1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 5 */ 6 7 /* Does not work. Warning may block system in capture mode */ 8 /* #define USE_VAR48KRATE */ 9 10 #include <linux/io.h> 11 #include <linux/delay.h> 12 #include <linux/interrupt.h> 13 #include <linux/init.h> 14 #include <linux/pci.h> 15 #include <linux/slab.h> 16 #include <linux/gameport.h> 17 #include <linux/module.h> 18 #include <linux/mutex.h> 19 #include <sound/core.h> 20 #include <sound/info.h> 21 #include <sound/control.h> 22 #include <sound/pcm.h> 23 #include <sound/rawmidi.h> 24 #include <sound/mpu401.h> 25 #include <sound/opl3.h> 26 #include <sound/sb.h> 27 #include <sound/asoundef.h> 28 #include <sound/initval.h> 29 30 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 31 MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 32 MODULE_LICENSE("GPL"); 33 34 #if IS_REACHABLE(CONFIG_GAMEPORT) 35 #define SUPPORT_JOYSTICK 1 36 #endif 37 38 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 39 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 40 static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 41 static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1}; 42 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 43 static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 44 #ifdef SUPPORT_JOYSTICK 45 static int joystick_port[SNDRV_CARDS]; 46 #endif 47 48 module_param_array(index, int, NULL, 0444); 49 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 50 module_param_array(id, charp, NULL, 0444); 51 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 52 module_param_array(enable, bool, NULL, 0444); 53 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 54 module_param_hw_array(mpu_port, long, ioport, NULL, 0444); 55 MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 56 module_param_hw_array(fm_port, long, ioport, NULL, 0444); 57 MODULE_PARM_DESC(fm_port, "FM port."); 58 module_param_array(soft_ac3, bool, NULL, 0444); 59 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only)."); 60 #ifdef SUPPORT_JOYSTICK 61 module_param_hw_array(joystick_port, int, ioport, NULL, 0444); 62 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 63 #endif 64 65 /* 66 * CM8x38 registers definition 67 */ 68 69 #define CM_REG_FUNCTRL0 0x00 70 #define CM_RST_CH1 0x00080000 71 #define CM_RST_CH0 0x00040000 72 #define CM_CHEN1 0x00020000 /* ch1: enable */ 73 #define CM_CHEN0 0x00010000 /* ch0: enable */ 74 #define CM_PAUSE1 0x00000008 /* ch1: pause */ 75 #define CM_PAUSE0 0x00000004 /* ch0: pause */ 76 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 77 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 78 79 #define CM_REG_FUNCTRL1 0x04 80 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 81 #define CM_DSFC_SHIFT 13 82 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 83 #define CM_ASFC_SHIFT 10 84 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 85 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 86 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 87 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 88 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 89 #define CM_BREQ 0x00000010 /* bus master enabled */ 90 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 91 #define CM_UART_EN 0x00000004 /* legacy UART */ 92 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 93 #define CM_ZVPORT 0x00000001 /* ZVPORT */ 94 95 #define CM_REG_CHFORMAT 0x08 96 97 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 98 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 99 #define CM_CHB3D 0x20000000 /* 4 channels */ 100 101 #define CM_CHIP_MASK1 0x1f000000 102 #define CM_CHIP_037 0x01000000 103 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 104 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 105 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 106 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 107 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 108 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 109 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 110 111 #define CM_ADCBITLEN_MASK 0x0000C000 112 #define CM_ADCBITLEN_16 0x00000000 113 #define CM_ADCBITLEN_15 0x00004000 114 #define CM_ADCBITLEN_14 0x00008000 115 #define CM_ADCBITLEN_13 0x0000C000 116 117 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 118 #define CM_ADCDACLEN_060 0x00000000 119 #define CM_ADCDACLEN_066 0x00001000 120 #define CM_ADCDACLEN_130 0x00002000 121 #define CM_ADCDACLEN_280 0x00003000 122 123 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 124 #define CM_ADCDLEN_ORIGINAL 0x00000000 125 #define CM_ADCDLEN_EXTRA 0x00001000 126 #define CM_ADCDLEN_24K 0x00002000 127 #define CM_ADCDLEN_WEIGHT 0x00003000 128 129 #define CM_CH1_SRATE_176K 0x00000800 130 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 131 #define CM_CH1_SRATE_88K 0x00000400 132 #define CM_CH0_SRATE_176K 0x00000200 133 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 134 #define CM_CH0_SRATE_88K 0x00000100 135 #define CM_CH0_SRATE_128K 0x00000300 136 #define CM_CH0_SRATE_MASK 0x00000300 137 138 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 139 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 140 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 141 #define CM_SPDLOCKED 0x00000010 142 143 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 144 #define CM_CH1FMT_SHIFT 2 145 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 146 #define CM_CH0FMT_SHIFT 0 147 148 #define CM_REG_INT_HLDCLR 0x0C 149 #define CM_CHIP_MASK2 0xff000000 150 #define CM_CHIP_8768 0x20000000 151 #define CM_CHIP_055 0x08000000 152 #define CM_CHIP_039 0x04000000 153 #define CM_CHIP_039_6CH 0x01000000 154 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 155 #define CM_TDMA_INT_EN 0x00040000 156 #define CM_CH1_INT_EN 0x00020000 157 #define CM_CH0_INT_EN 0x00010000 158 159 #define CM_REG_INT_STATUS 0x10 160 #define CM_INTR 0x80000000 161 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 162 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 163 #define CM_UARTINT 0x00010000 164 #define CM_LTDMAINT 0x00008000 165 #define CM_HTDMAINT 0x00004000 166 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 167 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 168 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 169 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 170 #define CM_CH1BUSY 0x00000008 171 #define CM_CH0BUSY 0x00000004 172 #define CM_CHINT1 0x00000002 173 #define CM_CHINT0 0x00000001 174 175 #define CM_REG_LEGACY_CTRL 0x14 176 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 177 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 178 #define CM_VMPU_330 0x00000000 179 #define CM_VMPU_320 0x20000000 180 #define CM_VMPU_310 0x40000000 181 #define CM_VMPU_300 0x60000000 182 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 183 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 184 #define CM_VSBSEL_220 0x00000000 185 #define CM_VSBSEL_240 0x04000000 186 #define CM_VSBSEL_260 0x08000000 187 #define CM_VSBSEL_280 0x0C000000 188 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 189 #define CM_FMSEL_388 0x00000000 190 #define CM_FMSEL_3C8 0x01000000 191 #define CM_FMSEL_3E0 0x02000000 192 #define CM_FMSEL_3E8 0x03000000 193 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 194 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 195 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 196 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 197 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 198 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 199 #define CM_C_EECS 0x00040000 200 #define CM_C_EEDI46 0x00020000 201 #define CM_C_EECK46 0x00010000 202 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 203 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 204 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 205 #define CM_EXBASEN 0x00001000 /* external bass input enable */ 206 207 #define CM_REG_MISC_CTRL 0x18 208 #define CM_PWD 0x80000000 /* power down */ 209 #define CM_RESET 0x40000000 210 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 211 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 212 #define CM_TXVX 0x08000000 /* model 037? */ 213 #define CM_N4SPK3D 0x04000000 /* copy front to rear */ 214 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 215 #define CM_SPDIF48K 0x01000000 /* write */ 216 #define CM_SPATUS48K 0x01000000 /* read */ 217 #define CM_ENDBDAC 0x00800000 /* enable double dac */ 218 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 219 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 220 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 221 #define CM_FM_EN 0x00080000 /* enable legacy FM */ 222 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 223 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 224 #define CM_VIDWPDSB 0x00010000 /* model 037? */ 225 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 226 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 227 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 228 #define CM_VIDWPPRT 0x00002000 /* model 037? */ 229 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 230 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 231 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 232 #define CM_ENCENTER 0x00000080 233 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ 234 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 235 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ 236 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 237 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 238 #define CM_UPDDMA_2048 0x00000000 239 #define CM_UPDDMA_1024 0x00000004 240 #define CM_UPDDMA_512 0x00000008 241 #define CM_UPDDMA_256 0x0000000C 242 #define CM_TWAIT_MASK 0x00000003 /* model 037 */ 243 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 244 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 245 246 #define CM_REG_TDMA_POSITION 0x1C 247 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 248 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 249 250 /* byte */ 251 #define CM_REG_MIXER0 0x20 252 #define CM_REG_SBVR 0x20 /* write: sb16 version */ 253 #define CM_REG_DEV 0x20 /* read: hardware device version */ 254 255 #define CM_REG_MIXER21 0x21 256 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ 257 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 258 #define CM_PROINV 0x02 /* SBPro left/right channel switching */ 259 #define CM_X_SB16 0x01 /* SB16 compatible */ 260 261 #define CM_REG_SB16_DATA 0x22 262 #define CM_REG_SB16_ADDR 0x23 263 264 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 265 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 266 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 267 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 268 269 #define CM_REG_MIXER1 0x24 270 #define CM_FMMUTE 0x80 /* mute FM */ 271 #define CM_FMMUTE_SHIFT 7 272 #define CM_WSMUTE 0x40 /* mute PCM */ 273 #define CM_WSMUTE_SHIFT 6 274 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 275 #define CM_REAR2LIN_SHIFT 5 276 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ 277 #define CM_REAR2FRONT_SHIFT 4 278 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 279 #define CM_WAVEINL_SHIFT 3 280 #define CM_WAVEINR 0x04 /* digical wave rec. right */ 281 #define CM_WAVEINR_SHIFT 2 282 #define CM_X3DEN 0x02 /* 3D surround enable */ 283 #define CM_X3DEN_SHIFT 1 284 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 285 #define CM_CDPLAY_SHIFT 0 286 287 #define CM_REG_MIXER2 0x25 288 #define CM_RAUXREN 0x80 /* AUX right capture */ 289 #define CM_RAUXREN_SHIFT 7 290 #define CM_RAUXLEN 0x40 /* AUX left capture */ 291 #define CM_RAUXLEN_SHIFT 6 292 #define CM_VAUXRM 0x20 /* AUX right mute */ 293 #define CM_VAUXRM_SHIFT 5 294 #define CM_VAUXLM 0x10 /* AUX left mute */ 295 #define CM_VAUXLM_SHIFT 4 296 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 297 #define CM_VADMIC_SHIFT 1 298 #define CM_MICGAINZ 0x01 /* mic boost */ 299 #define CM_MICGAINZ_SHIFT 0 300 301 #define CM_REG_AUX_VOL 0x26 302 #define CM_VAUXL_MASK 0xf0 303 #define CM_VAUXR_MASK 0x0f 304 305 #define CM_REG_MISC 0x27 306 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 307 #define CM_XGPO1 0x20 308 // #define CM_XGPBIO 0x04 309 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 310 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 311 #define CM_SPDVALID 0x02 /* spdif input valid check */ 312 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 313 314 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 315 /* 316 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 317 * or identical with AC97 codec? 318 */ 319 #define CM_REG_EXTERN_CODEC CM_REG_AC97 320 321 /* 322 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 323 */ 324 #define CM_REG_MPU_PCI 0x40 325 326 /* 327 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 328 */ 329 #define CM_REG_FM_PCI 0x50 330 331 /* 332 * access from SB-mixer port 333 */ 334 #define CM_REG_EXTENT_IND 0xf0 335 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 336 #define CM_VPHONE_SHIFT 5 337 #define CM_VPHOM 0x10 /* Phone mute control */ 338 #define CM_VSPKM 0x08 /* Speaker mute control, default high */ 339 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 340 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 341 #define CM_VADMIC3 0x01 /* Mic record boost */ 342 343 /* 344 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 345 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 346 * unit (readonly?). 