1 /* 2 * Driver for C-Media CMI8338 and 8738 PCI soundcards. 3 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 /* Does not work. Warning may block system in capture mode */ 21 /* #define USE_VAR48KRATE */ 22 23 #include <asm/io.h> 24 #include <linux/delay.h> 25 #include <linux/interrupt.h> 26 #include <linux/init.h> 27 #include <linux/pci.h> 28 #include <linux/slab.h> 29 #include <linux/gameport.h> 30 #include <linux/moduleparam.h> 31 #include <linux/mutex.h> 32 #include <sound/core.h> 33 #include <sound/info.h> 34 #include <sound/control.h> 35 #include <sound/pcm.h> 36 #include <sound/rawmidi.h> 37 #include <sound/mpu401.h> 38 #include <sound/opl3.h> 39 #include <sound/sb.h> 40 #include <sound/asoundef.h> 41 #include <sound/initval.h> 42 43 MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>"); 44 MODULE_DESCRIPTION("C-Media CMI8x38 PCI"); 45 MODULE_LICENSE("GPL"); 46 MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738}," 47 "{C-Media,CMI8738B}," 48 "{C-Media,CMI8338A}," 49 "{C-Media,CMI8338B}}"); 50 51 #if defined(CONFIG_GAMEPORT) || (defined(MODULE) && defined(CONFIG_GAMEPORT_MODULE)) 52 #define SUPPORT_JOYSTICK 1 53 #endif 54 55 static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ 56 static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ 57 static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable switches */ 58 static long mpu_port[SNDRV_CARDS]; 59 static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 60 static int soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1}; 61 #ifdef SUPPORT_JOYSTICK 62 static int joystick_port[SNDRV_CARDS]; 63 #endif 64 65 module_param_array(index, int, NULL, 0444); 66 MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard."); 67 module_param_array(id, charp, NULL, 0444); 68 MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard."); 69 module_param_array(enable, bool, NULL, 0444); 70 MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard."); 71 module_param_array(mpu_port, long, NULL, 0444); 72 MODULE_PARM_DESC(mpu_port, "MPU-401 port."); 73 module_param_array(fm_port, long, NULL, 0444); 74 MODULE_PARM_DESC(fm_port, "FM port."); 75 module_param_array(soft_ac3, bool, NULL, 0444); 76 MODULE_PARM_DESC(soft_ac3, "Sofware-conversion of raw SPDIF packets (model 033 only)."); 77 #ifdef SUPPORT_JOYSTICK 78 module_param_array(joystick_port, int, NULL, 0444); 79 MODULE_PARM_DESC(joystick_port, "Joystick port address."); 80 #endif 81 82 /* 83 * CM8x38 registers definition 84 */ 85 86 #define CM_REG_FUNCTRL0 0x00 87 #define CM_RST_CH1 0x00080000 88 #define CM_RST_CH0 0x00040000 89 #define CM_CHEN1 0x00020000 /* ch1: enable */ 90 #define CM_CHEN0 0x00010000 /* ch0: enable */ 91 #define CM_PAUSE1 0x00000008 /* ch1: pause */ 92 #define CM_PAUSE0 0x00000004 /* ch0: pause */ 93 #define CM_CHADC1 0x00000002 /* ch1, 0:playback, 1:record */ 94 #define CM_CHADC0 0x00000001 /* ch0, 0:playback, 1:record */ 95 96 #define CM_REG_FUNCTRL1 0x04 97 #define CM_DSFC_MASK 0x0000E000 /* channel 1 (DAC?) sampling frequency */ 98 #define CM_DSFC_SHIFT 13 99 #define CM_ASFC_MASK 0x00001C00 /* channel 0 (ADC?) sampling frequency */ 100 #define CM_ASFC_SHIFT 10 101 #define CM_SPDF_1 0x00000200 /* SPDIF IN/OUT at channel B */ 102 #define CM_SPDF_0 0x00000100 /* SPDIF OUT only channel A */ 103 #define CM_SPDFLOOP 0x00000080 /* ext. SPDIIF/IN -> OUT loopback */ 104 #define CM_SPDO2DAC 0x00000040 /* SPDIF/OUT can be heard from internal DAC */ 105 #define CM_INTRM 0x00000020 /* master control block (MCB) interrupt enabled */ 106 #define CM_BREQ 0x00000010 /* bus master enabled */ 107 #define CM_VOICE_EN 0x00000008 /* legacy voice (SB16,FM) */ 108 #define CM_UART_EN 0x00000004 /* legacy UART */ 109 #define CM_JYSTK_EN 0x00000002 /* legacy joystick */ 110 #define CM_ZVPORT 0x00000001 /* ZVPORT */ 111 112 #define CM_REG_CHFORMAT 0x08 113 114 #define CM_CHB3D5C 0x80000000 /* 5,6 channels */ 115 #define CM_FMOFFSET2 0x40000000 /* initial FM PCM offset 2 when Fmute=1 */ 116 #define CM_CHB3D 0x20000000 /* 4 channels */ 117 118 #define CM_CHIP_MASK1 0x1f000000 119 #define CM_CHIP_037 0x01000000 120 #define CM_SETLAT48 0x00800000 /* set latency timer 48h */ 121 #define CM_EDGEIRQ 0x00400000 /* emulated edge trigger legacy IRQ */ 122 #define CM_SPD24SEL39 0x00200000 /* 24-bit spdif: model 039 */ 123 #define CM_AC3EN1 0x00100000 /* enable AC3: model 037 */ 124 #define CM_SPDIF_SELECT1 0x00080000 /* for model <= 037 ? */ 125 #define CM_SPD24SEL 0x00020000 /* 24bit spdif: model 037 */ 126 /* #define CM_SPDIF_INVERSE 0x00010000 */ /* ??? */ 127 128 #define CM_ADCBITLEN_MASK 0x0000C000 129 #define CM_ADCBITLEN_16 0x00000000 130 #define CM_ADCBITLEN_15 0x00004000 131 #define CM_ADCBITLEN_14 0x00008000 132 #define CM_ADCBITLEN_13 0x0000C000 133 134 #define CM_ADCDACLEN_MASK 0x00003000 /* model 037 */ 135 #define CM_ADCDACLEN_060 0x00000000 136 #define CM_ADCDACLEN_066 0x00001000 137 #define CM_ADCDACLEN_130 0x00002000 138 #define CM_ADCDACLEN_280 0x00003000 139 140 #define CM_ADCDLEN_MASK 0x00003000 /* model 039 */ 141 #define CM_ADCDLEN_ORIGINAL 0x00000000 142 #define CM_ADCDLEN_EXTRA 0x00001000 143 #define CM_ADCDLEN_24K 0x00002000 144 #define CM_ADCDLEN_WEIGHT 0x00003000 145 146 #define CM_CH1_SRATE_176K 0x00000800 147 #define CM_CH1_SRATE_96K 0x00000800 /* model 055? */ 148 #define CM_CH1_SRATE_88K 0x00000400 149 #define CM_CH0_SRATE_176K 0x00000200 150 #define CM_CH0_SRATE_96K 0x00000200 /* model 055? */ 151 #define CM_CH0_SRATE_88K 0x00000100 152 #define CM_CH0_SRATE_128K 0x00000300 153 #define CM_CH0_SRATE_MASK 0x00000300 154 155 #define CM_SPDIF_INVERSE2 0x00000080 /* model 055? */ 156 #define CM_DBLSPDS 0x00000040 /* double SPDIF sample rate 88.2/96 */ 157 #define CM_POLVALID 0x00000020 /* inverse SPDIF/IN valid bit */ 158 #define CM_SPDLOCKED 0x00000010 159 160 #define CM_CH1FMT_MASK 0x0000000C /* bit 3: 16 bits, bit 2: stereo */ 161 #define CM_CH1FMT_SHIFT 2 162 #define CM_CH0FMT_MASK 0x00000003 /* bit 1: 16 bits, bit 0: stereo */ 163 #define CM_CH0FMT_SHIFT 0 164 165 #define CM_REG_INT_HLDCLR 0x0C 166 #define CM_CHIP_MASK2 0xff000000 167 #define CM_CHIP_8768 0x20000000 168 #define CM_CHIP_055 0x08000000 169 #define CM_CHIP_039 0x04000000 170 #define CM_CHIP_039_6CH 0x01000000 171 #define CM_UNKNOWN_INT_EN 0x00080000 /* ? */ 172 #define CM_TDMA_INT_EN 0x00040000 173 #define CM_CH1_INT_EN 0x00020000 174 #define CM_CH0_INT_EN 0x00010000 175 176 #define CM_REG_INT_STATUS 0x10 177 #define CM_INTR 0x80000000 178 #define CM_VCO 0x08000000 /* Voice Control? CMI8738 */ 179 #define CM_MCBINT 0x04000000 /* Master Control Block abort cond.? */ 180 #define CM_UARTINT 0x00010000 181 #define CM_LTDMAINT 0x00008000 182 #define CM_HTDMAINT 0x00004000 183 #define CM_XDO46 0x00000080 /* Modell 033? Direct programming EEPROM (read data register) */ 184 #define CM_LHBTOG 0x00000040 /* High/Low status from DMA ctrl register */ 185 #define CM_LEG_HDMA 0x00000020 /* Legacy is in High DMA channel */ 186 #define CM_LEG_STEREO 0x00000010 /* Legacy is in Stereo mode */ 187 #define CM_CH1BUSY 0x00000008 188 #define CM_CH0BUSY 0x00000004 189 #define CM_CHINT1 0x00000002 190 #define CM_CHINT0 0x00000001 191 192 #define CM_REG_LEGACY_CTRL 0x14 193 #define CM_NXCHG 0x80000000 /* don't map base reg dword->sample */ 194 #define CM_VMPU_MASK 0x60000000 /* MPU401 i/o port address */ 195 #define CM_VMPU_330 0x00000000 196 #define CM_VMPU_320 0x20000000 197 #define CM_VMPU_310 0x40000000 198 #define CM_VMPU_300 0x60000000 199 #define CM_ENWR8237 0x10000000 /* enable bus master to write 8237 base reg */ 200 #define CM_VSBSEL_MASK 0x0C000000 /* SB16 base address */ 201 #define CM_VSBSEL_220 0x00000000 202 #define CM_VSBSEL_240 0x04000000 203 #define CM_VSBSEL_260 0x08000000 204 #define CM_VSBSEL_280 0x0C000000 205 #define CM_FMSEL_MASK 0x03000000 /* FM OPL3 base address */ 206 #define CM_FMSEL_388 0x00000000 207 #define CM_FMSEL_3C8 0x01000000 208 #define CM_FMSEL_3E0 0x02000000 209 #define CM_FMSEL_3E8 0x03000000 210 #define CM_ENSPDOUT 0x00800000 /* enable XSPDIF/OUT to I/O interface */ 211 #define CM_SPDCOPYRHT 0x00400000 /* spdif in/out copyright bit */ 212 #define CM_DAC2SPDO 0x00200000 /* enable wave+fm_midi -> SPDIF/OUT */ 213 #define CM_INVIDWEN 0x00100000 /* internal vendor ID write enable, model 039? */ 214 #define CM_SETRETRY 0x00100000 /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */ 215 #define CM_C_EEACCESS 0x00080000 /* direct programming eeprom regs */ 216 #define CM_C_EECS 0x00040000 217 #define CM_C_EEDI46 0x00020000 218 #define CM_C_EECK46 0x00010000 219 #define CM_CHB3D6C 0x00008000 /* 5.1 channels support */ 220 #define CM_CENTR2LIN 0x00004000 /* line-in as center out */ 221 #define CM_BASE2LIN 0x00002000 /* line-in as bass out */ 222 #define CM_EXBASEN 0x00001000 /* external bass input enable */ 223 224 #define CM_REG_MISC_CTRL 0x18 225 #define CM_PWD 0x80000000 /* power down */ 226 #define CM_RESET 0x40000000 227 #define CM_SFIL_MASK 0x30000000 /* filter control at front end DAC, model 037? */ 228 #define CM_VMGAIN 0x10000000 /* analog master amp +6dB, model 039? */ 229 #define CM_TXVX 0x08000000 /* model 037? */ 230 #define CM_N4SPK3D 0x04000000 /* copy front to rear */ 231 #define CM_SPDO5V 0x02000000 /* 5V spdif output (1 = 0.5v (coax)) */ 232 #define CM_SPDIF48K 0x01000000 /* write */ 233 #define CM_SPATUS48K 0x01000000 /* read */ 234 #define CM_ENDBDAC 0x00800000 /* enable double dac */ 235 #define CM_XCHGDAC 0x00400000 /* 0: front=ch0, 1: front=ch1 */ 236 #define CM_SPD32SEL 0x00200000 /* 0: 16bit SPDIF, 1: 32bit */ 237 #define CM_SPDFLOOPI 0x00100000 /* int. SPDIF-OUT -> int. IN */ 238 #define CM_FM_EN 0x00080000 /* enable legacy FM */ 239 #define CM_AC3EN2 0x00040000 /* enable AC3: model 039 */ 240 #define CM_ENWRASID 0x00010000 /* choose writable internal SUBID (audio) */ 241 #define CM_VIDWPDSB 0x00010000 /* model 037? */ 242 #define CM_SPDF_AC97 0x00008000 /* 0: SPDIF/OUT 44.1K, 1: 48K */ 243 #define CM_MASK_EN 0x00004000 /* activate channel mask on legacy DMA */ 244 #define CM_ENWRMSID 0x00002000 /* choose writable internal SUBID (modem) */ 245 #define CM_VIDWPPRT 0x00002000 /* model 037? */ 246 #define CM_SFILENB 0x00001000 /* filter stepping at front end DAC, model 037? */ 247 #define CM_MMODE_MASK 0x00000E00 /* model DAA interface mode */ 248 #define CM_SPDIF_SELECT2 0x00000100 /* for model > 039 ? */ 249 #define CM_ENCENTER 0x00000080 250 #define CM_FLINKON 0x00000040 /* force modem link detection on, model 037 */ 251 #define CM_MUTECH1 0x00000040 /* mute PCI ch1 to DAC */ 252 #define CM_FLINKOFF 0x00000020 /* force modem link detection off, model 037 */ 253 #define CM_MIDSMP 0x00000010 /* 1/2 interpolation at front end DAC */ 254 #define CM_UPDDMA_MASK 0x0000000C /* TDMA position update notification */ 255 #define CM_UPDDMA_2048 0x00000000 256 #define CM_UPDDMA_1024 0x00000004 257 #define CM_UPDDMA_512 0x00000008 258 #define CM_UPDDMA_256 0x0000000C 259 #define CM_TWAIT_MASK 0x00000003 /* model 037 */ 260 #define CM_TWAIT1 0x00000002 /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */ 261 #define CM_TWAIT0 0x00000001 /* i/o cycle, 0: 4, 1: 6 PCICLKs */ 262 263 #define CM_REG_TDMA_POSITION 0x1C 264 #define CM_TDMA_CNT_MASK 0xFFFF0000 /* current byte/word count */ 265 #define CM_TDMA_ADR_MASK 0x0000FFFF /* current address */ 266 267 /* byte */ 268 #define CM_REG_MIXER0 0x20 269 #define CM_REG_SBVR 0x20 /* write: sb16 version */ 270 #define CM_REG_DEV 0x20 /* read: hardware device version */ 271 272 #define CM_REG_MIXER21 0x21 273 #define CM_UNKNOWN_21_MASK 0x78 /* ? */ 274 #define CM_X_ADPCM 0x04 /* SB16 ADPCM enable */ 275 #define CM_PROINV 