;
480 	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
481 	int mixer_res_status[CM_SAVED_MIXERS];
482 
483 	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
484 
485 	/* external MIDI */
486 	struct snd_rawmidi *rmidi;
487 
488 #ifdef SUPPORT_JOYSTICK
489 	struct gameport *gameport;
490 #endif
491 
492 	spinlock_t reg_lock;
493 
494 #ifdef CONFIG_PM_SLEEP
495 	unsigned int saved_regs[0x20];
496 	unsigned char saved_mixers[0x20];
497 #endif
498 };
499 
500 
501 /* read/write operations for dword register */
502 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
503 {
504 	outl(data, cm->iobase + cmd);
505 }
506 
507 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
508 {
509 	return inl(cm->iobase + cmd);
510 }
511 
512 /* read/write operations for word register */
513 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
514 {
515 	outw(data, cm->iobase + cmd);
516 }
517 
518 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
519 {
520 	return inw(cm->iobase + cmd);
521 }
522 
523 /* read/write operations for byte register */
524 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
525 {
526 	outb(data, cm->iobase + cmd);
527 }
528 
529 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
530 {
531 	return inb(cm->iobase + cmd);
532 }
533 
534 /* bit operations for dword register */
535 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
536 {
537 	unsigned int val, oval;
538 	val = oval = inl(cm->iobase + cmd);
539 	val |= flag;
540 	if (val == oval)
541 		return 0;
542 	outl(val, cm->iobase + cmd);
543 	return 1;
544 }
545 
546 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
547 {
548 	unsigned int val, oval;
549 	val = oval = inl(cm->iobase + cmd);
550 	val &= ~flag;
551 	if (val == oval)
552 		return 0;
553 	outl(val, cm->iobase + cmd);
554 	return 1;
555 }
556 
557 /* bit operations for byte register */
558 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
559 {
560 	unsigned char val, oval;
561 	val = oval = inb(cm->iobase + cmd);
562 	val |= flag;
563 	if (val == oval)
564 		return 0;
565 	outb(val, cm->iobase + cmd);
566 	return 1;
567 }
568 
569 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
570 {
571 	unsigned char val, oval;
572 	val = oval = inb(cm->iobase + cmd);
573 	val &= ~flag;
574 	if (val == oval)
575 		return 0;
576 	outb(val, cm->iobase + cmd);
577 	return 1;
578 }
579 
580 
581 /*
582  * PCM interface
583  */
584 
585 /*
586  * calculate frequency
587  */
588 
589 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
590 
591 static unsigned int snd_cmipci_rate_freq(unsigned int rate)
592 {
593 	unsigned int i;
594 
595 	for (i = 0; i < ARRAY_SIZE(rates); i++) {
596 		if (rates[i] == rate)
597 			return i;
598 	}
599 	snd_BUG();
600 	return 0;
601 }
602 
603 #ifdef USE_VAR48KRATE
604 /*
605  * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
606  * does it this way .. maybe not.  Never get any information from C-Media about
607  * that <werner@suse.de>.
608  */
609 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
610 {
611 	unsigned int delta, tolerance;
612 	int xm, xn, xr;
613 
614 	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
615 		rate <<= 1;
616 	*n = -1;
617 	if (*r > 0xff)
618 		goto out;
619 	tolerance = rate*CM_TOLERANCE_RATE;
620 
621 	for (xn = (1+2); xn < (0x1f+2); xn++) {
622 		for (xm = (1+2); xm < (0xff+2); xm++) {
623 			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
624 
625 			if (xr < rate)
626 				delta = rate - xr;
627 			else
628 				delta = xr - rate;
629 
630 			/*
631 			 * If we found one, remember this,
632 			 * and try to find a closer one
633 			 */
634 			if (delta < tolerance) {
635 				tolerance = delta;
636 				*m = xm - 2;
637 				*n = xn - 2;
638 			}
639 		}
640 	}
641 out:
642 	return (*n > -1);
643 }
644 
645 /*
646  * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
647  * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
648  * at the register CM_REG_FUNCTRL1 (0x04).
649  * Problem: other ways are also possible (any information about that?)
650  */
651 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
652 {
653 	unsigned int reg = CM_REG_PLL + slot;
654 	/*
655 	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
656 	 * for DSFC/ASFC (000 up to 111).
657 	 */
658 
659 	/* FIXME: Init (Do we've to set an other register first before programming?) */
660 
661 	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
662 	snd_cmipci_write_b(cm, reg, rate>>8);
663 	snd_cmipci_write_b(cm, reg, rate&0xff);
664 
665 	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
666 }
667 #endif /* USE_VAR48KRATE */
668 
669 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
670 					  struct snd_pcm_hw_params *hw_params)
671 {
672 	struct cmipci *cm = snd_pcm_substream_chip(substream);
673 	if (params_channels(hw_params) > 2) {
674 		mutex_lock(&cm->open_mutex);
675 		if (cm->opened[CM_CH_PLAY]) {
676 			mutex_unlock(&cm->open_mutex);
677 			return -EBUSY;
678 		}
679 		/* reserve the channel A */
680 		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
681 		mutex_unlock(&cm->open_mutex);
682 	}
683 	return 0;
684 }
685 
686 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
687 {
688 	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
689 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
690 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
691 	udelay(10);
692 }
693 
694 
695 /*
696  */
697 
698 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
699 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
700 	.count = 3,
701 	.list = hw_channels,
702 	.mask = 0,
703 };
704 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
705 	.count = 4,
706 	.list = hw_channels,
707 	.mask = 0,
708 };
709 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
710 	.count = 5,
711 	.list = hw_channels,
712 	.mask = 0,
713 };
714 
715 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
716 {
717 	if (channels > 2) {
718 		if (!cm->can_multi_ch || !rec->ch)
719 			return -EINVAL;
720 		if (rec->fmt != 0x03) /* stereo 16bit only */
721 			return -EINVAL;
722 	}
723 
724 	if (cm->can_multi_ch) {
725 		spin_lock_irq(&cm->reg_lock);
726 		if (channels > 2) {
727 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
728 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
729 		} else {
730 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
731 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
732 		}
733 		if (channels == 8)
734 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
735 		else
736 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
737 		if (channels == 6) {
738 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
739 			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
740 		} else {
741 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
742 			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
743 		}
744 		if (channels == 4)
745 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
746 		else
747 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
748 		spin_unlock_irq(&cm->reg_lock);
749 	}
750 	return 0;
751 }
752 
753 
754 /*
755  * prepare playback/capture channel
756  * channel to be used must have been set in rec->ch.
757  */
758 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
759 				 struct snd_pcm_substream *substream)
760 {
761 	unsigned int reg, freq, freq_ext, val;
762 	unsigned int period_size;
763 	struct snd_pcm_runtime *runtime = substream->runtime;
764 
765 	rec->fmt = 0;
766 	rec->shift = 0;
767 	if (snd_pcm_format_width(runtime->format) >= 16) {
768 		rec->fmt |= 0x02;
769 		if (snd_pcm_format_width(runtime->format) > 16)
770 			rec->shift++; /* 24/32bit */
771 	}
772 	if (runtime->channels > 1)
773 		rec->fmt |= 0x01;
774 	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
775 		dev_dbg(cm->card->dev, "cannot set dac channels\n");
776 		return -EINVAL;
777 	}
778 
779 	rec->offset = runtime->dma_addr;
780 	/* buffer and period sizes in frame */
781 	rec->dma_size = runtime->buffer_size << rec->shift;
782 	period_size = runtime->period_size << rec->shift;
783 	if (runtime->channels > 2) {
784 		/* multi-channels */
785 		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
786 		period_size = (period_size * runtime->channels) / 2;
787 	}
788 
789 	spin_lock_irq(&cm->reg_lock);
790 
791 	/* set buffer address */
792 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
793 	snd_cmipci_write(cm, reg, rec->offset);
794 	/* program sample counts */
795 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
796 	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
797 	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
798 
799 	/* set adc/dac flag */
800 	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
801 	if (rec->is_dac)
802 		cm->ctrl &= ~val;
803 	else
804 		cm->ctrl |= val;
805 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
806 	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
807 
808 	/* set sample rate */
809 	freq = 0;
810 	freq_ext = 0;
811 	if (runtime->rate > 48000)
812 		switch (runtime->rate) {
813 		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
814 		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
815 		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
816 		default:     snd_BUG(); break;
817 		}
818 	else
819 		freq = snd_cmipci_rate_freq(runtime->rate);
820 	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
821 	if (rec->ch) {
822 		val &= ~CM_DSFC_MASK;
823 		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
824 	} else {
825 		val &= ~CM_ASFC_MASK;
826 		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
827 	}
828 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
829 	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
830 
831 	/* set format */
832 	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
833 	if (rec->ch) {
834 		val &= ~CM_CH1FMT_MASK;
835 		val |= rec->fmt << CM_CH1FMT_SHIFT;
836 	} else {
837 		val &= ~CM_CH0FMT_MASK;
838 		val |= rec->fmt << CM_CH0FMT_SHIFT;
839 	}
840 	if (cm->can_96k) {
841 		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
842 		val |= freq_ext << (rec->ch * 2);
843 	}
844 	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
845 	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
846 
847 	if (!rec->is_dac && cm->chip_version) {
848 		if (runtime->rate > 44100)
849 			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
850 		else
851 			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
852 	}
853 
854 	rec->running = 0;
855 	spin_unlock_irq(&cm->reg_lock);
856 
857 	return 0;
858 }
859 
860 /*
861  * PCM trigger/stop
862  */
863 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
864 				  int cmd)
865 {
866 	unsigned int inthld, chen, reset, pause;
867 	int result = 0;
868 
869 	inthld = CM_CH0_INT_EN << rec->ch;
870 	chen = CM_CHEN0 << rec->ch;
871 	reset = CM_RST_CH0 << rec->ch;
872 	pause = CM_PAUSE0 << rec->ch;
873 
874 	spin_lock(&cm->reg_lock);
875 	switch (cmd) {
876 	case SNDRV_PCM_TRIGGER_START:
877 		rec->running = 1;
878 		/* set interrupt */
879 		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
880 		cm->ctrl |= chen;
881 		/* enable channel */
882 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
883 		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
884 		break;
885 	case SNDRV_PCM_TRIGGER_STOP:
886 		rec->running = 0;
887 		/* disable interrupt */
888 		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
889 		/* reset */
890 		cm->ctrl &= ~chen;
891 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
892 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
893 		rec->needs_silencing = rec->is_dac;
894 		break;
895 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
896 	case SNDRV_PCM_TRIGGER_SUSPEND:
897 		cm->ctrl |= pause;
898 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
899 		break;
900 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
901 	case SNDRV_PCM_TRIGGER_RESUME:
902 		cm->ctrl &= ~pause;
903 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
904 		break;
905 	default:
906 		result = -EINVAL;
907 		break;
908 	}
909 	spin_unlock(&cm->reg_lock);
910 	return result;
911 }
912 
913 /*
914  * return the current pointer
915  */
916 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
917 						struct snd_pcm_substream *substream)
918 {
919 	size_t ptr;
920 	unsigned int reg, rem, tries;
921 
922 	if (!rec->running)
923 		return 0;
924 #if 1 // this seems better..
