1 /* 2 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 /* Does not work. Warning may block system in capture mode */ 21 /* #define USE_VAR48KRATE */ 22 23 #include <asm/io.h> 24 #include <linux/delay.h> 25 #include <linux/interrupt.h> 26 #include <linux/init.h> 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 #include <linux/gameport.h> 30 #include <linux/moduleparam.h> 31 #include <linux/mutex.h> 32 #include <sound/core.h> 33 #include <sound/info.h> 34 #include <sound/control.h> 35 #include <sound/pcm.h> 36 #include <sound/rawmidi.h> 37 #include <sound/mpu401.h> 38 #include <sound/opl3.h> 39 #include <sound/sb.h> 40 #include <sound/asoundef.h> 41 #include <sound/initval.h> 42 43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 45 MODULE_LICENSE("GPL"); 46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738}," 47 "{C-Media,CMI8738B}," 48 "{C-Media,CMI8338A}," 49 "{C-Media,CMI8338B}}"); 50 51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE)) 52 #define SUPPORT_JOYSTICK 1 53 #endif 54 55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 57 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 58 static long mpu_port[SNDRV_CARDS]; 59 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 60 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 61 #ifdef SUPPORT_JOYSTICK 62 static int joystick_port[SNDRV_CARDS]; 63 #endif 64 65 module_param_array(index, int, NULL, 0444); 66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 67 module_param_array(id, charp, NULL, 0444); 68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 69 module_param_array(enable, bool, NULL, 0444); 70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 71 module_param_array(mpu_port, long, NULL, 0444); 72 MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 73 module_param_array(fm_port, long, NULL, 0444); 74 MODULE_PARM_DESC(fm_port, "FM port."); 75 module_param_array(soft_ac3, bool, NULL, 0444); 76 MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only)."); 77 #ifdef SUPPORT_JOYSTICK 78 module_param_array(joystick_port, int, NULL, 0444); 79 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 80 #endif 81 82 /* 83 * CM8x38 registers definition 84 */ 85 86 #define CM_REG_FUNCTRL0 0x00 87 #define CM_RST_CH1 0x00080000 88 #define CM_RST_CH0 0x00040000 89 #define CM_CHEN1 0x00020000 /* ch1: enable */ 90 #define CM_CHEN0 0x00010000 /* ch0: enable */ 91 #define CM_PAUSE1 0x00000008 /* ch1: pause */ 92 #define CM_PAUSE0 0x00000004 /* ch0: pause */ 93 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 94 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 95 96 #define CM_REG_FUNCTRL1 0x04 97 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 98 #define CM_DSFC_SHIFT 13 99 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 100 #define CM_ASFC_SHIFT 10 101 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 102 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 103 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 104 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 105 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 106 #define CM_BREQ 0x00000010 /* bus master enabled */ 107 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 108 #define CM_UART_EN 0x00000004 /* legacy UART */ 109 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 110 #define CM_ZVPORT 0x00000001 /* ZVPORT */ 111 112 #define CM_REG_CHFORMAT 0x08 113 114 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 115 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 116 #define CM_CHB3D 0x20000000 /* 4 channels */ 117 118 #define CM_CHIP_MASK1 0x1f000000 119 #define CM_CHIP_037 0x01000000 120 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 121 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 122 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 123 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 124 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 125 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 126 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 127 128 #define CM_ADCBITLEN_MASK 0x0000C000 129 #define CM_ADCBITLEN_16 0x00000000 130 #define CM_ADCBITLEN_15 0x00004000 131 #define CM_ADCBITLEN_14 0x00008000 132 #define CM_ADCBITLEN_13 0x0000C000 133 134 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 135 #define CM_ADCDACLEN_060 0x00000000 136 #define CM_ADCDACLEN_066 0x00001000 137 #define CM_ADCDACLEN_130 0x00002000 138 #define CM_ADCDACLEN_280 0x00003000 139 140 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 141 #define CM_ADCDLEN_ORIGINAL 0x00000000 142 #define CM_ADCDLEN_EXTRA 0x00001000 143 #define CM_ADCDLEN_24K 0x00002000 144 #define CM_ADCDLEN_WEIGHT 0x00003000 145 146 #define CM_CH1_SRATE_176K 0x00000800 147 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 148 #define CM_CH1_SRATE_88K 0x00000400 149 #define CM_CH0_SRATE_176K 0x00000200 150 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 151 #define CM_CH0_SRATE_88K 0x00000100 152 #define CM_CH0_SRATE_128K 0x00000300 153 #define CM_CH0_SRATE_MASK 0x00000300 154 155 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 156 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 157 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 158 #define CM_SPDLOCKED 0x00000010 159 160 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 161 #define CM_CH1FMT_SHIFT 2 162 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 163 #define CM_CH0FMT_SHIFT 0 164 165 #define CM_REG_INT_HLDCLR 0x0C 166 #define CM_CHIP_MASK2 0xff000000 167 #define CM_CHIP_8768 0x20000000 168 #define CM_CHIP_055 0x08000000 169 #define CM_CHIP_039 0x04000000 170 #define CM_CHIP_039_6CH 0x01000000 171 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 172 #define CM_TDMA_INT_EN 0x00040000 173 #define CM_CH1_INT_EN 0x00020000 174 #define CM_CH0_INT_EN 0x00010000 175 176 #define CM_REG_INT_STATUS 0x10 177 #define CM_INTR 0x80000000 178 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 179 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 180 #define CM_UARTINT 0x00010000 181 #define CM_LTDMAINT 0x00008000 182 #define CM_HTDMAINT 0x00004000 183 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 184 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 185 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 186 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 187 #define CM_CH1BUSY 0x00000008 188 #define CM_CH0BUSY 0x00000004 189 #define CM_CHINT1 0x00000002 190 #define CM_CHINT0 0x00000001 191 192 #define CM_REG_LEGACY_CTRL 0x14 193 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 194 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 195 #define CM_VMPU_330 0x00000000 196 #define CM_VMPU_320 0x20000000 197 #define CM_VMPU_310 0x40000000 198 #define CM_VMPU_300 0x60000000 199 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 200 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 201 #define CM_VSBSEL_220 0x00000000 202 #define CM_VSBSEL_240 0x04000000 203 #define CM_VSBSEL_260 0x08000000 204 #define CM_VSBSEL_280 0x0C000000 205 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 206 #define CM_FMSEL_388 0x00000000 207 #define CM_FMSEL_3C8 0x01000000 208 #define CM_FMSEL_3E0 0x02000000 209 #define CM_FMSEL_3E8 0x03000000 210 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 211 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 212 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 213 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 214 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 215 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 216 #define CM_C_EECS 0x00040000 217 #define CM_C_EEDI46 0x00020000 218 #define CM_C_EECK46 0x00010000 219 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 220 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 221 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 222 #define CM_EXBASEN 0x00001000 /* external bass input enable */ 223 224 #define CM_REG_MISC_CTRL 0x18 225 #define CM_PWD 0x80000000 /* power down */ 226 #define CM_RESET 0x40000000 227 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 228 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 229 #define CM_TXVX 0x08000000 /* model 037? */ 230 #define CM_N4SPK3D 0x04000000 /* copy front to rear */ 231 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 232 #define CM_SPDIF48K 0x01000000 /* write */ 233 #define CM_SPATUS48K 0x01000000 /* read */ 234 #define CM_ENDBDAC 0x00800000 /* enable double dac */ 235 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 236 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 237 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 238 #define CM_FM_EN 0x00080000 /* enable legacy FM */ 239 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 240 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 241 #define CM_VIDWPDSB 0x00010000 /* model 037? */ 242 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 243 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 244 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 245 #define CM_VIDWPPRT 0x00002000 /* model 037? */ 246 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 247 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 248 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 249 #define CM_ENCENTER 0x00000080 250 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ 251 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 252 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ 253 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 254 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 255 #define CM_UPDDMA_2048 0x00000000 256 #define CM_UPDDMA_1024 0x00000004 257 #define CM_UPDDMA_512 0x00000008 258 #define CM_UPDDMA_256 0x0000000C 259 #define CM_TWAIT_MASK 0x00000003 /* model 037 */ 260 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 261 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 262 263 #define CM_REG_TDMA_POSITION 0x1C 264 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 265 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 266 267 /* byte */ 268 #define CM_REG_MIXER0 0x20 269 #define CM_REG_SBVR 0x20 /* write: sb16 version */ 270 #define CM_REG_DEV 0x20 /* read: hardware device version */ 271 272 #define CM_REG_MIXER21 0x21 273 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ 274 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 275 #define CM_PROINV 0x02 /* SBPro left/right channel switching */ 276 #define CM_X_SB16 0x01 /* SB16 compatible */ 277 278 #define CM_REG_SB16_DATA 0x22 279 #define CM_REG_SB16_ADDR 0x23 280 281 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 282 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 283 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 284 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 285 286 #define CM_REG_MIXER1 0x24 287 #define CM_FMMUTE 0x80 /* mute FM */ 288 #define CM_FMMUTE_SHIFT 7 289 #define CM_WSMUTE 0x40 /* mute PCM */ 290 #define CM_WSMUTE_SHIFT 6 291 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 292 #define CM_REAR2LIN_SHIFT 5 293 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ 294 #define CM_REAR2FRONT_SHIFT 4 295 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 296 #define CM_WAVEINL_SHIFT 3 297 #define CM_WAVEINR 0x04 /* digical wave rec. right */ 298 #define CM_WAVEINR_SHIFT 2 299 #define CM_X3DEN 0x02 /* 3D surround enable */ 300 #define CM_X3DEN_SHIFT 1 301 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 302 #define CM_CDPLAY_SHIFT 0 303 304 #define CM_REG_MIXER2 0x25 305 #define CM_RAUXREN 0x80 /* AUX right capture */ 306 #define CM_RAUXREN_SHIFT 7 307 #define CM_RAUXLEN 0x40 /* AUX left capture */ 308 #define CM_RAUXLEN_SHIFT 6 309 #define CM_VAUXRM 0x20 /* AUX right mute */ 310 #define CM_VAUXRM_SHIFT 5 311 #define CM_VAUXLM 0x10 /* AUX left mute */ 312 #define CM_VAUXLM_SHIFT 4 313 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 314 #define CM_VADMIC_SHIFT 1 315 #define CM_MICGAINZ 0x01 /* mic boost */ 316 #define CM_MICGAINZ_SHIFT 0 317 318 #define CM_REG_MIXER3 0x24 319 #define CM_REG_AUX_VOL 0x26 320 #define CM_VAUXL_MASK 0xf0 321 #define CM_VAUXR_MASK 0x0f 322 323 #define CM_REG_MISC 0x27 324 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 325 #define CM_XGPO1 0x20 326 // #define CM_XGPBIO 0x04 327 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 328 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 329 #define CM_SPDVALID 0x02 /* spdif input valid check */ 330 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 331 332 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 333 /* 334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 335 * or identical with AC97 codec? 336 */ 337 #define CM_REG_EXTERN_CODEC CM_REG_AC97 338 339 /* 340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 341 */ 342 #define CM_REG_MPU_PCI 0x40 343 344 /* 345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 346 */ 347 #define CM_REG_FM_PCI 0x50 348 349 /* 350 * access from SB-mixer port 351 */ 352 #define CM_REG_EXTENT_IND 0xf0 353 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 354 #define CM_VPHONE_SHIFT 5 355 #define CM_VPHOM 0x10 /* Phone mute control */ 356 #define CM_VSPKM 0x08 /* Speaker mute control, default high */ 357 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 358 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 359 #define CM_VADMIC3 0x01 /* Mic record boost */ 360 361 /* 362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 364 * unit (readonly?). 