0x02 /* SBPro left/right channel switching */ 276 #define CM_X_SB16 0x01 /* SB16 compatible */ 277 278 #define CM_REG_SB16_DATA 0x22 279 #define CM_REG_SB16_ADDR 0x23 280 281 #define CM_REFFREQ_XIN (315*1000*1000)/22 /* 14.31818 Mhz reference clock frequency pin XIN */ 282 #define CM_ADCMULT_XIN 512 /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */ 283 #define CM_TOLERANCE_RATE 0.001 /* Tolerance sample rate pitch (1000ppm) */ 284 #define CM_MAXIMUM_RATE 80000000 /* Note more than 80MHz */ 285 286 #define CM_REG_MIXER1 0x24 287 #define CM_FMMUTE 0x80 /* mute FM */ 288 #define CM_FMMUTE_SHIFT 7 289 #define CM_WSMUTE 0x40 /* mute PCM */ 290 #define CM_WSMUTE_SHIFT 6 291 #define CM_REAR2LIN 0x20 /* lin-in -> rear line out */ 292 #define CM_REAR2LIN_SHIFT 5 293 #define CM_REAR2FRONT 0x10 /* exchange rear/front */ 294 #define CM_REAR2FRONT_SHIFT 4 295 #define CM_WAVEINL 0x08 /* digital wave rec. left chan */ 296 #define CM_WAVEINL_SHIFT 3 297 #define CM_WAVEINR 0x04 /* digical wave rec. right */ 298 #define CM_WAVEINR_SHIFT 2 299 #define CM_X3DEN 0x02 /* 3D surround enable */ 300 #define CM_X3DEN_SHIFT 1 301 #define CM_CDPLAY 0x01 /* enable SPDIF/IN PCM -> DAC */ 302 #define CM_CDPLAY_SHIFT 0 303 304 #define CM_REG_MIXER2 0x25 305 #define CM_RAUXREN 0x80 /* AUX right capture */ 306 #define CM_RAUXREN_SHIFT 7 307 #define CM_RAUXLEN 0x40 /* AUX left capture */ 308 #define CM_RAUXLEN_SHIFT 6 309 #define CM_VAUXRM 0x20 /* AUX right mute */ 310 #define CM_VAUXRM_SHIFT 5 311 #define CM_VAUXLM 0x10 /* AUX left mute */ 312 #define CM_VAUXLM_SHIFT 4 313 #define CM_VADMIC_MASK 0x0e /* mic gain level (0-3) << 1 */ 314 #define CM_VADMIC_SHIFT 1 315 #define CM_MICGAINZ 0x01 /* mic boost */ 316 #define CM_MICGAINZ_SHIFT 0 317 318 #define CM_REG_MIXER3 0x24 319 #define CM_REG_AUX_VOL 0x26 320 #define CM_VAUXL_MASK 0xf0 321 #define CM_VAUXR_MASK 0x0f 322 323 #define CM_REG_MISC 0x27 324 #define CM_UNKNOWN_27_MASK 0xd8 /* ? */ 325 #define CM_XGPO1 0x20 326 // #define CM_XGPBIO 0x04 327 #define CM_MIC_CENTER_LFE 0x04 /* mic as center/lfe out? (model 039 or later?) */ 328 #define CM_SPDIF_INVERSE 0x04 /* spdif input phase inverse (model 037) */ 329 #define CM_SPDVALID 0x02 /* spdif input valid check */ 330 #define CM_DMAUTO 0x01 /* SB16 DMA auto detect */ 331 332 #define CM_REG_AC97 0x28 /* hmmm.. do we have ac97 link? */ 333 /* 334 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738 335 * or identical with AC97 codec? 336 */ 337 #define CM_REG_EXTERN_CODEC CM_REG_AC97 338 339 /* 340 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6) 341 */ 342 #define CM_REG_MPU_PCI 0x40 343 344 /* 345 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6) 346 */ 347 #define CM_REG_FM_PCI 0x50 348 349 /* 350 * access from SB-mixer port 351 */ 352 #define CM_REG_EXTENT_IND 0xf0 353 #define CM_VPHONE_MASK 0xe0 /* Phone volume control (0-3) << 5 */ 354 #define CM_VPHONE_SHIFT 5 355 #define CM_VPHOM 0x10 /* Phone mute control */ 356 #define CM_VSPKM 0x08 /* Speaker mute control, default high */ 357 #define CM_RLOOPREN 0x04 /* Rec. R-channel enable */ 358 #define CM_RLOOPLEN 0x02 /* Rec. L-channel enable */ 359 #define CM_VADMIC3 0x01 /* Mic record boost */ 360 361 /* 362 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738): 363 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL 364 * unit (readonly?). 365 */ 366 #define CM_REG_PLL 0xf8 367 368 /* 369 * extended registers 370 */ 371 #define CM_REG_CH0_FRAME1 0x80 /* write: base address */ 372 #define CM_REG_CH0_FRAME2 0x84 /* read: current address */ 373 #define CM_REG_CH1_FRAME1 0x88 /* 0-15: count of samples at bus master; buffer size */ 374 #define CM_REG_CH1_FRAME2 0x8C /* 16-31: count of samples at codec; fragment size */ 375 376 #define CM_REG_EXT_MISC 0x90 377 #define CM_ADC48K44K 0x10000000 /* ADC parameters group, 0: 44k, 1: 48k */ 378 #define CM_CHB3D8C 0x00200000 /* 7.1 channels support */ 379 #define CM_SPD32FMT 0x00100000 /* SPDIF/IN 32k sample rate */ 380 #define CM_ADC2SPDIF 0x00080000 /* ADC output to SPDIF/OUT */ 381 #define CM_SHAREADC 0x00040000 /* DAC in ADC as Center/LFE */ 382 #define CM_REALTCMP 0x00020000 /* monitor the CMPL/CMPR of ADC */ 383 #define CM_INVLRCK 0x00010000 /* invert ZVPORT's LRCK */ 384 #define CM_UNKNOWN_90_MASK 0x0000FFFF /* ? */ 385 386 /* 387 * size of i/o region 388 */ 389 #define CM_EXTENT_CODEC 0x100 390 #define CM_EXTENT_MIDI 0x2 391 #define CM_EXTENT_SYNTH 0x4 392 393 394 /* 395 * channels for playback / capture 396 */ 397 #define CM_CH_PLAY 0 398 #define CM_CH_CAPT 1 399 400 /* 401 * flags to check device open/close 402 */ 403 #define CM_OPEN_NONE 0 404 #define CM_OPEN_CH_MASK 0x01 405 #define CM_OPEN_DAC 0x10 406 #define CM_OPEN_ADC 0x20 407 #define CM_OPEN_SPDIF 0x40 408 #define CM_OPEN_MCHAN 0x80 409 #define CM_OPEN_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC) 410 #define CM_OPEN_PLAYBACK2 (CM_CH_CAPT | CM_OPEN_DAC) 411 #define CM_OPEN_PLAYBACK_MULTI (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN) 412 #define CM_OPEN_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC) 413 #define CM_OPEN_SPDIF_PLAYBACK (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF) 414 #define CM_OPEN_SPDIF_CAPTURE (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF) 415 416 417 #if CM_CH_PLAY == 1 418 #define CM_PLAYBACK_SRATE_176K CM_CH1_SRATE_176K 419 #define CM_PLAYBACK_SPDF CM_SPDF_1 420 #define CM_CAPTURE_SPDF CM_SPDF_0 421 #else 422 #define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K 423 #define CM_PLAYBACK_SPDF CM_SPDF_0 424 #define CM_CAPTURE_SPDF CM_SPDF_1 425 #endif 426 427 428 /* 429 * driver data 430 */ 431 432 struct cmipci_pcm { 433 struct snd_pcm_substream *substream; 434 u8 running; /* dac/adc running? */ 435 u8 fmt; /* format bits */ 436 u8 is_dac; 437 u8 needs_silencing; 438 unsigned int dma_size; /* in frames */ 439 unsigned int shift; 440 unsigned int ch; /* channel (0/1) */ 441 unsigned int offset; /* physical address of the buffer */ 442 }; 443 444 /* mixer elements toggled/resumed during ac3 playback */ 445 struct cmipci_mixer_auto_switches { 446 const char *name; /* switch to toggle */ 447 int toggle_on; /* value to change when ac3 mode */ 448 }; 449 static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = { 450 {"PCM Playback Switch", 0}, 451 {"IEC958 Output Switch", 1}, 452 {"IEC958 Mix Analog", 0}, 453 // {"IEC958 Out To DAC", 1}, // no longer used 454 {"IEC958 Loop", 0}, 455 }; 456 #define CM_SAVED_MIXERS ARRAY_SIZE(cm_saved_mixer) 457 458 struct cmipci { 459 struct snd_card *card; 460 461 struct pci_dev *pci; 462 unsigned int device; /* device ID */ 463 int irq; 464 465 unsigned long iobase; 466 unsigned int ctrl; /* FUNCTRL0 current value */ 467 468 struct snd_pcm *pcm; /* DAC/ADC PCM */ 469 struct snd_pcm *pcm2; /* 2nd DAC */ 470 struct snd_pcm *pcm_spdif; /* SPDIF */ 471 472 int chip_version; 473 int max_channels; 474 unsigned int can_ac3_sw: 1; 475 unsigned int can_ac3_hw: 1; 476 unsigned int can_multi_ch: 1; 477 unsigned int can_96k: 1; /* samplerate above 48k */ 478 unsigned int do_soft_ac3: 1; 479 480 unsigned int spdif_playback_avail: 1; /* spdif ready? */ 481 unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */ 482 int spdif_counter; /* for software AC3 */ 483 484 unsigned int dig_status; 485 unsigned int dig_pcm_status; 486 487 struct snd_pcm_hardware *hw_info[3]; /* for playbacks */ 488 489 int opened[2]; /* open mode */ 490 struct mutex open_mutex; 491 492 unsigned int mixer_insensitive: 1; 493 struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS]; 494 int mixer_res_status[CM_SAVED_MIXERS]; 495 496 struct cmipci_pcm channel[2]; /* ch0 - DAC, ch1 - ADC or 2nd DAC */ 497 498 /* external MIDI */ 499 struct snd_rawmidi *rmidi; 500 501 #ifdef SUPPORT_JOYSTICK 502 struct gameport *gameport; 503 #endif 504 505 spinlock_t reg_lock; 506 507 #ifdef CONFIG_PM 508 unsigned int saved_regs[0x20]; 509 unsigned char saved_mixers[0x20]; 510 #endif 511 }; 512 513 514 /* read/write operations for dword register */ 515 static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data) 516 { 517 outl(data, cm->iobase + cmd); 518 } 519 520 static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd) 521 { 522 return inl(cm->iobase + cmd); 523 } 524 525 /* read/write operations for word register */ 526 static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data) 527 { 528 outw(data, cm->iobase + cmd); 529 } 530 531 static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd) 532 { 533 return inw(cm->iobase + cmd); 534 } 535 536 /* read/write operations for byte register */ 537 static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data) 538 { 539 outb(data, cm->iobase + cmd); 540 } 541 542 static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd) 543 { 544 return inb(cm->iobase + cmd); 545 } 546 547 /* bit operations for dword register */ 548 static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 549 { 550 unsigned int val, oval; 551 val = oval = inl(cm->iobase + cmd); 552 val |= flag; 553 if (val == oval) 554 return 0; 555 outl(val, cm->iobase + cmd); 556 return 1; 557 } 558 559 static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag) 560 { 561 unsigned int val, oval; 562 val = oval = inl(cm->iobase + cmd); 563 val &= ~flag; 564 if (val == oval) 565 return 0; 566 outl(val, cm->iobase + cmd); 567 return 1; 568 } 569 570 /* bit operations for byte register */ 571 static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 572 { 573 unsigned char val, oval; 574 val = oval = inb(cm->iobase + cmd); 575 val |= flag; 576 if (val == oval) 577 return 0; 578 outb(val, cm->iobase + cmd); 579 return 1; 580 } 581 582 static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag) 583 { 584 unsigned char val, oval; 585 val = oval = inb(cm->iobase + cmd); 586 val &= ~flag; 587 if (val == oval) 588 return 0; 589 outb(val, cm->iobase + cmd); 590 return 1; 591 } 592 593 594 /* 595 * PCM interface 596 */ 597 598 /* 599 * calculate frequency 600 */ 601 602 static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 }; 603 604 static unsigned int snd_cmipci_rate_freq(unsigned int rate) 605 { 606 unsigned int i; 607 608 for (i = 0; i < ARRAY_SIZE(rates); i++) { 609 if (rates[i] == rate) 610 return i; 611 } 612 snd_BUG(); 613 return 0; 614 } 615 616 #ifdef USE_VAR48KRATE 617 /* 618 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???) 619 * does it this way .. maybe not. Never get any information from C-Media about 620 * that <werner@suse.de>. 621 */ 622 static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n) 623 { 624 unsigned int delta, tolerance; 625 int xm, xn, xr; 626 627 for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5)) 628 rate <<= 1; 629 *n = -1; 630 if (*r > 0xff) 631 goto out; 632 tolerance = rate*CM_TOLERANCE_RATE; 633 634 for (xn = (1+2); xn < (0x1f+2); xn++) { 635 for (xm = (1+2); xm < (0xff+2); xm++) { 636 xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn; 637 638 if (xr < rate) 639 delta = rate - xr; 640 else 641 delta = xr - rate; 642 643 /* 644 * If we found one, remember this, 645 * and try to find a closer one 646 */ 647 if (delta < tolerance) { 648 tolerance = delta; 649 *m = xm - 2; 650 *n = xn - 2; 651 } 652 } 653 } 654 out: 655 return (*n > -1); 656 } 657 658 /* 659 * Program pll register bits, I assume that the 8 registers 0xf8 upto 0xff 660 * are mapped onto the 8 ADC/DAC sampling frequency which can be choosen 661 * at the register CM_REG_FUNCTRL1 (0x04). 