925 	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
926 	for (tries = 0; tries < 3; tries++) {
927 		rem = snd_cmipci_read_w(cm, reg);
928 		if (rem < rec->dma_size)
929 			goto ok;
930 	}
931 	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
932 	return SNDRV_PCM_POS_XRUN;
933 ok:
934 	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
935 #else
936 	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
937 	ptr = snd_cmipci_read(cm, reg) - rec->offset;
938 	ptr = bytes_to_frames(substream->runtime, ptr);
939 #endif
940 	if (substream->runtime->channels > 2)
941 		ptr = (ptr * 2) / substream->runtime->channels;
942 	return ptr;
943 }
944 
945 /*
946  * playback
947  */
948 
949 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
950 				       int cmd)
951 {
952 	struct cmipci *cm = snd_pcm_substream_chip(substream);
953 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
954 }
955 
956 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
957 {
958 	struct cmipci *cm = snd_pcm_substream_chip(substream);
959 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
960 }
961 
962 
963 
964 /*
965  * capture
966  */
967 
968 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
969 				     int cmd)
970 {
971 	struct cmipci *cm = snd_pcm_substream_chip(substream);
972 	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
973 }
974 
975 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
976 {
977 	struct cmipci *cm = snd_pcm_substream_chip(substream);
978 	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
979 }
980 
981 
982 /*
983  * hw preparation for spdif
984  */
985 
986 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
987 					 struct snd_ctl_elem_info *uinfo)
988 {
989 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
990 	uinfo->count = 1;
991 	return 0;
992 }
993 
994 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
995 					struct snd_ctl_elem_value *ucontrol)
996 {
997 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
998 	int i;
999 
1000 	spin_lock_irq(&chip->reg_lock);
1001 	for (i = 0; i < 4; i++)
1002 		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1003 	spin_unlock_irq(&chip->reg_lock);
1004 	return 0;
1005 }
1006 
1007 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1008 					 struct snd_ctl_elem_value *ucontrol)
1009 {
1010 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1011 	int i, change;
1012 	unsigned int val;
1013 
1014 	val = 0;
1015 	spin_lock_irq(&chip->reg_lock);
1016 	for (i = 0; i < 4; i++)
1017 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1018 	change = val != chip->dig_status;
1019 	chip->dig_status = val;
1020 	spin_unlock_irq(&chip->reg_lock);
1021 	return change;
1022 }
1023 
1024 static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1025 {
1026 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1027 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1028 	.info =		snd_cmipci_spdif_default_info,
1029 	.get =		snd_cmipci_spdif_default_get,
1030 	.put =		snd_cmipci_spdif_default_put
1031 };
1032 
1033 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1034 				      struct snd_ctl_elem_info *uinfo)
1035 {
1036 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1037 	uinfo->count = 1;
1038 	return 0;
1039 }
1040 
1041 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1042 				     struct snd_ctl_elem_value *ucontrol)
1043 {
1044 	ucontrol->value.iec958.status[0] = 0xff;
1045 	ucontrol->value.iec958.status[1] = 0xff;
1046 	ucontrol->value.iec958.status[2] = 0xff;
1047 	ucontrol->value.iec958.status[3] = 0xff;
1048 	return 0;
1049 }
1050 
1051 static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1052 {
1053 	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1054 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1055 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1056 	.info =		snd_cmipci_spdif_mask_info,
1057 	.get =		snd_cmipci_spdif_mask_get,
1058 };
1059 
1060 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1061 					struct snd_ctl_elem_info *uinfo)
1062 {
1063 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1064 	uinfo->count = 1;
1065 	return 0;
1066 }
1067 
1068 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1069 				       struct snd_ctl_elem_value *ucontrol)
1070 {
1071 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1072 	int i;
1073 
1074 	spin_lock_irq(&chip->reg_lock);
1075 	for (i = 0; i < 4; i++)
1076 		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1077 	spin_unlock_irq(&chip->reg_lock);
1078 	return 0;
1079 }
1080 
1081 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1082 				       struct snd_ctl_elem_value *ucontrol)
1083 {
1084 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1085 	int i, change;
1086 	unsigned int val;
1087 
1088 	val = 0;
1089 	spin_lock_irq(&chip->reg_lock);
1090 	for (i = 0; i < 4; i++)
1091 		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1092 	change = val != chip->dig_pcm_status;
1093 	chip->dig_pcm_status = val;
1094 	spin_unlock_irq(&chip->reg_lock);
1095 	return change;
1096 }
1097 
1098 static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1099 {
1100 	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1101 	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1102 	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1103 	.info =		snd_cmipci_spdif_stream_info,
1104 	.get =		snd_cmipci_spdif_stream_get,
1105 	.put =		snd_cmipci_spdif_stream_put
1106 };
1107 
1108 /*
1109  */
1110 
1111 /* save mixer setting and mute for AC3 playback */
1112 static int save_mixer_state(struct cmipci *cm)
1113 {
1114 	if (! cm->mixer_insensitive) {
1115 		struct snd_ctl_elem_value *val;
1116 		unsigned int i;
1117 
1118 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1119 		if (!val)
1120 			return -ENOMEM;
1121 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1122 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1123 			if (ctl) {
1124 				int event;
1125 				memset(val, 0, sizeof(*val));
1126 				ctl->get(ctl, val);
1127 				cm->mixer_res_status[i] = val->value.integer.value[0];
1128 				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1129 				event = SNDRV_CTL_EVENT_MASK_INFO;
1130 				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1131 					ctl->put(ctl, val); /* toggle */
1132 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1133 				}
1134 				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1135 				snd_ctl_notify(cm->card, event, &ctl->id);
1136 			}
1137 		}
1138 		kfree(val);
1139 		cm->mixer_insensitive = 1;
1140 	}
1141 	return 0;
1142 }
1143 
1144 
1145 /* restore the previously saved mixer status */
1146 static void restore_mixer_state(struct cmipci *cm)
1147 {
1148 	if (cm->mixer_insensitive) {
1149 		struct snd_ctl_elem_value *val;
1150 		unsigned int i;
1151 
1152 		val = kmalloc(sizeof(*val), GFP_KERNEL);
1153 		if (!val)
1154 			return;
1155 		cm->mixer_insensitive = 0; /* at first clear this;
1156 					      otherwise the changes will be ignored */
1157 		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1158 			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1159 			if (ctl) {
1160 				int event;
1161 
1162 				memset(val, 0, sizeof(*val));
1163 				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1164 				ctl->get(ctl, val);
1165 				event = SNDRV_CTL_EVENT_MASK_INFO;
1166 				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1167 					val->value.integer.value[0] = cm->mixer_res_status[i];
1168 					ctl->put(ctl, val);
1169 					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1170 				}
1171 				snd_ctl_notify(cm->card, event, &ctl->id);
1172 			}
1173 		}
1174 		kfree(val);
1175 	}
1176 }
1177 
1178 /* spinlock held! */
1179 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1180 {
1181 	if (do_ac3) {
1182 		/* AC3EN for 037 */
1183 		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1184 		/* AC3EN for 039 */
1185 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1186 
1187 		if (cm->can_ac3_hw) {
1188 			/* SPD24SEL for 037, 0x02 */
1189 			/* SPD24SEL for 039, 0x20, but cannot be set */
1190 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1191 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1192 		} else { /* can_ac3_sw */
1193 			/* SPD32SEL for 037 & 039, 0x20 */
1194 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1195 			/* set 176K sample rate to fix 033 HW bug */
1196 			if (cm->chip_version == 33) {
1197 				if (rate >= 48000) {
1198 					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1199 				} else {
1200 					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1201 				}
1202 			}
1203 		}
1204 
1205 	} else {
1206 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1207 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1208 
1209 		if (cm->can_ac3_hw) {
1210 			/* chip model >= 37 */
1211 			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1212 				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213 				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214 			} else {
1215 				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216 				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1217 			}
1218 		} else {
1219 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1220 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1221 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1222 		}
1223 	}
1224 }
1225 
1226 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1227 {
1228 	int rate, err;
1229 
1230 	rate = subs->runtime->rate;
1231 
1232 	if (up && do_ac3)
1233 		if ((err = save_mixer_state(cm)) < 0)
1234 			return err;
1235 
1236 	spin_lock_irq(&cm->reg_lock);
1237 	cm->spdif_playback_avail = up;
1238 	if (up) {
1239 		/* they are controlled via "IEC958 Output Switch" */
1240 		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1241 		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1242 		if (cm->spdif_playback_enabled)
1243 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1244 		setup_ac3(cm, subs, do_ac3, rate);
1245 
1246 		if (rate == 48000 || rate == 96000)
1247 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1248 		else
1249 			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1250 		if (rate > 48000)
1251 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1252 		else
1253 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254 	} else {
1255 		/* they are controlled via "IEC958 Output Switch" */
1256 		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1257 		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1258 		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1259 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1260 		setup_ac3(cm, subs, 0, 0);
1261 	}
1262 	spin_unlock_irq(&cm->reg_lock);
1263 	return 0;
1264 }
1265 
1266 
1267 /*
1268  * preparation
1269  */
1270 
1271 /* playback - enable spdif only on the certain condition */
1272 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1273 {
1274 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1275 	int rate = substream->runtime->rate;
1276 	int err, do_spdif, do_ac3 = 0;
1277 
1278 	do_spdif = (rate >= 44100 && rate <= 96000 &&
1279 		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1280 		    substream->runtime->channels == 2);
1281 	if (do_spdif && cm->can_ac3_hw)
1282 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1283 	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1284 		return err;
1285 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1286 }
1287 
1288 /* playback  (via device #2) - enable spdif always */
1289 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1290 {
1291 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1292 	int err, do_ac3;
1293 
1294 	if (cm->can_ac3_hw)
1295 		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1296 	else
1297 		do_ac3 = 1; /* doesn't matter */
1298 	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1299 		return err;
1300 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1301 }
1302 
1303 /*
1304  * Apparently, the samples last played on channel A stay in some buffer, even
1305  * after the channel is reset, and get added to the data for the rear DACs when
1306  * playing a multichannel stream on channel B.  This is likely to generate
1307  * wraparounds and thus distortions.