347 */ 348 #define CM_REG_PLL 0xf8 349 350 /* 351 * extended registers 352 */ 353 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 354 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 355 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 356 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 357 358 #define CM_REG_EXT_MISC 0x90 359 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 360 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 361 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 362 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 363 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 364 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 365 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 366 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 367 368 /* 369 * size of i/o region 370 */ 371 #define CM_EXTENT_CODEC 0x100 372 #define CM_EXTENT_MIDI 0x2 373 #define CM_EXTENT_SYNTH 0x4 374 375 376 /* 377 * channels for playback / capture 378 */ 379 #define CM_CH_PLAY 0 380 #define CM_CH_CAPT 1 381 382 /* 383 * flags to check device open/close 384 */ 385 #define CM_OPEN_NONE 0 386 #define CM_OPEN_CH_MASK 0x01 387 #define CM_OPEN_DAC 0x10 388 #define CM_OPEN_ADC 0x20 389 #define CM_OPEN_SPDIF 0x40 390 #define CM_OPEN_MCHAN 0x80 391 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 392 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 393 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 394 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 395 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 396 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 397 398 399 #if CM_CH_PLAY == 1 400 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 401 #define CM_PLAYBACK_SPDF CM_SPDF_1 402 #define CM_CAPTURE_SPDF CM_SPDF_0 403 #else 404 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 405 #define CM_PLAYBACK_SPDF CM_SPDF_0 406 #define CM_CAPTURE_SPDF CM_SPDF_1 407 #endif 408 409 410 /* 411 * driver data 412 */ 413 414 struct cmipci_pcm { 415 struct snd_pcm_substream *substream; 416 u8 running; /* dac/adc running? */ 417 u8 fmt; /* format bits */ 418 u8 is_dac; 419 u8 needs_silencing; 420 unsigned int dma_size; /* in frames */ 421 unsigned int shift; 422 unsigned int ch; /* channel (0/1) */ 423 unsigned int offset; /* physical address of the buffer */ 424 }; 425 426 /* mixer elements toggled/resumed during ac3 playback */ 427 struct cmipci_mixer_auto_switches { 428 const char *name; /* switch to toggle */ 429 int toggle_on; /* value to change when ac3 mode */ 430 }; 431 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 432 {"PCM Playback Switch", 0}, 433 {"IEC958 Output Switch", 1}, 434 {"IEC958 Mix Analog", 0}, 435 // {"IEC958 Out To DAC", 1}, // no longer used 436 {"IEC958 Loop", 0}, 437 }; 438 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 439 440 struct cmipci { 441 struct snd_card *card; 442 443 struct pci_dev *pci; 444 unsigned int device; /* device ID */ 445 int irq; 446 447 unsigned long iobase; 448 unsigned int ctrl; /* FUNCTRL0 current value */ 449 450 struct snd_pcm *pcm; /* DAC/ADC PCM */ 451 struct snd_pcm *pcm2; /* 2nd DAC */ 452 struct snd_pcm *pcm_spdif; /* SPDIF */ 453 454 int chip_version; 455 int max_channels; 456 unsigned int can_ac3_sw: 1; 457 unsigned int can_ac3_hw: 1; 458 unsigned int can_multi_ch: 1; 459 unsigned int can_96k: 1; /* samplerate above 48k */ 460 unsigned int do_soft_ac3: 1; 461 462 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 463 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 464 int spdif_counter; /* for software AC3 */ 465 466 unsigned int dig_status; 467 unsigned int dig_pcm_status; 468 469 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 470 471 int opened[2]; /* open mode */ 472 struct mutex open_mutex; 473 474 unsigned int mixer_insensitive: 1; 475 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 476 int mixer_res_status[CM_SAVED_MIXERS]; 477 478 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 479 480 /* external MIDI */ 481 struct snd_rawmidi *rmidi; 482 483 #ifdef SUPPORT_JOYSTICK 484 struct gameport *gameport; 485 #endif 486 487 spinlock_t reg_lock; 488 489 #ifdef CONFIG_PM_SLEEP 490 unsigned int saved_regs[0x20]; 491 unsigned char saved_mixers[0x20]; 492 #endif 493 }; 494 495 496 /* read/write operations for dword register */ 497 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 498 { 499 outl(data, cm->iobase + cmd); 500 } 501 502 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 503 { 504 return inl(cm->iobase + cmd); 505 } 506 507 /* read/write operations for word register */ 508 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 509 { 510 outw(data, cm->iobase + cmd); 511 } 512 513 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 514 { 515 return inw(cm->iobase + cmd); 516 } 517 518 /* read/write operations for byte register */ 519 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 520 { 521 outb(data, cm->iobase + cmd); 522 } 523 524 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 525 { 526 return inb(cm->iobase + cmd); 527 } 528 529 /* bit operations for dword register */ 530 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 531 { 532 unsigned int val, oval; 533 val = oval = inl(cm->iobase + cmd); 534 val |= flag; 535 if (val == oval) 536 return 0; 537 outl(val, cm->iobase + cmd); 538 return 1; 539 } 540 541 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 542 { 543 unsigned int val, oval; 544 val = oval = inl(cm->iobase + cmd); 545 val &= ~flag; 546 if (val == oval) 547 return 0; 548 outl(val, cm->iobase + cmd); 549 return 1; 550 } 551 552 /* bit operations for byte register */ 553 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 554 { 555 unsigned char val, oval; 556 val = oval = inb(cm->iobase + cmd); 557 val |= flag; 558 if (val == oval) 559 return 0; 560 outb(val, cm->iobase + cmd); 561 return 1; 562 } 563 564 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 565 { 566 unsigned char val, oval; 567 val = oval = inb(cm->iobase + cmd); 568 val &= ~flag; 569 if (val == oval) 570 return 0; 571 outb(val, cm->iobase + cmd); 572 return 1; 573 } 574 575 576 /* 577 * PCM interface 578 */ 579 580 /* 581 * calculate frequency 582 */ 583 584 static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 585 586 static unsigned int snd_cmipci_rate_freq(unsigned int rate) 587 { 588 unsigned int i; 589 590 for (i = 0; i < ARRAY_SIZE(rates); i++) { 591 if (rates[i] == rate) 592 return i; 593 } 594 snd_BUG(); 595 return 0; 596 } 597 598 #ifdef USE_VAR48KRATE 599 /* 600 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 601 * does it this way .. maybe not. Never get any information from C-Media about 602 * that <werner@suse.de>. 603 */ 604 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 605 { 606 unsigned int delta, tolerance; 607 int xm, xn, xr; 608 609 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 610 rate <<= 1; 611 *n = -1; 612 if (*r > 0xff) 613 goto out; 614 tolerance = rate*CM_TOLERANCE_RATE; 615 616 for (xn = (1+2); xn < (0x1f+2); xn++) { 617 for (xm = (1+2); xm < (0xff+2); xm++) { 618 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 619 620 if (xr < rate) 621 delta = rate - xr; 622 else 623 delta = xr - rate; 624 625 /* 626 * If we found one, remember this, 627 * and try to find a closer one 628 */ 629 if (delta < tolerance) { 630 tolerance = delta; 631 *m = xm - 2; 632 *n = xn - 2; 633 } 634 } 635 } 636 out: 637 return (*n > -1); 638 } 639 640 /* 641 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff 642 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen 643 * at the register CM_REG_FUNCTRL1 (0x04). 644 * Problem: other ways are also possible (any information about that?) 645 */ 646 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 647 { 648 unsigned int reg = CM_REG_PLL + slot; 649 /* 650 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 651 * for DSFC/ASFC (000 up to 111). 652 */ 653 654 /* FIXME: Init (Do we've to set an other register first before programming?) */ 655 656 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 657 snd_cmipci_write_b(cm, reg, rate>>8); 658 snd_cmipci_write_b(cm, reg, rate&0xff); 659 660 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 661 } 662 #endif /* USE_VAR48KRATE */ 663 664 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 665 struct snd_pcm_hw_params *hw_params) 666 { 667 struct cmipci *cm = snd_pcm_substream_chip(substream); 668 if (params_channels(hw_params) > 2) { 669 mutex_lock(&cm->open_mutex); 670 if (cm->opened[CM_CH_PLAY]) { 671 mutex_unlock(&cm->open_mutex); 672 return -EBUSY; 673 } 674 /* reserve the channel A */ 675 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 676 mutex_unlock(&cm->open_mutex); 677 } 678 return 0; 679 } 680 681 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 682 { 683 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 684 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 685 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 686 udelay(10); 687 } 688 689 690 /* 691 */ 692 693 static const unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 694 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 695 .count = 3, 696 .list = hw_channels, 697 .mask = 0, 698 }; 699 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 700 .count = 4, 701 .list = hw_channels, 702 .mask = 0, 703 }; 704 static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 705 .count = 5, 706 .list = hw_channels, 707 .mask = 0, 708 }; 709 710 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 711 { 712 if (channels > 2) { 713 if (!cm->can_multi_ch || !rec->ch) 714 return -EINVAL; 715 if (rec->fmt != 0x03) /* stereo 16bit only */ 716 return -EINVAL; 717 } 718 719 if (cm->can_multi_ch) { 720 spin_lock_irq(&cm->reg_lock); 721 if (channels > 2) { 722 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 723 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 724 } else { 725 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 726 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 727 } 728 if (channels == 8) 729 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 730 else 731 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 732 if (channels == 6) { 733 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 734 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 735 } else { 736 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 737 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 738 } 739 if (channels == 4) 740 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 741 else 742 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 743 spin_unlock_irq(&cm->reg_lock); 744 } 745 return 0; 746 } 747 748 749 /* 750 * prepare playback/capture channel 751 * channel to be used must have been set in rec->ch. 752 */ 753 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 754 struct snd_pcm_substream *substream) 755 { 756 unsigned int reg, freq, freq_ext, val; 757 unsigned int period_size; 758 struct snd_pcm_runtime *runtime = substream->runtime; 759 760 rec->fmt = 0; 761 rec->shift = 0; 762 if (snd_pcm_format_width(runtime->format) >= 16) { 763 rec->fmt |= 0x02; 764 if (snd_pcm_format_width(runtime->format) > 16) 765 rec->shift++; /* 24/32bit */ 766 } 767 if (runtime->channels > 1) 768 rec->fmt |= 0x01; 769 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 770 dev_dbg(cm->card->dev, "cannot set dac channels\n"); 771 return -EINVAL; 772 } 773 774 rec->offset = runtime->dma_addr; 775 /* buffer and period sizes in frame */ 776 rec->dma_size = runtime->buffer_size << rec->shift; 777 period_size = runtime->period_size << rec->shift; 778 if (runtime->channels > 2) { 779 /* multi-channels */ 780 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 781 period_size = (period_size * runtime->channels) / 2; 782 } 783 784 spin_lock_irq(&cm->reg_lock); 785 786 /* set buffer address */ 787 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 788 snd_cmipci_write(cm, reg, rec->offset); 789 /* program sample counts */ 790 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 791 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 792 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 793 794 /* set adc/dac flag */ 795 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 796 if (rec->is_dac) 797 cm->ctrl &= ~val; 798 else 799 cm->ctrl |= val; 800 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 801 /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */ 802 803 /* set sample rate */ 804 freq = 0; 805 freq_ext = 0; 806 if (runtime->rate > 48000) 807 switch (runtime->rate) { 808 case 88200: freq_ext = CM_CH0_SRATE_88K; break; 809 case 96000: freq_ext = CM_CH0_SRATE_96K; break; 810 case 128000: freq_ext = CM_CH0_SRATE_128K; break; 811 default: snd_BUG(); break; 812 } 813 else 814 freq = snd_cmipci_rate_freq(runtime->rate); 815 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 816 if (rec->ch) { 817 val &= ~CM_DSFC_MASK; 818 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 819 } else { 820 val &= ~CM_ASFC_MASK; 821 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 822 } 823 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 824 dev_dbg(cm->card->dev, "functrl1 = %08x\n", val); 825 826 /* set format */ 827 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 828 if (rec->ch) { 829 val &= ~CM_CH1FMT_MASK; 830 val |= rec->fmt << CM_CH1FMT_SHIFT; 831 } else { 832 val &= ~CM_CH0FMT_MASK; 833 val |= rec->fmt << CM_CH0FMT_SHIFT; 834 } 835 if (cm->can_96k) { 836 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 837 val |= freq_ext << (rec->ch * 2); 838 } 839 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 840 dev_dbg(cm->card->dev, "chformat = %08x\n", val); 841 842 if (!rec->is_dac && cm->chip_version) { 843 if (runtime->rate > 44100) 844 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 845 else 846 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 847 } 848 849 rec->running = 0; 850 spin_unlock_irq(&cm->reg_lock); 851 852 return 0; 853 } 854 855 /* 856 * PCM trigger/stop 857 */ 858 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 859 int cmd) 860 { 861 unsigned int inthld, chen, reset, pause; 862 int result = 0; 863 864 inthld = CM_CH0_INT_EN << rec->ch; 865 chen = CM_CHEN0 << rec->ch; 866 reset = CM_RST_CH0 << rec->ch; 867 pause = CM_PAUSE0 << rec->ch; 868 869 spin_lock(&cm->reg_lock); 870 switch (cmd) { 871 case SNDRV_PCM_TRIGGER_START: 872 rec->running = 1; 873 /* set interrupt */ 874 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 875 cm->ctrl |= chen; 876 /* enable channel */ 877 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 878 dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); 879 break; 880 case SNDRV_PCM_TRIGGER_STOP: 881 rec->running = 0; 882 /* disable interrupt */ 883 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 884 /* reset */ 885 cm->ctrl &= ~chen; 886 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 887 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 888 rec->needs_silencing = rec->is_dac; 889 break; 890 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 891 case SNDRV_PCM_TRIGGER_SUSPEND: 892 cm->ctrl |= pause; 893 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 894 break; 895 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 896 case SNDRV_PCM_TRIGGER_RESUME: 897 cm->ctrl &= ~pause; 898 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 899 break; 900 default: 901 result = -EINVAL; 902 break; 903 } 904 spin_unlock(&cm->reg_lock); 905 return result; 906 } 907 908 /* 909 * return the current pointer 910 */ 911 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 912 struct snd_pcm_substream *substream) 913 { 914 size_t ptr; 915 unsigned int reg, rem, tries; 916 917 if (!rec->running) 918 return 0; 919 #if 1 // this seems better.. 920 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 921 for (tries = 0; tries < 3; tries++) { 922 rem = snd_cmipci_read_w(cm, reg); 923 if (rem < rec->dma_size) 924 goto ok; 925 } 926 dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem); 927 return SNDRV_PCM_POS_XRUN; 928 ok: 929 ptr = (rec->dma_size - (rem + 1)) >> rec->shift; 930 #else 931 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 932 ptr = snd_cmipci_read(cm, reg) - rec->offset; 933 ptr = bytes_to_frames(substream->runtime, ptr); 934 #endif 935 if (substream->runtime->channels > 2) 936 ptr = (ptr * 2) / substream->runtime->channels; 937 return ptr; 938 } 939 940 /* 941 * playback 942 */ 943 944 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 945 int cmd) 946 { 947 struct cmipci *cm = snd_pcm_substream_chip(substream); 948 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 949 } 950 951 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 952 { 953 struct cmipci *cm = snd_pcm_substream_chip(substream); 954 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 955 } 956 957 958 959 /* 960 * capture 961 */ 962 963 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 964 int cmd) 965 { 966 struct cmipci *cm = snd_pcm_substream_chip(substream); 967 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 968 } 969 970 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 971 { 972 struct cmipci *cm = snd_pcm_substream_chip(substream); 973 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 974 } 975 976 977 /* 978 * hw preparation for spdif 979 */ 980 981 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 982 struct snd_ctl_elem_info *uinfo) 983 { 984 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 985 uinfo->count = 1; 986 return 0; 987 } 988 989 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 990 struct snd_ctl_elem_value *ucontrol) 991 { 992 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 993 int i; 994 995 spin_lock_irq(&chip->reg_lock); 996 for (i = 0; i < 4; i++) 997 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 998 spin_unlock_irq(&chip->reg_lock); 999 return 0; 1000 } 1001 1002 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 1003 struct snd_ctl_elem_value *ucontrol) 1004 { 1005 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1006 int i, change; 1007 unsigned int val; 1008 1009 val = 0; 1010 spin_lock_irq(&chip->reg_lock); 1011 for (i = 0; i < 4; i++) 1012 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1013 change = val != chip->dig_status; 1014 chip->dig_status = val; 1015 spin_unlock_irq(&chip->reg_lock); 1016 return change; 1017 } 1018 1019 static const struct snd_kcontrol_new snd_cmipci_spdif_default = 1020 { 1021 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1022 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1023 .info = snd_cmipci_spdif_default_info, 1024 .get = snd_cmipci_spdif_default_get, 1025 .put = snd_cmipci_spdif_default_put 1026 }; 1027 1028 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1029 struct snd_ctl_elem_info *uinfo) 1030 { 1031 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1032 uinfo->count = 1; 1033 return 0; 1034 } 1035 1036 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1037 struct snd_ctl_elem_value *ucontrol) 1038 { 1039 ucontrol->value.iec958.status[0] = 0xff; 1040 ucontrol->value.iec958.status[1] = 0xff; 1041 ucontrol->value.iec958.status[2] = 0xff; 1042 ucontrol->value.iec958.status[3] = 0xff; 1043 return 0; 1044 } 1045 1046 static const struct snd_kcontrol_new snd_cmipci_spdif_mask = 1047 { 1048 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1049 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1050 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1051 .info = snd_cmipci_spdif_mask_info, 1052 .get = snd_cmipci_spdif_mask_get, 1053 }; 1054 1055 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1056 struct snd_ctl_elem_info *uinfo) 1057 { 1058 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1059 uinfo->count = 1; 1060 return 0; 1061 } 1062 1063 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1064 struct snd_ctl_elem_value *ucontrol) 1065 { 1066 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1067 int i; 1068 1069 spin_lock_irq(&chip->reg_lock); 1070 for (i = 0; i < 4; i++) 1071 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1072 spin_unlock_irq(&chip->reg_lock); 1073 return 0; 1074 } 1075 1076 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1077 struct snd_ctl_elem_value *ucontrol) 1078 { 1079 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1080 int i, change; 1081 unsigned int val; 1082 1083 val = 0; 1084 spin_lock_irq(&chip->reg_lock); 1085 for (i = 0; i < 4; i++) 1086 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1087 change = val != chip->dig_pcm_status; 1088 chip->dig_pcm_status = val; 1089 spin_unlock_irq(&chip->reg_lock); 1090 return change; 1091 } 1092 1093 static const struct snd_kcontrol_new snd_cmipci_spdif_stream = 1094 { 1095 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1096 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1097 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1098 .info = snd_cmipci_spdif_stream_info, 1099 .get = snd_cmipci_spdif_stream_get, 1100 .put = snd_cmipci_spdif_stream_put 1101 }; 1102 1103 /* 1104 */ 1105 1106 /* save mixer setting and mute for AC3 playback */ 1107 static int save_mixer_state(struct cmipci *cm) 1108 { 1109 if (! cm->mixer_insensitive) { 1110 struct snd_ctl_elem_value *val; 1111 unsigned int i; 1112 1113 val = kmalloc(sizeof(*val), GFP_KERNEL); 1114 if (!val) 1115 return -ENOMEM; 1116 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1117 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1118 if (ctl) { 1119 int event; 1120 memset(val, 0, sizeof(*val)); 1121 ctl->get(ctl, val); 1122 cm->mixer_res_status[i] = val->value.integer.value[0]; 1123 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1124 event = SNDRV_CTL_EVENT_MASK_INFO; 1125 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1126 ctl->put(ctl, val); /* toggle */ 1127 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1128 } 1129 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1130 snd_ctl_notify(cm->card, event, &ctl->id); 1131 } 1132 } 1133 kfree(val); 1134 cm->mixer_insensitive = 1; 1135 } 1136 return 0; 1137 } 1138 1139 1140 /* restore the previously saved mixer status */ 1141 static void restore_mixer_state(struct cmipci *cm) 1142 { 1143 if (cm->mixer_insensitive) { 1144 struct snd_ctl_elem_value *val; 1145 unsigned int i; 1146 1147 val = kmalloc(sizeof(*val), GFP_KERNEL); 1148 if (!val) 1149 return; 1150 cm->mixer_insensitive = 0; /* at first clear this; 1151 otherwise the changes will be ignored */ 1152 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1153 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1154 if (ctl) { 1155 int event; 1156 1157 memset(val, 0, sizeof(*val)); 1158 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1159 ctl->get(ctl, val); 1160 event = SNDRV_CTL_EVENT_MASK_INFO; 1161 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1162 val->value.integer.value[0] = cm->mixer_res_status[i]; 1163 ctl->put(ctl, val); 1164 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1165 } 1166 snd_ctl_notify(cm->card, event, &ctl->id); 1167 } 1168 } 1169 kfree(val); 1170 } 1171 } 1172 1173 /* spinlock held! */ 1174 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1175 { 1176 if (do_ac3) { 1177 /* AC3EN for 037 */ 1178 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1179 /* AC3EN for 039 */ 1180 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1181 1182 if (cm->can_ac3_hw) { 1183 /* SPD24SEL for 037, 0x02 */ 1184 /* SPD24SEL for 039, 0x20, but cannot be set */ 1185 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1186 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1187 } else { /* can_ac3_sw */ 1188 /* SPD32SEL for 037 & 039, 0x20 */ 1189 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1190 /* set 176K sample rate to fix 033 HW bug */ 1191 if (cm->chip_version == 33) { 1192 if (rate >= 48000) { 1193 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1194 } else { 1195 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1196 } 1197 } 1198 } 1199 1200 } else { 1201 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1202 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1203 1204 if (cm->can_ac3_hw) { 1205 /* chip model >= 37 */ 1206 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1207 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1208 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1209 } else { 1210 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1211 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1212 } 1213 } else { 1214 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1215 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1216 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1217 } 1218 } 1219 } 1220 1221 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1222 { 1223 int rate, err; 1224 1225 rate = subs->runtime->rate; 1226 1227 if (up && do_ac3) { 1228 err = save_mixer_state(cm); 1229 if (err < 0) 1230 return err; 1231 } 1232 1233 spin_lock_irq(&cm->reg_lock); 1234 cm->spdif_playback_avail = up; 1235 if (up) { 1236 /* they are controlled via "IEC958 Output Switch" */ 1237 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1238 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1239 if (cm->spdif_playback_enabled) 1240 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1241 setup_ac3(cm, subs, do_ac3, rate); 1242 1243 if (rate == 48000 || rate == 96000) 1244 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1245 else 1246 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1247 if (rate > 48000) 1248 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1249 else 1250 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1251 } else { 1252 /* they are controlled via "IEC958 Output Switch" */ 1253 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1254 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1255 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1256 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1257 setup_ac3(cm, subs, 0, 0); 1258 } 1259 spin_unlock_irq(&cm->reg_lock); 1260 return 0; 1261 } 1262 1263 1264 /* 1265 * preparation 1266 */ 1267 1268 /* playback - enable spdif only on the certain condition */ 1269 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1270 { 1271 struct cmipci *cm = snd_pcm_substream_chip(substream); 1272 int rate = substream->runtime->rate; 1273 int err, do_spdif, do_ac3 = 0; 1274 1275 do_spdif = (rate >= 44100 && rate <= 96000 && 1276 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1277 substream->runtime->channels == 2); 1278 if (do_spdif && cm->can_ac3_hw) 1279 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1280 err = setup_spdif_playback(cm, substream, do_spdif, do_ac3); 1281 if (err < 0) 1282 return err; 1283 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1284 } 1285 1286 /* playback (via device #2) - enable spdif always */ 1287 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1288 { 1289 struct cmipci *cm = snd_pcm_substream_chip(substream); 1290 int err, do_ac3; 1291 1292 if (cm->can_ac3_hw) 1293 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1294 else 1295 do_ac3 = 1; /* doesn't matter */ 1296 err = setup_spdif_playback(cm, substream, 1, do_ac3); 1297 if (err < 0) 1298 return err; 1299 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1300 } 1301 1302 /* 1303 * Apparently, the samples last played on channel A stay in some buffer, even 1304 * after the channel is reset, and get added to the data for the rear DACs when 1305 * playing a multichannel stream on channel B. This is likely to generate 1306 * wraparounds and thus distortions. 