662 * Problem: other ways are also possible (any information about that?) 663 */ 664 static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot) 665 { 666 unsigned int reg = CM_REG_PLL + slot; 667 /* 668 * Guess that this programs at reg. 0x04 the pos 15:13/12:10 669 * for DSFC/ASFC (000 upto 111). 670 */ 671 672 /* FIXME: Init (Do we've to set an other register first before programming?) */ 673 674 /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */ 675 snd_cmipci_write_b(cm, reg, rate>>8); 676 snd_cmipci_write_b(cm, reg, rate&0xff); 677 678 /* FIXME: Setup (Do we've to set an other register first to enable this?) */ 679 } 680 #endif /* USE_VAR48KRATE */ 681 682 static int snd_cmipci_hw_params(struct snd_pcm_substream *substream, 683 struct snd_pcm_hw_params *hw_params) 684 { 685 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 686 } 687 688 static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream, 689 struct snd_pcm_hw_params *hw_params) 690 { 691 struct cmipci *cm = snd_pcm_substream_chip(substream); 692 if (params_channels(hw_params) > 2) { 693 mutex_lock(&cm->open_mutex); 694 if (cm->opened[CM_CH_PLAY]) { 695 mutex_unlock(&cm->open_mutex); 696 return -EBUSY; 697 } 698 /* reserve the channel A */ 699 cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI; 700 mutex_unlock(&cm->open_mutex); 701 } 702 return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 703 } 704 705 static void snd_cmipci_ch_reset(struct cmipci *cm, int ch) 706 { 707 int reset = CM_RST_CH0 << (cm->channel[ch].ch); 708 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 709 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 710 udelay(10); 711 } 712 713 static int snd_cmipci_hw_free(struct snd_pcm_substream *substream) 714 { 715 return snd_pcm_lib_free_pages(substream); 716 } 717 718 719 /* 720 */ 721 722 static unsigned int hw_channels[] = {1, 2, 4, 6, 8}; 723 static struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = { 724 .count = 3, 725 .list = hw_channels, 726 .mask = 0, 727 }; 728 static struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = { 729 .count = 4, 730 .list = hw_channels, 731 .mask = 0, 732 }; 733 static struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = { 734 .count = 5, 735 .list = hw_channels, 736 .mask = 0, 737 }; 738 739 static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels) 740 { 741 if (channels > 2) { 742 if (!cm->can_multi_ch || !rec->ch) 743 return -EINVAL; 744 if (rec->fmt != 0x03) /* stereo 16bit only */ 745 return -EINVAL; 746 } 747 748 if (cm->can_multi_ch) { 749 spin_lock_irq(&cm->reg_lock); 750 if (channels > 2) { 751 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 752 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 753 } else { 754 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG); 755 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 756 } 757 if (channels == 8) 758 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 759 else 760 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C); 761 if (channels == 6) { 762 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 763 snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 764 } else { 765 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C); 766 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C); 767 } 768 if (channels == 4) 769 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 770 else 771 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D); 772 spin_unlock_irq(&cm->reg_lock); 773 } 774 return 0; 775 } 776 777 778 /* 779 * prepare playback/capture channel 780 * channel to be used must have been set in rec->ch. 781 */ 782 static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec, 783 struct snd_pcm_substream *substream) 784 { 785 unsigned int reg, freq, freq_ext, val; 786 unsigned int period_size; 787 struct snd_pcm_runtime *runtime = substream->runtime; 788 789 rec->fmt = 0; 790 rec->shift = 0; 791 if (snd_pcm_format_width(runtime->format) >= 16) { 792 rec->fmt |= 0x02; 793 if (snd_pcm_format_width(runtime->format) > 16) 794 rec->shift++; /* 24/32bit */ 795 } 796 if (runtime->channels > 1) 797 rec->fmt |= 0x01; 798 if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) { 799 snd_printd("cannot set dac channels\n"); 800 return -EINVAL; 801 } 802 803 rec->offset = runtime->dma_addr; 804 /* buffer and period sizes in frame */ 805 rec->dma_size = runtime->buffer_size << rec->shift; 806 period_size = runtime->period_size << rec->shift; 807 if (runtime->channels > 2) { 808 /* multi-channels */ 809 rec->dma_size = (rec->dma_size * runtime->channels) / 2; 810 period_size = (period_size * runtime->channels) / 2; 811 } 812 813 spin_lock_irq(&cm->reg_lock); 814 815 /* set buffer address */ 816 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 817 snd_cmipci_write(cm, reg, rec->offset); 818 /* program sample counts */ 819 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 820 snd_cmipci_write_w(cm, reg, rec->dma_size - 1); 821 snd_cmipci_write_w(cm, reg + 2, period_size - 1); 822 823 /* set adc/dac flag */ 824 val = rec->ch ? CM_CHADC1 : CM_CHADC0; 825 if (rec->is_dac) 826 cm->ctrl &= ~val; 827 else 828 cm->ctrl |= val; 829 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 830 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl); 831 832 /* set sample rate */ 833 freq = 0; 834 freq_ext = 0; 835 if (runtime->rate > 48000) 836 switch (runtime->rate) { 837 case 88200: freq_ext = CM_CH0_SRATE_88K; break; 838 case 96000: freq_ext = CM_CH0_SRATE_96K; break; 839 case 128000: freq_ext = CM_CH0_SRATE_128K; break; 840 default: snd_BUG(); break; 841 } 842 else 843 freq = snd_cmipci_rate_freq(runtime->rate); 844 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 845 if (rec->ch) { 846 val &= ~CM_DSFC_MASK; 847 val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK; 848 } else { 849 val &= ~CM_ASFC_MASK; 850 val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK; 851 } 852 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 853 //snd_printd("cmipci: functrl1 = %08x\n", val); 854 855 /* set format */ 856 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 857 if (rec->ch) { 858 val &= ~CM_CH1FMT_MASK; 859 val |= rec->fmt << CM_CH1FMT_SHIFT; 860 } else { 861 val &= ~CM_CH0FMT_MASK; 862 val |= rec->fmt << CM_CH0FMT_SHIFT; 863 } 864 if (cm->can_96k) { 865 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 866 val |= freq_ext << (rec->ch * 2); 867 } 868 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 869 //snd_printd("cmipci: chformat = %08x\n", val); 870 871 if (!rec->is_dac && cm->chip_version) { 872 if (runtime->rate > 44100) 873 snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 874 else 875 snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K); 876 } 877 878 rec->running = 0; 879 spin_unlock_irq(&cm->reg_lock); 880 881 return 0; 882 } 883 884 /* 885 * PCM trigger/stop 886 */ 887 static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec, 888 int cmd) 889 { 890 unsigned int inthld, chen, reset, pause; 891 int result = 0; 892 893 inthld = CM_CH0_INT_EN << rec->ch; 894 chen = CM_CHEN0 << rec->ch; 895 reset = CM_RST_CH0 << rec->ch; 896 pause = CM_PAUSE0 << rec->ch; 897 898 spin_lock(&cm->reg_lock); 899 switch (cmd) { 900 case SNDRV_PCM_TRIGGER_START: 901 rec->running = 1; 902 /* set interrupt */ 903 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld); 904 cm->ctrl |= chen; 905 /* enable channel */ 906 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 907 //snd_printd("cmipci: functrl0 = %08x\n", cm->ctrl); 908 break; 909 case SNDRV_PCM_TRIGGER_STOP: 910 rec->running = 0; 911 /* disable interrupt */ 912 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld); 913 /* reset */ 914 cm->ctrl &= ~chen; 915 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset); 916 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset); 917 rec->needs_silencing = rec->is_dac; 918 break; 919 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 920 case SNDRV_PCM_TRIGGER_SUSPEND: 921 cm->ctrl |= pause; 922 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 923 break; 924 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 925 case SNDRV_PCM_TRIGGER_RESUME: 926 cm->ctrl &= ~pause; 927 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 928 break; 929 default: 930 result = -EINVAL; 931 break; 932 } 933 spin_unlock(&cm->reg_lock); 934 return result; 935 } 936 937 /* 938 * return the current pointer 939 */ 940 static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec, 941 struct snd_pcm_substream *substream) 942 { 943 size_t ptr; 944 unsigned int reg; 945 if (!rec->running) 946 return 0; 947 #if 1 // this seems better.. 948 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 949 ptr = rec->dma_size - (snd_cmipci_read_w(cm, reg) + 1); 950 ptr >>= rec->shift; 951 #else 952 reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1; 953 ptr = snd_cmipci_read(cm, reg) - rec->offset; 954 ptr = bytes_to_frames(substream->runtime, ptr); 955 #endif 956 if (substream->runtime->channels > 2) 957 ptr = (ptr * 2) / substream->runtime->channels; 958 return ptr; 959 } 960 961 /* 962 * playback 963 */ 964 965 static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream, 966 int cmd) 967 { 968 struct cmipci *cm = snd_pcm_substream_chip(substream); 969 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd); 970 } 971 972 static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream) 973 { 974 struct cmipci *cm = snd_pcm_substream_chip(substream); 975 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream); 976 } 977 978 979 980 /* 981 * capture 982 */ 983 984 static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream, 985 int cmd) 986 { 987 struct cmipci *cm = snd_pcm_substream_chip(substream); 988 return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd); 989 } 990 991 static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream) 992 { 993 struct cmipci *cm = snd_pcm_substream_chip(substream); 994 return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream); 995 } 996 997 998 /* 999 * hw preparation for spdif 1000 */ 1001 1002 static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol, 1003 struct snd_ctl_elem_info *uinfo) 1004 { 1005 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1006 uinfo->count = 1; 1007 return 0; 1008 } 1009 1010 static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol, 1011 struct snd_ctl_elem_value *ucontrol) 1012 { 1013 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1014 int i; 1015 1016 spin_lock_irq(&chip->reg_lock); 1017 for (i = 0; i < 4; i++) 1018 ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff; 1019 spin_unlock_irq(&chip->reg_lock); 1020 return 0; 1021 } 1022 1023 static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol, 1024 struct snd_ctl_elem_value *ucontrol) 1025 { 1026 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1027 int i, change; 1028 unsigned int val; 1029 1030 val = 0; 1031 spin_lock_irq(&chip->reg_lock); 1032 for (i = 0; i < 4; i++) 1033 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1034 change = val != chip->dig_status; 1035 chip->dig_status = val; 1036 spin_unlock_irq(&chip->reg_lock); 1037 return change; 1038 } 1039 1040 static struct snd_kcontrol_new snd_cmipci_spdif_default __devinitdata = 1041 { 1042 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1043 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 1044 .info = snd_cmipci_spdif_default_info, 1045 .get = snd_cmipci_spdif_default_get, 1046 .put = snd_cmipci_spdif_default_put 1047 }; 1048 1049 static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol, 1050 struct snd_ctl_elem_info *uinfo) 1051 { 1052 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1053 uinfo->count = 1; 1054 return 0; 