365 */ 366 #define CM_REG_PLL 0xf8 367 368 /* 369 * extended registers 370 */ 371 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 372 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 373 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 374 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 375 376 #define CM_REG_EXT_MISC 0x90 377 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 378 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 379 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 380 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 381 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 382 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 383 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 384 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 385 386 /* 387 * size of i/o region 388 */ 389 #define CM_EXTENT_CODEC 0x100 390 #define CM_EXTENT_MIDI 0x2 391 #define CM_EXTENT_SYNTH 0x4 392 393 394 /* 395 * channels for playback / capture 396 */ 397 #define CM_CH_PLAY 0 398 #define CM_CH_CAPT 1 399 400 /* 401 * flags to check device open/close 402 */ 403 #define CM_OPEN_NONE 0 404 #define CM_OPEN_CH_MASK 0x01 405 #define CM_OPEN_DAC 0x10 406 #define CM_OPEN_ADC 0x20 407 #define CM_OPEN_SPDIF 0x40 408 #define CM_OPEN_MCHAN 0x80 409 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 410 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 411 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 412 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 413 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 414 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 415 416 417 #if CM_CH_PLAY == 1 418 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 419 #define CM_PLAYBACK_SPDF CM_SPDF_1 420 #define CM_CAPTURE_SPDF CM_SPDF_0 421 #else 422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 423 #define CM_PLAYBACK_SPDF CM_SPDF_0 424 #define CM_CAPTURE_SPDF CM_SPDF_1 425 #endif 426 427 428 /* 429 * driver data 430 */ 431 432 struct cmipci_pcm { 433 struct snd_pcm_substream *substream; 434 u8 running; /* dac/adc running? */ 435 u8 fmt; /* format bits */ 436 u8 is_dac; 437 u8 needs_silencing; 438 unsigned int dma_size; /* in frames */ 439 unsigned int shift; 440 unsigned int ch; /* channel (0/1) */ 441 unsigned int offset; /* physical address of the buffer */ 442 }; 443 444 /* mixer elements toggled/resumed during ac3 playback */ 445 struct cmipci_mixer_auto_switches { 446 const char *name; /* switch to toggle */ 447 int toggle_on; /* value to change when ac3 mode */ 448 }; 449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 450 {"PCM Playback Switch", 0}, 451 {"IEC958 Output Switch", 1}, 452 {"IEC958 Mix Analog", 0}, 453 // {"IEC958 Out To DAC", 1}, // no longer used 454 {"IEC958 Loop", 0}, 455 }; 456 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 457 458 struct cmipci { 459 struct snd_card *card; 460 461 struct pci_dev *pci; 462 unsigned int device; /* device ID */ 463 int irq; 464 465 unsigned long iobase; 466 unsigned int ctrl; /* FUNCTRL0 current value */ 467 468 struct snd_pcm *pcm; /* DAC/ADC PCM */ 469 struct snd_pcm *pcm2; /* 2nd DAC */ 470 struct snd_pcm *pcm_spdif; /* SPDIF */ 471 472 int chip_version; 473 int max_channels; 474 unsigned int can_ac3_sw: 1; 475 unsigned int can_ac3_hw: 1; 476 unsigned int can_multi_ch: 1; 477 unsigned int can_96k: 1; /* samplerate above 48k */ 478 unsigned int do_soft_ac3: 1; 479 480 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 481 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 482 int spdif_counter; /* for software AC3 */ 483 484 unsigned int dig_status; 485 unsigned int dig_pcm_status; 486 487 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 488 489 int opened[2]; /* open mode */ 490 struct mutex open_mutex; 491 492 unsigned int mixer_insensitive: 1; 493 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 494 int mixer_res_status[CM_SAVED_MIXERS]; 495 496 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 497 498 /* external MIDI */ 499 struct snd_rawmidi *rmidi; 500 501 #ifdef SUPPORT_JOYSTICK 502 struct gameport *gameport; 503 #endif 504 505 spinlock_t reg_lock; 506 507 #ifdef CONFIG_PM 508 unsigned int saved_regs[0x20]; 509 unsigned char saved_mixers[0x20]; 510 #endif 511 }; 512 513 514 /* read/write operations for dword register */ 515 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 516 { 517 outl(data, cm->iobase + cmd); 518 } 519 520 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 521 { 522 return inl(cm->iobase + cmd); 523 } 524 525 /* read/write operations for word register */ 526 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 527 { 528 outw(data, cm->iobase + cmd); 529 } 530 531 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 532 { 533 return inw(cm->iobase + cmd); 534 } 535 536 /* read/write operations for byte register */ 537 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 538 { 539 outb(data, cm->iobase + cmd); 540 } 541 542 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 543 { 544 return inb(cm->iobase + cmd); 545 } 546 547 /* bit operations for dword register */ 548 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 549 { 550 unsigned int val, oval; 551 val = oval = inl(cm->iobase + cmd); 552 val |= flag; 553 if (val == oval) 554 return 0; 555 outl(val, cm->iobase + cmd); 556 return 1; 557 } 558 559 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 560 { 561 unsigned int val, oval; 562 val = oval = inl(cm->iobase + cmd); 563 val &= ~flag; 564 if (val == oval) 565 return 0; 566 outl(val, cm->iobase + cmd); 567 return 1; 568 } 569 570 /* bit operations for byte register */ 571 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 572 { 573 unsigned char val, oval; 574 val = oval = inb(cm->iobase + cmd); 575 val |= flag; 576 if (val == oval) 577 return 0; 578 outb(val, cm->iobase + cmd); 579 return 1; 580 } 581 582 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 583 { 584 unsigned char val, oval; 585 val = oval = inb(cm->iobase + cmd); 586 val &= ~flag; 587 if (val == oval) 588 return 0; 589 outb(val, cm->iobase + cmd); 590 return 1; 591 } 592 593 594 /* 595 * PCM interface 596 */ 597 598 /* 599 * calculate frequency 600 */ 601 602 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 603 604 static unsigned int snd_cmipci_rate_freq(unsigned int rate) 605 { 606 unsigned int i; 607 608 for (i = 0; i < ARRAY_SIZE(rates); i++) { 609 if (rates[i] == rate) 610 return i; 611 } 612 snd_BUG(); 613 return 0; 614 } 615 616 #ifdef USE_VAR48KRATE 617 /* 618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 619 * does it this way .. maybe not. Never get any information from C-Media about 620 * that <werner@suse.de>. 621 */ 622 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 623 { 624 unsigned int delta, tolerance; 625 int xm, xn, xr; 626 627 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 628 rate <<= 1; 629 *n = -1; 630 if (*r > 0xff) 631 goto out; 632 tolerance = rate*CM_TOLERANCE_RATE; 633 634 for (xn = (1+2); xn < (0x1f+2); xn++) { 635 for (xm = (1+2); xm < (0xff+2); xm++) { 636 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 637 638 if (xr < rate) 639 delta = rate - xr; 640 else 641 delta = xr - rate; 642 643 /* 644 * If we found one, remember this, 645 * and try to find a closer one 646 */ 647 if (delta < tolerance) { 648 tolerance = delta; 649 *m = xm - 2; 650 *n = xn - 2; 651 } 652 } 653 } 654 out: 655 return (*n > -1); 656 } 657 658 /* 659 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff 660 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen 661 * at the register CM_REG_FUNCTRL1 (0x04). 662 * Problem: other ways are also possible (any information about that?) 663 */ 664 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 665 { 666 unsigned int reg = CM_REG_PLL + slot; 667 /* 668 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 669 * for DSFC/ASFC (000 up to 111). 670 */ 671 672 /* FIXME: Init (Do we've to set an other register first before programming?) */ 673 674 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 675 snd_cmipci_write_b(cm, reg, rate>>8); 676 snd_cmipci_write_b(cm, reg, rate&0xff); 677 678 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 679 } 680 #endif /* USE_VAR48KRATE */ 681 682 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream, 683 struct snd_pcm_hw_params *hw_params) 684 { 685 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 686 } 687 688 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 689 struct snd_pcm_hw_params *hw_params) 690 { 691 struct cmipci *cm = snd_pcm_substream_chip(substream); 692 if (params_channels(hw_params) > 2) { 693 mutex_lock(&cm->open_mutex); 694 if (cm->opened[CM_CH_PLAY]) { 695 mutex_unlock(&cm->open_mutex); 696 return -EBUSY; 697 } 698 /* reserve the channel A */ 699 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 700 mutex_unlock(&cm->open_mutex); 701 } 702 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 703 } 704 705 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 706 { 707 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 708 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 709 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 710 udelay(10); 711 } 712 713 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream) 714 { 715 return snd_pcm_lib_free_pages(substream); 716 } 717 718 719 /* 720 */ 721 722 static unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 723 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 724 .count = 3, 725 .list = hw_channels, 726 .mask = 0, 727 }; 728 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 729 .count = 4, 730 .list = hw_channels, 731 .mask = 0, 732 }; 733 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 734 .count = 5, 735 .list = hw_channels, 736 .mask = 0, 737 }; 738 739 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 740 { 741 if (channels > 2) { 742 if (!cm->can_multi_ch || !rec->ch) 743 return -EINVAL; 744 if (rec->fmt != 0x03) /* stereo 16bit only */ 745 return -EINVAL; 746 } 747 748 if (cm->can_multi_ch) { 749 spin_lock_irq(&cm->reg_lock); 750 if (channels > 2) { 751 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 752 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 753 } else { 754 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 755 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 756 } 757 if (channels == 8) 758 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 759 else 760 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 761 if (channels == 6) { 762 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 763 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 764 } else { 765 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 766 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 767 } 768 if (channels == 4) 769 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 770 else 771 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 772 spin_unlock_irq(&cm->reg_lock); 773 } 774 return 0; 775 } 776 777 778 /* 779 * prepare playback/capture channel 780 * channel to be used must have been set in rec->ch. 781 */ 782 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 783 struct snd_pcm_substream *substream) 784 { 785 unsigned int reg, freq, freq_ext, val; 786 unsigned int period_size; 787 struct snd_pcm_runtime *runtime = substream->runtime; 788 789 rec->fmt = 0; 790 rec->shift = 0; 791 if (snd_pcm_format_width(runtime->format) >= 16) { 792 rec->fmt |= 0x02; 793 if (snd_pcm_format_width(runtime->format) > 16) 794 rec->shift++; /* 24/32bit */ 795 } 796 if (runtime->channels > 1) 797 rec->fmt |= 0x01; 798 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 799 snd_printd("cannot set dac channels\n"); 800 return -EINVAL; 801 } 802 803 rec->offset = runtime->dma_addr; 804 /* buffer and period sizes in frame */ 805 rec->dma_size = runtime->buffer_size << rec->shift; 806 period_size = runtime->period_size << rec->shift; 807 if (runtime->channels > 2) { 808 /* multi-channels */ 809 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 810 period_size = (period_size * runtime->channels) / 2; 811 } 812 813 spin_lock_irq(&cm->reg_lock); 814 815 /* set buffer address */ 816 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 817 snd_cmipci_write(cm, reg, rec->offset); 818 /* program sample counts */ 819 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 820 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 821 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 822 823 /* set adc/dac flag */ 824 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 825 if (rec->is_dac) 826 cm->ctrl &= ~val; 827 else 828 cm->ctrl |= val; 829 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 830 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl); 831 832 /* set sample rate */ 833 freq = 0; 834 freq_ext = 0; 835 if (runtime->rate > 48000) 836 switch (runtime->rate) { 837 case 88200: freq_ext = CM_CH0_SRATE_88K; break; 838 case 96000: freq_ext = CM_CH0_SRATE_96K; break; 839 case 128000: freq_ext = CM_CH0_SRATE_128K; break; 840 default: snd_BUG(); break; 841 } 842 else 843 freq = snd_cmipci_rate_freq(runtime->rate); 844 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 845 if (rec->ch) { 846 val &= ~CM_DSFC_MASK; 847 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 848 } else { 849 