1307 * To avoid this, we play at least one zero sample after the actual stream has 1308 * stopped. 1309 */ 1310 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1311 { 1312 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1313 unsigned int reg, val; 1314 1315 if (rec->needs_silencing && runtime && runtime->dma_area) { 1316 /* set up a small silence buffer */ 1317 memset(runtime->dma_area, 0, PAGE_SIZE); 1318 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1319 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1320 snd_cmipci_write(cm, reg, val); 1321 1322 /* configure for 16 bits, 2 channels, 8 kHz */ 1323 if (runtime->channels > 2) 1324 set_dac_channels(cm, rec, 2); 1325 spin_lock_irq(&cm->reg_lock); 1326 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1327 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1328 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1329 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1330 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1331 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1332 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1333 if (cm->can_96k) 1334 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 1335 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1336 1337 /* start stream (we don't need interrupts) */ 1338 cm->ctrl |= CM_CHEN0 << rec->ch; 1339 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1340 spin_unlock_irq(&cm->reg_lock); 1341 1342 msleep(1); 1343 1344 /* stop and reset stream */ 1345 spin_lock_irq(&cm->reg_lock); 1346 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1347 val = CM_RST_CH0 << rec->ch; 1348 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1349 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1350 spin_unlock_irq(&cm->reg_lock); 1351 1352 rec->needs_silencing = 0; 1353 } 1354 } 1355 1356 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1357 { 1358 struct cmipci *cm = snd_pcm_substream_chip(substream); 1359 setup_spdif_playback(cm, substream, 0, 0); 1360 restore_mixer_state(cm); 1361 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1362 return 0; 1363 } 1364 1365 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1366 { 1367 struct cmipci *cm = snd_pcm_substream_chip(substream); 1368 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1369 return 0; 1370 } 1371 1372 /* capture */ 1373 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1374 { 1375 struct cmipci *cm = snd_pcm_substream_chip(substream); 1376 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1377 } 1378 1379 /* capture with spdif (via device #2) */ 1380 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1381 { 1382 struct cmipci *cm = snd_pcm_substream_chip(substream); 1383 1384 spin_lock_irq(&cm->reg_lock); 1385 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1386 if (cm->can_96k) { 1387 if (substream->runtime->rate > 48000) 1388 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1389 else 1390 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1391 } 1392 if (snd_pcm_format_width(substream->runtime->format) > 16) 1393 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1394 else 1395 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1396 1397 spin_unlock_irq(&cm->reg_lock); 1398 1399 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1400 } 1401 1402 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1403 { 1404 struct cmipci *cm = snd_pcm_substream_chip(subs); 1405 1406 spin_lock_irq(&cm->reg_lock); 1407 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1408 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1409 spin_unlock_irq(&cm->reg_lock); 1410 1411 return 0; 1412 } 1413 1414 1415 /* 1416 * interrupt handler 1417 */ 1418 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1419 { 1420 struct cmipci *cm = dev_id; 1421 unsigned int status, mask = 0; 1422 1423 /* fastpath out, to ease interrupt sharing */ 1424 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1425 if (!(status & CM_INTR)) 1426 return IRQ_NONE; 1427 1428 /* acknowledge interrupt */ 1429 spin_lock(&cm->reg_lock); 1430 if (status & CM_CHINT0) 1431 mask |= CM_CH0_INT_EN; 1432 if (status & CM_CHINT1) 1433 mask |= CM_CH1_INT_EN; 1434 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1435 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1436 spin_unlock(&cm->reg_lock); 1437 1438 if (cm->rmidi && (status & CM_UARTINT)) 1439 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1440 1441 if (cm->pcm) { 1442 if ((status & CM_CHINT0) && cm->channel[0].running) 1443 snd_pcm_period_elapsed(cm->channel[0].substream); 1444 if ((status & CM_CHINT1) && cm->channel[1].running) 1445 snd_pcm_period_elapsed(cm->channel[1].substream); 1446 } 1447 return IRQ_HANDLED; 1448 } 1449 1450 /* 1451 * h/w infos 1452 */ 1453 1454 /* playback on channel A */ 1455 static const struct snd_pcm_hardware snd_cmipci_playback = 1456 { 1457 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1458 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1459 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1460 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1461 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1462 .rate_min = 5512, 1463 .rate_max = 48000, 1464 .channels_min = 1, 1465 .channels_max = 2, 1466 .buffer_bytes_max = (128*1024), 1467 .period_bytes_min = 64, 1468 .period_bytes_max = (128*1024), 1469 .periods_min = 2, 1470 .periods_max = 1024, 1471 .fifo_size = 0, 1472 }; 1473 1474 /* capture on channel B */ 1475 static const struct snd_pcm_hardware snd_cmipci_capture = 1476 { 1477 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1478 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1479 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1480 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1481 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1482 .rate_min = 5512, 1483 .rate_max = 48000, 1484 .channels_min = 1, 1485 .channels_max = 2, 1486 .buffer_bytes_max = (128*1024), 1487 .period_bytes_min = 64, 1488 .period_bytes_max = (128*1024), 1489 .periods_min = 2, 1490 .periods_max = 1024, 1491 .fifo_size = 0, 1492 }; 1493 1494 /* playback on channel B - stereo 16bit only? */ 1495 static const struct snd_pcm_hardware snd_cmipci_playback2 = 1496 { 1497 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1498 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1499 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1500 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1501 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1502 .rate_min = 5512, 1503 .rate_max = 48000, 1504 .channels_min = 2, 1505 .channels_max = 2, 1506 .buffer_bytes_max = (128*1024), 1507 .period_bytes_min = 64, 1508 .period_bytes_max = (128*1024), 1509 .periods_min = 2, 1510 .periods_max = 1024, 1511 .fifo_size = 0, 1512 }; 1513 1514 /* spdif playback on channel A */ 1515 static const struct snd_pcm_hardware snd_cmipci_playback_spdif = 1516 { 1517 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1518 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1519 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1520 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1521 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1522 .rate_min = 44100, 1523 .rate_max = 48000, 1524 .channels_min = 2, 1525 .channels_max = 2, 1526 .buffer_bytes_max = (128*1024), 1527 .period_bytes_min = 64, 1528 .period_bytes_max = (128*1024), 1529 .periods_min = 2, 1530 .periods_max = 1024, 1531 .fifo_size = 0, 1532 }; 1533 1534 /* spdif playback on channel A (32bit, IEC958 subframes) */ 1535 static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1536 { 1537 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1538 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1539 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1540 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1541 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1542 .rate_min = 44100, 1543 .rate_max = 48000, 1544 .channels_min = 2, 1545 .channels_max = 2, 1546 .buffer_bytes_max = (128*1024), 1547 .period_bytes_min = 64, 1548 .period_bytes_max = (128*1024), 1549 .periods_min = 2, 1550 .periods_max = 1024, 1551 .fifo_size = 0, 1552 }; 1553 1554 /* spdif capture on channel B */ 1555 static const struct snd_pcm_hardware snd_cmipci_capture_spdif = 1556 { 1557 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1558 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1559 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1560 .formats = SNDRV_PCM_FMTBIT_S16_LE | 1561 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1562 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1563 .rate_min = 44100, 1564 .rate_max = 48000, 1565 .channels_min = 2, 1566 .channels_max = 2, 1567 .buffer_bytes_max = (128*1024), 1568 .period_bytes_min = 64, 1569 .period_bytes_max = (128*1024), 1570 .periods_min = 2, 1571 .periods_max = 1024, 1572 .fifo_size = 0, 1573 }; 1574 1575 static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050, 1576 32000, 44100, 48000, 88200, 96000, 128000 }; 1577 static const struct snd_pcm_hw_constraint_list hw_constraints_rates = { 1578 .count = ARRAY_SIZE(rate_constraints), 1579 .list = rate_constraints, 1580 .mask = 0, 1581 }; 1582 1583 /* 1584 * check device open/close 1585 */ 1586 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1587 { 1588 int ch = mode & CM_OPEN_CH_MASK; 1589 1590 /* FIXME: a file should wait until the device becomes free 1591 * when it's opened on blocking mode. however, since the current 1592 * pcm framework doesn't pass file pointer before actually opened, 1593 * we can't know whether blocking mode or not in open callback.. 