1308  * To avoid this, we play at least one zero sample after the actual stream has
1309  * stopped.
1310  */
1311 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1312 {
1313 	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1314 	unsigned int reg, val;
1315 
1316 	if (rec->needs_silencing && runtime && runtime->dma_area) {
1317 		/* set up a small silence buffer */
1318 		memset(runtime->dma_area, 0, PAGE_SIZE);
1319 		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1320 		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1321 		snd_cmipci_write(cm, reg, val);
1322 
1323 		/* configure for 16 bits, 2 channels, 8 kHz */
1324 		if (runtime->channels > 2)
1325 			set_dac_channels(cm, rec, 2);
1326 		spin_lock_irq(&cm->reg_lock);
1327 		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1328 		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1329 		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1330 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1331 		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1332 		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1333 		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1334 		if (cm->can_96k)
1335 			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1336 		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1337 
1338 		/* start stream (we don't need interrupts) */
1339 		cm->ctrl |= CM_CHEN0 << rec->ch;
1340 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1341 		spin_unlock_irq(&cm->reg_lock);
1342 
1343 		msleep(1);
1344 
1345 		/* stop and reset stream */
1346 		spin_lock_irq(&cm->reg_lock);
1347 		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1348 		val = CM_RST_CH0 << rec->ch;
1349 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1350 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1351 		spin_unlock_irq(&cm->reg_lock);
1352 
1353 		rec->needs_silencing = 0;
1354 	}
1355 }
1356 
1357 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1358 {
1359 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1360 	setup_spdif_playback(cm, substream, 0, 0);
1361 	restore_mixer_state(cm);
1362 	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1363 	return 0;
1364 }
1365 
1366 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1367 {
1368 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1369 	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1370 	return 0;
1371 }
1372 
1373 /* capture */
1374 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1375 {
1376 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1377 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1378 }
1379 
1380 /* capture with spdif (via device #2) */
1381 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1382 {
1383 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1384 
1385 	spin_lock_irq(&cm->reg_lock);
1386 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1387 	if (cm->can_96k) {
1388 		if (substream->runtime->rate > 48000)
1389 			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1390 		else
1391 			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1392 	}
1393 	if (snd_pcm_format_width(substream->runtime->format) > 16)
1394 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1395 	else
1396 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1397 
1398 	spin_unlock_irq(&cm->reg_lock);
1399 
1400 	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1401 }
1402 
1403 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1404 {
1405 	struct cmipci *cm = snd_pcm_substream_chip(subs);
1406 
1407 	spin_lock_irq(&cm->reg_lock);
1408 	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1409 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1410 	spin_unlock_irq(&cm->reg_lock);
1411 
1412 	return 0;
1413 }
1414 
1415 
1416 /*
1417  * interrupt handler
1418  */
1419 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1420 {
1421 	struct cmipci *cm = dev_id;
1422 	unsigned int status, mask = 0;
1423 
1424 	/* fastpath out, to ease interrupt sharing */
1425 	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1426 	if (!(status & CM_INTR))
1427 		return IRQ_NONE;
1428 
1429 	/* acknowledge interrupt */
1430 	spin_lock(&cm->reg_lock);
1431 	if (status & CM_CHINT0)
1432 		mask |= CM_CH0_INT_EN;
1433 	if (status & CM_CHINT1)
1434 		mask |= CM_CH1_INT_EN;
1435 	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1436 	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1437 	spin_unlock(&cm->reg_lock);
1438 
1439 	if (cm->rmidi && (status & CM_UARTINT))
1440 		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1441 
1442 	if (cm->pcm) {
1443 		if ((status & CM_CHINT0) && cm->channel[0].running)
1444 			snd_pcm_period_elapsed(cm->channel[0].substream);
1445 		if ((status & CM_CHINT1) && cm->channel[1].running)
1446 			snd_pcm_period_elapsed(cm->channel[1].substream);
1447 	}
1448 	return IRQ_HANDLED;
1449 }
1450 
1451 /*
1452  * h/w infos
1453  */
1454 
1455 /* playback on channel A */
1456 static const struct snd_pcm_hardware snd_cmipci_playback =
1457 {
1458 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1459 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1460 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1461 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1462 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1463 	.rate_min =		5512,
1464 	.rate_max =		48000,
1465 	.channels_min =		1,
1466 	.channels_max =		2,
1467 	.buffer_bytes_max =	(128*1024),
1468 	.period_bytes_min =	64,
1469 	.period_bytes_max =	(128*1024),
1470 	.periods_min =		2,
1471 	.periods_max =		1024,
1472 	.fifo_size =		0,
1473 };
1474 
1475 /* capture on channel B */
1476 static const struct snd_pcm_hardware snd_cmipci_capture =
1477 {
1478 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1479 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1480 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1481 	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1482 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1483 	.rate_min =		5512,
1484 	.rate_max =		48000,
1485 	.channels_min =		1,
1486 	.channels_max =		2,
1487 	.buffer_bytes_max =	(128*1024),
1488 	.period_bytes_min =	64,
1489 	.period_bytes_max =	(128*1024),
1490 	.periods_min =		2,
1491 	.periods_max =		1024,
1492 	.fifo_size =		0,
1493 };
1494 
1495 /* playback on channel B - stereo 16bit only? */
1496 static const struct snd_pcm_hardware snd_cmipci_playback2 =
1497 {
1498 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1499 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1500 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1501 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1502 	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1503 	.rate_min =		5512,
1504 	.rate_max =		48000,
1505 	.channels_min =		2,
1506 	.channels_max =		2,
1507 	.buffer_bytes_max =	(128*1024),
1508 	.period_bytes_min =	64,
1509 	.period_bytes_max =	(128*1024),
1510 	.periods_min =		2,
1511 	.periods_max =		1024,
1512 	.fifo_size =		0,
1513 };
1514 
1515 /* spdif playback on channel A */
1516 static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1517 {
1518 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1519 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1520 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1521 	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1522 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1523 	.rate_min =		44100,
1524 	.rate_max =		48000,
1525 	.channels_min =		2,
1526 	.channels_max =		2,
1527 	.buffer_bytes_max =	(128*1024),
1528 	.period_bytes_min =	64,
1529 	.period_bytes_max =	(128*1024),
1530 	.periods_min =		2,
1531 	.periods_max =		1024,
1532 	.fifo_size =		0,
1533 };
1534 
1535 /* spdif playback on channel A (32bit, IEC958 subframes) */
1536 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1537 {
1538 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1539 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1540 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1541 	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1542 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1543 	.rate_min =		44100,
1544 	.rate_max =		48000,
1545 	.channels_min =		2,
1546 	.channels_max =		2,
1547 	.buffer_bytes_max =	(128*1024),
1548 	.period_bytes_min =	64,
1549 	.period_bytes_max =	(128*1024),
1550 	.periods_min =		2,
1551 	.periods_max =		1024,
1552 	.fifo_size =		0,
1553 };
1554 
1555 /* spdif capture on channel B */
1556 static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1557 {
1558 	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1559 				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1560 				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1561 	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1562 				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1563 	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1564 	.rate_min =		44100,
1565 	.rate_max =		48000,
1566 	.channels_min =		2,
1567 	.channels_max =		2,
1568 	.buffer_bytes_max =	(128*1024),
1569 	.period_bytes_min =	64,
1570 	.period_bytes_max =	(128*1024),
1571 	.periods_min =		2,
1572 	.periods_max =		1024,
1573 	.fifo_size =		0,
1574 };
1575 
1576 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1577 			32000, 44100, 48000, 88200, 96000, 128000 };
1578 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1579 		.count = ARRAY_SIZE(rate_constraints),
1580 		.list = rate_constraints,
1581 		.mask = 0,
1582 };
1583 
1584 /*
1585  * check device open/close
1586  */
1587 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1588 {
1589 	int ch = mode & CM_OPEN_CH_MASK;
1590 
1591 	/* FIXME: a file should wait until the device becomes free
1592 	 * when it's opened on blocking mode.  however, since the current
1593 	 * pcm framework doesn't pass file pointer before actually opened,
1594 	 * we can't know whether blocking mode or not in open callback..