val &= ~CM_ASFC_MASK; 850 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 851 } 852 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 853 //snd_printd("cmipci: functrl1 = %08x\n", val); 854 855 /* set format */ 856 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 857 if (rec->ch) { 858 val &= ~CM_CH1FMT_MASK; 859 val |= rec->fmt << CM_CH1FMT_SHIFT; 860 } else { 861 val &= ~CM_CH0FMT_MASK; 862 val |= rec->fmt << CM_CH0FMT_SHIFT; 863 } 864 if (cm->can_96k) { 865 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 866 val |= freq_ext << (rec->ch * 2); 867 } 868 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 869 //snd_printd("cmipci: chformat = %08x\n", val); 870 871 if (!rec->is_dac && cm->chip_version) { 872 if (runtime->rate > 44100) 873 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 874 else 875 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 876 } 877 878 rec->running = 0; 879 spin_unlock_irq(&cm->reg_lock); 880 881 return 0; 882 } 883 884 /* 885 * PCM trigger/stop 886 */ 887 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 888 int cmd) 889 { 890 unsigned int inthld, chen, reset, pause; 891 int result = 0; 892 893 inthld = CM_CH0_INT_EN << rec->ch; 894 chen = CM_CHEN0 << rec->ch; 895 reset = CM_RST_CH0 << rec->ch; 896 pause = CM_PAUSE0 << rec->ch; 897 898 spin_lock(&cm->reg_lock); 899 switch (cmd) { 900 case SNDRV_PCM_TRIGGER_START: 901 rec->running = 1; 902 /* set interrupt */ 903 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 904 cm->ctrl |= chen; 905 /* enable channel */ 906 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 907 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl); 908 break; 909 case SNDRV_PCM_TRIGGER_STOP: 910 rec->running = 0; 911 /* disable interrupt */ 912 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 913 /* reset */ 914 cm->ctrl &= ~chen; 915 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 916 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 917 rec->needs_silencing = rec->is_dac; 918 break; 919 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 920 case SNDRV_PCM_TRIGGER_SUSPEND: 921 cm->ctrl |= pause; 922 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 923 break; 924 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 925 case SNDRV_PCM_TRIGGER_RESUME: 926 cm->ctrl &= ~pause; 927 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 928 break; 929 default: 930 result = -EINVAL; 931 break; 932 } 933 spin_unlock(&cm->reg_lock); 934 return result; 935 } 936 937 /* 938 * return the current pointer 939 */ 940 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 941 struct snd_pcm_substream *substream) 942 { 943 size_t ptr; 944 unsigned int reg, rem, tries; 945 946 if (!rec->running) 947 return 0; 948 #if 1 // this seems better.. 949 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 950 for (tries = 0; tries < 3; tries++) { 951 rem = snd_cmipci_read_w(cm, reg); 952 if (rem < rec->dma_size) 953 goto ok; 954 } 955 printk(KERN_ERR "cmipci: invalid PCM pointer: %#x\n", rem); 956 return SNDRV_PCM_POS_XRUN; 957 ok: 958 ptr = (rec->dma_size - (rem + 1)) >> rec->shift; 959 #else 960 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 961 ptr = snd_cmipci_read(cm, reg) - rec->offset; 962 ptr = bytes_to_frames(substream->runtime, ptr); 963 #endif 964 if (substream->runtime->channels > 2) 965 ptr = (ptr * 2) / substream->runtime->channels; 966 return ptr; 967 } 968 969 /* 970 * playback 971 */ 972 973 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 974 int cmd) 975 { 976 struct cmipci *cm = snd_pcm_substream_chip(substream); 977 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 978 } 979 980 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 981 { 982 struct cmipci *cm = snd_pcm_substream_chip(substream); 983 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 984 } 985 986 987 988 /* 989 * capture 990 */ 991 992 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 993 int cmd) 994 { 995 struct cmipci *cm = snd_pcm_substream_chip(substream); 996 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 997 } 998 999 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 1000 { 1001 struct cmipci *cm = snd_pcm_substream_chip(substream); 1002 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 1003 } 1004 1005 1006 /* 1007 * hw preparation for spdif 1008 */ 1009 1010 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 1011 struct snd_ctl_elem_info *uinfo) 1012 { 1013 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1014 uinfo->count = 1; 1015 return 0; 1016 } 1017 1018 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 1019 struct snd_ctl_elem_value *ucontrol) 1020 { 1021 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1022 int i; 1023 1024 spin_lock_irq(&chip->reg_lock); 1025 for (i = 0; i < 4; i++) 1026 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 1027 spin_unlock_irq(&chip->reg_lock); 1028 return 0; 1029 } 1030 1031 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 1032 struct snd_ctl_elem_value *ucontrol) 1033 { 1034 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1035 int i, change; 1036 unsigned int val; 1037 1038 val = 0; 1039 spin_lock_irq(&chip->reg_lock); 1040 for (i = 0; i < 4; i++) 1041 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1042 change = val != chip->dig_status; 1043 chip->dig_status = val; 1044 spin_unlock_irq(&chip->reg_lock); 1045 return change; 1046 } 1047 1048 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata = 1049 { 1050 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1051 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1052 .info = snd_cmipci_spdif_default_info, 1053 .get = snd_cmipci_spdif_default_get, 1054 .put = snd_cmipci_spdif_default_put 1055 }; 1056 1057 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1058 struct snd_ctl_elem_info *uinfo) 1059 { 1060 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1061 uinfo->count = 1; 1062 return 0; 1063 } 1064 1065 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1066 struct snd_ctl_elem_value *ucontrol) 1067 { 1068 ucontrol->value.iec958.status[0] = 0xff; 1069 ucontrol->value.iec958.status[1] = 0xff; 1070 ucontrol->value.iec958.status[2] = 0xff; 1071 ucontrol->value.iec958.status[3] = 0xff; 1072 return 0; 1073 } 1074 1075 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata = 1076 { 1077 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1078 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1079 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1080 .info = snd_cmipci_spdif_mask_info, 1081 .get = snd_cmipci_spdif_mask_get, 1082 }; 1083 1084 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1085 struct snd_ctl_elem_info *uinfo) 1086 { 1087 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1088 uinfo->count = 1; 1089 return 0; 1090 } 1091 1092 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1093 struct snd_ctl_elem_value *ucontrol) 1094 { 1095 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1096 int i; 1097 1098 spin_lock_irq(&chip->reg_lock); 1099 for (i = 0; i < 4; i++) 1100 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1101 spin_unlock_irq(&chip->reg_lock); 1102 return 0; 1103 } 1104 1105 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1106 struct snd_ctl_elem_value *ucontrol) 1107 { 1108 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1109 int i, change; 1110 unsigned int val; 1111 1112 val = 0; 1113 spin_lock_irq(&chip->reg_lock); 1114 for (i = 0; i < 4; i++) 1115 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1116 change = val != chip->dig_pcm_status; 1117 chip->dig_pcm_status = val; 1118 spin_unlock_irq(&chip->reg_lock); 1119 return change; 1120 } 1121 1122 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata = 1123 { 1124 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1125 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1126 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1127 .info = snd_cmipci_spdif_stream_info, 1128 .get = snd_cmipci_spdif_stream_get, 1129 .put = snd_cmipci_spdif_stream_put 1130 }; 1131 1132 /* 1133 */ 1134 1135 /* save mixer setting and mute for AC3 playback */ 1136 static int save_mixer_state(struct cmipci *cm) 1137 { 1138 if (! cm->mixer_insensitive) { 1139 struct snd_ctl_elem_value *val; 1140 unsigned int i; 1141 1142 val = kmalloc(sizeof(*val), GFP_ATOMIC); 1143 if (!val) 1144 return -ENOMEM; 1145 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1146 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1147 if (ctl) { 1148 int event; 1149 memset(val, 0, sizeof(*val)); 1150 ctl->get(ctl, val); 1151 cm->mixer_res_status[i] = val->value.integer.value[0]; 1152 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1153 event = SNDRV_CTL_EVENT_MASK_INFO; 1154 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1155 ctl->put(ctl, val); /* toggle */ 1156 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1157 } 1158 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1159 snd_ctl_notify(cm->card, event, &ctl->id); 1160 } 1161 } 1162 kfree(val); 1163 cm->mixer_insensitive = 1; 1164 } 1165 return 0; 1166 } 1167 1168 1169 /* restore the previously saved mixer status */ 1170 static void restore_mixer_state(struct cmipci *cm) 1171 { 1172 if (cm->mixer_insensitive) { 1173 struct snd_ctl_elem_value *val; 1174 unsigned int i; 1175 1176 val = kmalloc(sizeof(*val), GFP_KERNEL); 1177 if (!val) 1178 return; 1179 cm->mixer_insensitive = 0; /* at first clear this; 1180 otherwise the changes will be ignored */ 1181 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1182 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1183 if (ctl) { 1184 int event; 1185 1186 memset(val, 0, sizeof(*val)); 1187 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1188 ctl->get(ctl, val); 1189 event = SNDRV_CTL_EVENT_MASK_INFO; 1190 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1191 val->value.integer.value[0] = cm->mixer_res_status[i]; 1192 ctl->put(ctl, val); 1193 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1194 } 1195 snd_ctl_notify(cm->card, event, &ctl->id); 1196 } 1197 } 1198 kfree(val); 1199 } 1200 } 1201 1202 /* spinlock held! */ 1203 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1204 { 1205 if (do_ac3) { 1206 /* AC3EN for 037 */ 1207 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1208 /* AC3EN for 039 */ 1209 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1210 1211 if (cm->can_ac3_hw) { 1212 /* SPD24SEL for 037, 0x02 */ 1213 /* SPD24SEL for 039, 0x20, but cannot be set */ 1214 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1215 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1216 } else { /* can_ac3_sw */ 1217 /* SPD32SEL for 037 & 039, 0x20 */ 1218 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1219 /* set 176K sample rate to fix 033 HW bug */ 1220 if (cm->chip_version == 33) { 1221 if (rate >= 48000) { 1222 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1223 } else { 1224 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1225 } 1226 } 1227 } 1228 1229 } else { 1230 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1231 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1232 1233 if (cm->can_ac3_hw) { 1234 /* chip model >= 37 */ 1235 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1236 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1237 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1238 } else { 1239 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1240 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1241 } 1242 } else { 1243 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1244 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1245 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1246 } 1247 } 1248 } 1249 1250 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1251 { 1252 int rate, err; 1253 1254 rate = subs->runtime->rate; 1255 1256 if (up && do_ac3) 1257 if ((err = save_mixer_state(cm)) < 0) 1258 return err; 1259 1260 spin_lock_irq(&cm->reg_lock); 1261 cm->spdif_playback_avail = up; 1262 if (up) { 1263 /* they are controlled via "IEC958 Output Switch" */ 1264 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1265 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1266 if (cm->spdif_playback_enabled) 1267 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1268 setup_ac3(cm, subs, do_ac3, rate); 1269 1270 if (rate == 48000 || rate == 96000) 1271 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1272 else 1273 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1274 if (rate > 48000) 1275 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1276 else 1277 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1278 } else { 1279 /* they are controlled via "IEC958 Output Switch" */ 1280 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1281 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1282 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1283 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1284 setup_ac3(cm, subs, 0, 0); 1285 } 1286 spin_unlock_irq(&cm->reg_lock); 1287 return 0; 1288 } 1289 1290 1291 /* 1292 * preparation 1293 */ 1294 1295 /* playback - enable spdif only on the certain condition */ 1296 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1297 { 1298 struct cmipci *cm = snd_pcm_substream_chip(substream); 1299 int rate = substream->runtime->rate; 1300 int err, do_spdif, do_ac3 = 0; 1301 1302 do_spdif = (rate >= 44100 && rate <= 96000 && 1303 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1304 substream->runtime->channels == 2); 1305 if (do_spdif && cm->can_ac3_hw) 1306 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1307 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0) 1308 return err; 1309 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1310 } 1311 1312 /* playback (via device #2) - enable spdif always */ 1313 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1314 { 1315 struct cmipci *cm = snd_pcm_substream_chip(substream); 1316 int err, do_ac3; 1317 1318 if (cm->can_ac3_hw) 1319 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1320 else 1321 do_ac3 = 1; /* doesn't matter */ 1322 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0) 1323 return err; 1324 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1325 } 1326 1327 /* 1328 * Apparently, the samples last played on channel A stay in some buffer, even 1329 * after the channel is reset, and get added to the data for the rear DACs when 1330 * playing a multichannel stream on channel B. This is likely to generate 1331 * wraparounds and thus distortions. 