1594 */ 1595 mutex_lock(&cm->open_mutex); 1596 if (cm->opened[ch]) { 1597 mutex_unlock(&cm->open_mutex); 1598 return -EBUSY; 1599 } 1600 cm->opened[ch] = mode; 1601 cm->channel[ch].substream = subs; 1602 if (! (mode & CM_OPEN_DAC)) { 1603 /* disable dual DAC mode */ 1604 cm->channel[ch].is_dac = 0; 1605 spin_lock_irq(&cm->reg_lock); 1606 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1607 spin_unlock_irq(&cm->reg_lock); 1608 } 1609 mutex_unlock(&cm->open_mutex); 1610 return 0; 1611 } 1612 1613 static void close_device_check(struct cmipci *cm, int mode) 1614 { 1615 int ch = mode & CM_OPEN_CH_MASK; 1616 1617 mutex_lock(&cm->open_mutex); 1618 if (cm->opened[ch] == mode) { 1619 if (cm->channel[ch].substream) { 1620 snd_cmipci_ch_reset(cm, ch); 1621 cm->channel[ch].running = 0; 1622 cm->channel[ch].substream = NULL; 1623 } 1624 cm->opened[ch] = 0; 1625 if (! cm->channel[ch].is_dac) { 1626 /* enable dual DAC mode again */ 1627 cm->channel[ch].is_dac = 1; 1628 spin_lock_irq(&cm->reg_lock); 1629 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1630 spin_unlock_irq(&cm->reg_lock); 1631 } 1632 } 1633 mutex_unlock(&cm->open_mutex); 1634 } 1635 1636 /* 1637 */ 1638 1639 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1640 { 1641 struct cmipci *cm = snd_pcm_substream_chip(substream); 1642 struct snd_pcm_runtime *runtime = substream->runtime; 1643 int err; 1644 1645 err = open_device_check(cm, CM_OPEN_PLAYBACK, substream); 1646 if (err < 0) 1647 return err; 1648 runtime->hw = snd_cmipci_playback; 1649 if (cm->chip_version == 68) { 1650 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1651 SNDRV_PCM_RATE_96000; 1652 runtime->hw.rate_max = 96000; 1653 } else if (cm->chip_version == 55) { 1654 err = snd_pcm_hw_constraint_list(runtime, 0, 1655 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1656 if (err < 0) 1657 return err; 1658 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1659 runtime->hw.rate_max = 128000; 1660 } 1661 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1662 cm->dig_pcm_status = cm->dig_status; 1663 return 0; 1664 } 1665 1666 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1667 { 1668 struct cmipci *cm = snd_pcm_substream_chip(substream); 1669 struct snd_pcm_runtime *runtime = substream->runtime; 1670 int err; 1671 1672 err = open_device_check(cm, CM_OPEN_CAPTURE, substream); 1673 if (err < 0) 1674 return err; 1675 runtime->hw = snd_cmipci_capture; 1676 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1677 runtime->hw.rate_min = 41000; 1678 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1679 } else if (cm->chip_version == 55) { 1680 err = snd_pcm_hw_constraint_list(runtime, 0, 1681 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1682 if (err < 0) 1683 return err; 1684 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1685 runtime->hw.rate_max = 128000; 1686 } 1687 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1688 return 0; 1689 } 1690 1691 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1692 { 1693 struct cmipci *cm = snd_pcm_substream_chip(substream); 1694 struct snd_pcm_runtime *runtime = substream->runtime; 1695 int err; 1696 1697 /* use channel B */ 1698 err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream); 1699 if (err < 0) 1700 return err; 1701 runtime->hw = snd_cmipci_playback2; 1702 mutex_lock(&cm->open_mutex); 1703 if (! cm->opened[CM_CH_PLAY]) { 1704 if (cm->can_multi_ch) { 1705 runtime->hw.channels_max = cm->max_channels; 1706 if (cm->max_channels == 4) 1707 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1708 else if (cm->max_channels == 6) 1709 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1710 else if (cm->max_channels == 8) 1711 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1712 } 1713 } 1714 mutex_unlock(&cm->open_mutex); 1715 if (cm->chip_version == 68) { 1716 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1717 SNDRV_PCM_RATE_96000; 1718 runtime->hw.rate_max = 96000; 1719 } else if (cm->chip_version == 55) { 1720 err = snd_pcm_hw_constraint_list(runtime, 0, 1721 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1722 if (err < 0) 1723 return err; 1724 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1725 runtime->hw.rate_max = 128000; 1726 } 1727 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1728 return 0; 1729 } 1730 1731 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1732 { 1733 struct cmipci *cm = snd_pcm_substream_chip(substream); 1734 struct snd_pcm_runtime *runtime = substream->runtime; 1735 int err; 1736 1737 /* use channel A */ 1738 err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream); 1739 if (err < 0) 1740 return err; 1741 if (cm->can_ac3_hw) { 1742 runtime->hw = snd_cmipci_playback_spdif; 1743 if (cm->chip_version >= 37) { 1744 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1745 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1746 } 1747 if (cm->can_96k) { 1748 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1749 SNDRV_PCM_RATE_96000; 1750 runtime->hw.rate_max = 96000; 1751 } 1752 } else { 1753 runtime->hw = snd_cmipci_playback_iec958_subframe; 1754 } 1755 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1756 cm->dig_pcm_status = cm->dig_status; 1757 return 0; 1758 } 1759 1760 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1761 { 1762 struct cmipci *cm = snd_pcm_substream_chip(substream); 1763 struct snd_pcm_runtime *runtime = substream->runtime; 1764 int err; 1765 1766 /* use channel B */ 1767 err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream); 1768 if (err < 0) 1769 return err; 1770 runtime->hw = snd_cmipci_capture_spdif; 1771 if (cm->can_96k && !(cm->chip_version == 68)) { 1772 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1773 SNDRV_PCM_RATE_96000; 1774 runtime->hw.rate_max = 96000; 1775 } 1776 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1777 return 0; 1778 } 1779 1780 1781 /* 1782 */ 1783 1784 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1785 { 1786 struct cmipci *cm = snd_pcm_substream_chip(substream); 1787 close_device_check(cm, CM_OPEN_PLAYBACK); 1788 return 0; 1789 } 1790 1791 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1792 { 1793 struct cmipci *cm = snd_pcm_substream_chip(substream); 1794 close_device_check(cm, CM_OPEN_CAPTURE); 1795 return 0; 1796 } 1797 1798 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1799 { 1800 struct cmipci *cm = snd_pcm_substream_chip(substream); 1801 close_device_check(cm, CM_OPEN_PLAYBACK2); 1802 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1803 return 0; 1804 } 1805 1806 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1807 { 1808 struct cmipci *cm = snd_pcm_substream_chip(substream); 1809 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1810 return 0; 1811 } 1812 1813 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1814 { 1815 struct cmipci *cm = snd_pcm_substream_chip(substream); 1816 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1817 return 0; 1818 } 1819 1820 1821 /* 1822 */ 1823 1824 static const struct snd_pcm_ops snd_cmipci_playback_ops = { 1825 .open = snd_cmipci_playback_open, 1826 .close = snd_cmipci_playback_close, 1827 .hw_free = snd_cmipci_playback_hw_free, 1828 .prepare = snd_cmipci_playback_prepare, 1829 .trigger = snd_cmipci_playback_trigger, 1830 .pointer = snd_cmipci_playback_pointer, 1831 }; 1832 1833 static const struct snd_pcm_ops snd_cmipci_capture_ops = { 1834 .open = snd_cmipci_capture_open, 1835 .close = snd_cmipci_capture_close, 1836 .prepare = snd_cmipci_capture_prepare, 1837 .trigger = snd_cmipci_capture_trigger, 1838 .pointer = snd_cmipci_capture_pointer, 1839 }; 1840 1841 static const struct snd_pcm_ops snd_cmipci_playback2_ops = { 1842 .open = snd_cmipci_playback2_open, 1843 .close = snd_cmipci_playback2_close, 1844 .hw_params = snd_cmipci_playback2_hw_params, 1845 .hw_free = snd_cmipci_playback2_hw_free, 1846 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1847 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1848 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1849 }; 1850 1851 static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1852 .open = snd_cmipci_playback_spdif_open, 1853 .close = snd_cmipci_playback_spdif_close, 1854 .hw_free = snd_cmipci_playback_hw_free, 1855 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1856 .trigger = snd_cmipci_playback_trigger, 1857 .pointer = snd_cmipci_playback_pointer, 1858 }; 1859 1860 static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1861 .open = snd_cmipci_capture_spdif_open, 1862 .close = snd_cmipci_capture_spdif_close, 1863 .hw_free = snd_cmipci_capture_spdif_hw_free, 1864 .prepare = snd_cmipci_capture_spdif_prepare, 1865 .trigger = snd_cmipci_capture_trigger, 1866 .pointer = snd_cmipci_capture_pointer, 1867 }; 1868 1869 1870 /* 1871 */ 1872 1873 static int snd_cmipci_pcm_new(struct cmipci *cm, int device) 1874 { 1875 struct snd_pcm *pcm; 1876 int err; 1877 1878 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1879 if (err < 0) 1880 return err; 1881 1882 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1883 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1884 1885 pcm->private_data = cm; 1886 pcm->info_flags = 0; 1887 strcpy(pcm->name, "C-Media PCI DAC/ADC"); 1888 cm->pcm = pcm; 1889 1890 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1891 &cm->pci->dev, 64*1024, 128*1024); 1892 1893 return 0; 1894 } 1895 1896 static int snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1897 { 1898 struct snd_pcm *pcm; 1899 int err; 1900 1901 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1902 if (err < 0) 1903 return err; 1904 1905 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1906 1907 pcm->private_data = cm; 1908 pcm->info_flags = 0; 1909 strcpy(pcm->name, "C-Media PCI 2nd DAC"); 1910 cm->pcm2 = pcm; 1911 1912 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1913 &cm->pci->dev, 64*1024, 128*1024); 1914 1915 return 0; 1916 } 1917 1918 static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1919 { 1920 struct snd_pcm *pcm; 1921 int err; 1922 1923 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1924 if (err < 0) 1925 return err; 1926 1927 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1928 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1929 1930 pcm->private_data = cm; 1931 pcm->info_flags = 0; 1932 strcpy(pcm->name, "C-Media PCI IEC958"); 1933 cm->pcm_spdif = pcm; 1934 1935 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV, 1936 &cm->pci->dev, 64*1024, 128*1024); 1937 1938 err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, 1939 snd_pcm_alt_chmaps, cm->max_channels, 0, 1940 NULL); 1941 if (err < 0) 1942 return err; 1943 1944 return 0; 1945 } 1946 1947 /* 1948 * mixer interface: 1949 * - CM8338/8738 has a compatible mixer interface with SB16, but 1950 * lack of some elements like tone control, i/o gain and AGC. 1951 * - Access to native registers: 1952 * - A 3D switch 1953 * - Output mute switches 1954 */ 1955 1956 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1957 { 1958 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1959 outb(data, s->iobase + CM_REG_SB16_DATA); 1960 } 1961 1962 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1963 { 1964 unsigned char v; 1965 1966 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1967 v = inb(s->iobase + CM_REG_SB16_DATA); 1968 return v; 1969 } 1970 1971 /* 1972 * general mixer element 1973 */ 1974 struct cmipci_sb_reg { 1975 unsigned int left_reg, right_reg; 1976 unsigned int left_shift, right_shift; 1977 unsigned int mask; 1978 unsigned int invert: 1; 1979 unsigned int stereo: 1; 1980 }; 1981 1982 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 1983 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 1984 1985 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 1986 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 1987 .info = snd_cmipci_info_volume, \ 1988 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 1989 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 1990 } 1991 1992 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 1993 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 1994 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 1995 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 1996 1997 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 1998 { 1999 r->left_reg = val & 0xff; 2000 r->right_reg = (val >> 8) & 0xff; 2001 r->left_shift = (val >> 16) & 0x07; 2002 r->right_shift = (val >> 19) & 0x07; 2003 r->invert = (val >> 22) & 1; 2004 r->stereo = (val >> 23) & 1; 2005 r->mask = (val >> 24) & 0xff; 2006 } 2007 2008 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 2009 struct snd_ctl_elem_info *uinfo) 2010 { 2011 struct cmipci_sb_reg reg; 2012 2013 cmipci_sb_reg_decode(®, kcontrol->private_value); 2014 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2015 uinfo->count = reg.stereo + 1; 2016 uinfo->value.integer.min = 0; 2017 uinfo->value.integer.max = reg.mask; 2018 return 0; 2019 } 2020 2021 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 2022 struct snd_ctl_elem_value *ucontrol) 2023 { 2024 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2025 struct cmipci_sb_reg reg; 2026 int val; 2027 2028 cmipci_sb_reg_decode(®, kcontrol->private_value); 2029 spin_lock_irq(&cm->reg_lock); 2030 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 2031 if (reg.invert) 2032 val = reg.mask - val; 2033 ucontrol->value.integer.value[0] = val; 2034 if (reg.stereo) { 2035 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 2036 if (reg.invert) 2037 val = reg.mask - val; 2038 ucontrol->value.integer.value[1] = val; 2039 } 2040 spin_unlock_irq(&cm->reg_lock); 2041 return 0; 2042 } 2043 2044 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2045 struct snd_ctl_elem_value *ucontrol) 2046 { 2047 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2048 struct cmipci_sb_reg reg; 2049 int change; 2050 int left, right, oleft, oright; 2051 2052 cmipci_sb_reg_decode(®, kcontrol->private_value); 2053 left = ucontrol->value.integer.value[0] & reg.mask; 2054 if (reg.invert) 2055 left = reg.mask - left; 2056 left <<= reg.left_shift; 2057 if (reg.stereo) { 2058 right = ucontrol->value.integer.value[1] & reg.mask; 2059 if (reg.invert) 2060 right = reg.mask - right; 2061 right <<= reg.right_shift; 2062 } else 2063 right = 0; 2064 spin_lock_irq(&cm->reg_lock); 2065 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2066 left |= oleft & ~(reg.mask << reg.left_shift); 2067 change = left != oleft; 2068 if (reg.stereo) { 2069 if (reg.left_reg != reg.right_reg) { 2070 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2071 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2072 } else 2073 oright = left; 2074 right |= oright & ~(reg.mask << reg.right_shift); 2075 change |= right != oright; 2076 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2077 } else 2078 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2079 spin_unlock_irq(&cm->reg_lock); 2080 return change; 2081 } 2082 2083 /* 2084 * input route (left,right) -> (left,right) 2085 */ 2086 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2087 