1595 	 */
1596 	mutex_lock(&cm->open_mutex);
1597 	if (cm->opened[ch]) {
1598 		mutex_unlock(&cm->open_mutex);
1599 		return -EBUSY;
1600 	}
1601 	cm->opened[ch] = mode;
1602 	cm->channel[ch].substream = subs;
1603 	if (! (mode & CM_OPEN_DAC)) {
1604 		/* disable dual DAC mode */
1605 		cm->channel[ch].is_dac = 0;
1606 		spin_lock_irq(&cm->reg_lock);
1607 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1608 		spin_unlock_irq(&cm->reg_lock);
1609 	}
1610 	mutex_unlock(&cm->open_mutex);
1611 	return 0;
1612 }
1613 
1614 static void close_device_check(struct cmipci *cm, int mode)
1615 {
1616 	int ch = mode & CM_OPEN_CH_MASK;
1617 
1618 	mutex_lock(&cm->open_mutex);
1619 	if (cm->opened[ch] == mode) {
1620 		if (cm->channel[ch].substream) {
1621 			snd_cmipci_ch_reset(cm, ch);
1622 			cm->channel[ch].running = 0;
1623 			cm->channel[ch].substream = NULL;
1624 		}
1625 		cm->opened[ch] = 0;
1626 		if (! cm->channel[ch].is_dac) {
1627 			/* enable dual DAC mode again */
1628 			cm->channel[ch].is_dac = 1;
1629 			spin_lock_irq(&cm->reg_lock);
1630 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1631 			spin_unlock_irq(&cm->reg_lock);
1632 		}
1633 	}
1634 	mutex_unlock(&cm->open_mutex);
1635 }
1636 
1637 /*
1638  */
1639 
1640 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1641 {
1642 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1643 	struct snd_pcm_runtime *runtime = substream->runtime;
1644 	int err;
1645 
1646 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1647 		return err;
1648 	runtime->hw = snd_cmipci_playback;
1649 	if (cm->chip_version == 68) {
1650 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1651 				     SNDRV_PCM_RATE_96000;
1652 		runtime->hw.rate_max = 96000;
1653 	} else if (cm->chip_version == 55) {
1654 		err = snd_pcm_hw_constraint_list(runtime, 0,
1655 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1656 		if (err < 0)
1657 			return err;
1658 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1659 		runtime->hw.rate_max = 128000;
1660 	}
1661 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1662 	cm->dig_pcm_status = cm->dig_status;
1663 	return 0;
1664 }
1665 
1666 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1667 {
1668 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1669 	struct snd_pcm_runtime *runtime = substream->runtime;
1670 	int err;
1671 
1672 	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1673 		return err;
1674 	runtime->hw = snd_cmipci_capture;
1675 	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1676 		runtime->hw.rate_min = 41000;
1677 		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1678 	} else if (cm->chip_version == 55) {
1679 		err = snd_pcm_hw_constraint_list(runtime, 0,
1680 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1681 		if (err < 0)
1682 			return err;
1683 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1684 		runtime->hw.rate_max = 128000;
1685 	}
1686 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1687 	return 0;
1688 }
1689 
1690 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1691 {
1692 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1693 	struct snd_pcm_runtime *runtime = substream->runtime;
1694 	int err;
1695 
1696 	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1697 		return err;
1698 	runtime->hw = snd_cmipci_playback2;
1699 	mutex_lock(&cm->open_mutex);
1700 	if (! cm->opened[CM_CH_PLAY]) {
1701 		if (cm->can_multi_ch) {
1702 			runtime->hw.channels_max = cm->max_channels;
1703 			if (cm->max_channels == 4)
1704 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1705 			else if (cm->max_channels == 6)
1706 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1707 			else if (cm->max_channels == 8)
1708 				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1709 		}
1710 	}
1711 	mutex_unlock(&cm->open_mutex);
1712 	if (cm->chip_version == 68) {
1713 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1714 				     SNDRV_PCM_RATE_96000;
1715 		runtime->hw.rate_max = 96000;
1716 	} else if (cm->chip_version == 55) {
1717 		err = snd_pcm_hw_constraint_list(runtime, 0,
1718 			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1719 		if (err < 0)
1720 			return err;
1721 		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1722 		runtime->hw.rate_max = 128000;
1723 	}
1724 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1725 	return 0;
1726 }
1727 
1728 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1729 {
1730 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1731 	struct snd_pcm_runtime *runtime = substream->runtime;
1732 	int err;
1733 
1734 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1735 		return err;
1736 	if (cm->can_ac3_hw) {
1737 		runtime->hw = snd_cmipci_playback_spdif;
1738 		if (cm->chip_version >= 37) {
1739 			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1740 			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1741 		}
1742 		if (cm->can_96k) {
1743 			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1744 					     SNDRV_PCM_RATE_96000;
1745 			runtime->hw.rate_max = 96000;
1746 		}
1747 	} else {
1748 		runtime->hw = snd_cmipci_playback_iec958_subframe;
1749 	}
1750 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1751 	cm->dig_pcm_status = cm->dig_status;
1752 	return 0;
1753 }
1754 
1755 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1756 {
1757 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1758 	struct snd_pcm_runtime *runtime = substream->runtime;
1759 	int err;
1760 
1761 	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1762 		return err;
1763 	runtime->hw = snd_cmipci_capture_spdif;
1764 	if (cm->can_96k && !(cm->chip_version == 68)) {
1765 		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1766 				     SNDRV_PCM_RATE_96000;
1767 		runtime->hw.rate_max = 96000;
1768 	}
1769 	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1770 	return 0;
1771 }
1772 
1773 
1774 /*
1775  */
1776 
1777 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1778 {
1779 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1780 	close_device_check(cm, CM_OPEN_PLAYBACK);
1781 	return 0;
1782 }
1783 
1784 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1785 {
1786 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1787 	close_device_check(cm, CM_OPEN_CAPTURE);
1788 	return 0;
1789 }
1790 
1791 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1792 {
1793 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1794 	close_device_check(cm, CM_OPEN_PLAYBACK2);
1795 	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1796 	return 0;
1797 }
1798 
1799 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1800 {
1801 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1802 	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1803 	return 0;
1804 }
1805 
1806 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1807 {
1808 	struct cmipci *cm = snd_pcm_substream_chip(substream);
1809 	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1810 	return 0;
1811 }
1812 
1813 
1814 /*
1815  */
1816 
1817 static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1818 	.open =		snd_cmipci_playback_open,
1819 	.close =	snd_cmipci_playback_close,
1820 	.hw_free =	snd_cmipci_playback_hw_free,
1821 	.prepare =	snd_cmipci_playback_prepare,
1822 	.trigger =	snd_cmipci_playback_trigger,
1823 	.pointer =	snd_cmipci_playback_pointer,
1824 };
1825 
1826 static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1827 	.open =		snd_cmipci_capture_open,
1828 	.close =	snd_cmipci_capture_close,
1829 	.prepare =	snd_cmipci_capture_prepare,
1830 	.trigger =	snd_cmipci_capture_trigger,
1831 	.pointer =	snd_cmipci_capture_pointer,
1832 };
1833 
1834 static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1835 	.open =		snd_cmipci_playback2_open,
1836 	.close =	snd_cmipci_playback2_close,
1837 	.hw_params =	snd_cmipci_playback2_hw_params,
1838 	.hw_free =	snd_cmipci_playback2_hw_free,
1839 	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1840 	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1841 	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1842 };
1843 
1844 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1845 	.open =		snd_cmipci_playback_spdif_open,
1846 	.close =	snd_cmipci_playback_spdif_close,
1847 	.hw_free =	snd_cmipci_playback_hw_free,
1848 	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1849 	.trigger =	snd_cmipci_playback_trigger,
1850 	.pointer =	snd_cmipci_playback_pointer,
1851 };
1852 
1853 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1854 	.open =		snd_cmipci_capture_spdif_open,
1855 	.close =	snd_cmipci_capture_spdif_close,
1856 	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1857 	.prepare =	snd_cmipci_capture_spdif_prepare,
1858 	.trigger =	snd_cmipci_capture_trigger,
1859 	.pointer =	snd_cmipci_capture_pointer,
1860 };
1861 
1862 
1863 /*
1864  */
1865 
1866 static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1867 {
1868 	struct snd_pcm *pcm;
1869 	int err;
1870 
1871 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1872 	if (err < 0)
1873 		return err;
1874 
1875 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1876 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1877 
1878 	pcm->private_data = cm;
1879 	pcm->info_flags = 0;
1880 	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1881 	cm->pcm = pcm;
1882 
1883 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1884 				       &cm->pci->dev, 64*1024, 128*1024);
1885 
1886 	return 0;
1887 }
1888 
1889 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1890 {
1891 	struct snd_pcm *pcm;
1892 	int err;
1893 
1894 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1895 	if (err < 0)
1896 		return err;
1897 
1898 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1899 
1900 	pcm->private_data = cm;
1901 	pcm->info_flags = 0;
1902 	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1903 	cm->pcm2 = pcm;
1904 
1905 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1906 				       &cm->pci->dev, 64*1024, 128*1024);
1907 
1908 	return 0;
1909 }
1910 
1911 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1912 {
1913 	struct snd_pcm *pcm;
1914 	int err;
1915 
1916 	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1917 	if (err < 0)
1918 		return err;
1919 
1920 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1921 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1922 
1923 	pcm->private_data = cm;
1924 	pcm->info_flags = 0;
1925 	strcpy(pcm->name, "C-Media PCI IEC958");
1926 	cm->pcm_spdif = pcm;
1927 
1928 	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1929 				       &cm->pci->dev, 64*1024, 128*1024);
1930 
1931 	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1932 				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1933 				     NULL);
1934 	if (err < 0)
1935 		return err;
1936 
1937 	return 0;
1938 }
1939 
1940 /*
1941  * mixer interface:
1942  * - CM8338/8738 has a compatible mixer interface with SB16, but
1943  *   lack of some elements like tone control, i/o gain and AGC.