1332 * To avoid this, we play at least one zero sample after the actual stream has 1333 * stopped. 1334 */ 1335 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1336 { 1337 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1338 unsigned int reg, val; 1339 1340 if (rec->needs_silencing && runtime && runtime->dma_area) { 1341 /* set up a small silence buffer */ 1342 memset(runtime->dma_area, 0, PAGE_SIZE); 1343 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1344 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1345 snd_cmipci_write(cm, reg, val); 1346 1347 /* configure for 16 bits, 2 channels, 8 kHz */ 1348 if (runtime->channels > 2) 1349 set_dac_channels(cm, rec, 2); 1350 spin_lock_irq(&cm->reg_lock); 1351 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1352 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1353 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1354 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1355 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1356 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1357 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1358 if (cm->can_96k) 1359 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 1360 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1361 1362 /* start stream (we don't need interrupts) */ 1363 cm->ctrl |= CM_CHEN0 << rec->ch; 1364 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1365 spin_unlock_irq(&cm->reg_lock); 1366 1367 msleep(1); 1368 1369 /* stop and reset stream */ 1370 spin_lock_irq(&cm->reg_lock); 1371 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1372 val = CM_RST_CH0 << rec->ch; 1373 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1374 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1375 spin_unlock_irq(&cm->reg_lock); 1376 1377 rec->needs_silencing = 0; 1378 } 1379 } 1380 1381 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1382 { 1383 struct cmipci *cm = snd_pcm_substream_chip(substream); 1384 setup_spdif_playback(cm, substream, 0, 0); 1385 restore_mixer_state(cm); 1386 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1387 return snd_cmipci_hw_free(substream); 1388 } 1389 1390 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1391 { 1392 struct cmipci *cm = snd_pcm_substream_chip(substream); 1393 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1394 return snd_cmipci_hw_free(substream); 1395 } 1396 1397 /* capture */ 1398 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1399 { 1400 struct cmipci *cm = snd_pcm_substream_chip(substream); 1401 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1402 } 1403 1404 /* capture with spdif (via device #2) */ 1405 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1406 { 1407 struct cmipci *cm = snd_pcm_substream_chip(substream); 1408 1409 spin_lock_irq(&cm->reg_lock); 1410 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1411 if (cm->can_96k) { 1412 if (substream->runtime->rate > 48000) 1413 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1414 else 1415 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1416 } 1417 if (snd_pcm_format_width(substream->runtime->format) > 16) 1418 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1419 else 1420 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1421 1422 spin_unlock_irq(&cm->reg_lock); 1423 1424 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1425 } 1426 1427 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1428 { 1429 struct cmipci *cm = snd_pcm_substream_chip(subs); 1430 1431 spin_lock_irq(&cm->reg_lock); 1432 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1433 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1434 spin_unlock_irq(&cm->reg_lock); 1435 1436 return snd_cmipci_hw_free(subs); 1437 } 1438 1439 1440 /* 1441 * interrupt handler 1442 */ 1443 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1444 { 1445 struct cmipci *cm = dev_id; 1446 unsigned int status, mask = 0; 1447 1448 /* fastpath out, to ease interrupt sharing */ 1449 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1450 if (!(status & CM_INTR)) 1451 return IRQ_NONE; 1452 1453 /* acknowledge interrupt */ 1454 spin_lock(&cm->reg_lock); 1455 if (status & CM_CHINT0) 1456 mask |= CM_CH0_INT_EN; 1457 if (status & CM_CHINT1) 1458 mask |= CM_CH1_INT_EN; 1459 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1460 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1461 spin_unlock(&cm->reg_lock); 1462 1463 if (cm->rmidi && (status & CM_UARTINT)) 1464 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1465 1466 if (cm->pcm) { 1467 if ((status & CM_CHINT0) && cm->channel[0].running) 1468 snd_pcm_period_elapsed(cm->channel[0].substream); 1469 if ((status & CM_CHINT1) && cm->channel[1].running) 1470 snd_pcm_period_elapsed(cm->channel[1].substream); 1471 } 1472 return IRQ_HANDLED; 1473 } 1474 1475 /* 1476 * h/w infos 1477 */ 1478 1479 /* playback on channel A */ 1480 static struct snd_pcm_hardware snd_cmipci_playback = 1481 { 1482 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1483 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1484 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1485 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1486 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1487 .rate_min = 5512, 1488 .rate_max = 48000, 1489 .channels_min = 1, 1490 .channels_max = 2, 1491 .buffer_bytes_max = (128*1024), 1492 .period_bytes_min = 64, 1493 .period_bytes_max = (128*1024), 1494 .periods_min = 2, 1495 .periods_max = 1024, 1496 .fifo_size = 0, 1497 }; 1498 1499 /* capture on channel B */ 1500 static struct snd_pcm_hardware snd_cmipci_capture = 1501 { 1502 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1503 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1504 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1505 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1506 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1507 .rate_min = 5512, 1508 .rate_max = 48000, 1509 .channels_min = 1, 1510 .channels_max = 2, 1511 .buffer_bytes_max = (128*1024), 1512 .period_bytes_min = 64, 1513 .period_bytes_max = (128*1024), 1514 .periods_min = 2, 1515 .periods_max = 1024, 1516 .fifo_size = 0, 1517 }; 1518 1519 /* playback on channel B - stereo 16bit only? */ 1520 static struct snd_pcm_hardware snd_cmipci_playback2 = 1521 { 1522 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1523 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1524 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1525 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1526 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1527 .rate_min = 5512, 1528 .rate_max = 48000, 1529 .channels_min = 2, 1530 .channels_max = 2, 1531 .buffer_bytes_max = (128*1024), 1532 .period_bytes_min = 64, 1533 .period_bytes_max = (128*1024), 1534 .periods_min = 2, 1535 .periods_max = 1024, 1536 .fifo_size = 0, 1537 }; 1538 1539 /* spdif playback on channel A */ 1540 static struct snd_pcm_hardware snd_cmipci_playback_spdif = 1541 { 1542 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1543 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1544 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1545 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1546 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1547 .rate_min = 44100, 1548 .rate_max = 48000, 1549 .channels_min = 2, 1550 .channels_max = 2, 1551 .buffer_bytes_max = (128*1024), 1552 .period_bytes_min = 64, 1553 .period_bytes_max = (128*1024), 1554 .periods_min = 2, 1555 .periods_max = 1024, 1556 .fifo_size = 0, 1557 }; 1558 1559 /* spdif playback on channel A (32bit, IEC958 subframes) */ 1560 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1561 { 1562 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1563 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1564 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1565 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1566 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1567 .rate_min = 44100, 1568 .rate_max = 48000, 1569 .channels_min = 2, 1570 .channels_max = 2, 1571 .buffer_bytes_max = (128*1024), 1572 .period_bytes_min = 64, 1573 .period_bytes_max = (128*1024), 1574 .periods_min = 2, 1575 .periods_max = 1024, 1576 .fifo_size = 0, 1577 }; 1578 1579 /* spdif capture on channel B */ 1580 static struct snd_pcm_hardware snd_cmipci_capture_spdif = 1581 { 1582 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1583 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1584 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1585 .formats = SNDRV_PCM_FMTBIT_S16_LE | 1586 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1587 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1588 .rate_min = 44100, 1589 .rate_max = 48000, 1590 .channels_min = 2, 1591 .channels_max = 2, 1592 .buffer_bytes_max = (128*1024), 1593 .period_bytes_min = 64, 1594 .period_bytes_max = (128*1024), 1595 .periods_min = 2, 1596 .periods_max = 1024, 1597 .fifo_size = 0, 1598 }; 1599 1600 static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050, 1601 32000, 44100, 48000, 88200, 96000, 128000 }; 1602 static struct snd_pcm_hw_constraint_list hw_constraints_rates = { 1603 .count = ARRAY_SIZE(rate_constraints), 1604 .list = rate_constraints, 1605 .mask = 0, 1606 }; 1607 1608 /* 1609 * check device open/close 1610 */ 1611 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1612 { 1613 int ch = mode & CM_OPEN_CH_MASK; 1614 1615 /* FIXME: a file should wait until the device becomes free 1616 * when it's opened on blocking mode. however, since the current 1617 * pcm framework doesn't pass file pointer before actually opened, 1618 * we can't know whether blocking mode or not in open callback.. 1619 */ 1620 mutex_lock(&cm->open_mutex); 1621 if (cm->opened[ch]) { 1622 mutex_unlock(&cm->open_mutex); 1623 return -EBUSY; 1624 } 1625 cm->opened[ch] = mode; 1626 cm->channel[ch].substream = subs; 1627 if (! (mode & CM_OPEN_DAC)) { 1628 /* disable dual DAC mode */ 1629 cm->channel[ch].is_dac = 0; 1630 spin_lock_irq(&cm->reg_lock); 1631 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1632 spin_unlock_irq(&cm->reg_lock); 1633 } 1634 mutex_unlock(&cm->open_mutex); 1635 return 0; 1636 } 1637 1638 static void close_device_check(struct cmipci *cm, int mode) 1639 { 1640 int ch = mode & CM_OPEN_CH_MASK; 1641 1642 mutex_lock(&cm->open_mutex); 1643 if (cm->opened[ch] == mode) { 1644 if (cm->channel[ch].substream) { 1645 snd_cmipci_ch_reset(cm, ch); 1646 cm->channel[ch].running = 0; 1647 cm->channel[ch].substream = NULL; 1648 } 1649 cm->opened[ch] = 0; 1650 if (! cm->channel[ch].is_dac) { 1651 /* enable dual DAC mode again */ 1652 cm->channel[ch].is_dac = 1; 1653 spin_lock_irq(&cm->reg_lock); 1654 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1655 spin_unlock_irq(&cm->reg_lock); 1656 } 1657 } 1658 mutex_unlock(&cm->open_mutex); 1659 } 1660 1661 /* 1662 */ 1663 1664 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1665 { 1666 struct cmipci *cm = snd_pcm_substream_chip(substream); 1667 struct snd_pcm_runtime *runtime = substream->runtime; 1668 int err; 1669 1670 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0) 1671 return err; 1672 runtime->hw = snd_cmipci_playback; 1673 if (cm->chip_version == 68) { 1674 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1675 SNDRV_PCM_RATE_96000; 1676 runtime->hw.rate_max = 96000; 1677 } else if (cm->chip_version == 55) { 1678 err = snd_pcm_hw_constraint_list(runtime, 0, 1679 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1680 if (err < 0) 1681 return err; 1682 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1683 runtime->hw.rate_max = 128000; 1684 } 1685 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1686 cm->dig_pcm_status = cm->dig_status; 1687 return 0; 1688 } 1689 1690 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1691 { 1692 struct cmipci *cm = snd_pcm_substream_chip(substream); 1693 struct snd_pcm_runtime *runtime = substream->runtime; 1694 int err; 1695 1696 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0) 1697 return err; 1698 runtime->hw = snd_cmipci_capture; 1699 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1700 runtime->hw.rate_min = 41000; 1701 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1702 } else if (cm->chip_version == 55) { 1703 err = snd_pcm_hw_constraint_list(runtime, 0, 1704 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1705 if (err < 0) 1706 return err; 1707 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1708 runtime->hw.rate_max = 128000; 1709 } 1710 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1711 return 0; 1712 } 1713 1714 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1715 { 1716 struct cmipci *cm = snd_pcm_substream_chip(substream); 1717 struct snd_pcm_runtime *runtime = substream->runtime; 1718 int err; 1719 1720 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */ 1721 return err; 1722 runtime->hw = snd_cmipci_playback2; 1723 mutex_lock(&cm->open_mutex); 1724 if (! cm->opened[CM_CH_PLAY]) { 1725 if (cm->can_multi_ch) { 1726 runtime->hw.channels_max = cm->max_channels; 1727 if (cm->max_channels == 4) 1728 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1729 else if (cm->max_channels == 6) 1730 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1731 else if (cm->max_channels == 8) 1732 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1733 } 1734 } 1735 mutex_unlock(&cm->open_mutex); 1736 if (cm->chip_version == 68) { 1737 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1738 SNDRV_PCM_RATE_96000; 1739 runtime->hw.rate_max = 96000; 1740 } else if (cm->chip_version == 55) { 1741 err = snd_pcm_hw_constraint_list(runtime, 0, 1742 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1743 if (err < 0) 1744 return err; 1745 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1746 runtime->hw.rate_max = 128000; 1747 } 1748 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1749 return 0; 1750 } 1751 1752 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1753 { 1754 struct cmipci *cm = snd_pcm_substream_chip(substream); 1755 struct snd_pcm_runtime *runtime = substream->runtime; 1756 int err; 1757 1758 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */ 1759 return err; 1760 if (cm->can_ac3_hw) { 1761 runtime->hw = snd_cmipci_playback_spdif; 1762 if (cm->chip_version >= 37) { 1763 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1764 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1765 } 1766 if (cm->can_96k) { 1767 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1768 SNDRV_PCM_RATE_96000; 1769 runtime->hw.rate_max = 96000; 1770 } 1771 } else { 1772 runtime->hw = snd_cmipci_playback_iec958_subframe; 1773 } 1774 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1775 cm->dig_pcm_status = cm->dig_status; 1776 return 0; 1777 } 1778 1779 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1780 { 1781 struct cmipci *cm = snd_pcm_substream_chip(substream); 1782 struct snd_pcm_runtime *runtime = substream->runtime; 1783 int err; 1784 1785 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */ 1786 return err; 1787 runtime->hw = snd_cmipci_capture_spdif; 1788 if (cm->can_96k && !(cm->chip_version == 68)) { 1789 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1790 SNDRV_PCM_RATE_96000; 1791 runtime->hw.rate_max = 96000; 1792 } 1793 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1794 return 0; 1795 } 1796 1797 1798 /* 1799 */ 1800 1801 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1802 { 1803 struct cmipci *cm = snd_pcm_substream_chip(substream); 1804 close_device_check(cm, CM_OPEN_PLAYBACK); 1805 return 0; 1806 } 1807 1808 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1809 { 1810 struct cmipci *cm = snd_pcm_substream_chip(substream); 1811 close_device_check(cm, CM_OPEN_CAPTURE); 1812 return 0; 1813 } 1814 1815 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1816 { 1817 struct cmipci *cm = snd_pcm_substream_chip(substream); 1818 close_device_check(cm, CM_OPEN_PLAYBACK2); 1819 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1820 return 0; 1821 } 1822 1823 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1824 { 1825 struct cmipci *cm = snd_pcm_substream_chip(substream); 1826 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1827 return 0; 1828 } 1829 1830 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1831 { 1832 struct cmipci *cm = snd_pcm_substream_chip(substream); 1833 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1834 return 0; 1835 } 1836 1837 1838 /* 1839 */ 1840 1841 static struct snd_pcm_ops snd_cmipci_playback_ops = { 1842 .open = snd_cmipci_playback_open, 1843 .close = snd_cmipci_playback_close, 1844 .ioctl = snd_pcm_lib_ioctl, 1845 .hw_params = snd_cmipci_hw_params, 1846 .hw_free = snd_cmipci_playback_hw_free, 1847 .prepare = snd_cmipci_playback_prepare, 1848 .trigger = snd_cmipci_playback_trigger, 1849 .pointer = snd_cmipci_playback_pointer, 1850 }; 1851 1852 static struct snd_pcm_ops snd_cmipci_capture_ops = { 1853 .open = snd_cmipci_capture_open, 1854 .close = snd_cmipci_capture_close, 1855 .ioctl = snd_pcm_lib_ioctl, 1856 .hw_params = snd_cmipci_hw_params, 1857 .hw_free = snd_cmipci_hw_free, 1858 .prepare = snd_cmipci_capture_prepare, 1859 .trigger = snd_cmipci_capture_trigger, 1860 .pointer = snd_cmipci_capture_pointer, 1861 }; 1862 1863 static struct snd_pcm_ops snd_cmipci_playback2_ops = { 1864 .open = snd_cmipci_playback2_open, 1865 .close = snd_cmipci_playback2_close, 1866 .ioctl = snd_pcm_lib_ioctl, 1867 .hw_params = snd_cmipci_playback2_hw_params, 1868 .hw_free = snd_cmipci_playback2_hw_free, 1869 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1870 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1871 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1872 }; 1873 1874 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1875 .open = snd_cmipci_playback_spdif_open, 1876 .close = snd_cmipci_playback_spdif_close, 1877 .ioctl = snd_pcm_lib_ioctl, 1878 .hw_params = snd_cmipci_hw_params, 1879 .hw_free = snd_cmipci_playback_hw_free, 1880 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1881 .trigger = snd_cmipci_playback_trigger, 1882 .pointer = snd_cmipci_playback_pointer, 1883 }; 1884 1885 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1886 .open = snd_cmipci_capture_spdif_open, 1887 .close = snd_cmipci_capture_spdif_close, 1888 .ioctl = snd_pcm_lib_ioctl, 1889 .hw_params = snd_cmipci_hw_params, 1890 .hw_free = snd_cmipci_capture_spdif_hw_free, 1891 .prepare = snd_cmipci_capture_spdif_prepare, 1892 .trigger = snd_cmipci_capture_trigger, 1893 .pointer = snd_cmipci_capture_pointer, 1894 }; 1895 1896 1897 /* 1898 */ 1899 1900 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device) 1901 { 1902 struct snd_pcm *pcm; 1903 int err; 1904 1905 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1906 if (err < 0) 1907 return err; 1908 1909 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1910 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1911 1912 pcm->private_data = cm; 1913 pcm->info_flags = 0; 1914 strcpy(pcm->name, "C-Media PCI DAC/ADC"); 1915 cm->pcm = pcm; 1916 1917 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1918 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1919 1920 return 0; 1921 } 1922 1923 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1924 { 1925 struct snd_pcm *pcm; 1926 int err; 1927 1928 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1929 if (err < 0) 1930 return err; 1931 1932 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1933 1934 pcm->private_data = cm; 1935 pcm->info_flags = 0; 1936 strcpy(pcm->name, "C-Media PCI 2nd DAC"); 1937 cm->pcm2 = pcm; 1938 1939 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1940 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1941 1942 return 0; 1943 } 1944 1945 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1946 { 1947 struct snd_pcm *pcm; 1948 int err; 1949 1950 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1951 if (err < 0) 1952 return err; 1953 1954 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1955 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1956 1957 pcm->private_data = cm; 1958 pcm->info_flags = 0; 1959 strcpy(pcm->name, "C-Media PCI IEC958"); 1960 cm->pcm_spdif = pcm; 1961 1962 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1963 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1964 1965 return 0; 1966 } 1967 1968 /* 1969 * mixer interface: 1970 * - CM8338/8738 has a compatible mixer interface with SB16, but 1971 * lack of some elements like tone control, i/o gain and AGC. 1972 * - Access to native registers: 1973 * - A 3D switch 1974 * - Output mute switches 1975 */ 1976 1977 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1978 { 1979 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1980 outb(data, s->iobase + CM_REG_SB16_DATA); 1981 } 1982 1983 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1984 { 1985 unsigned char v; 1986 1987 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1988 v = inb(s->iobase + CM_REG_SB16_DATA); 1989 return v; 1990 } 1991 1992 /* 1993 * general mixer element 1994 */ 1995 struct cmipci_sb_reg { 1996 unsigned int left_reg, right_reg; 1997 unsigned int left_shift, right_shift; 1998 unsigned int mask; 1999 unsigned int invert: 1; 2000 unsigned int stereo: 1; 2001 }; 2002 2003 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 2004 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 2005 2006 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 2007 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2008 .info = snd_cmipci_info_volume, \ 2009 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 2010 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 2011 } 2012 2013 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 2014 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 2015 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 2016 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 2017 2018 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 2019 { 2020 r->left_reg = val & 0xff; 2021 r->right_reg = (val >> 8) & 0xff; 2022 r->left_shift = (val >> 16) & 0x07; 2023 r->right_shift = (val >> 19) & 0x07; 2024 r->invert = (val >> 22) & 1; 2025 r->stereo = (val >> 23) & 1; 2026 r->mask = (val >> 24) & 0xff; 2027 } 2028 2029 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 2030 struct snd_ctl_elem_info *uinfo) 2031 { 2032 struct cmipci_sb_reg reg; 2033 2034 cmipci_sb_reg_decode(®, kcontrol->private_value); 2035 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2036 uinfo->count = reg.stereo + 1; 2037 uinfo->value.integer.min = 0; 2038 uinfo->value.integer.max = reg.mask; 2039 return 0; 2040 } 2041 2042 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 2043 struct snd_ctl_elem_value *ucontrol) 2044 { 2045 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2046 struct cmipci_sb_reg reg; 2047 int val; 2048 2049 cmipci_sb_reg_decode(®, kcontrol->private_value); 2050 spin_lock_irq(&cm->reg_lock); 2051 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 2052 if (reg.invert) 2053 val = reg.mask - val; 2054 ucontrol->value.integer.value[0] = val; 2055 if (reg.stereo) { 2056 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 2057 if (reg.invert) 2058 val = reg.mask - val; 2059 ucontrol->value.integer.value[1] = val; 2060 } 2061 spin_unlock_irq(&cm->reg_lock); 2062 return 0; 2063 } 2064 2065 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2066 struct snd_ctl_elem_value *ucontrol) 2067 { 2068 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2069 struct cmipci_sb_reg reg; 2070 int change; 2071 int left, right, oleft, oright; 2072 2073 cmipci_sb_reg_decode(®, kcontrol->private_value); 2074 left = ucontrol->value.integer.value[0] & reg.mask; 2075 if (reg.invert) 2076 left = reg.mask - left; 2077 left <<= reg.left_shift; 2078 if (reg.stereo) { 2079 right = ucontrol->value.integer.value[1] & reg.mask; 2080 if (reg.invert) 2081 right = reg.mask - right; 2082 right <<= reg.right_shift; 2083 } else 2084 right = 0; 2085 spin_lock_irq(&cm->reg_lock); 2086 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2087 left |= oleft & ~(reg.mask << reg.left_shift); 2088 change = left != oleft; 2089 if (reg.stereo) { 2090 if (reg.left_reg != reg.right_reg) { 2091 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2092 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2093 } else 2094 oright = left; 2095 right |= oright & ~(reg.mask << reg.right_shift); 2096 change |= right != oright; 2097 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2098 } else 2099 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2100 spin_unlock_irq(&cm->reg_lock); 2101 return change; 2102 } 2103 2104 /* 2105 * input route (left,right) -> (left,right) 2106 */ 2107 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2108 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2109 .info = snd_cmipci_info_input_sw, \ 2110 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2111 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2112 } 2113 2114 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2115 struct snd_ctl_elem_info *uinfo) 2116 { 2117 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2118 uinfo->count = 4; 2119 uinfo->value.integer.min = 0; 2120 uinfo->value.integer.max = 1; 2121 return 0; 2122 } 2123 2124 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2125 struct snd_ctl_elem_value *ucontrol) 2126 { 2127 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2128 struct cmipci_sb_reg reg; 2129 int val1, val2; 2130 2131 cmipci_sb_reg_decode(®, kcontrol->private_value); 2132 spin_lock_irq(&cm->reg_lock); 2133 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2134 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2135 