1055 } 1056 1057 static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol, 1058 struct snd_ctl_elem_value *ucontrol) 1059 { 1060 ucontrol->value.iec958.status[0] = 0xff; 1061 ucontrol->value.iec958.status[1] = 0xff; 1062 ucontrol->value.iec958.status[2] = 0xff; 1063 ucontrol->value.iec958.status[3] = 0xff; 1064 return 0; 1065 } 1066 1067 static struct snd_kcontrol_new snd_cmipci_spdif_mask __devinitdata = 1068 { 1069 .access = SNDRV_CTL_ELEM_ACCESS_READ, 1070 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1071 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 1072 .info = snd_cmipci_spdif_mask_info, 1073 .get = snd_cmipci_spdif_mask_get, 1074 }; 1075 1076 static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol, 1077 struct snd_ctl_elem_info *uinfo) 1078 { 1079 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 1080 uinfo->count = 1; 1081 return 0; 1082 } 1083 1084 static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol, 1085 struct snd_ctl_elem_value *ucontrol) 1086 { 1087 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1088 int i; 1089 1090 spin_lock_irq(&chip->reg_lock); 1091 for (i = 0; i < 4; i++) 1092 ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff; 1093 spin_unlock_irq(&chip->reg_lock); 1094 return 0; 1095 } 1096 1097 static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol, 1098 struct snd_ctl_elem_value *ucontrol) 1099 { 1100 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 1101 int i, change; 1102 unsigned int val; 1103 1104 val = 0; 1105 spin_lock_irq(&chip->reg_lock); 1106 for (i = 0; i < 4; i++) 1107 val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8); 1108 change = val != chip->dig_pcm_status; 1109 chip->dig_pcm_status = val; 1110 spin_unlock_irq(&chip->reg_lock); 1111 return change; 1112 } 1113 1114 static struct snd_kcontrol_new snd_cmipci_spdif_stream __devinitdata = 1115 { 1116 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, 1117 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 1118 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), 1119 .info = snd_cmipci_spdif_stream_info, 1120 .get = snd_cmipci_spdif_stream_get, 1121 .put = snd_cmipci_spdif_stream_put 1122 }; 1123 1124 /* 1125 */ 1126 1127 /* save mixer setting and mute for AC3 playback */ 1128 static int save_mixer_state(struct cmipci *cm) 1129 { 1130 if (! cm->mixer_insensitive) { 1131 struct snd_ctl_elem_value *val; 1132 unsigned int i; 1133 1134 val = kmalloc(sizeof(*val), GFP_ATOMIC); 1135 if (!val) 1136 return -ENOMEM; 1137 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1138 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1139 if (ctl) { 1140 int event; 1141 memset(val, 0, sizeof(*val)); 1142 ctl->get(ctl, val); 1143 cm->mixer_res_status[i] = val->value.integer.value[0]; 1144 val->value.integer.value[0] = cm_saved_mixer[i].toggle_on; 1145 event = SNDRV_CTL_EVENT_MASK_INFO; 1146 if (cm->mixer_res_status[i] != val->value.integer.value[0]) { 1147 ctl->put(ctl, val); /* toggle */ 1148 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1149 } 1150 ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1151 snd_ctl_notify(cm->card, event, &ctl->id); 1152 } 1153 } 1154 kfree(val); 1155 cm->mixer_insensitive = 1; 1156 } 1157 return 0; 1158 } 1159 1160 1161 /* restore the previously saved mixer status */ 1162 static void restore_mixer_state(struct cmipci *cm) 1163 { 1164 if (cm->mixer_insensitive) { 1165 struct snd_ctl_elem_value *val; 1166 unsigned int i; 1167 1168 val = kmalloc(sizeof(*val), GFP_KERNEL); 1169 if (!val) 1170 return; 1171 cm->mixer_insensitive = 0; /* at first clear this; 1172 otherwise the changes will be ignored */ 1173 for (i = 0; i < CM_SAVED_MIXERS; i++) { 1174 struct snd_kcontrol *ctl = cm->mixer_res_ctl[i]; 1175 if (ctl) { 1176 int event; 1177 1178 memset(val, 0, sizeof(*val)); 1179 ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; 1180 ctl->get(ctl, val); 1181 event = SNDRV_CTL_EVENT_MASK_INFO; 1182 if (val->value.integer.value[0] != cm->mixer_res_status[i]) { 1183 val->value.integer.value[0] = cm->mixer_res_status[i]; 1184 ctl->put(ctl, val); 1185 event |= SNDRV_CTL_EVENT_MASK_VALUE; 1186 } 1187 snd_ctl_notify(cm->card, event, &ctl->id); 1188 } 1189 } 1190 kfree(val); 1191 } 1192 } 1193 1194 /* spinlock held! */ 1195 static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate) 1196 { 1197 if (do_ac3) { 1198 /* AC3EN for 037 */ 1199 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1200 /* AC3EN for 039 */ 1201 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1202 1203 if (cm->can_ac3_hw) { 1204 /* SPD24SEL for 037, 0x02 */ 1205 /* SPD24SEL for 039, 0x20, but cannot be set */ 1206 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1207 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1208 } else { /* can_ac3_sw */ 1209 /* SPD32SEL for 037 & 039, 0x20 */ 1210 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1211 /* set 176K sample rate to fix 033 HW bug */ 1212 if (cm->chip_version == 33) { 1213 if (rate >= 48000) { 1214 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1215 } else { 1216 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1217 } 1218 } 1219 } 1220 1221 } else { 1222 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1); 1223 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2); 1224 1225 if (cm->can_ac3_hw) { 1226 /* chip model >= 37 */ 1227 if (snd_pcm_format_width(subs->runtime->format) > 16) { 1228 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1229 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1230 } else { 1231 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1232 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1233 } 1234 } else { 1235 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1236 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL); 1237 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K); 1238 } 1239 } 1240 } 1241 1242 static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3) 1243 { 1244 int rate, err; 1245 1246 rate = subs->runtime->rate; 1247 1248 if (up && do_ac3) 1249 if ((err = save_mixer_state(cm)) < 0) 1250 return err; 1251 1252 spin_lock_irq(&cm->reg_lock); 1253 cm->spdif_playback_avail = up; 1254 if (up) { 1255 /* they are controlled via "IEC958 Output Switch" */ 1256 /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1257 /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1258 if (cm->spdif_playback_enabled) 1259 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1260 setup_ac3(cm, subs, do_ac3, rate); 1261 1262 if (rate == 48000 || rate == 96000) 1263 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1264 else 1265 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97); 1266 if (rate > 48000) 1267 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1268 else 1269 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1270 } else { 1271 /* they are controlled via "IEC958 Output Switch" */ 1272 /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */ 1273 /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */ 1274 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1275 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 1276 setup_ac3(cm, subs, 0, 0); 1277 } 1278 spin_unlock_irq(&cm->reg_lock); 1279 return 0; 1280 } 1281 1282 1283 /* 1284 * preparation 1285 */ 1286 1287 /* playback - enable spdif only on the certain condition */ 1288 static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream) 1289 { 1290 struct cmipci *cm = snd_pcm_substream_chip(substream); 1291 int rate = substream->runtime->rate; 1292 int err, do_spdif, do_ac3 = 0; 1293 1294 do_spdif = (rate >= 44100 && rate <= 96000 && 1295 substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE && 1296 substream->runtime->channels == 2); 1297 if (do_spdif && cm->can_ac3_hw) 1298 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1299 if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0) 1300 return err; 1301 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1302 } 1303 1304 /* playback (via device #2) - enable spdif always */ 1305 static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream) 1306 { 1307 struct cmipci *cm = snd_pcm_substream_chip(substream); 1308 int err, do_ac3; 1309 1310 if (cm->can_ac3_hw) 1311 do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO; 1312 else 1313 do_ac3 = 1; /* doesn't matter */ 1314 if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0) 1315 return err; 1316 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream); 1317 } 1318 1319 /* 1320 * Apparently, the samples last played on channel A stay in some buffer, even 1321 * after the channel is reset, and get added to the data for the rear DACs when 1322 * playing a multichannel stream on channel B. This is likely to generate 1323 * wraparounds and thus distortions. 1324 * To avoid this, we play at least one zero sample after the actual stream has 1325 * stopped. 1326 */ 1327 static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec) 1328 { 1329 struct snd_pcm_runtime *runtime = rec->substream->runtime; 1330 unsigned int reg, val; 1331 1332 if (rec->needs_silencing && runtime && runtime->dma_area) { 1333 /* set up a small silence buffer */ 1334 memset(runtime->dma_area, 0, PAGE_SIZE); 1335 reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2; 1336 val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16); 1337 snd_cmipci_write(cm, reg, val); 1338 1339 /* configure for 16 bits, 2 channels, 8 kHz */ 1340 if (runtime->channels > 2) 1341 set_dac_channels(cm, rec, 2); 1342 spin_lock_irq(&cm->reg_lock); 1343 val = snd_cmipci_read(cm, CM_REG_FUNCTRL1); 1344 val &= ~(CM_ASFC_MASK << (rec->ch * 3)); 1345 val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3); 1346 snd_cmipci_write(cm, CM_REG_FUNCTRL1, val); 1347 val = snd_cmipci_read(cm, CM_REG_CHFORMAT); 1348 val &= ~(CM_CH0FMT_MASK << (rec->ch * 2)); 1349 val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2); 1350 if (cm->can_96k) 1351 val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2)); 1352 snd_cmipci_write(cm, CM_REG_CHFORMAT, val); 1353 1354 /* start stream (we don't need interrupts) */ 1355 cm->ctrl |= CM_CHEN0 << rec->ch; 1356 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl); 1357 spin_unlock_irq(&cm->reg_lock); 1358 1359 msleep(1); 1360 1361 /* stop and reset stream */ 1362 spin_lock_irq(&cm->reg_lock); 1363 cm->ctrl &= ~(CM_CHEN0 << rec->ch); 1364 val = CM_RST_CH0 << rec->ch; 1365 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val); 1366 snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val); 1367 spin_unlock_irq(&cm->reg_lock); 1368 1369 rec->needs_silencing = 0; 1370 } 1371 } 1372 1373 static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream) 1374 { 1375 struct cmipci *cm = snd_pcm_substream_chip(substream); 1376 setup_spdif_playback(cm, substream, 0, 0); 1377 restore_mixer_state(cm); 1378 snd_cmipci_silence_hack(cm, &cm->channel[0]); 1379 return snd_cmipci_hw_free(substream); 1380 } 1381 1382 static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream) 1383 { 1384 struct cmipci *cm = snd_pcm_substream_chip(substream); 1385 snd_cmipci_silence_hack(cm, &cm->channel[1]); 1386 return snd_cmipci_hw_free(substream); 1387 } 1388 1389 /* capture */ 1390 static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream) 1391 { 1392 struct cmipci *cm = snd_pcm_substream_chip(substream); 1393 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1394 } 1395 1396 /* capture with spdif (via device #2) */ 1397 static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream) 1398 { 1399 struct cmipci *cm = snd_pcm_substream_chip(substream); 1400 1401 spin_lock_irq(&cm->reg_lock); 1402 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1403 if (cm->can_96k) { 1404 if (substream->runtime->rate > 48000) 1405 snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1406 else 1407 snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS); 1408 } 1409 if (snd_pcm_format_width(substream->runtime->format) > 16) 1410 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1411 else 1412 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1413 1414 spin_unlock_irq(&cm->reg_lock); 1415 1416 return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream); 1417 } 1418 1419 static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs) 1420 { 1421 struct cmipci *cm = snd_pcm_substream_chip(subs); 1422 1423 spin_lock_irq(&cm->reg_lock); 1424 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF); 1425 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL); 1426 spin_unlock_irq(&cm->reg_lock); 1427 1428 return snd_cmipci_hw_free(subs); 1429 } 1430 1431 1432 /* 1433 * interrupt handler 1434 */ 1435 static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id) 1436 { 1437 struct cmipci *cm = dev_id; 1438 unsigned int status, mask = 0; 1439 1440 /* fastpath out, to ease interrupt sharing */ 1441 status = snd_cmipci_read(cm, CM_REG_INT_STATUS); 1442 if (!