1944  * - Access to native registers:
1945  *   - A 3D switch
1946  *   - Output mute switches
1947  */
1948 
1949 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1950 {
1951 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1952 	outb(data, s->iobase + CM_REG_SB16_DATA);
1953 }
1954 
1955 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1956 {
1957 	unsigned char v;
1958 
1959 	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1960 	v = inb(s->iobase + CM_REG_SB16_DATA);
1961 	return v;
1962 }
1963 
1964 /*
1965  * general mixer element
1966  */
1967 struct cmipci_sb_reg {
1968 	unsigned int left_reg, right_reg;
1969 	unsigned int left_shift, right_shift;
1970 	unsigned int mask;
1971 	unsigned int invert: 1;
1972 	unsigned int stereo: 1;
1973 };
1974 
1975 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1976  ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1977 
1978 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1979 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1980   .info = snd_cmipci_info_volume, \
1981   .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1982   .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1983 }
1984 
1985 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1986 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1987 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1988 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1989 
1990 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1991 {
1992 	r->left_reg = val & 0xff;
1993 	r->right_reg = (val >> 8) & 0xff;
1994 	r->left_shift = (val >> 16) & 0x07;
1995 	r->right_shift = (val >> 19) & 0x07;
1996 	r->invert = (val >> 22) & 1;
1997 	r->stereo = (val >> 23) & 1;
1998 	r->mask = (val >> 24) & 0xff;
1999 }
2000 
2001 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2002 				  struct snd_ctl_elem_info *uinfo)
2003 {
2004 	struct cmipci_sb_reg reg;
2005 
2006 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2007 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2008 	uinfo->count = reg.stereo + 1;
2009 	uinfo->value.integer.min = 0;
2010 	uinfo->value.integer.max = reg.mask;
2011 	return 0;
2012 }
2013 
2014 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2015 				 struct snd_ctl_elem_value *ucontrol)
2016 {
2017 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2018 	struct cmipci_sb_reg reg;
2019 	int val;
2020 
2021 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2022 	spin_lock_irq(&cm->reg_lock);
2023 	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2024 	if (reg.invert)
2025 		val = reg.mask - val;
2026 	ucontrol->value.integer.value[0] = val;
2027 	if (reg.stereo) {
2028 		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2029 		if (reg.invert)
2030 			val = reg.mask - val;
2031 		ucontrol->value.integer.value[1] = val;
2032 	}
2033 	spin_unlock_irq(&cm->reg_lock);
2034 	return 0;
2035 }
2036 
2037 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2038 				 struct snd_ctl_elem_value *ucontrol)
2039 {
2040 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2041 	struct cmipci_sb_reg reg;
2042 	int change;
2043 	int left, right, oleft, oright;
2044 
2045 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2046 	left = ucontrol->value.integer.value[0] & reg.mask;
2047 	if (reg.invert)
2048 		left = reg.mask - left;
2049 	left <<= reg.left_shift;
2050 	if (reg.stereo) {
2051 		right = ucontrol->value.integer.value[1] & reg.mask;
2052 		if (reg.invert)
2053 			right = reg.mask - right;
2054 		right <<= reg.right_shift;
2055 	} else
2056 		right = 0;
2057 	spin_lock_irq(&cm->reg_lock);
2058 	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2059 	left |= oleft & ~(reg.mask << reg.left_shift);
2060 	change = left != oleft;
2061 	if (reg.stereo) {
2062 		if (reg.left_reg != reg.right_reg) {
2063 			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2064 			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2065 		} else
2066 			oright = left;
2067 		right |= oright & ~(reg.mask << reg.right_shift);
2068 		change |= right != oright;
2069 		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2070 	} else
2071 		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2072 	spin_unlock_irq(&cm->reg_lock);
2073 	return change;
2074 }
2075 
2076 /*
2077  * input route (left,right) -> (left,right)
2078  */
2079 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2080 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2081   .info = snd_cmipci_info_input_sw, \
2082   .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2083   .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2084 }
2085 
2086 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2087 				    struct snd_ctl_elem_info *uinfo)
2088 {
2089 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2090 	uinfo->count = 4;
2091 	uinfo->value.integer.min = 0;
2092 	uinfo->value.integer.max = 1;
2093 	return 0;
2094 }
2095 
2096 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2097 				   struct snd_ctl_elem_value *ucontrol)
2098 {
2099 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2100 	struct cmipci_sb_reg reg;
2101 	int val1, val2;
2102 
2103 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2104 	spin_lock_irq(&cm->reg_lock);
2105 	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2106 	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2107 	spin_unlock_irq(&cm->reg_lock);
2108 	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2109 	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2110 	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2111 	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2112 	return 0;
2113 }
2114 
2115 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2116 				   struct snd_ctl_elem_value *ucontrol)
2117 {
2118 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2119 	struct cmipci_sb_reg reg;
2120 	int change;
2121 	int val1, val2, oval1, oval2;
2122 
2123 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2124 	spin_lock_irq(&cm->reg_lock);
2125 	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2126 	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2127 	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2128 	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2129 	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2130 	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2131 	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2132 	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2133 	change = val1 != oval1 || val2 != oval2;
2134 	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2135 	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2136 	spin_unlock_irq(&cm->reg_lock);
2137 	return change;
2138 }
2139 
2140 /*
2141  * native mixer switches/volumes
2142  */
2143 
2144 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2145 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2146   .info = snd_cmipci_info_native_mixer, \
2147   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2148   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2149 }
2150 
2151 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2152 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2153   .info = snd_cmipci_info_native_mixer, \
2154   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2155   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2156 }
2157 
2158 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2159 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2160   .info = snd_cmipci_info_native_mixer, \
2161   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2162   .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2163 }
2164 
2165 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2166 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167   .info = snd_cmipci_info_native_mixer, \
2168   .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169   .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2170 }
2171 
2172 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2173 					struct snd_ctl_elem_info *uinfo)
2174 {
2175 	struct cmipci_sb_reg reg;
2176 
2177 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2178 	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2179 	uinfo->count = reg.stereo + 1;
2180 	uinfo->value.integer.min = 0;
2181 	uinfo->value.integer.max = reg.mask;
2182 	return 0;
2183 
2184 }
2185 
2186 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2187 				       struct snd_ctl_elem_value *ucontrol)
2188 {
2189 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2190 	struct cmipci_sb_reg reg;
2191 	unsigned char oreg, val;
2192 
2193 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2194 	spin_lock_irq(&cm->reg_lock);
2195 	oreg = inb(cm->iobase + reg.left_reg);
2196 	val = (oreg >> reg.left_shift) & reg.mask;
2197 	if (reg.invert)
2198 		val = reg.mask - val;
2199 	ucontrol->value.integer.value[0] = val;
2200 	if (reg.stereo) {
2201 		val = (oreg >> reg.right_shift) & reg.mask;
2202 		if (reg.invert)
2203 			val = reg.mask - val;
2204 		ucontrol->value.integer.value[1] = val;
2205 	}
2206 	spin_unlock_irq(&cm->reg_lock);
2207 	return 0;
2208 }
2209 
2210 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2211 				       struct snd_ctl_elem_value *ucontrol)
2212 {
2213 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2214 	struct cmipci_sb_reg reg;
2215 	unsigned char oreg, nreg, val;
2216 
2217 	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2218 	spin_lock_irq(&cm->reg_lock);
2219 	oreg = inb(cm->iobase + reg.left_reg);
2220 	val = ucontrol->value.integer.value[0] & reg.mask;
2221 	if (reg.invert)
2222 		val = reg.mask - val;
2223 	nreg = oreg & ~(reg.mask << reg.left_shift);
2224 	nreg |= (val << reg.left_shift);
2225 	if (reg.stereo) {
2226 		val = ucontrol->value.integer.value[1] & reg.mask;
2227 		if (reg.invert)
2228 			val = reg.mask - val;
2229 		nreg &= ~(reg.mask << reg.right_shift);
2230 		nreg |= (val << reg.right_shift);
2231 	}
2232 	outb(nreg, cm->iobase + reg.left_reg);
2233 	spin_unlock_irq(&cm->reg_lock);
2234 	return (nreg != oreg);
2235 }
2236 
2237 /*
2238  * special case - check mixer sensitivity
2239  */
2240 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2241 						 struct snd_ctl_elem_value *ucontrol)
2242 {
2243 	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2244 	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2245 }
2246 
2247 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2248 						 struct snd_ctl_elem_value *ucontrol)
2249 {
2250 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2251 	if (cm->mixer_insensitive) {
2252 		/* ignored */
2253 		return 0;
2254 	}
2255 	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2256 }
2257 
2258 
2259 static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2260 	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2261 	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2262 	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2263 	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2264 	{ /* switch with sensitivity */
2265 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2266 		.name = "PCM Playback Switch",
2267 		.info = snd_cmipci_info_native_mixer,
2268 		.get = snd_cmipci_get_native_mixer_sensitive,
2269 		.put = snd_cmipci_put_native_mixer_sensitive,
2270 		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2271 	},
2272 	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2273 	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2274 	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2275 	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2276 	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2277 	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2278 	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2279 	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2280 	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2281 	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2282 	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2283 	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2284 	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2285 	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2286 	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2287 	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2288 	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2289 	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2290 	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2291 	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2292 	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2293 	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2294 	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2295 };
2296 
2297 /*
2298  * other switches
2299  */
2300 
2301 struct cmipci_switch_args {
2302 	int reg;		/* register index */
2303 	unsigned int mask;	/* mask bits */
2304 	unsigned int mask_on;	/* mask bits to turn on */
2305 	unsigned int is_byte: 1;		/* byte access? */
2306 	unsigned int ac3_sensitive: 1;	/* access forbidden during
2307 					 * non-audio operation?