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2088 .info = snd_cmipci_info_input_sw, \ 2089 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2090 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2091 } 2092 2093 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2094 struct snd_ctl_elem_info *uinfo) 2095 { 2096 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2097 uinfo->count = 4; 2098 uinfo->value.integer.min = 0; 2099 uinfo->value.integer.max = 1; 2100 return 0; 2101 } 2102 2103 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2104 struct snd_ctl_elem_value *ucontrol) 2105 { 2106 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2107 struct cmipci_sb_reg reg; 2108 int val1, val2; 2109 2110 cmipci_sb_reg_decode(®, kcontrol->private_value); 2111 spin_lock_irq(&cm->reg_lock); 2112 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2113 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2114 spin_unlock_irq(&cm->reg_lock); 2115 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2116 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2117 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2118 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2119 return 0; 2120 } 2121 2122 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2123 struct snd_ctl_elem_value *ucontrol) 2124 { 2125 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2126 struct cmipci_sb_reg reg; 2127 int change; 2128 int val1, val2, oval1, oval2; 2129 2130 cmipci_sb_reg_decode(®, kcontrol->private_value); 2131 spin_lock_irq(&cm->reg_lock); 2132 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2133 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2134 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2135 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2136 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2137 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2138 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2139 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2140 change = val1 != oval1 || val2 != oval2; 2141 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2142 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2143 spin_unlock_irq(&cm->reg_lock); 2144 return change; 2145 } 2146 2147 /* 2148 * native mixer switches/volumes 2149 */ 2150 2151 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2152 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2153 .info = snd_cmipci_info_native_mixer, \ 2154 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2155 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2156 } 2157 2158 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2159 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2160 .info = snd_cmipci_info_native_mixer, \ 2161 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2162 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2163 } 2164 2165 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2166 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2167 .info = snd_cmipci_info_native_mixer, \ 2168 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2169 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2170 } 2171 2172 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2174 .info = snd_cmipci_info_native_mixer, \ 2175 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2176 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2177 } 2178 2179 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2180 struct snd_ctl_elem_info *uinfo) 2181 { 2182 struct cmipci_sb_reg reg; 2183 2184 cmipci_sb_reg_decode(®, kcontrol->private_value); 2185 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2186 uinfo->count = reg.stereo + 1; 2187 uinfo->value.integer.min = 0; 2188 uinfo->value.integer.max = reg.mask; 2189 return 0; 2190 2191 } 2192 2193 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2194 struct snd_ctl_elem_value *ucontrol) 2195 { 2196 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2197 struct cmipci_sb_reg reg; 2198 unsigned char oreg, val; 2199 2200 cmipci_sb_reg_decode(®, kcontrol->private_value); 2201 spin_lock_irq(&cm->reg_lock); 2202 oreg = inb(cm->iobase + reg.left_reg); 2203 val = (oreg >> reg.left_shift) & reg.mask; 2204 if (reg.invert) 2205 val = reg.mask - val; 2206 ucontrol->value.integer.value[0] = val; 2207 if (reg.stereo) { 2208 val = (oreg >> reg.right_shift) & reg.mask; 2209 if (reg.invert) 2210 val = reg.mask - val; 2211 ucontrol->value.integer.value[1] = val; 2212 } 2213 spin_unlock_irq(&cm->reg_lock); 2214 return 0; 2215 } 2216 2217 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2218 struct snd_ctl_elem_value *ucontrol) 2219 { 2220 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2221 struct cmipci_sb_reg reg; 2222 unsigned char oreg, nreg, val; 2223 2224 cmipci_sb_reg_decode(®, kcontrol->private_value); 2225 spin_lock_irq(&cm->reg_lock); 2226 oreg = inb(cm->iobase + reg.left_reg); 2227 val = ucontrol->value.integer.value[0] & reg.mask; 2228 if (reg.invert) 2229 val = reg.mask - val; 2230 nreg = oreg & ~(reg.mask << reg.left_shift); 2231 nreg |= (val << reg.left_shift); 2232 if (reg.stereo) { 2233 val = ucontrol->value.integer.value[1] & reg.mask; 2234 if (reg.invert) 2235 val = reg.mask - val; 2236 nreg &= ~(reg.mask << reg.right_shift); 2237 nreg |= (val << reg.right_shift); 2238 } 2239 outb(nreg, cm->iobase + reg.left_reg); 2240 spin_unlock_irq(&cm->reg_lock); 2241 return (nreg != oreg); 2242 } 2243 2244 /* 2245 * special case - check mixer sensitivity 2246 */ 2247 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2248 struct snd_ctl_elem_value *ucontrol) 2249 { 2250 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2251 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2252 } 2253 2254 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2255 struct snd_ctl_elem_value *ucontrol) 2256 { 2257 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2258 if (cm->mixer_insensitive) { 2259 /* ignored */ 2260 return 0; 2261 } 2262 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2263 } 2264 2265 2266 static const struct snd_kcontrol_new snd_cmipci_mixers[] = { 2267 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2268 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2269 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2270 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2271 { /* switch with sensitivity */ 2272 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2273 .name = "PCM Playback Switch", 2274 .info = snd_cmipci_info_native_mixer, 2275 .get = snd_cmipci_get_native_mixer_sensitive, 2276 .put = snd_cmipci_put_native_mixer_sensitive, 2277 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2278 }, 2279 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2280 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2281 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2282 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2283 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2284 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2285 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2286 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2287 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2288 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2289 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2290 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2291 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2292 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2293 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2294 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2295 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2296 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2297 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2298 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2299 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2300 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2301 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2302 }; 2303 2304 /* 2305 * other switches 2306 */ 2307 2308 struct cmipci_switch_args { 2309 int reg; /* register index */ 2310 unsigned int mask; /* mask bits */ 2311 unsigned int mask_on; /* mask bits to turn on */ 2312 unsigned int is_byte: 1; /* byte access? */ 2313 unsigned int ac3_sensitive: 1; /* access forbidden during 2314 * non-audio operation? 2315 */ 2316 }; 2317 2318 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2319 2320 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2321 struct snd_ctl_elem_value *ucontrol, 2322 struct cmipci_switch_args *args) 2323 { 2324 unsigned int val; 2325 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2326 2327 spin_lock_irq(&cm->reg_lock); 2328 if (args->ac3_sensitive && cm->mixer_insensitive) { 2329 ucontrol->value.integer.value[0] = 0; 2330 spin_unlock_irq(&cm->reg_lock); 2331 return 0; 2332 } 2333 if (args->is_byte) 2334 val = inb(cm->iobase + args->reg); 2335 else 2336 val = snd_cmipci_read(cm, args->reg); 2337 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2338 spin_unlock_irq(&cm->reg_lock); 2339 return 0; 2340 } 2341 2342 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2343 struct snd_ctl_elem_value *ucontrol) 2344 { 2345 struct cmipci_switch_args *args; 2346 args = (struct cmipci_switch_args *)kcontrol->private_value; 2347 if (snd_BUG_ON(!args)) 2348 return -EINVAL; 2349 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2350 } 2351 2352 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2353 struct snd_ctl_elem_value *ucontrol, 2354 struct cmipci_switch_args *args) 2355 { 2356 unsigned int val; 2357 int change; 2358 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2359 2360 spin_lock_irq(&cm->reg_lock); 2361 if (args->ac3_sensitive && cm->mixer_insensitive) { 2362 /* ignored */ 2363 spin_unlock_irq(&cm->reg_lock); 2364 return 0; 2365 } 2366 if (args->is_byte) 2367 val = inb(cm->iobase + args->reg); 2368 else 2369 val = snd_cmipci_read(cm, args->reg); 2370 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2371 args->mask_on : (args->mask & ~args->mask_on)); 2372 if (change) { 2373 val &= ~args->mask; 2374 if (ucontrol->value.integer.value[0]) 2375 val |= args->mask_on; 2376 else 2377 val |= (args->mask & ~args->mask_on); 2378 if (args->is_byte) 2379 outb((unsigned char)val, cm->iobase + args->reg); 2380 else 2381 snd_cmipci_write(cm, args->reg, val); 2382 } 2383 spin_unlock_irq(&cm->reg_lock); 2384 return change; 2385 } 2386 2387 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2388 struct snd_ctl_elem_value *ucontrol) 2389 { 2390 struct cmipci_switch_args *args; 2391 args = (struct cmipci_switch_args *)kcontrol->private_value; 2392 if (snd_BUG_ON(!args)) 2393 return -EINVAL; 2394 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2395 } 2396 2397 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2398 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2399 .reg = xreg, \ 2400 .mask = xmask, \ 2401 .mask_on = xmask_on, \ 2402 .is_byte = xis_byte, \ 2403 .ac3_sensitive = xac3, \ 2404 } 2405 2406 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2407 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2408 2409 #if 0 /* these will be controlled in pcm device */ 2410 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2411 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2412 #endif 2413 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2414 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2415 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2416 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2417 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2418 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2419 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2420 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2421 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2422 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2423 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2424 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2425 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2426 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2427 #if CM_CH_PLAY == 1 2428 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2429 #else 2430 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2431 #endif 2432 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2433 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2434 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2435 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2436 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2437 2438 #define DEFINE_SWITCH(sname, stype, sarg) \ 2439 { .name = sname, \ 2440 .iface = stype, \ 2441 .info = snd_cmipci_uswitch_info, \ 2442 .get = snd_cmipci_uswitch_get, \ 2443 .put = snd_cmipci_uswitch_put, \ 2444 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2445 } 2446 2447 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2448 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2449 2450 2451 /* 2452 * callbacks for spdif output switch 2453 * needs toggle two registers.. 