(status & CM_INTR)) 1443 return IRQ_NONE; 1444 1445 /* acknowledge interrupt */ 1446 spin_lock(&cm->reg_lock); 1447 if (status & CM_CHINT0) 1448 mask |= CM_CH0_INT_EN; 1449 if (status & CM_CHINT1) 1450 mask |= CM_CH1_INT_EN; 1451 snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask); 1452 snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask); 1453 spin_unlock(&cm->reg_lock); 1454 1455 if (cm->rmidi && (status & CM_UARTINT)) 1456 snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data); 1457 1458 if (cm->pcm) { 1459 if ((status & CM_CHINT0) && cm->channel[0].running) 1460 snd_pcm_period_elapsed(cm->channel[0].substream); 1461 if ((status & CM_CHINT1) && cm->channel[1].running) 1462 snd_pcm_period_elapsed(cm->channel[1].substream); 1463 } 1464 return IRQ_HANDLED; 1465 } 1466 1467 /* 1468 * h/w infos 1469 */ 1470 1471 /* playback on channel A */ 1472 static struct snd_pcm_hardware snd_cmipci_playback = 1473 { 1474 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1475 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1476 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1477 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1478 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1479 .rate_min = 5512, 1480 .rate_max = 48000, 1481 .channels_min = 1, 1482 .channels_max = 2, 1483 .buffer_bytes_max = (128*1024), 1484 .period_bytes_min = 64, 1485 .period_bytes_max = (128*1024), 1486 .periods_min = 2, 1487 .periods_max = 1024, 1488 .fifo_size = 0, 1489 }; 1490 1491 /* capture on channel B */ 1492 static struct snd_pcm_hardware snd_cmipci_capture = 1493 { 1494 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1495 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1496 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1497 .formats = SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE, 1498 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1499 .rate_min = 5512, 1500 .rate_max = 48000, 1501 .channels_min = 1, 1502 .channels_max = 2, 1503 .buffer_bytes_max = (128*1024), 1504 .period_bytes_min = 64, 1505 .period_bytes_max = (128*1024), 1506 .periods_min = 2, 1507 .periods_max = 1024, 1508 .fifo_size = 0, 1509 }; 1510 1511 /* playback on channel B - stereo 16bit only? */ 1512 static struct snd_pcm_hardware snd_cmipci_playback2 = 1513 { 1514 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1515 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1516 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1517 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1518 .rates = SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000, 1519 .rate_min = 5512, 1520 .rate_max = 48000, 1521 .channels_min = 2, 1522 .channels_max = 2, 1523 .buffer_bytes_max = (128*1024), 1524 .period_bytes_min = 64, 1525 .period_bytes_max = (128*1024), 1526 .periods_min = 2, 1527 .periods_max = 1024, 1528 .fifo_size = 0, 1529 }; 1530 1531 /* spdif playback on channel A */ 1532 static struct snd_pcm_hardware snd_cmipci_playback_spdif = 1533 { 1534 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1535 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1536 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1537 .formats = SNDRV_PCM_FMTBIT_S16_LE, 1538 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1539 .rate_min = 44100, 1540 .rate_max = 48000, 1541 .channels_min = 2, 1542 .channels_max = 2, 1543 .buffer_bytes_max = (128*1024), 1544 .period_bytes_min = 64, 1545 .period_bytes_max = (128*1024), 1546 .periods_min = 2, 1547 .periods_max = 1024, 1548 .fifo_size = 0, 1549 }; 1550 1551 /* spdif playback on channel A (32bit, IEC958 subframes) */ 1552 static struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe = 1553 { 1554 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1555 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1556 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1557 .formats = SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1558 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1559 .rate_min = 44100, 1560 .rate_max = 48000, 1561 .channels_min = 2, 1562 .channels_max = 2, 1563 .buffer_bytes_max = (128*1024), 1564 .period_bytes_min = 64, 1565 .period_bytes_max = (128*1024), 1566 .periods_min = 2, 1567 .periods_max = 1024, 1568 .fifo_size = 0, 1569 }; 1570 1571 /* spdif capture on channel B */ 1572 static struct snd_pcm_hardware snd_cmipci_capture_spdif = 1573 { 1574 .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | 1575 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE | 1576 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID), 1577 .formats = SNDRV_PCM_FMTBIT_S16_LE | 1578 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE, 1579 .rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 1580 .rate_min = 44100, 1581 .rate_max = 48000, 1582 .channels_min = 2, 1583 .channels_max = 2, 1584 .buffer_bytes_max = (128*1024), 1585 .period_bytes_min = 64, 1586 .period_bytes_max = (128*1024), 1587 .periods_min = 2, 1588 .periods_max = 1024, 1589 .fifo_size = 0, 1590 }; 1591 1592 static unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050, 1593 32000, 44100, 48000, 88200, 96000, 128000 }; 1594 static struct snd_pcm_hw_constraint_list hw_constraints_rates = { 1595 .count = ARRAY_SIZE(rate_constraints), 1596 .list = rate_constraints, 1597 .mask = 0, 1598 }; 1599 1600 /* 1601 * check device open/close 1602 */ 1603 static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs) 1604 { 1605 int ch = mode & CM_OPEN_CH_MASK; 1606 1607 /* FIXME: a file should wait until the device becomes free 1608 * when it's opened on blocking mode. however, since the current 1609 * pcm framework doesn't pass file pointer before actually opened, 1610 * we can't know whether blocking mode or not in open callback.. 1611 */ 1612 mutex_lock(&cm->open_mutex); 1613 if (cm->opened[ch]) { 1614 mutex_unlock(&cm->open_mutex); 1615 return -EBUSY; 1616 } 1617 cm->opened[ch] = mode; 1618 cm->channel[ch].substream = subs; 1619 if (! (mode & CM_OPEN_DAC)) { 1620 /* disable dual DAC mode */ 1621 cm->channel[ch].is_dac = 0; 1622 spin_lock_irq(&cm->reg_lock); 1623 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1624 spin_unlock_irq(&cm->reg_lock); 1625 } 1626 mutex_unlock(&cm->open_mutex); 1627 return 0; 1628 } 1629 1630 static void close_device_check(struct cmipci *cm, int mode) 1631 { 1632 int ch = mode & CM_OPEN_CH_MASK; 1633 1634 mutex_lock(&cm->open_mutex); 1635 if (cm->opened[ch] == mode) { 1636 if (cm->channel[ch].substream) { 1637 snd_cmipci_ch_reset(cm, ch); 1638 cm->channel[ch].running = 0; 1639 cm->channel[ch].substream = NULL; 1640 } 1641 cm->opened[ch] = 0; 1642 if (! cm->channel[ch].is_dac) { 1643 /* enable dual DAC mode again */ 1644 cm->channel[ch].is_dac = 1; 1645 spin_lock_irq(&cm->reg_lock); 1646 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC); 1647 spin_unlock_irq(&cm->reg_lock); 1648 } 1649 } 1650 mutex_unlock(&cm->open_mutex); 1651 } 1652 1653 /* 1654 */ 1655 1656 static int snd_cmipci_playback_open(struct snd_pcm_substream *substream) 1657 { 1658 struct cmipci *cm = snd_pcm_substream_chip(substream); 1659 struct snd_pcm_runtime *runtime = substream->runtime; 1660 int err; 1661 1662 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0) 1663 return err; 1664 runtime->hw = snd_cmipci_playback; 1665 if (cm->chip_version == 68) { 1666 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1667 SNDRV_PCM_RATE_96000; 1668 runtime->hw.rate_max = 96000; 1669 } else if (cm->chip_version == 55) { 1670 err = snd_pcm_hw_constraint_list(runtime, 0, 1671 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1672 if (err < 0) 1673 return err; 1674 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1675 runtime->hw.rate_max = 128000; 1676 } 1677 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1678 cm->dig_pcm_status = cm->dig_status; 1679 return 0; 1680 } 1681 1682 static int snd_cmipci_capture_open(struct snd_pcm_substream *substream) 1683 { 1684 struct cmipci *cm = snd_pcm_substream_chip(substream); 1685 struct snd_pcm_runtime *runtime = substream->runtime; 1686 int err; 1687 1688 if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0) 1689 return err; 1690 runtime->hw = snd_cmipci_capture; 1691 if (cm->chip_version == 68) { // 8768 only supports 44k/48k recording 1692 runtime->hw.rate_min = 41000; 1693 runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000; 1694 } else if (cm->chip_version == 55) { 1695 err = snd_pcm_hw_constraint_list(runtime, 0, 1696 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1697 if (err < 0) 1698 return err; 1699 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1700 runtime->hw.rate_max = 128000; 1701 } 1702 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1703 return 0; 1704 } 1705 1706 static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream) 1707 { 1708 struct cmipci *cm = snd_pcm_substream_chip(substream); 1709 struct snd_pcm_runtime *runtime = substream->runtime; 1710 int err; 1711 1712 if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */ 1713 return err; 1714 runtime->hw = snd_cmipci_playback2; 1715 mutex_lock(&cm->open_mutex); 1716 if (! cm->opened[CM_CH_PLAY]) { 1717 if (cm->can_multi_ch) { 1718 runtime->hw.channels_max = cm->max_channels; 1719 if (cm->max_channels == 4) 1720 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4); 1721 else if (cm->max_channels == 6) 1722 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6); 1723 else if (cm->max_channels == 8) 1724 snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8); 1725 } 1726 } 1727 mutex_unlock(&cm->open_mutex); 1728 if (cm->chip_version == 68) { 1729 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1730 SNDRV_PCM_RATE_96000; 1731 runtime->hw.rate_max = 96000; 1732 } else if (cm->chip_version == 55) { 1733 err = snd_pcm_hw_constraint_list(runtime, 0, 1734 SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates); 1735 if (err < 0) 1736 return err; 1737 runtime->hw.rates |= SNDRV_PCM_RATE_KNOT; 1738 runtime->hw.rate_max = 128000; 1739 } 1740 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000); 1741 return 0; 1742 } 1743 1744 static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream) 1745 { 1746 struct cmipci *cm = snd_pcm_substream_chip(substream); 1747 struct snd_pcm_runtime *runtime = substream->runtime; 1748 int err; 1749 1750 if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */ 1751 return err; 1752 if (cm->can_ac3_hw) { 1753 runtime->hw = snd_cmipci_playback_spdif; 1754 if (cm->chip_version >= 37) { 1755 runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE; 1756 snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 1757 } 1758 if (cm->can_96k) { 1759 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1760 SNDRV_PCM_RATE_96000; 1761 runtime->hw.rate_max = 96000; 1762 } 1763 } else { 1764 runtime->hw = snd_cmipci_playback_iec958_subframe; 1765 } 1766 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1767 cm->dig_pcm_status = cm->dig_status; 1768 return 0; 1769 } 1770 1771 static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream) 1772 { 1773 struct cmipci *cm = snd_pcm_substream_chip(substream); 1774 struct snd_pcm_runtime *runtime = substream->runtime; 1775 int err; 1776 1777 if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */ 1778 return err; 1779 runtime->hw = snd_cmipci_capture_spdif; 1780 if (cm->can_96k && !