2308 					 */
2309 };
2310 
2311 #define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2312 
2313 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2314 				   struct snd_ctl_elem_value *ucontrol,
2315 				   struct cmipci_switch_args *args)
2316 {
2317 	unsigned int val;
2318 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2319 
2320 	spin_lock_irq(&cm->reg_lock);
2321 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2322 		ucontrol->value.integer.value[0] = 0;
2323 		spin_unlock_irq(&cm->reg_lock);
2324 		return 0;
2325 	}
2326 	if (args->is_byte)
2327 		val = inb(cm->iobase + args->reg);
2328 	else
2329 		val = snd_cmipci_read(cm, args->reg);
2330 	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2331 	spin_unlock_irq(&cm->reg_lock);
2332 	return 0;
2333 }
2334 
2335 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2336 				  struct snd_ctl_elem_value *ucontrol)
2337 {
2338 	struct cmipci_switch_args *args;
2339 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2340 	if (snd_BUG_ON(!args))
2341 		return -EINVAL;
2342 	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2343 }
2344 
2345 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2346 				   struct snd_ctl_elem_value *ucontrol,
2347 				   struct cmipci_switch_args *args)
2348 {
2349 	unsigned int val;
2350 	int change;
2351 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2352 
2353 	spin_lock_irq(&cm->reg_lock);
2354 	if (args->ac3_sensitive && cm->mixer_insensitive) {
2355 		/* ignored */
2356 		spin_unlock_irq(&cm->reg_lock);
2357 		return 0;
2358 	}
2359 	if (args->is_byte)
2360 		val = inb(cm->iobase + args->reg);
2361 	else
2362 		val = snd_cmipci_read(cm, args->reg);
2363 	change = (val & args->mask) != (ucontrol->value.integer.value[0] ?
2364 			args->mask_on : (args->mask & ~args->mask_on));
2365 	if (change) {
2366 		val &= ~args->mask;
2367 		if (ucontrol->value.integer.value[0])
2368 			val |= args->mask_on;
2369 		else
2370 			val |= (args->mask & ~args->mask_on);
2371 		if (args->is_byte)
2372 			outb((unsigned char)val, cm->iobase + args->reg);
2373 		else
2374 			snd_cmipci_write(cm, args->reg, val);
2375 	}
2376 	spin_unlock_irq(&cm->reg_lock);
2377 	return change;
2378 }
2379 
2380 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2381 				  struct snd_ctl_elem_value *ucontrol)
2382 {
2383 	struct cmipci_switch_args *args;
2384 	args = (struct cmipci_switch_args *)kcontrol->private_value;
2385 	if (snd_BUG_ON(!args))
2386 		return -EINVAL;
2387 	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2388 }
2389 
2390 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2391 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2392   .reg = xreg, \
2393   .mask = xmask, \
2394   .mask_on = xmask_on, \
2395   .is_byte = xis_byte, \
2396   .ac3_sensitive = xac3, \
2397 }
2398 
2399 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2400 	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2401 
2402 #if 0 /* these will be controlled in pcm device */
2403 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2404 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2405 #endif
2406 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2407 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2408 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2409 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2410 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2411 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2412 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2413 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2414 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2415 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2416 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2417 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2418 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2419 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2420 #if CM_CH_PLAY == 1
2421 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2422 #else
2423 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2424 #endif
2425 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2426 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2427 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2428 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2429 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2430 
2431 #define DEFINE_SWITCH(sname, stype, sarg) \
2432 { .name = sname, \
2433   .iface = stype, \
2434   .info = snd_cmipci_uswitch_info, \
2435   .get = snd_cmipci_uswitch_get, \
2436   .put = snd_cmipci_uswitch_put, \
2437   .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2438 }
2439 
2440 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2441 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2442 
2443 
2444 /*
2445  * callbacks for spdif output switch
2446  * needs toggle two registers..
2447  */
2448 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2449 					struct snd_ctl_elem_value *ucontrol)
2450 {
2451 	int changed;
2452 	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2453 	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2454 	return changed;
2455 }
2456 
2457 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2458 					struct snd_ctl_elem_value *ucontrol)
2459 {
2460 	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2461 	int changed;
2462 	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2463 	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2464 	if (changed) {
2465 		if (ucontrol->value.integer.value[0]) {
2466 			if (chip->spdif_playback_avail)
2467 				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2468 		} else {
2469 			if (chip->spdif_playback_avail)
2470 				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2471 		}
2472 	}
2473 	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2474 	return changed;
2475 }
2476 
2477 
2478 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2479 					struct snd_ctl_elem_info *uinfo)
2480 {
2481 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2482 	static const char *const texts[3] = {
2483 		"Line-In", "Rear Output", "Bass Output"
2484 	};
2485 
2486 	return snd_ctl_enum_info(uinfo, 1,
2487 				 cm->chip_version >= 39 ? 3 : 2, texts);
2488 }
2489 
2490 static inline unsigned int get_line_in_mode(struct cmipci *cm)
2491 {
2492 	unsigned int val;
2493 	if (cm->chip_version >= 39) {
2494 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2495 		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2496 			return 2;
2497 	}
2498 	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2499 	if (val & CM_REAR2LIN)
2500 		return 1;
2501 	return 0;
2502 }
2503 
2504 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2505 				       struct snd_ctl_elem_value *ucontrol)
2506 {
2507 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2508 
2509 	spin_lock_irq(&cm->reg_lock);
2510 	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2511 	spin_unlock_irq(&cm->reg_lock);
2512 	return 0;
2513 }
2514 
2515 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2516 				       struct snd_ctl_elem_value *ucontrol)
2517 {
2518 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2519 	int change;
2520 
2521 	spin_lock_irq(&cm->reg_lock);
2522 	if (ucontrol->value.enumerated.item[0] == 2)
2523 		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2524 	else
2525 		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2526 	if (ucontrol->value.enumerated.item[0] == 1)
2527 		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2528 	else
2529 		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2530 	spin_unlock_irq(&cm->reg_lock);
2531 	return change;
2532 }
2533 
2534 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2535 				       struct snd_ctl_elem_info *uinfo)
2536 {
2537 	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2538 
2539 	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2540 }
2541 
2542 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2543 				      struct snd_ctl_elem_value *ucontrol)
2544 {
2545 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2546 	/* same bit as spdi_phase */
2547 	spin_lock_irq(&cm->reg_lock);
2548 	ucontrol->value.enumerated.item[0] =
2549 		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2550 	spin_unlock_irq(&cm->reg_lock);
2551 	return 0;
2552 }
2553 
2554 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2555 				      struct snd_ctl_elem_value *ucontrol)
2556 {
2557 	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2558 	int change;
2559 
2560 	spin_lock_irq(&cm->reg_lock);
2561 	if (ucontrol->value.enumerated.item[0])
2562 		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2563 	else
2564 		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2565 	spin_unlock_irq(&cm->reg_lock);
2566 	return change;
2567 }
2568 
2569 /* both for CM8338/8738 */
2570 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2571 	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2572 	{
2573 		.name = "Line-In Mode",
2574 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2575 		.info = snd_cmipci_line_in_mode_info,
2576 		.get = snd_cmipci_line_in_mode_get,
2577 		.put = snd_cmipci_line_in_mode_put,
2578 	},
2579 };
2580 
2581 /* for non-multichannel chips */
2582 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2583 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2584 
2585 /* only for CM8738 */
2586 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2587 #if 0 /* controlled in pcm device */
2588 	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2589 	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2590 	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2591 #endif
2592 	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2593 	{ .name = "IEC958 Output Switch",
2594 	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2595 	  .info = snd_cmipci_uswitch_info,
2596 	  .get = snd_cmipci_spdout_enable_get,
2597 	  .put = snd_cmipci_spdout_enable_put,
2598 	},
2599 	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2600 	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2601 	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2602 //	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2603 	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2604 	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2605 };
2606 
2607 /* only for model 033/037 */
2608 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2609 	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2610 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2611 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2612 };
2613 
2614 /* only for model 039 or later */
2615 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2616 	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2617 	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2618 	{
2619 		.name = "Mic-In Mode",
2620 		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2621 		.info = snd_cmipci_mic_in_mode_info,
2622 		.get = snd_cmipci_mic_in_mode_get,
2623 		.put = snd_cmipci_mic_in_mode_put,