spin_unlock_irq(&cm->reg_lock); 2136 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2137 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2138 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2139 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2140 return 0; 2141 } 2142 2143 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2144 struct snd_ctl_elem_value *ucontrol) 2145 { 2146 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2147 struct cmipci_sb_reg reg; 2148 int change; 2149 int val1, val2, oval1, oval2; 2150 2151 cmipci_sb_reg_decode(®, kcontrol->private_value); 2152 spin_lock_irq(&cm->reg_lock); 2153 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2154 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2155 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2156 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2157 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2158 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2159 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2160 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2161 change = val1 != oval1 || val2 != oval2; 2162 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2163 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2164 spin_unlock_irq(&cm->reg_lock); 2165 return change; 2166 } 2167 2168 /* 2169 * native mixer switches/volumes 2170 */ 2171 2172 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2173 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2174 .info = snd_cmipci_info_native_mixer, \ 2175 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2176 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2177 } 2178 2179 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2180 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2181 .info = snd_cmipci_info_native_mixer, \ 2182 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2183 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2184 } 2185 2186 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2187 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2188 .info = snd_cmipci_info_native_mixer, \ 2189 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2190 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2191 } 2192 2193 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2194 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2195 .info = snd_cmipci_info_native_mixer, \ 2196 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2197 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2198 } 2199 2200 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2201 struct snd_ctl_elem_info *uinfo) 2202 { 2203 struct cmipci_sb_reg reg; 2204 2205 cmipci_sb_reg_decode(®, kcontrol->private_value); 2206 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2207 uinfo->count = reg.stereo + 1; 2208 uinfo->value.integer.min = 0; 2209 uinfo->value.integer.max = reg.mask; 2210 return 0; 2211 2212 } 2213 2214 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2215 struct snd_ctl_elem_value *ucontrol) 2216 { 2217 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2218 struct cmipci_sb_reg reg; 2219 unsigned char oreg, val; 2220 2221 cmipci_sb_reg_decode(®, kcontrol->private_value); 2222 spin_lock_irq(&cm->reg_lock); 2223 oreg = inb(cm->iobase + reg.left_reg); 2224 val = (oreg >> reg.left_shift) & reg.mask; 2225 if (reg.invert) 2226 val = reg.mask - val; 2227 ucontrol->value.integer.value[0] = val; 2228 if (reg.stereo) { 2229 val = (oreg >> reg.right_shift) & reg.mask; 2230 if (reg.invert) 2231 val = reg.mask - val; 2232 ucontrol->value.integer.value[1] = val; 2233 } 2234 spin_unlock_irq(&cm->reg_lock); 2235 return 0; 2236 } 2237 2238 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2239 struct snd_ctl_elem_value *ucontrol) 2240 { 2241 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2242 struct cmipci_sb_reg reg; 2243 unsigned char oreg, nreg, val; 2244 2245 cmipci_sb_reg_decode(®, kcontrol->private_value); 2246 spin_lock_irq(&cm->reg_lock); 2247 oreg = inb(cm->iobase + reg.left_reg); 2248 val = ucontrol->value.integer.value[0] & reg.mask; 2249 if (reg.invert) 2250 val = reg.mask - val; 2251 nreg = oreg & ~(reg.mask << reg.left_shift); 2252 nreg |= (val << reg.left_shift); 2253 if (reg.stereo) { 2254 val = ucontrol->value.integer.value[1] & reg.mask; 2255 if (reg.invert) 2256 val = reg.mask - val; 2257 nreg &= ~(reg.mask << reg.right_shift); 2258 nreg |= (val << reg.right_shift); 2259 } 2260 outb(nreg, cm->iobase + reg.left_reg); 2261 spin_unlock_irq(&cm->reg_lock); 2262 return (nreg != oreg); 2263 } 2264 2265 /* 2266 * special case - check mixer sensitivity 2267 */ 2268 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2269 struct snd_ctl_elem_value *ucontrol) 2270 { 2271 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2272 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2273 } 2274 2275 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2276 struct snd_ctl_elem_value *ucontrol) 2277 { 2278 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2279 if (cm->mixer_insensitive) { 2280 /* ignored */ 2281 return 0; 2282 } 2283 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2284 } 2285 2286 2287 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = { 2288 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2289 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2290 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2291 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2292 { /* switch with sensitivity */ 2293 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2294 .name = "PCM Playback Switch", 2295 .info = snd_cmipci_info_native_mixer, 2296 .get = snd_cmipci_get_native_mixer_sensitive, 2297 .put = snd_cmipci_put_native_mixer_sensitive, 2298 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2299 }, 2300 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2301 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2302 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2303 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2304 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2305 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2306 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2307 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2308 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2309 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2310 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2311 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2312 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2313 CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2314 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2315 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2316 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2317 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2318 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2319 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2320 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2321 CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2322 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2323 }; 2324 2325 /* 2326 * other switches 2327 */ 2328 2329 struct cmipci_switch_args { 2330 int reg; /* register index */ 2331 unsigned int mask; /* mask bits */ 2332 unsigned int mask_on; /* mask bits to turn on */ 2333 unsigned int is_byte: 1; /* byte access? */ 2334 unsigned int ac3_sensitive: 1; /* access forbidden during 2335 * non-audio operation? 2336 */ 2337 }; 2338 2339 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2340 2341 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2342 struct snd_ctl_elem_value *ucontrol, 2343 struct cmipci_switch_args *args) 2344 { 2345 unsigned int val; 2346 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2347 2348 spin_lock_irq(&cm->reg_lock); 2349 if (args->ac3_sensitive && cm->mixer_insensitive) { 2350 ucontrol->value.integer.value[0] = 0; 2351 spin_unlock_irq(&cm->reg_lock); 2352 return 0; 2353 } 2354 if (args->is_byte) 2355 val = inb(cm->iobase + args->reg); 2356 else 2357 val = snd_cmipci_read(cm, args->reg); 2358 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2359 spin_unlock_irq(&cm->reg_lock); 2360 return 0; 2361 } 2362 2363 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2364 struct snd_ctl_elem_value *ucontrol) 2365 { 2366 struct cmipci_switch_args *args; 2367 args = (struct cmipci_switch_args *)kcontrol->private_value; 2368 if (snd_BUG_ON(!args)) 2369 return -EINVAL; 2370 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2371 } 2372 2373 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2374 struct snd_ctl_elem_value *ucontrol, 2375 struct cmipci_switch_args *args) 2376 { 2377 unsigned int val; 2378 int change; 2379 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2380 2381 spin_lock_irq(&cm->reg_lock); 2382 if (args->ac3_sensitive && cm->mixer_insensitive) { 2383 /* ignored */ 2384 spin_unlock_irq(&cm->reg_lock); 2385 return 0; 2386 } 2387 if (args->is_byte) 2388 val = inb(cm->iobase + args->reg); 2389 else 2390 val = snd_cmipci_read(cm, args->reg); 2391 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2392 args->mask_on : (args->mask & ~args->mask_on)); 2393 if (change) { 2394 val &= ~args->mask; 2395 if (ucontrol->value.integer.value[0]) 2396 val |= args->mask_on; 2397 else 2398 val |= (args->mask & ~args->mask_on); 2399 if (args->is_byte) 2400 outb((unsigned char)val, cm->iobase + args->reg); 2401 else 2402 snd_cmipci_write(cm, args->reg, val); 2403 } 2404 spin_unlock_irq(&cm->reg_lock); 2405 return change; 2406 } 2407 2408 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2409 struct snd_ctl_elem_value *ucontrol) 2410 { 2411 struct cmipci_switch_args *args; 2412 args = (struct cmipci_switch_args *)kcontrol->private_value; 2413 if (snd_BUG_ON(!args)) 2414 return -EINVAL; 2415 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2416 } 2417 2418 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2419 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2420 .reg = xreg, \ 2421 .mask = xmask, \ 2422 .mask_on = xmask_on, \ 2423 .is_byte = xis_byte, \ 2424 .ac3_sensitive = xac3, \ 2425 } 2426 2427 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2428 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2429 2430 #if 0 /* these will be controlled in pcm device */ 2431 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2432 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2433 #endif 2434 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2435 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2436 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2437 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2438 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2439 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2440 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2441 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2442 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2443 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2444 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2445 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2446 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2447 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2448 #if CM_CH_PLAY == 1 2449 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2450 #else 2451 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2452 #endif 2453 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2454 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2455 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2456 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2457 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2458 2459 #define DEFINE_SWITCH(sname, stype, sarg) \ 2460 { .name = sname, \ 2461 .iface = stype, \ 2462 .info = snd_cmipci_uswitch_info, \ 2463 .get = snd_cmipci_uswitch_get, \ 2464 .put = snd_cmipci_uswitch_put, \ 2465 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2466 } 2467 2468 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2469 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2470 2471 2472 /* 2473 * callbacks for spdif output switch 2474 * needs toggle two registers.. 2475 */ 2476 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2477 struct snd_ctl_elem_value *ucontrol) 2478 { 2479 int changed; 2480 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2481 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2482 return changed; 2483 } 2484 2485 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2486 struct snd_ctl_elem_value *ucontrol) 2487 { 2488 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2489 int changed; 2490 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2491 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2492 if (changed) { 2493 if (ucontrol->value.integer.value[0]) { 2494 if (chip->spdif_playback_avail) 2495 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2496 } else { 2497 if (chip->spdif_playback_avail) 2498 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2499 } 2500 } 2501 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2502 return changed; 2503 } 2504 2505 2506 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2507 struct snd_ctl_elem_info *uinfo) 2508 { 2509 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2510 static const char *const texts[3] = { 2511 "Line-In", "Rear Output", "Bass Output" 2512 }; 2513 2514 return snd_ctl_enum_info(uinfo, 1, 2515 cm->chip_version >= 39 ? 