(cm->chip_version == 68)) { 1781 runtime->hw.rates |= SNDRV_PCM_RATE_88200 | 1782 SNDRV_PCM_RATE_96000; 1783 runtime->hw.rate_max = 96000; 1784 } 1785 snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000); 1786 return 0; 1787 } 1788 1789 1790 /* 1791 */ 1792 1793 static int snd_cmipci_playback_close(struct snd_pcm_substream *substream) 1794 { 1795 struct cmipci *cm = snd_pcm_substream_chip(substream); 1796 close_device_check(cm, CM_OPEN_PLAYBACK); 1797 return 0; 1798 } 1799 1800 static int snd_cmipci_capture_close(struct snd_pcm_substream *substream) 1801 { 1802 struct cmipci *cm = snd_pcm_substream_chip(substream); 1803 close_device_check(cm, CM_OPEN_CAPTURE); 1804 return 0; 1805 } 1806 1807 static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream) 1808 { 1809 struct cmipci *cm = snd_pcm_substream_chip(substream); 1810 close_device_check(cm, CM_OPEN_PLAYBACK2); 1811 close_device_check(cm, CM_OPEN_PLAYBACK_MULTI); 1812 return 0; 1813 } 1814 1815 static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream) 1816 { 1817 struct cmipci *cm = snd_pcm_substream_chip(substream); 1818 close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK); 1819 return 0; 1820 } 1821 1822 static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream) 1823 { 1824 struct cmipci *cm = snd_pcm_substream_chip(substream); 1825 close_device_check(cm, CM_OPEN_SPDIF_CAPTURE); 1826 return 0; 1827 } 1828 1829 1830 /* 1831 */ 1832 1833 static struct snd_pcm_ops snd_cmipci_playback_ops = { 1834 .open = snd_cmipci_playback_open, 1835 .close = snd_cmipci_playback_close, 1836 .ioctl = snd_pcm_lib_ioctl, 1837 .hw_params = snd_cmipci_hw_params, 1838 .hw_free = snd_cmipci_playback_hw_free, 1839 .prepare = snd_cmipci_playback_prepare, 1840 .trigger = snd_cmipci_playback_trigger, 1841 .pointer = snd_cmipci_playback_pointer, 1842 }; 1843 1844 static struct snd_pcm_ops snd_cmipci_capture_ops = { 1845 .open = snd_cmipci_capture_open, 1846 .close = snd_cmipci_capture_close, 1847 .ioctl = snd_pcm_lib_ioctl, 1848 .hw_params = snd_cmipci_hw_params, 1849 .hw_free = snd_cmipci_hw_free, 1850 .prepare = snd_cmipci_capture_prepare, 1851 .trigger = snd_cmipci_capture_trigger, 1852 .pointer = snd_cmipci_capture_pointer, 1853 }; 1854 1855 static struct snd_pcm_ops snd_cmipci_playback2_ops = { 1856 .open = snd_cmipci_playback2_open, 1857 .close = snd_cmipci_playback2_close, 1858 .ioctl = snd_pcm_lib_ioctl, 1859 .hw_params = snd_cmipci_playback2_hw_params, 1860 .hw_free = snd_cmipci_playback2_hw_free, 1861 .prepare = snd_cmipci_capture_prepare, /* channel B */ 1862 .trigger = snd_cmipci_capture_trigger, /* channel B */ 1863 .pointer = snd_cmipci_capture_pointer, /* channel B */ 1864 }; 1865 1866 static struct snd_pcm_ops snd_cmipci_playback_spdif_ops = { 1867 .open = snd_cmipci_playback_spdif_open, 1868 .close = snd_cmipci_playback_spdif_close, 1869 .ioctl = snd_pcm_lib_ioctl, 1870 .hw_params = snd_cmipci_hw_params, 1871 .hw_free = snd_cmipci_playback_hw_free, 1872 .prepare = snd_cmipci_playback_spdif_prepare, /* set up rate */ 1873 .trigger = snd_cmipci_playback_trigger, 1874 .pointer = snd_cmipci_playback_pointer, 1875 }; 1876 1877 static struct snd_pcm_ops snd_cmipci_capture_spdif_ops = { 1878 .open = snd_cmipci_capture_spdif_open, 1879 .close = snd_cmipci_capture_spdif_close, 1880 .ioctl = snd_pcm_lib_ioctl, 1881 .hw_params = snd_cmipci_hw_params, 1882 .hw_free = snd_cmipci_capture_spdif_hw_free, 1883 .prepare = snd_cmipci_capture_spdif_prepare, 1884 .trigger = snd_cmipci_capture_trigger, 1885 .pointer = snd_cmipci_capture_pointer, 1886 }; 1887 1888 1889 /* 1890 */ 1891 1892 static int __devinit snd_cmipci_pcm_new(struct cmipci *cm, int device) 1893 { 1894 struct snd_pcm *pcm; 1895 int err; 1896 1897 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1898 if (err < 0) 1899 return err; 1900 1901 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops); 1902 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops); 1903 1904 pcm->private_data = cm; 1905 pcm->info_flags = 0; 1906 strcpy(pcm->name, "C-Media PCI DAC/ADC"); 1907 cm->pcm = pcm; 1908 1909 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1910 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1911 1912 return 0; 1913 } 1914 1915 static int __devinit snd_cmipci_pcm2_new(struct cmipci *cm, int device) 1916 { 1917 struct snd_pcm *pcm; 1918 int err; 1919 1920 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm); 1921 if (err < 0) 1922 return err; 1923 1924 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops); 1925 1926 pcm->private_data = cm; 1927 pcm->info_flags = 0; 1928 strcpy(pcm->name, "C-Media PCI 2nd DAC"); 1929 cm->pcm2 = pcm; 1930 1931 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1932 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1933 1934 return 0; 1935 } 1936 1937 static int __devinit snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device) 1938 { 1939 struct snd_pcm *pcm; 1940 int err; 1941 1942 err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm); 1943 if (err < 0) 1944 return err; 1945 1946 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops); 1947 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops); 1948 1949 pcm->private_data = cm; 1950 pcm->info_flags = 0; 1951 strcpy(pcm->name, "C-Media PCI IEC958"); 1952 cm->pcm_spdif = pcm; 1953 1954 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, 1955 snd_dma_pci_data(cm->pci), 64*1024, 128*1024); 1956 1957 return 0; 1958 } 1959 1960 /* 1961 * mixer interface: 1962 * - CM8338/8738 has a compatible mixer interface with SB16, but 1963 * lack of some elements like tone control, i/o gain and AGC. 1964 * - Access to native registers: 1965 * - A 3D switch 1966 * - Output mute switches 1967 */ 1968 1969 static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data) 1970 { 1971 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1972 outb(data, s->iobase + CM_REG_SB16_DATA); 1973 } 1974 1975 static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx) 1976 { 1977 unsigned char v; 1978 1979 outb(idx, s->iobase + CM_REG_SB16_ADDR); 1980 v = inb(s->iobase + CM_REG_SB16_DATA); 1981 return v; 1982 } 1983 1984 /* 1985 * general mixer element 1986 */ 1987 struct cmipci_sb_reg { 1988 unsigned int left_reg, right_reg; 1989 unsigned int left_shift, right_shift; 1990 unsigned int mask; 1991 unsigned int invert: 1; 1992 unsigned int stereo: 1; 1993 }; 1994 1995 #define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \ 1996 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23)) 1997 1998 #define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \ 1999 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2000 .info = snd_cmipci_info_volume, \ 2001 .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \ 2002 .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \ 2003 } 2004 2005 #define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1) 2006 #define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0) 2007 #define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1) 2008 #define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0) 2009 2010 static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val) 2011 { 2012 r->left_reg = val & 0xff; 2013 r->right_reg = (val >> 8) & 0xff; 2014 r->left_shift = (val >> 16) & 0x07; 2015 r->right_shift = (val >> 19) & 0x07; 2016 r->invert = (val >> 22) & 1; 2017 r->stereo = (val >> 23) & 1; 2018 r->mask = (val >> 24) & 0xff; 2019 } 2020 2021 static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol, 2022 struct snd_ctl_elem_info *uinfo) 2023 { 2024 struct cmipci_sb_reg reg; 2025 2026 cmipci_sb_reg_decode(®, kcontrol->private_value); 2027 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2028 uinfo->count = reg.stereo + 1; 2029 uinfo->value.integer.min = 0; 2030 uinfo->value.integer.max = reg.mask; 2031 return 0; 2032 } 2033 2034 static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol, 2035 struct snd_ctl_elem_value *ucontrol) 2036 { 2037 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2038 struct cmipci_sb_reg reg; 2039 int val; 2040 2041 cmipci_sb_reg_decode(®, kcontrol->private_value); 2042 spin_lock_irq(&cm->reg_lock); 2043 val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask; 2044 if (reg.invert) 2045 val = reg.mask - val; 2046 ucontrol->value.integer.value[0] = val; 2047 if (reg.stereo) { 2048 val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask; 2049 if (reg.invert) 2050 val = reg.mask - val; 2051 ucontrol->value.integer.value[1] = val; 2052 } 2053 spin_unlock_irq(&cm->reg_lock); 2054 return 0; 2055 } 2056 2057 static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol, 2058 struct snd_ctl_elem_value *ucontrol) 2059 { 2060 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2061 struct cmipci_sb_reg reg; 2062 int change; 2063 int left, right, oleft, oright; 2064 2065 cmipci_sb_reg_decode(®, kcontrol->private_value); 2066 left = ucontrol->value.integer.value[0] & reg.mask; 2067 if (reg.invert) 2068 left = reg.mask - left; 2069 left <<= reg.left_shift; 2070 if (reg.stereo) { 2071 right = ucontrol->value.integer.value[1] & reg.mask; 2072 if (reg.invert) 2073 right = reg.mask - right; 2074 right <<= reg.right_shift; 2075 } else 2076 right = 0; 2077 spin_lock_irq(&cm->reg_lock); 2078 oleft = snd_cmipci_mixer_read(cm, reg.left_reg); 2079 left |= oleft & ~(reg.mask << reg.left_shift); 2080 change = left != oleft; 2081 if (reg.stereo) { 2082 if (reg.left_reg != reg.right_reg) { 2083 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2084 oright = snd_cmipci_mixer_read(cm, reg.right_reg); 2085 } else 2086 oright = left; 2087 right |= oright & ~(reg.mask << reg.right_shift); 2088 change |= right != oright; 2089 snd_cmipci_mixer_write(cm, reg.right_reg, right); 2090 } else 2091 snd_cmipci_mixer_write(cm, reg.left_reg, left); 2092 spin_unlock_irq(&cm->reg_lock); 2093 return change; 2094 } 2095 2096 /* 2097 * input route (left,right) -> (left,right) 2098 */ 2099 #define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \ 2100 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2101 .info = snd_cmipci_info_input_sw, \ 2102 .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \ 2103 .