2624 	}
2625 };
2626 
2627 /* card control switches */
2628 static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2629 DEFINE_CARD_SWITCH("Modem", modem);
2630 
2631 
2632 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2633 {
2634 	struct snd_card *card;
2635 	const struct snd_kcontrol_new *sw;
2636 	struct snd_kcontrol *kctl;
2637 	unsigned int idx;
2638 	int err;
2639 
2640 	if (snd_BUG_ON(!cm || !cm->card))
2641 		return -EINVAL;
2642 
2643 	card = cm->card;
2644 
2645 	strcpy(card->mixername, "CMedia PCI");
2646 
2647 	spin_lock_irq(&cm->reg_lock);
2648 	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2649 	spin_unlock_irq(&cm->reg_lock);
2650 
2651 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2652 		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2653 			if (!strcmp(snd_cmipci_mixers[idx].name,
2654 				"PCM Playback Volume"))
2655 				continue;
2656 		}
2657 		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2658 			return err;
2659 	}
2660 
2661 	/* mixer switches */
2662 	sw = snd_cmipci_mixer_switches;
2663 	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2664 		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2665 		if (err < 0)
2666 			return err;
2667 	}
2668 	if (! cm->can_multi_ch) {
2669 		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2670 		if (err < 0)
2671 			return err;
2672 	}
2673 	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2674 	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2675 		sw = snd_cmipci_8738_mixer_switches;
2676 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2677 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2678 			if (err < 0)
2679 				return err;
2680 		}
2681 		if (cm->can_ac3_hw) {
2682 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2683 				return err;
2684 			kctl->id.device = pcm_spdif_device;
2685 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2686 				return err;
2687 			kctl->id.device = pcm_spdif_device;
2688 			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2689 				return err;
2690 			kctl->id.device = pcm_spdif_device;
2691 		}
2692 		if (cm->chip_version <= 37) {
2693 			sw = snd_cmipci_old_mixer_switches;
2694 			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2695 				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2696 				if (err < 0)
2697 					return err;
2698 			}
2699 		}
2700 	}
2701 	if (cm->chip_version >= 39) {
2702 		sw = snd_cmipci_extra_mixer_switches;
2703 		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2704 			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2705 			if (err < 0)
2706 				return err;
2707 		}
2708 	}
2709 
2710 	/* card switches */
2711 	/*
2712 	 * newer chips don't have the register bits to force modem link
2713 	 * detection; the bit that was FLINKON now mutes CH1
2714 	 */
2715 	if (cm->chip_version < 39) {
2716 		err = snd_ctl_add(cm->card,
2717 				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2718 		if (err < 0)
2719 			return err;
2720 	}
2721 
2722 	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2723 		struct snd_ctl_elem_id elem_id;
2724 		struct snd_kcontrol *ctl;
2725 		memset(&elem_id, 0, sizeof(elem_id));
2726 		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2727 		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2728 		ctl = snd_ctl_find_id(cm->card, &elem_id);
2729 		if (ctl)
2730 			cm->mixer_res_ctl[idx] = ctl;
2731 	}
2732 
2733 	return 0;
2734 }
2735 
2736 
2737 /*
2738  * proc interface
2739  */
2740 
2741 static void snd_cmipci_proc_read(struct snd_info_entry *entry,
2742 				 struct snd_info_buffer *buffer)
2743 {
2744 	struct cmipci *cm = entry->private_data;
2745 	int i, v;
2746 
2747 	snd_iprintf(buffer, "%s\n", cm->card->longname);
2748 	for (i = 0; i < 0x94; i++) {
2749 		if (i == 0x28)
2750 			i = 0x90;
2751 		v = inb(cm->iobase + i);
2752 		if (i % 4 == 0)
2753 			snd_iprintf(buffer, "\n%02x:", i);
2754 		snd_iprintf(buffer, " %02x", v);
2755 	}
2756 	snd_iprintf(buffer, "\n");
2757 }
2758 
2759 static void snd_cmipci_proc_init(struct cmipci *cm)
2760 {
2761 	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2762 }
2763 
2764 static const struct pci_device_id snd_cmipci_ids[] = {
2765 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2766 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2767 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2768 	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2769 	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2770 	{0,},
2771 };
2772 
2773 
2774 /*
2775  * check chip version and capabilities
2776  * driver name is modified according to the chip model
2777  */
2778 static void query_chip(struct cmipci *cm)
2779 {
2780 	unsigned int detect;
2781 
2782 	/* check reg 0Ch, bit 24-31 */
2783 	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2784 	if (! detect) {
2785 		/* check reg 08h, bit 24-28 */
2786 		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2787 		switch (detect) {
2788 		case 0:
2789 			cm->chip_version = 33;
2790 			if (cm->do_soft_ac3)
2791 				cm->can_ac3_sw = 1;
2792 			else
2793 				cm->can_ac3_hw = 1;
2794 			break;
2795 		case CM_CHIP_037:
2796 			cm->chip_version = 37;
2797 			cm->can_ac3_hw = 1;
2798 			break;
2799 		default:
2800 			cm->chip_version = 39;
2801 			cm->can_ac3_hw = 1;
2802 			break;
2803 		}
2804 		cm->max_channels = 2;
2805 	} else {
2806 		if (detect & CM_CHIP_039) {
2807 			cm->chip_version = 39;
2808 			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2809 				cm->max_channels = 6;
2810 			else
2811 				cm->max_channels = 4;
2812 		} else if (detect & CM_CHIP_8768) {
2813 			cm->chip_version = 68;
2814 			cm->max_channels = 8;
2815 			cm->can_96k = 1;
2816 		} else {
2817 			cm->chip_version = 55;
2818 			cm->max_channels = 6;
2819 			cm->can_96k = 1;
2820 		}
2821 		cm->can_ac3_hw = 1;
2822 		cm->can_multi_ch = 1;
2823 	}
2824 }
2825 
2826 #ifdef SUPPORT_JOYSTICK
2827 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2828 {
2829 	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2830 	struct gameport *gp;
2831 	struct resource *r = NULL;
2832 	int i, io_port = 0;
2833 
2834 	if (joystick_port[dev] == 0)
2835 		return -ENODEV;
2836 
2837 	if (joystick_port[dev] == 1) { /* auto-detect */
2838 		for (i = 0; ports[i]; i++) {
2839 			io_port = ports[i];
2840 			r = request_region(io_port, 1, "CMIPCI gameport");
2841 			if (r)
2842 				break;
2843 		}
2844 	} else {
2845 		io_port = joystick_port[dev];
2846 		r = request_region(io_port, 1, "CMIPCI gameport");
2847 	}
2848 
2849 	if (!r) {
2850 		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2851 		return -EBUSY;
2852 	}
2853 
2854 	cm->gameport = gp = gameport_allocate_port();
2855 	if (!gp) {
2856 		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2857 		release_and_free_resource(r);
2858 		return -ENOMEM;
2859 	}
2860 	gameport_set_name(gp, "C-Media Gameport");
2861 	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2862 	gameport_set_dev_parent(gp, &cm->pci->dev);
2863 	gp->io = io_port;
2864 	gameport_set_port_data(gp, r);
2865 
2866 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2867 
2868 	gameport_register_port(cm->gameport);
2869 
2870 	return 0;
2871 }
2872 
2873 static void snd_cmipci_free_gameport(struct cmipci *cm)
2874 {
2875 	if (cm->gameport) {
2876 		struct resource *r = gameport_get_port_data(cm->gameport);
2877 
2878 		gameport_unregister_port(cm->gameport);
2879 		cm->gameport = NULL;
2880 
2881 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2882 		release_and_free_resource(r);
2883 	}
2884 }
2885 #else
2886 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2887 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2888 #endif
2889 
2890 static int snd_cmipci_free(struct cmipci *cm)
2891 {
2892 	if (cm->irq >= 0) {
2893 		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2894 		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2895 		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2896 		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2897 		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2898 		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2899 		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2900 
2901 		/* reset mixer */
2902 		snd_cmipci_mixer_write(cm, 0, 0);
2903 
2904 		free_irq(cm->irq, cm);
2905 	}
2906 
2907 	snd_cmipci_free_gameport(cm);
2908 	pci_release_regions(cm->pci);
2909 	pci_disable_device(cm->pci);
2910 	kfree(cm);
2911 	return 0;
2912 }
2913 
2914 static int snd_cmipci_dev_free(struct snd_device *device)
2915 {
2916 	struct cmipci *cm = device->device_data;
2917 	return snd_cmipci_free(cm);
2918 }
2919 
2920 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2921 {
2922 	long iosynth;
2923 	unsigned int val;
2924 	struct snd_opl3 *opl3;
2925 	int err;
2926 
2927 	if (!fm_port)
2928 		goto disable_fm;
2929 
2930 	if (cm->chip_version >= 39) {
2931 		/* first try FM regs in PCI port range */
2932 		iosynth = cm->iobase + CM_REG_FM_PCI;
2933 		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2934 				      OPL3_HW_OPL3, 1, &opl3);
2935 	} else {
2936 		err = -EIO;
2937 	}
2938 	if (err < 0) {
2939 		/* then try legacy ports */
2940 		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2941 		iosynth = fm_port;
2942 		switch (iosynth) {
2943 		case 0x3E8: val |= CM_FMSEL_3E8; break;
2944 		case 0x3E0: val |= CM_FMSEL_3E0; break;
2945 		case 0x3C8: val |= CM_FMSEL_3C8; break;
2946 		case 0x388: val |= CM_FMSEL_388; break;
2947 		default:
2948 			goto disable_fm;
2949 		}
2950 		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2951 		/* enable FM */
2952 		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2953 
2954 		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2955 				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2956 			dev_err(cm->card->dev,
2957 				"no OPL device at %#lx, skipping...\n",
2958 				iosynth);
2959 			goto disable_fm;
2960 		}
2961 	}
2962 	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2963 		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2964 		return err;
2965 	}
2966 	return 0;
2967 
2968  disable_fm:
2969 	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2970 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2971 	return 0;
2972 }
2973 
2974 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2975 			     int dev, struct cmipci **rcmipci)
2976 {
2977 	struct cmipci *cm;
2978 	int err;
2979 	static const struct snd_device_ops ops = {
2980 		.dev_free =	snd_cmipci_dev_free,
2981 	};
2982 	unsigned int val;
2983 	long iomidi = 0;
2984 	int integrated_midi = 0;
2985 	char modelstr[16];
2986 	int pcm_index, pcm_spdif_index;
2987 	static const struct pci_device_id intel_82437vx[] = {
2988 		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2989 		{ },
2990 	};
2991 
2992 	*rcmipci = NULL;
2993 
2994 	if ((err = pci_enable_device(pci)) < 0)
2995 		return err;
2996 
2997 	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2998 	if (cm == NULL) {
2999 		pci_disable_device(pci);
3000 		return -ENOMEM;
3001 	}
3002 
3003 	spin_lock_init(&cm->reg_lock);
3004 	mutex_init(&cm->open_mutex);