3 : 2, texts); 2516 } 2517 2518 static inline unsigned int get_line_in_mode(struct cmipci *cm) 2519 { 2520 unsigned int val; 2521 if (cm->chip_version >= 39) { 2522 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2523 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2524 return 2; 2525 } 2526 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2527 if (val & CM_REAR2LIN) 2528 return 1; 2529 return 0; 2530 } 2531 2532 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2533 struct snd_ctl_elem_value *ucontrol) 2534 { 2535 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2536 2537 spin_lock_irq(&cm->reg_lock); 2538 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2539 spin_unlock_irq(&cm->reg_lock); 2540 return 0; 2541 } 2542 2543 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2544 struct snd_ctl_elem_value *ucontrol) 2545 { 2546 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2547 int change; 2548 2549 spin_lock_irq(&cm->reg_lock); 2550 if (ucontrol->value.enumerated.item[0] == 2) 2551 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2552 else 2553 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2554 if (ucontrol->value.enumerated.item[0] == 1) 2555 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2556 else 2557 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2558 spin_unlock_irq(&cm->reg_lock); 2559 return change; 2560 } 2561 2562 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2563 struct snd_ctl_elem_info *uinfo) 2564 { 2565 static const char *const texts[2] = { "Mic-In", "Center/LFE Output" }; 2566 2567 return snd_ctl_enum_info(uinfo, 1, 2, texts); 2568 } 2569 2570 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2571 struct snd_ctl_elem_value *ucontrol) 2572 { 2573 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2574 /* same bit as spdi_phase */ 2575 spin_lock_irq(&cm->reg_lock); 2576 ucontrol->value.enumerated.item[0] = 2577 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2578 spin_unlock_irq(&cm->reg_lock); 2579 return 0; 2580 } 2581 2582 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2583 struct snd_ctl_elem_value *ucontrol) 2584 { 2585 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2586 int change; 2587 2588 spin_lock_irq(&cm->reg_lock); 2589 if (ucontrol->value.enumerated.item[0]) 2590 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2591 else 2592 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2593 spin_unlock_irq(&cm->reg_lock); 2594 return change; 2595 } 2596 2597 /* both for CM8338/8738 */ 2598 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = { 2599 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2600 { 2601 .name = "Line-In Mode", 2602 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2603 .info = snd_cmipci_line_in_mode_info, 2604 .get = snd_cmipci_line_in_mode_get, 2605 .put = snd_cmipci_line_in_mode_put, 2606 }, 2607 }; 2608 2609 /* for non-multichannel chips */ 2610 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata = 2611 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2612 2613 /* only for CM8738 */ 2614 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = { 2615 #if 0 /* controlled in pcm device */ 2616 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2617 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2618 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2619 #endif 2620 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2621 { .name = "IEC958 Output Switch", 2622 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2623 .info = snd_cmipci_uswitch_info, 2624 .get = snd_cmipci_spdout_enable_get, 2625 .put = snd_cmipci_spdout_enable_put, 2626 }, 2627 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2628 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2629 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2630 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2631 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2632 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2633 }; 2634 2635 /* only for model 033/037 */ 2636 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = { 2637 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2638 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2639 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2640 }; 2641 2642 /* only for model 039 or later */ 2643 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = { 2644 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2645 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2646 { 2647 .name = "Mic-In Mode", 2648 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2649 .info = snd_cmipci_mic_in_mode_info, 2650 .get = snd_cmipci_mic_in_mode_get, 2651 .put = snd_cmipci_mic_in_mode_put, 2652 } 2653 }; 2654 2655 /* card control switches */ 2656 static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata = 2657 DEFINE_CARD_SWITCH("Modem", modem); 2658 2659 2660 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2661 { 2662 struct snd_card *card; 2663 struct snd_kcontrol_new *sw; 2664 struct snd_kcontrol *kctl; 2665 unsigned int idx; 2666 int err; 2667 2668 if (snd_BUG_ON(!cm || !cm->card)) 2669 return -EINVAL; 2670 2671 card = cm->card; 2672 2673 strcpy(card->mixername, "CMedia PCI"); 2674 2675 spin_lock_irq(&cm->reg_lock); 2676 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2677 spin_unlock_irq(&cm->reg_lock); 2678 2679 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2680 if (cm->chip_version == 68) { // 8768 has no PCM volume 2681 if (!strcmp(snd_cmipci_mixers[idx].name, 2682 "PCM Playback Volume")) 2683 continue; 2684 } 2685 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0) 2686 return err; 2687 } 2688 2689 /* mixer switches */ 2690 sw = snd_cmipci_mixer_switches; 2691 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2692 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2693 if (err < 0) 2694 return err; 2695 } 2696 if (! cm->can_multi_ch) { 2697 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2698 if (err < 0) 2699 return err; 2700 } 2701 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2702 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2703 sw = snd_cmipci_8738_mixer_switches; 2704 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2705 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2706 if (err < 0) 2707 return err; 2708 } 2709 if (cm->can_ac3_hw) { 2710 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0) 2711 return err; 2712 kctl->id.device = pcm_spdif_device; 2713 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0) 2714 return err; 2715 kctl->id.device = pcm_spdif_device; 2716 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0) 2717 return err; 2718 kctl->id.device = pcm_spdif_device; 2719 } 2720 if (cm->chip_version <= 37) { 2721 sw = snd_cmipci_old_mixer_switches; 2722 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2723 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2724 if (err < 0) 2725 return err; 2726 } 2727 } 2728 } 2729 if (cm->chip_version >= 39) { 2730 sw = snd_cmipci_extra_mixer_switches; 2731 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2732 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2733 if (err < 0) 2734 return err; 2735 } 2736 } 2737 2738 /* card switches */ 2739 /* 2740 * newer chips don't have the register bits to force modem link 2741 * detection; the bit that was FLINKON now mutes CH1 2742 */ 2743 if (cm->chip_version < 39) { 2744 err = snd_ctl_add(cm->card, 2745 snd_ctl_new1(&snd_cmipci_modem_switch, cm)); 2746 if (err < 0) 2747 return err; 2748 } 2749 2750 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2751 struct snd_ctl_elem_id elem_id; 2752 struct snd_kcontrol *ctl; 2753 memset(&elem_id, 0, sizeof(elem_id)); 2754 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 2755 strcpy(elem_id.name, cm_saved_mixer[idx].name); 2756 ctl = snd_ctl_find_id(cm->card, &elem_id); 2757 if (ctl) 2758 cm->mixer_res_ctl[idx] = ctl; 2759 } 2760 2761 return 0; 2762 } 2763 2764 2765 /* 2766 * proc interface 2767 */ 2768 2769 #ifdef CONFIG_PROC_FS 2770 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2771 struct snd_info_buffer *buffer) 2772 { 2773 struct cmipci *cm = entry->private_data; 2774 int i, v; 2775 2776 snd_iprintf(buffer, "%s\n", cm->card->longname); 2777 for (i = 0; i < 0x94; i++) { 2778 if (i == 0x28) 2779 i = 0x90; 2780 v = inb(cm->iobase + i); 2781 if (i % 4 == 0) 2782 snd_iprintf(buffer, "\n%02x:", i); 2783 snd_iprintf(buffer, " %02x", v); 2784 } 2785 snd_iprintf(buffer, "\n"); 2786 } 2787 2788 static void __devinit snd_cmipci_proc_init(struct cmipci *cm) 2789 { 2790 struct snd_info_entry *entry; 2791 2792 if (! snd_card_proc_new(cm->card, "cmipci", &entry)) 2793 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read); 2794 } 2795 #else /* !CONFIG_PROC_FS */ 2796 static inline void snd_cmipci_proc_init(struct cmipci *cm) {} 2797 #endif 2798 2799 2800 static DEFINE_PCI_DEVICE_TABLE(snd_cmipci_ids) = { 2801 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0}, 2802 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0}, 2803 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2804 {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0}, 2805 {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0}, 2806 {0,}, 2807 }; 2808 2809 2810 /* 2811 * check chip version and capabilities 2812 * driver name is modified according to the chip model 2813 */ 2814 static void __devinit query_chip(struct cmipci *cm) 2815 { 2816 unsigned int detect; 2817 2818 /* check reg 0Ch, bit 24-31 */ 2819 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2820 if (! detect) { 2821 /* check reg 08h, bit 24-28 */ 2822 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2823 switch (detect) { 2824 case 0: 2825 cm->chip_version = 33; 2826 if (cm->do_soft_ac3) 2827 cm->can_ac3_sw = 1; 2828 else 2829 cm->can_ac3_hw = 1; 2830 break; 2831 case CM_CHIP_037: 2832 cm->chip_version = 37; 2833 cm->can_ac3_hw = 1; 2834 break; 2835 default: 2836 cm->chip_version = 39; 2837 cm->can_ac3_hw = 1; 2838 break; 2839 } 2840 cm->max_channels = 2; 2841 } else { 2842 if (detect & CM_CHIP_039) { 2843 cm->chip_version = 39; 2844 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2845 cm->max_channels = 6; 2846 else 2847 cm->max_channels = 4; 2848 } else if (detect & CM_CHIP_8768) { 2849 cm->chip_version = 68; 2850 cm->max_channels = 8; 2851 cm->can_96k = 1; 2852 } else { 2853 cm->chip_version = 55; 2854 cm->max_channels = 6; 2855 cm->can_96k = 1; 2856 } 2857 cm->can_ac3_hw = 1; 2858 cm->can_multi_ch = 1; 2859 } 2860 } 2861 2862 #ifdef SUPPORT_JOYSTICK 2863 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2864 { 2865 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2866 struct gameport *gp; 2867 struct resource *r = NULL; 2868 int i, io_port = 0; 2869 2870 if (joystick_port[dev] == 0) 2871 return -ENODEV; 2872 2873 if (joystick_port[dev] == 1) { /* auto-detect */ 2874 for (i = 0; ports[i]; i++) { 2875 io_port = ports[i]; 2876 r = request_region(io_port, 1, "CMIPCI gameport"); 2877 if (r) 2878 break; 2879 } 2880 } else { 2881 io_port = joystick_port[dev]; 2882 r = request_region(io_port, 1, "CMIPCI gameport"); 2883 } 2884 2885 if (!r) { 2886 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n"); 2887 return -EBUSY; 2888 } 2889 2890 cm->gameport = gp = gameport_allocate_port(); 2891 if (!gp) { 2892 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n"); 2893 release_and_free_resource(r); 2894 return -ENOMEM; 2895 } 2896 gameport_set_name(gp, "C-Media Gameport"); 2897 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2898 gameport_set_dev_parent(gp, &cm->pci->dev); 2899 gp->io = io_port; 2900 gameport_set_port_data(gp, r); 2901 2902 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2903 2904 gameport_register_port(cm->gameport); 2905 2906 return 0; 2907 } 2908 2909 static void snd_cmipci_free_gameport(struct cmipci *cm) 2910 { 2911 if (cm->gameport) { 2912 struct resource *r = gameport_get_port_data(cm->gameport); 2913 2914 gameport_unregister_port(cm->gameport); 2915 cm->gameport = NULL; 2916 2917 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2918 release_and_free_resource(r); 2919 } 2920 } 2921 #else 2922 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2923 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2924 #endif 2925 2926 static int snd_cmipci_free(struct cmipci *cm) 2927 { 2928 if (cm->irq >= 0) { 2929 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2930 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2931 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2932 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2933 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2934 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2935 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2936 2937 /* reset mixer */ 2938 snd_cmipci_mixer_write(cm, 0, 0); 2939 2940 free_irq(cm->irq, cm); 2941 } 2942 2943 snd_cmipci_free_gameport(cm); 2944 pci_release_regions(cm->pci); 2945 pci_disable_device(cm->pci); 2946 kfree(cm); 2947 return 0; 2948 } 2949 2950 static int snd_cmipci_dev_free(struct snd_device *device) 2951 { 2952 struct cmipci *cm = device->device_data; 2953 return snd_cmipci_free(cm); 2954 } 2955 2956 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2957 { 2958 long iosynth; 2959 unsigned int val; 2960 struct snd_opl3 *opl3; 2961 int err; 2962 2963 if (!fm_port) 2964 goto disable_fm; 2965 2966 if (cm->chip_version >= 39) { 2967 /* first try FM regs in PCI port range */ 2968 iosynth = cm->iobase + CM_REG_FM_PCI; 2969 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2970 OPL3_HW_OPL3, 1, &opl3); 2971 } else { 2972 err = -EIO; 2973 } 2974 if (err < 0) { 2975 /* then try legacy ports */ 2976 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2977 iosynth = fm_port; 2978 switch (iosynth) { 2979 case 0x3E8: val |= CM_FMSEL_3E8; break; 2980 case 0x3E0: val |= CM_FMSEL_3E0; break; 2981 case 0x3C8: val |= CM_FMSEL_3C8; break; 2982 case 0x388: val |= CM_FMSEL_388; break; 2983 default: 2984 goto disable_fm; 2985 } 2986 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2987 /* enable FM */ 2988 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2989 2990 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2991 OPL3_HW_OPL3, 0, &opl3) < 0) { 2992 printk(KERN_ERR "cmipci: no OPL device at %#lx, " 2993 "skipping...