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \ 2104 } 2105 2106 static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol, 2107 struct snd_ctl_elem_info *uinfo) 2108 { 2109 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; 2110 uinfo->count = 4; 2111 uinfo->value.integer.min = 0; 2112 uinfo->value.integer.max = 1; 2113 return 0; 2114 } 2115 2116 static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol, 2117 struct snd_ctl_elem_value *ucontrol) 2118 { 2119 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2120 struct cmipci_sb_reg reg; 2121 int val1, val2; 2122 2123 cmipci_sb_reg_decode(®, kcontrol->private_value); 2124 spin_lock_irq(&cm->reg_lock); 2125 val1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2126 val2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2127 spin_unlock_irq(&cm->reg_lock); 2128 ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1; 2129 ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1; 2130 ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1; 2131 ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1; 2132 return 0; 2133 } 2134 2135 static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol, 2136 struct snd_ctl_elem_value *ucontrol) 2137 { 2138 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2139 struct cmipci_sb_reg reg; 2140 int change; 2141 int val1, val2, oval1, oval2; 2142 2143 cmipci_sb_reg_decode(®, kcontrol->private_value); 2144 spin_lock_irq(&cm->reg_lock); 2145 oval1 = snd_cmipci_mixer_read(cm, reg.left_reg); 2146 oval2 = snd_cmipci_mixer_read(cm, reg.right_reg); 2147 val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2148 val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift)); 2149 val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift; 2150 val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift; 2151 val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift; 2152 val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift; 2153 change = val1 != oval1 || val2 != oval2; 2154 snd_cmipci_mixer_write(cm, reg.left_reg, val1); 2155 snd_cmipci_mixer_write(cm, reg.right_reg, val2); 2156 spin_unlock_irq(&cm->reg_lock); 2157 return change; 2158 } 2159 2160 /* 2161 * native mixer switches/volumes 2162 */ 2163 2164 #define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \ 2165 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2166 .info = snd_cmipci_info_native_mixer, \ 2167 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2168 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \ 2169 } 2170 2171 #define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \ 2172 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2173 .info = snd_cmipci_info_native_mixer, \ 2174 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2175 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \ 2176 } 2177 2178 #define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \ 2179 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2180 .info = snd_cmipci_info_native_mixer, \ 2181 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2182 .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \ 2183 } 2184 2185 #define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \ 2186 { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \ 2187 .info = snd_cmipci_info_native_mixer, \ 2188 .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \ 2189 .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \ 2190 } 2191 2192 static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol, 2193 struct snd_ctl_elem_info *uinfo) 2194 { 2195 struct cmipci_sb_reg reg; 2196 2197 cmipci_sb_reg_decode(®, kcontrol->private_value); 2198 uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER; 2199 uinfo->count = reg.stereo + 1; 2200 uinfo->value.integer.min = 0; 2201 uinfo->value.integer.max = reg.mask; 2202 return 0; 2203 2204 } 2205 2206 static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol, 2207 struct snd_ctl_elem_value *ucontrol) 2208 { 2209 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2210 struct cmipci_sb_reg reg; 2211 unsigned char oreg, val; 2212 2213 cmipci_sb_reg_decode(®, kcontrol->private_value); 2214 spin_lock_irq(&cm->reg_lock); 2215 oreg = inb(cm->iobase + reg.left_reg); 2216 val = (oreg >> reg.left_shift) & reg.mask; 2217 if (reg.invert) 2218 val = reg.mask - val; 2219 ucontrol->value.integer.value[0] = val; 2220 if (reg.stereo) { 2221 val = (oreg >> reg.right_shift) & reg.mask; 2222 if (reg.invert) 2223 val = reg.mask - val; 2224 ucontrol->value.integer.value[1] = val; 2225 } 2226 spin_unlock_irq(&cm->reg_lock); 2227 return 0; 2228 } 2229 2230 static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol, 2231 struct snd_ctl_elem_value *ucontrol) 2232 { 2233 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2234 struct cmipci_sb_reg reg; 2235 unsigned char oreg, nreg, val; 2236 2237 cmipci_sb_reg_decode(®, kcontrol->private_value); 2238 spin_lock_irq(&cm->reg_lock); 2239 oreg = inb(cm->iobase + reg.left_reg); 2240 val = ucontrol->value.integer.value[0] & reg.mask; 2241 if (reg.invert) 2242 val = reg.mask - val; 2243 nreg = oreg & ~(reg.mask << reg.left_shift); 2244 nreg |= (val << reg.left_shift); 2245 if (reg.stereo) { 2246 val = ucontrol->value.integer.value[1] & reg.mask; 2247 if (reg.invert) 2248 val = reg.mask - val; 2249 nreg &= ~(reg.mask << reg.right_shift); 2250 nreg |= (val << reg.right_shift); 2251 } 2252 outb(nreg, cm->iobase + reg.left_reg); 2253 spin_unlock_irq(&cm->reg_lock); 2254 return (nreg != oreg); 2255 } 2256 2257 /* 2258 * special case - check mixer sensitivity 2259 */ 2260 static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2261 struct snd_ctl_elem_value *ucontrol) 2262 { 2263 //struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2264 return snd_cmipci_get_native_mixer(kcontrol, ucontrol); 2265 } 2266 2267 static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol, 2268 struct snd_ctl_elem_value *ucontrol) 2269 { 2270 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2271 if (cm->mixer_insensitive) { 2272 /* ignored */ 2273 return 0; 2274 } 2275 return snd_cmipci_put_native_mixer(kcontrol, ucontrol); 2276 } 2277 2278 2279 static struct snd_kcontrol_new snd_cmipci_mixers[] __devinitdata = { 2280 CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31), 2281 CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0), 2282 CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31), 2283 //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1), 2284 { /* switch with sensitivity */ 2285 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2286 .name = "PCM Playback Switch", 2287 .info = snd_cmipci_info_native_mixer, 2288 .get = snd_cmipci_get_native_mixer_sensitive, 2289 .put = snd_cmipci_put_native_mixer_sensitive, 2290 .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0), 2291 }, 2292 CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0), 2293 CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31), 2294 CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1), 2295 CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5), 2296 CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31), 2297 CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1), 2298 CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1), 2299 CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31), 2300 CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3), 2301 CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3), 2302 CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31), 2303 CMIPCI_SB_SW_MONO("Mic Playback Switch", 0), 2304 CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0), 2305 CMIPCI_SB_VOL_MONO("PC Speaker Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3), 2306 CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15), 2307 CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0), 2308 CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0), 2309 CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1), 2310 CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7), 2311 CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7), 2312 CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0), 2313 CMIPCI_DOUBLE("PC Speaker Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0), 2314 CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0), 2315 }; 2316 2317 /* 2318 * other switches 2319 */ 2320 2321 struct cmipci_switch_args { 2322 int reg; /* register index */ 2323 unsigned int mask; /* mask bits */ 2324 unsigned int mask_on; /* mask bits to turn on */ 2325 unsigned int is_byte: 1; /* byte access? */ 2326 unsigned int ac3_sensitive: 1; /* access forbidden during 2327 * non-audio operation? 2328 */ 2329 }; 2330 2331 #define snd_cmipci_uswitch_info snd_ctl_boolean_mono_info 2332 2333 static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2334 struct snd_ctl_elem_value *ucontrol, 2335 struct cmipci_switch_args *args) 2336 { 2337 unsigned int val; 2338 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2339 2340 spin_lock_irq(&cm->reg_lock); 2341 if (args->ac3_sensitive && cm->mixer_insensitive) { 2342 ucontrol->value.integer.value[0] = 0; 2343 spin_unlock_irq(&cm->reg_lock); 2344 return 0; 2345 } 2346 if (args->is_byte) 2347 val = inb(cm->iobase + args->reg); 2348 else 2349 val = snd_cmipci_read(cm, args->reg); 2350 ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0; 2351 spin_unlock_irq(&cm->reg_lock); 2352 return 0; 2353 } 2354 2355 static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol, 2356 struct snd_ctl_elem_value *ucontrol) 2357 { 2358 struct cmipci_switch_args *args; 2359 args = (struct cmipci_switch_args *)kcontrol->private_value; 2360 snd_assert(args != NULL, return -EINVAL); 2361 return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args); 2362 } 2363 2364 static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2365 struct snd_ctl_elem_value *ucontrol, 2366 struct cmipci_switch_args *args) 2367 { 2368 unsigned int val; 2369 int change; 2370 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2371 2372 spin_lock_irq(&cm->reg_lock); 2373 if (args->ac3_sensitive && cm->mixer_insensitive) { 2374 /* ignored */ 2375 spin_unlock_irq(&cm->reg_lock); 2376 return 0; 2377 } 2378 if (args->is_byte) 2379 val = inb(cm->iobase + args->reg); 2380 else 2381 val = snd_cmipci_read(cm, args->reg); 2382 change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 2383 args->mask_on : (args->mask & ~args->mask_on)); 2384 if (change) { 2385 val &= ~args->mask; 2386 if (ucontrol->value.integer.value[0]) 2387 val |= args->mask_on; 2388 else 2389 val |= (args->mask & ~args->mask_on); 2390 if (args->is_byte) 2391 outb((unsigned char)val, cm->iobase + args->reg); 2392 else 2393 snd_cmipci_write(cm, args->reg, val); 2394 } 2395 spin_unlock_irq(&cm->reg_lock); 2396 return change; 2397 } 2398 2399 static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol, 2400 struct snd_ctl_elem_value *ucontrol) 2401 { 2402 struct cmipci_switch_args *args; 2403 args = (struct cmipci_switch_args *)kcontrol->private_value; 2404 snd_assert(args != NULL, return -EINVAL); 2405 return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args); 2406 } 2407 2408 #define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \ 2409 static struct cmipci_switch_args cmipci_switch_arg_##sname = { \ 2410 .reg = xreg, \ 2411 .mask = xmask, \ 2412 .mask_on = xmask_on, \ 2413 .is_byte = xis_byte, \ 2414 .ac3_sensitive = xac3, \ 2415 } 2416 2417 #define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \ 2418 DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3) 2419 2420 #if 0 /* these will be controlled in pcm device */ 2421 DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0); 2422 DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0); 2423 #endif 2424 DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0); 2425 DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0); 2426 DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0); 2427 DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1); 2428 DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0); 2429 DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0); 2430 DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1); 2431 DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */ 2432 // DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1); 2433 DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1); 2434 DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0); 2435 /* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */ 2436 DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0); 2437 DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0); 2438 #if CM_CH_PLAY == 1 2439 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */ 2440 #else 2441 DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0); 2442 #endif 2443 DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0); 2444 // DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0); 2445 // DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0); 2446 // DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */ 2447 DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0); 2448 2449 #define DEFINE_SWITCH(sname, stype, sarg) \ 2450 { .name = sname, \ 2451 .iface = stype, \ 2452 .info = snd_cmipci_uswitch_info, \ 2453 .get = snd_cmipci_uswitch_get, \ 2454 .put = snd_cmipci_uswitch_put, \ 2455 .