2454 */ 2455 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2456 struct snd_ctl_elem_value *ucontrol) 2457 { 2458 int changed; 2459 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2460 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2461 return changed; 2462 } 2463 2464 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2465 struct snd_ctl_elem_value *ucontrol) 2466 { 2467 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2468 int changed; 2469 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2470 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2471 if (changed) { 2472 if (ucontrol->value.integer.value[0]) { 2473 if (chip->spdif_playback_avail) 2474 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2475 } else { 2476 if (chip->spdif_playback_avail) 2477 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2478 } 2479 } 2480 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2481 return changed; 2482 } 2483 2484 2485 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2486 struct snd_ctl_elem_info *uinfo) 2487 { 2488 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2489 static const char *const texts[3] = { 2490 "Line-In", "Rear Output", "Bass Output" 2491 }; 2492 2493 return snd_ctl_enum_info(uinfo, 1, 2494 cm->chip_version >= 39 ? 3 : 2, texts); 2495 } 2496 2497 static inline unsigned int get_line_in_mode(struct cmipci *cm) 2498 { 2499 unsigned int val; 2500 if (cm->chip_version >= 39) { 2501 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2502 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2503 return 2; 2504 } 2505 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2506 if (val & CM_REAR2LIN) 2507 return 1; 2508 return 0; 2509 } 2510 2511 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2512 struct snd_ctl_elem_value *ucontrol) 2513 { 2514 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2515 2516 spin_lock_irq(&cm->reg_lock); 2517 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2518 spin_unlock_irq(&cm->reg_lock); 2519 return 0; 2520 } 2521 2522 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2523 struct snd_ctl_elem_value *ucontrol) 2524 { 2525 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2526 int change; 2527 2528 spin_lock_irq(&cm->reg_lock); 2529 if (ucontrol->value.enumerated.item[0] == 2) 2530 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2531 else 2532 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2533 if (ucontrol->value.enumerated.item[0] == 1) 2534 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2535 else 2536 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2537 spin_unlock_irq(&cm->reg_lock); 2538 return change; 2539 } 2540 2541 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2542 struct snd_ctl_elem_info *uinfo) 2543 { 2544 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" }; 2545 2546 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2547 } 2548 2549 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2550 struct snd_ctl_elem_value *ucontrol) 2551 { 2552 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2553 /* same bit as spdi_phase */ 2554 spin_lock_irq(&cm->reg_lock); 2555 ucontrol->value.enumerated.item[0] = 2556 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2557 spin_unlock_irq(&cm->reg_lock); 2558 return 0; 2559 } 2560 2561 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2562 struct snd_ctl_elem_value *ucontrol) 2563 { 2564 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2565 int change; 2566 2567 spin_lock_irq(&cm->reg_lock); 2568 if (ucontrol->value.enumerated.item[0]) 2569 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2570 else 2571 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2572 spin_unlock_irq(&cm->reg_lock); 2573 return change; 2574 } 2575 2576 /* both for CM8338/8738 */ 2577 static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = { 2578 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2579 { 2580 .name = "Line-In Mode", 2581 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2582 .info = snd_cmipci_line_in_mode_info, 2583 .get = snd_cmipci_line_in_mode_get, 2584 .put = snd_cmipci_line_in_mode_put, 2585 }, 2586 }; 2587 2588 /* for non-multichannel chips */ 2589 static const struct snd_kcontrol_new snd_cmipci_nomulti_switch = 2590 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2591 2592 /* only for CM8738 */ 2593 static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = { 2594 #if 0 /* controlled in pcm device */ 2595 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2596 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2597 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2598 #endif 2599 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2600 { .name = "IEC958 Output Switch", 2601 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2602 .info = snd_cmipci_uswitch_info, 2603 .get = snd_cmipci_spdout_enable_get, 2604 .put = snd_cmipci_spdout_enable_put, 2605 }, 2606 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2607 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2608 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2609 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2610 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2611 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2612 }; 2613 2614 /* only for model 033/037 */ 2615 static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = { 2616 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2617 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2618 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2619 }; 2620 2621 /* only for model 039 or later */ 2622 static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = { 2623 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2624 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2625 { 2626 .name = "Mic-In Mode", 2627 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2628 .info = snd_cmipci_mic_in_mode_info, 2629 .get = snd_cmipci_mic_in_mode_get, 2630 .put = snd_cmipci_mic_in_mode_put, 2631 } 2632 }; 2633 2634 /* card control switches */ 2635 static const struct snd_kcontrol_new snd_cmipci_modem_switch = 2636 DEFINE_CARD_SWITCH("Modem", modem); 2637 2638 2639 static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2640 { 2641 struct snd_card *card; 2642 const struct snd_kcontrol_new *sw; 2643 struct snd_kcontrol *kctl; 2644 unsigned int idx; 2645 int err; 2646 2647 if (snd_BUG_ON(!cm || !cm->card)) 2648 return -EINVAL; 2649 2650 card = cm->card; 2651 2652 strcpy(card->mixername, "CMedia PCI"); 2653 2654 spin_lock_irq(&cm->reg_lock); 2655 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2656 spin_unlock_irq(&cm->reg_lock); 2657 2658 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2659 if (cm->chip_version == 68) { // 8768 has no PCM volume 2660 if (!strcmp(snd_cmipci_mixers[idx].name, 2661 "PCM Playback Volume")) 2662 continue; 2663 } 2664 err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm)); 2665 if (err < 0) 2666 return err; 2667 } 2668 2669 /* mixer switches */ 2670 sw = snd_cmipci_mixer_switches; 2671 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2672 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2673 if (err < 0) 2674 return err; 2675 } 2676 if (! cm->can_multi_ch) { 2677 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2678 if (err < 0) 2679 return err; 2680 } 2681 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2682 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2683 sw = snd_cmipci_8738_mixer_switches; 2684 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2685 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2686 if (err < 0) 2687 return err; 2688 } 2689 if (cm->can_ac3_hw) { 2690 kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm); 2691 kctl->id.device = pcm_spdif_device; 2692 err = snd_ctl_add(card, kctl); 2693 if (err < 0) 2694 return err; 2695 kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm); 2696 kctl->id.device = pcm_spdif_device; 2697 err = snd_ctl_add(card, kctl); 2698 if (err < 0) 2699 return err; 2700 kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm); 2701 kctl->id.device = pcm_spdif_device; 2702 err = snd_ctl_add(card, kctl); 2703 if (err < 0) 2704 return err; 2705 } 2706 if (cm->chip_version <= 37) { 2707 sw = snd_cmipci_old_mixer_switches; 2708 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2709 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2710 if (err < 0) 2711 return err; 2712 } 2713 } 2714 } 2715 if (cm->chip_version >= 39) { 2716 sw = snd_cmipci_extra_mixer_switches; 2717 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2718 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2719 if (err < 0) 2720 return err; 2721 } 2722 } 2723 2724 /* card switches */ 2725 /* 2726 * newer chips don't have the register bits to force modem link 2727 * detection; the bit that was FLINKON now mutes CH1 2728 */ 2729 if (cm->chip_version < 39) { 2730 err = snd_ctl_add(cm->card, 2731 snd_ctl_new1(&snd_cmipci_modem_switch, cm)); 2732 if (err < 0) 2733 return err; 2734 } 2735 2736 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2737 struct snd_ctl_elem_id elem_id; 2738 struct snd_kcontrol *ctl; 2739 memset(&elem_id, 0, sizeof(elem_id)); 2740 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 2741 strcpy(elem_id.name, cm_saved_mixer[idx].name); 2742 ctl = snd_ctl_find_id(cm->card, &elem_id); 2743 if (ctl) 2744 cm->mixer_res_ctl[idx] = ctl; 2745 } 2746 2747 return 0; 2748 } 2749 2750 2751 /* 2752 * proc interface 2753 */ 2754 2755 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2756 struct snd_info_buffer *buffer) 2757 { 2758 struct cmipci *cm = entry->private_data; 2759 int i, v; 2760 2761 snd_iprintf(buffer, "%s\n", cm->card->longname); 2762 for (i = 0; i < 0x94; i++) { 2763 if (i == 0x28) 2764 i = 0x90; 2765 v = inb(cm->iobase + i); 2766 if (i % 4 == 0) 2767 snd_iprintf(buffer, "\n%02x:", i); 2768 snd_iprintf(buffer, " %02x", v); 2769 } 2770 snd_iprintf(buffer, "\n"); 2771 } 2772 2773 static void snd_cmipci_proc_init(struct cmipci *cm) 2774 { 2775 snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read); 2776 } 2777 2778 static const struct pci_device_id snd_cmipci_ids[] = { 2779 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0}, 2780 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0}, 2781 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2782 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0}, 2783 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2784 {0,}, 2785 }; 2786 2787 2788 /* 2789 * check chip version and capabilities 2790 * driver name is modified according to the chip model 2791 */ 2792 static void query_chip(struct cmipci *cm) 2793 { 2794 unsigned int detect; 2795 2796 /* check reg 0Ch, bit 24-31 */ 2797 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2798 if (! detect) { 2799 /* check reg 08h, bit 24-28 */ 2800 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2801 switch (detect) { 2802 case 0: 2803 cm->chip_version = 33; 2804 if (cm->do_soft_ac3) 2805 cm->can_ac3_sw = 1; 2806 else 2807 cm->can_ac3_hw = 1; 2808 break; 2809 case CM_CHIP_037: 2810 cm->chip_version = 37; 2811 cm->can_ac3_hw = 1; 2812 break; 2813 default: 2814 cm->chip_version = 39; 2815 cm->can_ac3_hw = 1; 2816 break; 2817 } 2818 cm->max_channels = 2; 2819 } else { 2820 if (detect & CM_CHIP_039) { 2821 cm->chip_version = 39; 2822 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2823 cm->max_channels = 6; 2824 else 2825 cm->max_channels = 4; 2826 } else if (detect & CM_CHIP_8768) { 2827 cm->chip_version = 68; 2828 cm->max_channels = 8; 2829 cm->can_96k = 1; 2830 } else { 2831 cm->chip_version = 55; 2832 cm->max_channels = 6; 2833 cm->can_96k = 1; 2834 } 2835 cm->can_ac3_hw = 1; 2836 cm->can_multi_ch = 1; 2837 } 2838 } 2839 2840 #ifdef SUPPORT_JOYSTICK 2841 static int snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2842 { 2843 static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2844 struct gameport *gp; 2845 struct resource *r = NULL; 2846 int i, io_port = 0; 2847 2848 if (joystick_port[dev] == 0) 2849 return -ENODEV; 2850 2851 if (joystick_port[dev] == 1) { /* auto-detect */ 2852 for (i = 0; ports[i]; i++) { 2853 io_port = ports[i]; 2854 r = devm_request_region(&cm->pci->dev, io_port, 1, 2855 "CMIPCI gameport"); 2856 if (r) 2857 break; 2858 } 2859 } else { 2860 io_port = joystick_port[dev]; 2861 r = devm_request_region(&cm->pci->dev, io_port, 1, 2862 "CMIPCI gameport"); 2863 } 2864 2865 if (!r) { 2866 dev_warn(cm->card->dev, "cannot reserve joystick ports\n"); 2867 return -EBUSY; 2868 } 2869 2870 cm->gameport = gp = gameport_allocate_port(); 2871 if (!gp) { 2872 dev_err(cm->card->dev, "cannot allocate memory for gameport\n"); 2873 return -ENOMEM; 2874 } 2875 gameport_set_name(gp, "C-Media Gameport"); 2876 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2877 gameport_set_dev_parent(gp, &cm->pci->dev); 2878 gp->io = io_port; 2879 2880 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2881 2882 gameport_register_port(cm->gameport); 2883 2884 return 0; 2885 } 2886 2887 static void snd_cmipci_free_gameport(struct cmipci *cm) 2888 { 2889 if (cm->gameport) { 2890 gameport_unregister_port(cm->gameport); 2891 cm->gameport = NULL; 2892 2893 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2894 } 2895 } 2896 #else 2897 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2898 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2899 #endif 2900 2901 static void snd_cmipci_free(struct snd_card *card) 2902 { 2903 struct cmipci *cm = card->private_data; 2904 2905 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2906 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2907 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2908 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2909 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2910 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2911 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2912 2913 /* reset mixer */ 2914 snd_cmipci_mixer_write(cm, 0, 0); 2915 2916 snd_cmipci_free_gameport(cm); 2917 } 2918 2919 static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2920 { 2921 long iosynth; 2922 unsigned int val; 2923 struct snd_opl3 *opl3; 2924 int err; 2925 2926 if (!fm_port) 2927 goto disable_fm; 2928 2929 if (cm->chip_version >= 39) { 2930 /* first try FM regs in PCI port range */ 2931 iosynth = cm->iobase + CM_REG_FM_PCI; 2932 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2933 OPL3_HW_OPL3, 1, &opl3); 2934 } else { 2935 err = -EIO; 2936 } 2937 if (err < 0) { 2938 /* then try legacy ports */ 2939 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2940 iosynth = fm_port; 2941 switch (iosynth) { 2942 case 0x3E8: val |= CM_FMSEL_3E8; break; 2943 case 0x3E0: val |= CM_FMSEL_3E0; break; 2944 case 0x3C8: val |= CM_FMSEL_3C8; break; 2945 case 0x388: val |= CM_FMSEL_388; break; 2946 default: 2947 goto disable_fm; 2948 } 2949 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2950 /* enable FM */ 2951 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2952 2953 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2954 OPL3_HW_OPL3, 0, &opl3) < 0) { 2955 dev_err(cm->card->dev, 2956 "no OPL device at %#lx, skipping...