\n", iosynth); 2994 goto disable_fm; 2995 } 2996 } 2997 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { 2998 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n"); 2999 return err; 3000 } 3001 return 0; 3002 3003 disable_fm: 3004 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 3005 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 3006 return 0; 3007 } 3008 3009 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 3010 int dev, struct cmipci **rcmipci) 3011 { 3012 struct cmipci *cm; 3013 int err; 3014 static struct snd_device_ops ops = { 3015 .dev_free = snd_cmipci_dev_free, 3016 }; 3017 unsigned int val; 3018 long iomidi = 0; 3019 int integrated_midi = 0; 3020 char modelstr[16]; 3021 int pcm_index, pcm_spdif_index; 3022 static DEFINE_PCI_DEVICE_TABLE(intel_82437vx) = { 3023 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 3024 { }, 3025 }; 3026 3027 *rcmipci = NULL; 3028 3029 if ((err = pci_enable_device(pci)) < 0) 3030 return err; 3031 3032 cm = kzalloc(sizeof(*cm), GFP_KERNEL); 3033 if (cm == NULL) { 3034 pci_disable_device(pci); 3035 return -ENOMEM; 3036 } 3037 3038 spin_lock_init(&cm->reg_lock); 3039 mutex_init(&cm->open_mutex); 3040 cm->device = pci->device; 3041 cm->card = card; 3042 cm->pci = pci; 3043 cm->irq = -1; 3044 cm->channel[0].ch = 0; 3045 cm->channel[1].ch = 1; 3046 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 3047 3048 if ((err = pci_request_regions(pci, card->driver)) < 0) { 3049 kfree(cm); 3050 pci_disable_device(pci); 3051 return err; 3052 } 3053 cm->iobase = pci_resource_start(pci, 0); 3054 3055 if (request_irq(pci->irq, snd_cmipci_interrupt, 3056 IRQF_SHARED, KBUILD_MODNAME, cm)) { 3057 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 3058 snd_cmipci_free(cm); 3059 return -EBUSY; 3060 } 3061 cm->irq = pci->irq; 3062 3063 pci_set_master(cm->pci); 3064 3065 /* 3066 * check chip version, max channels and capabilities 3067 */ 3068 3069 cm->chip_version = 0; 3070 cm->max_channels = 2; 3071 cm->do_soft_ac3 = soft_ac3[dev]; 3072 3073 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 3074 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 3075 query_chip(cm); 3076 /* added -MCx suffix for chip supporting multi-channels */ 3077 if (cm->can_multi_ch) 3078 sprintf(cm->card->driver + strlen(cm->card->driver), 3079 "-MC%d", cm->max_channels); 3080 else if (cm->can_ac3_sw) 3081 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); 3082 3083 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3084 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3085 3086 #if CM_CH_PLAY == 1 3087 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 3088 #else 3089 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 3090 #endif 3091 3092 /* initialize codec registers */ 3093 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3094 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3095 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 3096 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3097 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3098 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 3099 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3100 3101 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3102 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3103 #if CM_CH_PLAY == 1 3104 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3105 #else 3106 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3107 #endif 3108 if (cm->chip_version) { 3109 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3110 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3111 } 3112 /* Set Bus Master Request */ 3113 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3114 3115 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3116 switch (pci->device) { 3117 case PCI_DEVICE_ID_CMEDIA_CM8738: 3118 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3119 if (!pci_dev_present(intel_82437vx)) 3120 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3121 break; 3122 default: 3123 break; 3124 } 3125 3126 if (cm->chip_version < 68) { 3127 val = pci->device < 0x110 ? 8338 : 8738; 3128 } else { 3129 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3130 case 0: 3131 val = 8769; 3132 break; 3133 case 2: 3134 val = 8762; 3135 break; 3136 default: 3137 switch ((pci->subsystem_vendor << 16) | 3138 pci->subsystem_device) { 3139 case 0x13f69761: 3140 case 0x584d3741: 3141 case 0x584d3751: 3142 case 0x584d3761: 3143 case 0x584d3771: 3144 case 0x72848384: 3145 val = 8770; 3146 break; 3147 default: 3148 val = 8768; 3149 break; 3150 } 3151 } 3152 } 3153 sprintf(card->shortname, "C-Media CMI%d", val); 3154 if (cm->chip_version < 68) 3155 sprintf(modelstr, " (model %d)", cm->chip_version); 3156 else 3157 modelstr[0] = '\0'; 3158 sprintf(card->longname, "%s%s at %#lx, irq %i", 3159 card->shortname, modelstr, cm->iobase, cm->irq); 3160 3161 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) { 3162 snd_cmipci_free(cm); 3163 return err; 3164 } 3165 3166 if (cm->chip_version >= 39) { 3167 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3168 if (val != 0x00 && val != 0xff) { 3169 iomidi = cm->iobase + CM_REG_MPU_PCI; 3170 integrated_midi = 1; 3171 } 3172 } 3173 if (!integrated_midi) { 3174 val = 0; 3175 iomidi = mpu_port[dev]; 3176 switch (iomidi) { 3177 case 0x320: val = CM_VMPU_320; break; 3178 case 0x310: val = CM_VMPU_310; break; 3179 case 0x300: val = CM_VMPU_300; break; 3180 case 0x330: val = CM_VMPU_330; break; 3181 default: 3182 iomidi = 0; break; 3183 } 3184 if (iomidi > 0) { 3185 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3186 /* enable UART */ 3187 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3188 if (inb(iomidi + 1) == 0xff) { 3189 snd_printk(KERN_ERR "cannot enable MPU-401 port" 3190 " at %#lx\n", iomidi); 3191 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3192 CM_UART_EN); 3193 iomidi = 0; 3194 } 3195 } 3196 } 3197 3198 if (cm->chip_version < 68) { 3199 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3200 if (err < 0) 3201 return err; 3202 } 3203 3204 /* reset mixer */ 3205 snd_cmipci_mixer_write(cm, 0, 0); 3206 3207 snd_cmipci_proc_init(cm); 3208 3209 /* create pcm devices */ 3210 pcm_index = pcm_spdif_index = 0; 3211 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0) 3212 return err; 3213 pcm_index++; 3214 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0) 3215 return err; 3216 pcm_index++; 3217 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3218 pcm_spdif_index = pcm_index; 3219 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0) 3220 return err; 3221 } 3222 3223 /* create mixer interface & switches */ 3224 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0) 3225 return err; 3226 3227 if (iomidi > 0) { 3228 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3229 iomidi, 3230 (integrated_midi ? 3231 MPU401_INFO_INTEGRATED : 0) | 3232 MPU401_INFO_IRQ_HOOK, 3233 -1, &cm->rmidi)) < 0) { 3234 printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi); 3235 } 3236 } 3237 3238 #ifdef USE_VAR48KRATE 3239 for (val = 0; val < ARRAY_SIZE(rates); val++) 3240 snd_cmipci_set_pll(cm, rates[val], val); 3241 3242 /* 3243 * (Re-)Enable external switch spdo_48k 3244 */ 3245 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3246 #endif /* USE_VAR48KRATE */ 3247 3248 if (snd_cmipci_create_gameport(cm, dev) < 0) 3249 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3250 3251 snd_card_set_dev(card, &pci->dev); 3252 3253 *rcmipci = cm; 3254 return 0; 3255 } 3256 3257 /* 3258 */ 3259 3260 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3261 3262 static int __devinit snd_cmipci_probe(struct pci_dev *pci, 3263 const struct pci_device_id *pci_id) 3264 { 3265 static int dev; 3266 struct snd_card *card; 3267 struct cmipci *cm; 3268 int err; 3269 3270 if (dev >= SNDRV_CARDS) 3271 return -ENODEV; 3272 if (! enable[dev]) { 3273 dev++; 3274 return -ENOENT; 3275 } 3276 3277 err = snd_card_create(index[dev], id[dev], THIS_MODULE, 0, &card); 3278 if (err < 0) 3279 return err; 3280 3281 switch (pci->device) { 3282 case PCI_DEVICE_ID_CMEDIA_CM8738: 3283 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3284 strcpy(card->driver, "CMI8738"); 3285 break; 3286 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3287 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3288 strcpy(card->driver, "CMI8338"); 3289 break; 3290 default: 3291 strcpy(card->driver, "CMIPCI"); 3292 break; 3293 } 3294 3295 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) { 3296 snd_card_free(card); 3297 return err; 3298 } 3299 card->private_data = cm; 3300 3301 if ((err = snd_card_register(card)) < 0) { 3302 snd_card_free(card); 3303 return err; 3304 } 3305 pci_set_drvdata(pci, card); 3306 dev++; 3307 return 0; 3308 3309 } 3310 3311 static void __devexit snd_cmipci_remove(struct pci_dev *pci) 3312 { 3313 snd_card_free(pci_get_drvdata(pci)); 3314 pci_set_drvdata(pci, NULL); 3315 } 3316 3317 3318 #ifdef CONFIG_PM 3319 /* 3320 * power management 3321 */ 3322 static unsigned char saved_regs[] = { 3323 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3324 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL, 3325 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3326 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3327 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3328 }; 3329 3330 static unsigned char saved_mixers[] = { 3331 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3332 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3333 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3334 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3335 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3336 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3337 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3338 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3339 }; 3340 3341 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state) 3342 { 3343 struct snd_card *card = pci_get_drvdata(pci); 3344 struct cmipci *cm = card->private_data; 3345 int i; 3346 3347 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3348 3349 snd_pcm_suspend_all(cm->pcm); 3350 snd_pcm_suspend_all(cm->pcm2); 3351 snd_pcm_suspend_all(cm->pcm_spdif); 3352 3353 /* save registers */ 3354 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3355 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3356 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3357 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3358 3359 /* disable ints */ 3360 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3361 3362 pci_disable_device(pci); 3363 pci_save_state(pci); 3364 pci_set_power_state(pci, pci_choose_state(pci, state)); 3365 return 0; 3366 } 3367 3368 static int snd_cmipci_resume(struct pci_dev *pci) 3369 { 3370 struct snd_card *card = pci_get_drvdata(pci); 3371 struct cmipci *cm = card->private_data; 3372 int i; 3373 3374 pci_set_power_state(pci, PCI_D0); 3375 pci_restore_state(pci); 3376 if (pci_enable_device(pci) < 0) { 3377 printk(KERN_ERR "cmipci: pci_enable_device failed, " 3378 "disabling device\n"); 3379 snd_card_disconnect(card); 3380 return -EIO; 3381 } 3382 pci_set_master(pci); 3383 3384 /* reset / initialize to a sane state */ 3385 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3386 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3387 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3388 snd_cmipci_mixer_write(cm, 0, 0); 3389 3390 /* restore registers */ 3391 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3392 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3393 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3394 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3395 3396 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3397 return 0; 3398 } 3399 #endif /* CONFIG_PM */ 3400 3401 static struct pci_driver driver = { 3402 .name = KBUILD_MODNAME, 3403 .id_table = snd_cmipci_ids, 3404 .probe = snd_cmipci_probe, 3405 .remove = __devexit_p(snd_cmipci_remove), 3406 #ifdef CONFIG_PM 3407 .suspend = snd_cmipci_suspend, 3408 .resume = snd_cmipci_resume, 3409 #endif 3410 }; 3411 3412 static int __init alsa_card_cmipci_init(void) 3413 { 3414 return pci_register_driver(&driver); 3415 } 3416 3417 static void __exit alsa_card_cmipci_exit(void) 3418 { 3419 pci_unregister_driver(&driver); 3420 } 3421 3422 module_init(alsa_card_cmipci_init) 3423 module_exit(alsa_card_cmipci_exit) 3424