3005 	cm->device = pci->device;
3006 	cm->card = card;
3007 	cm->pci = pci;
3008 	cm->irq = -1;
3009 	cm->channel[0].ch = 0;
3010 	cm->channel[1].ch = 1;
3011 	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3012 
3013 	if ((err = pci_request_regions(pci, card->driver)) < 0) {
3014 		kfree(cm);
3015 		pci_disable_device(pci);
3016 		return err;
3017 	}
3018 	cm->iobase = pci_resource_start(pci, 0);
3019 
3020 	if (request_irq(pci->irq, snd_cmipci_interrupt,
3021 			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3022 		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3023 		snd_cmipci_free(cm);
3024 		return -EBUSY;
3025 	}
3026 	cm->irq = pci->irq;
3027 	card->sync_irq = cm->irq;
3028 
3029 	pci_set_master(cm->pci);
3030 
3031 	/*
3032 	 * check chip version, max channels and capabilities
3033 	 */
3034 
3035 	cm->chip_version = 0;
3036 	cm->max_channels = 2;
3037 	cm->do_soft_ac3 = soft_ac3[dev];
3038 
3039 	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3040 	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3041 		query_chip(cm);
3042 	/* added -MCx suffix for chip supporting multi-channels */
3043 	if (cm->can_multi_ch)
3044 		sprintf(cm->card->driver + strlen(cm->card->driver),
3045 			"-MC%d", cm->max_channels);
3046 	else if (cm->can_ac3_sw)
3047 		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3048 
3049 	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3050 	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3051 
3052 #if CM_CH_PLAY == 1
3053 	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3054 #else
3055 	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3056 #endif
3057 
3058 	/* initialize codec registers */
3059 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3060 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3061 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3062 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3063 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3064 	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3065 	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3066 
3067 	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3068 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3069 #if CM_CH_PLAY == 1
3070 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3071 #else
3072 	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3073 #endif
3074 	if (cm->chip_version) {
3075 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3076 		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3077 	}
3078 	/* Set Bus Master Request */
3079 	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3080 
3081 	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3082 	switch (pci->device) {
3083 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3084 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3085 		if (!pci_dev_present(intel_82437vx))
3086 			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3087 		break;
3088 	default:
3089 		break;
3090 	}
3091 
3092 	if (cm->chip_version < 68) {
3093 		val = pci->device < 0x110 ? 8338 : 8738;
3094 	} else {
3095 		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3096 		case 0:
3097 			val = 8769;
3098 			break;
3099 		case 2:
3100 			val = 8762;
3101 			break;
3102 		default:
3103 			switch ((pci->subsystem_vendor << 16) |
3104 				pci->subsystem_device) {
3105 			case 0x13f69761:
3106 			case 0x584d3741:
3107 			case 0x584d3751:
3108 			case 0x584d3761:
3109 			case 0x584d3771:
3110 			case 0x72848384:
3111 				val = 8770;
3112 				break;
3113 			default:
3114 				val = 8768;
3115 				break;
3116 			}
3117 		}
3118 	}
3119 	sprintf(card->shortname, "C-Media CMI%d", val);
3120 	if (cm->chip_version < 68)
3121 		sprintf(modelstr, " (model %d)", cm->chip_version);
3122 	else
3123 		modelstr[0] = '\0';
3124 	sprintf(card->longname, "%s%s at %#lx, irq %i",
3125 		card->shortname, modelstr, cm->iobase, cm->irq);
3126 
3127 	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3128 		snd_cmipci_free(cm);
3129 		return err;
3130 	}
3131 
3132 	if (cm->chip_version >= 39) {
3133 		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3134 		if (val != 0x00 && val != 0xff) {
3135 			if (mpu_port[dev])
3136 				iomidi = cm->iobase + CM_REG_MPU_PCI;
3137 			integrated_midi = 1;
3138 		}
3139 	}
3140 	if (!integrated_midi) {
3141 		val = 0;
3142 		iomidi = mpu_port[dev];
3143 		switch (iomidi) {
3144 		case 0x320: val = CM_VMPU_320; break;
3145 		case 0x310: val = CM_VMPU_310; break;
3146 		case 0x300: val = CM_VMPU_300; break;
3147 		case 0x330: val = CM_VMPU_330; break;
3148 		default:
3149 			    iomidi = 0; break;
3150 		}
3151 		if (iomidi > 0) {
3152 			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3153 			/* enable UART */
3154 			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3155 			if (inb(iomidi + 1) == 0xff) {
3156 				dev_err(cm->card->dev,
3157 					"cannot enable MPU-401 port at %#lx\n",
3158 					iomidi);
3159 				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3160 						     CM_UART_EN);
3161 				iomidi = 0;
3162 			}
3163 		}
3164 	}
3165 
3166 	if (cm->chip_version < 68) {
3167 		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3168 		if (err < 0)
3169 			return err;
3170 	}
3171 
3172 	/* reset mixer */
3173 	snd_cmipci_mixer_write(cm, 0, 0);
3174 
3175 	snd_cmipci_proc_init(cm);
3176 
3177 	/* create pcm devices */
3178 	pcm_index = pcm_spdif_index = 0;
3179 	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3180 		return err;
3181 	pcm_index++;
3182 	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3183 		return err;
3184 	pcm_index++;
3185 	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3186 		pcm_spdif_index = pcm_index;
3187 		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3188 			return err;
3189 	}
3190 
3191 	/* create mixer interface & switches */
3192 	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3193 		return err;
3194 
3195 	if (iomidi > 0) {
3196 		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3197 					       iomidi,
3198 					       (integrated_midi ?
3199 						MPU401_INFO_INTEGRATED : 0) |
3200 					       MPU401_INFO_IRQ_HOOK,
3201 					       -1, &cm->rmidi)) < 0) {
3202 			dev_err(cm->card->dev,
3203 				"no UART401 device at 0x%lx\n", iomidi);
3204 		}
3205 	}
3206 
3207 #ifdef USE_VAR48KRATE
3208 	for (val = 0; val < ARRAY_SIZE(rates); val++)
3209 		snd_cmipci_set_pll(cm, rates[val], val);
3210 
3211 	/*
3212 	 * (Re-)Enable external switch spdo_48k
3213 	 */
3214 	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3215 #endif /* USE_VAR48KRATE */
3216 
3217 	if (snd_cmipci_create_gameport(cm, dev) < 0)
3218 		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3219 
3220 	*rcmipci = cm;
3221 	return 0;
3222 }
3223 
3224 /*
3225  */
3226 
3227 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3228 
3229 static int snd_cmipci_probe(struct pci_dev *pci,
3230 			    const struct pci_device_id *pci_id)
3231 {
3232 	static int dev;
3233 	struct snd_card *card;
3234 	struct cmipci *cm;
3235 	int err;
3236 
3237 	if (dev >= SNDRV_CARDS)
3238 		return -ENODEV;
3239 	if (! enable[dev]) {
3240 		dev++;
3241 		return -ENOENT;
3242 	}
3243 
3244 	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3245 			   0, &card);
3246 	if (err < 0)
3247 		return err;
3248 
3249 	switch (pci->device) {
3250 	case PCI_DEVICE_ID_CMEDIA_CM8738:
3251 	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3252 		strcpy(card->driver, "CMI8738");
3253 		break;
3254 	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3255 	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3256 		strcpy(card->driver, "CMI8338");
3257 		break;
3258 	default:
3259 		strcpy(card->driver, "CMIPCI");
3260 		break;
3261 	}
3262 
3263 	err = snd_cmipci_create(card, pci, dev, &cm);
3264 	if (err < 0)
3265 		goto free_card;
3266 
3267 	card->private_data = cm;
3268 
3269 	err = snd_card_register(card);
3270 	if (err < 0)
3271 		goto free_card;
3272 
3273 	pci_set_drvdata(pci, card);
3274 	dev++;
3275 	return 0;
3276 
3277 free_card:
3278 	snd_card_free(card);
3279 	return err;
3280 }
3281 
3282 static void snd_cmipci_remove(struct pci_dev *pci)
3283 {
3284 	snd_card_free(pci_get_drvdata(pci));
3285 }
3286 
3287 
3288 #ifdef CONFIG_PM_SLEEP
3289 /*
3290  * power management
3291  */
3292 static const unsigned char saved_regs[] = {
3293 	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3294 	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3295 	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3296 	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3297 	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3298 };
3299 
3300 static const unsigned char saved_mixers[] = {
3301 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3302 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3303 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3304 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3305 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3306 	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3307 	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3308 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3309 };
3310 
3311 static int snd_cmipci_suspend(struct device *dev)
3312 {
3313 	struct snd_card *card = dev_get_drvdata(dev);
3314 	struct cmipci *cm = card->private_data;
3315 	int i;
3316 
3317 	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3318 
3319 	/* save registers */
3320 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3321 		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3322 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3323 		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3324 
3325 	/* disable ints */
3326 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3327 	return 0;
3328 }
3329 
3330 static int snd_cmipci_resume(struct device *dev)
3331 {
3332 	struct snd_card *card = dev_get_drvdata(dev);
3333 	struct cmipci *cm = card->private_data;
3334 	int i;
3335 
3336 	/* reset / initialize to a sane state */
3337 	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3338 	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3339 	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3340 	snd_cmipci_mixer_write(cm, 0, 0);
3341 
3342 	/* restore registers */
3343 	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3344 		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3345 	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3346 		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3347 
3348 	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3349 	return 0;
3350 }
3351 
3352 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3353 #define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3354 #else
3355 #define SND_CMIPCI_PM_OPS	NULL
3356 #endif /* CONFIG_PM_SLEEP */
3357 
3358 static struct pci_driver cmipci_driver = {
3359 	.name = KBUILD_MODNAME,
3360 	.id_table = snd_cmipci_ids,
3361 	.probe = snd_cmipci_probe,
3362 	.remove = snd_cmipci_remove,
3363 	.driver = {
3364 		.pm = SND_CMIPCI_PM_OPS,
3365 	},
3366 };
3367 
3368 module_pci_driver(cmipci_driver);
3369