\n", 2957 iosynth); 2958 goto disable_fm; 2959 } 2960 } 2961 err = snd_opl3_hwdep_new(opl3, 0, 1, NULL); 2962 if (err < 0) { 2963 dev_err(cm->card->dev, "cannot create OPL3 hwdep\n"); 2964 return err; 2965 } 2966 return 0; 2967 2968 disable_fm: 2969 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 2970 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2971 return 0; 2972 } 2973 2974 static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 2975 int dev) 2976 { 2977 struct cmipci *cm = card->private_data; 2978 int err; 2979 unsigned int val; 2980 long iomidi = 0; 2981 int integrated_midi = 0; 2982 char modelstr[16]; 2983 int pcm_index, pcm_spdif_index; 2984 static const struct pci_device_id intel_82437vx[] = { 2985 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 2986 { }, 2987 }; 2988 2989 err = pcim_enable_device(pci); 2990 if (err < 0) 2991 return err; 2992 2993 spin_lock_init(&cm->reg_lock); 2994 mutex_init(&cm->open_mutex); 2995 cm->device = pci->device; 2996 cm->card = card; 2997 cm->pci = pci; 2998 cm->irq = -1; 2999 cm->channel[0].ch = 0; 3000 cm->channel[1].ch = 1; 3001 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 3002 3003 err = pci_request_regions(pci, card->driver); 3004 if (err < 0) 3005 return err; 3006 cm->iobase = pci_resource_start(pci, 0); 3007 3008 if (devm_request_irq(&pci->dev, pci->irq, snd_cmipci_interrupt, 3009 IRQF_SHARED, KBUILD_MODNAME, cm)) { 3010 dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq); 3011 return -EBUSY; 3012 } 3013 cm->irq = pci->irq; 3014 card->sync_irq = cm->irq; 3015 card->private_free = snd_cmipci_free; 3016 3017 pci_set_master(cm->pci); 3018 3019 /* 3020 * check chip version, max channels and capabilities 3021 */ 3022 3023 cm->chip_version = 0; 3024 cm->max_channels = 2; 3025 cm->do_soft_ac3 = soft_ac3[dev]; 3026 3027 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 3028 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 3029 query_chip(cm); 3030 /* added -MCx suffix for chip supporting multi-channels */ 3031 if (cm->can_multi_ch) 3032 sprintf(cm->card->driver + strlen(cm->card->driver), 3033 "-MC%d", cm->max_channels); 3034 else if (cm->can_ac3_sw) 3035 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); 3036 3037 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3038 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3039 3040 #if CM_CH_PLAY == 1 3041 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 3042 #else 3043 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 3044 #endif 3045 3046 /* initialize codec registers */ 3047 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3048 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3049 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 3050 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3051 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3052 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 3053 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3054 3055 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3056 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3057 #if CM_CH_PLAY == 1 3058 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3059 #else 3060 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3061 #endif 3062 if (cm->chip_version) { 3063 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3064 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3065 } 3066 /* Set Bus Master Request */ 3067 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3068 3069 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3070 switch (pci->device) { 3071 case PCI_DEVICE_ID_CMEDIA_CM8738: 3072 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3073 if (!pci_dev_present(intel_82437vx)) 3074 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3075 break; 3076 default: 3077 break; 3078 } 3079 3080 if (cm->chip_version < 68) { 3081 val = pci->device < 0x110 ? 8338 : 8738; 3082 } else { 3083 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3084 case 0: 3085 val = 8769; 3086 break; 3087 case 2: 3088 val = 8762; 3089 break; 3090 default: 3091 switch ((pci->subsystem_vendor << 16) | 3092 pci->subsystem_device) { 3093 case 0x13f69761: 3094 case 0x584d3741: 3095 case 0x584d3751: 3096 case 0x584d3761: 3097 case 0x584d3771: 3098 case 0x72848384: 3099 val = 8770; 3100 break; 3101 default: 3102 val = 8768; 3103 break; 3104 } 3105 } 3106 } 3107 sprintf(card->shortname, "C-Media CMI%d", val); 3108 if (cm->chip_version < 68) 3109 sprintf(modelstr, " (model %d)", cm->chip_version); 3110 else 3111 modelstr[0] = '\0'; 3112 sprintf(card->longname, "%s%s at %#lx, irq %i", 3113 card->shortname, modelstr, cm->iobase, cm->irq); 3114 3115 if (cm->chip_version >= 39) { 3116 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3117 if (val != 0x00 && val != 0xff) { 3118 if (mpu_port[dev]) 3119 iomidi = cm->iobase + CM_REG_MPU_PCI; 3120 integrated_midi = 1; 3121 } 3122 } 3123 if (!integrated_midi) { 3124 val = 0; 3125 iomidi = mpu_port[dev]; 3126 switch (iomidi) { 3127 case 0x320: val = CM_VMPU_320; break; 3128 case 0x310: val = CM_VMPU_310; break; 3129 case 0x300: val = CM_VMPU_300; break; 3130 case 0x330: val = CM_VMPU_330; break; 3131 default: 3132 iomidi = 0; break; 3133 } 3134 if (iomidi > 0) { 3135 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3136 /* enable UART */ 3137 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3138 if (inb(iomidi + 1) == 0xff) { 3139 dev_err(cm->card->dev, 3140 "cannot enable MPU-401 port at %#lx\n", 3141 iomidi); 3142 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3143 CM_UART_EN); 3144 iomidi = 0; 3145 } 3146 } 3147 } 3148 3149 if (cm->chip_version < 68) { 3150 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3151 if (err < 0) 3152 return err; 3153 } 3154 3155 /* reset mixer */ 3156 snd_cmipci_mixer_write(cm, 0, 0); 3157 3158 snd_cmipci_proc_init(cm); 3159 3160 /* create pcm devices */ 3161 pcm_index = pcm_spdif_index = 0; 3162 err = snd_cmipci_pcm_new(cm, pcm_index); 3163 if (err < 0) 3164 return err; 3165 pcm_index++; 3166 err = snd_cmipci_pcm2_new(cm, pcm_index); 3167 if (err < 0) 3168 return err; 3169 pcm_index++; 3170 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3171 pcm_spdif_index = pcm_index; 3172 err = snd_cmipci_pcm_spdif_new(cm, pcm_index); 3173 if (err < 0) 3174 return err; 3175 } 3176 3177 /* create mixer interface & switches */ 3178 err = snd_cmipci_mixer_new(cm, pcm_spdif_index); 3179 if (err < 0) 3180 return err; 3181 3182 if (iomidi > 0) { 3183 err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3184 iomidi, 3185 (integrated_midi ? 3186 MPU401_INFO_INTEGRATED : 0) | 3187 MPU401_INFO_IRQ_HOOK, 3188 -1, &cm->rmidi); 3189 if (err < 0) 3190 dev_err(cm->card->dev, 3191 "no UART401 device at 0x%lx\n", iomidi); 3192 } 3193 3194 #ifdef USE_VAR48KRATE 3195 for (val = 0; val < ARRAY_SIZE(rates); val++) 3196 snd_cmipci_set_pll(cm, rates[val], val); 3197 3198 /* 3199 * (Re-)Enable external switch spdo_48k 3200 */ 3201 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3202 #endif /* USE_VAR48KRATE */ 3203 3204 if (snd_cmipci_create_gameport(cm, dev) < 0) 3205 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3206 3207 return 0; 3208 } 3209 3210 /* 3211 */ 3212 3213 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3214 3215 static int snd_cmipci_probe(struct pci_dev *pci, 3216 const struct pci_device_id *pci_id) 3217 { 3218 static int dev; 3219 struct snd_card *card; 3220 int err; 3221 3222 if (dev >= SNDRV_CARDS) 3223 return -ENODEV; 3224 if (! enable[dev]) { 3225 dev++; 3226 return -ENOENT; 3227 } 3228 3229 err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, 3230 sizeof(struct cmipci), &card); 3231 if (err < 0) 3232 return err; 3233 3234 switch (pci->device) { 3235 case PCI_DEVICE_ID_CMEDIA_CM8738: 3236 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3237 strcpy(card->driver, "CMI8738"); 3238 break; 3239 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3240 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3241 strcpy(card->driver, "CMI8338"); 3242 break; 3243 default: 3244 strcpy(card->driver, "CMIPCI"); 3245 break; 3246 } 3247 3248 err = snd_cmipci_create(card, pci, dev); 3249 if (err < 0) 3250 goto error; 3251 3252 err = snd_card_register(card); 3253 if (err < 0) 3254 goto error; 3255 3256 pci_set_drvdata(pci, card); 3257 dev++; 3258 return 0; 3259 3260 error: 3261 snd_card_free(card); 3262 return err; 3263 } 3264 3265 #ifdef CONFIG_PM_SLEEP 3266 /* 3267 * power management 3268 */ 3269 static const unsigned char saved_regs[] = { 3270 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3271 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_AUX_VOL, CM_REG_PLL, 3272 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3273 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3274 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3275 }; 3276 3277 static const unsigned char saved_mixers[] = { 3278 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3279 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3280 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3281 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3282 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3283 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3284 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3285 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3286 }; 3287 3288 static int snd_cmipci_suspend(struct device *dev) 3289 { 3290 struct snd_card *card = dev_get_drvdata(dev); 3291 struct cmipci *cm = card->private_data; 3292 int i; 3293 3294 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3295 3296 /* save registers */ 3297 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3298 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3299 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3300 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3301 3302 /* disable ints */ 3303 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3304 return 0; 3305 } 3306 3307 static int snd_cmipci_resume(struct device *dev) 3308 { 3309 struct snd_card *card = dev_get_drvdata(dev); 3310 struct cmipci *cm = card->private_data; 3311 int i; 3312 3313 /* reset / initialize to a sane state */ 3314 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3315 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3316 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3317 snd_cmipci_mixer_write(cm, 0, 0); 3318 3319 /* restore registers */ 3320 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3321 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3322 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3323 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3324 3325 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3326 return 0; 3327 } 3328 3329 static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume); 3330 #define SND_CMIPCI_PM_OPS &snd_cmipci_pm 3331 #else 3332 #define SND_CMIPCI_PM_OPS NULL 3333 #endif /* CONFIG_PM_SLEEP */ 3334 3335 static struct pci_driver cmipci_driver = { 3336 .name = KBUILD_MODNAME, 3337 .id_table = snd_cmipci_ids, 3338 .probe = snd_cmipci_probe, 3339 .driver = { 3340 .pm = SND_CMIPCI_PM_OPS, 3341 }, 3342 }; 3343 3344 module_pci_driver(cmipci_driver); 3345