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\ 2456 } 2457 2458 #define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg) 2459 #define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg) 2460 2461 2462 /* 2463 * callbacks for spdif output switch 2464 * needs toggle two registers.. 2465 */ 2466 static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol, 2467 struct snd_ctl_elem_value *ucontrol) 2468 { 2469 int changed; 2470 changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2471 changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2472 return changed; 2473 } 2474 2475 static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol, 2476 struct snd_ctl_elem_value *ucontrol) 2477 { 2478 struct cmipci *chip = snd_kcontrol_chip(kcontrol); 2479 int changed; 2480 changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable); 2481 changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac); 2482 if (changed) { 2483 if (ucontrol->value.integer.value[0]) { 2484 if (chip->spdif_playback_avail) 2485 snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2486 } else { 2487 if (chip->spdif_playback_avail) 2488 snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF); 2489 } 2490 } 2491 chip->spdif_playback_enabled = ucontrol->value.integer.value[0]; 2492 return changed; 2493 } 2494 2495 2496 static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol, 2497 struct snd_ctl_elem_info *uinfo) 2498 { 2499 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2500 static char *texts[3] = { "Line-In", "Rear Output", "Bass Output" }; 2501 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2502 uinfo->count = 1; 2503 uinfo->value.enumerated.items = cm->chip_version >= 39 ? 3 : 2; 2504 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2505 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1; 2506 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); 2507 return 0; 2508 } 2509 2510 static inline unsigned int get_line_in_mode(struct cmipci *cm) 2511 { 2512 unsigned int val; 2513 if (cm->chip_version >= 39) { 2514 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL); 2515 if (val & (CM_CENTR2LIN | CM_BASE2LIN)) 2516 return 2; 2517 } 2518 val = snd_cmipci_read_b(cm, CM_REG_MIXER1); 2519 if (val & CM_REAR2LIN) 2520 return 1; 2521 return 0; 2522 } 2523 2524 static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol, 2525 struct snd_ctl_elem_value *ucontrol) 2526 { 2527 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2528 2529 spin_lock_irq(&cm->reg_lock); 2530 ucontrol->value.enumerated.item[0] = get_line_in_mode(cm); 2531 spin_unlock_irq(&cm->reg_lock); 2532 return 0; 2533 } 2534 2535 static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol, 2536 struct snd_ctl_elem_value *ucontrol) 2537 { 2538 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2539 int change; 2540 2541 spin_lock_irq(&cm->reg_lock); 2542 if (ucontrol->value.enumerated.item[0] == 2) 2543 change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2544 else 2545 change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN); 2546 if (ucontrol->value.enumerated.item[0] == 1) 2547 change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2548 else 2549 change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN); 2550 spin_unlock_irq(&cm->reg_lock); 2551 return change; 2552 } 2553 2554 static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol, 2555 struct snd_ctl_elem_info *uinfo) 2556 { 2557 static char *texts[2] = { "Mic-In", "Center/LFE Output" }; 2558 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; 2559 uinfo->count = 1; 2560 uinfo->value.enumerated.items = 2; 2561 if (uinfo->value.enumerated.item >= uinfo->value.enumerated.items) 2562 uinfo->value.enumerated.item = uinfo->value.enumerated.items - 1; 2563 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]); 2564 return 0; 2565 } 2566 2567 static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol, 2568 struct snd_ctl_elem_value *ucontrol) 2569 { 2570 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2571 /* same bit as spdi_phase */ 2572 spin_lock_irq(&cm->reg_lock); 2573 ucontrol->value.enumerated.item[0] = 2574 (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0; 2575 spin_unlock_irq(&cm->reg_lock); 2576 return 0; 2577 } 2578 2579 static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol, 2580 struct snd_ctl_elem_value *ucontrol) 2581 { 2582 struct cmipci *cm = snd_kcontrol_chip(kcontrol); 2583 int change; 2584 2585 spin_lock_irq(&cm->reg_lock); 2586 if (ucontrol->value.enumerated.item[0]) 2587 change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2588 else 2589 change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE); 2590 spin_unlock_irq(&cm->reg_lock); 2591 return change; 2592 } 2593 2594 /* both for CM8338/8738 */ 2595 static struct snd_kcontrol_new snd_cmipci_mixer_switches[] __devinitdata = { 2596 DEFINE_MIXER_SWITCH("Four Channel Mode", fourch), 2597 { 2598 .name = "Line-In Mode", 2599 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2600 .info = snd_cmipci_line_in_mode_info, 2601 .get = snd_cmipci_line_in_mode_get, 2602 .put = snd_cmipci_line_in_mode_put, 2603 }, 2604 }; 2605 2606 /* for non-multichannel chips */ 2607 static struct snd_kcontrol_new snd_cmipci_nomulti_switch __devinitdata = 2608 DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac); 2609 2610 /* only for CM8738 */ 2611 static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] __devinitdata = { 2612 #if 0 /* controlled in pcm device */ 2613 DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in), 2614 DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out), 2615 DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac), 2616 #endif 2617 // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable), 2618 { .name = "IEC958 Output Switch", 2619 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2620 .info = snd_cmipci_uswitch_info, 2621 .get = snd_cmipci_spdout_enable_get, 2622 .put = snd_cmipci_spdout_enable_put, 2623 }, 2624 DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid), 2625 DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright), 2626 DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v), 2627 // DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k), 2628 DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop), 2629 DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor), 2630 }; 2631 2632 /* only for model 033/037 */ 2633 static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] __devinitdata = { 2634 DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out), 2635 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase), 2636 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1), 2637 }; 2638 2639 /* only for model 039 or later */ 2640 static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] __devinitdata = { 2641 DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2), 2642 DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2), 2643 { 2644 .name = "Mic-In Mode", 2645 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 2646 .info = snd_cmipci_mic_in_mode_info, 2647 .get = snd_cmipci_mic_in_mode_get, 2648 .put = snd_cmipci_mic_in_mode_put, 2649 } 2650 }; 2651 2652 /* card control switches */ 2653 static struct snd_kcontrol_new snd_cmipci_modem_switch __devinitdata = 2654 DEFINE_CARD_SWITCH("Modem", modem); 2655 2656 2657 static int __devinit snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device) 2658 { 2659 struct snd_card *card; 2660 struct snd_kcontrol_new *sw; 2661 struct snd_kcontrol *kctl; 2662 unsigned int idx; 2663 int err; 2664 2665 snd_assert(cm != NULL && cm->card != NULL, return -EINVAL); 2666 2667 card = cm->card; 2668 2669 strcpy(card->mixername, "CMedia PCI"); 2670 2671 spin_lock_irq(&cm->reg_lock); 2672 snd_cmipci_mixer_write(cm, 0x00, 0x00); /* mixer reset */ 2673 spin_unlock_irq(&cm->reg_lock); 2674 2675 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) { 2676 if (cm->chip_version == 68) { // 8768 has no PCM volume 2677 if (!strcmp(snd_cmipci_mixers[idx].name, 2678 "PCM Playback Volume")) 2679 continue; 2680 } 2681 if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0) 2682 return err; 2683 } 2684 2685 /* mixer switches */ 2686 sw = snd_cmipci_mixer_switches; 2687 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) { 2688 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2689 if (err < 0) 2690 return err; 2691 } 2692 if (! cm->can_multi_ch) { 2693 err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm)); 2694 if (err < 0) 2695 return err; 2696 } 2697 if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 || 2698 cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) { 2699 sw = snd_cmipci_8738_mixer_switches; 2700 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) { 2701 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2702 if (err < 0) 2703 return err; 2704 } 2705 if (cm->can_ac3_hw) { 2706 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0) 2707 return err; 2708 kctl->id.device = pcm_spdif_device; 2709 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0) 2710 return err; 2711 kctl->id.device = pcm_spdif_device; 2712 if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0) 2713 return err; 2714 kctl->id.device = pcm_spdif_device; 2715 } 2716 if (cm->chip_version <= 37) { 2717 sw = snd_cmipci_old_mixer_switches; 2718 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) { 2719 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2720 if (err < 0) 2721 return err; 2722 } 2723 } 2724 } 2725 if (cm->chip_version >= 39) { 2726 sw = snd_cmipci_extra_mixer_switches; 2727 for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) { 2728 err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm)); 2729 if (err < 0) 2730 return err; 2731 } 2732 } 2733 2734 /* card switches */ 2735 /* 2736 * newer chips don't have the register bits to force modem link 2737 * detection; the bit that was FLINKON now mutes CH1 2738 */ 2739 if (cm->chip_version < 39) { 2740 err = snd_ctl_add(cm->card, 2741 snd_ctl_new1(&snd_cmipci_modem_switch, cm)); 2742 if (err < 0) 2743 return err; 2744 } 2745 2746 for (idx = 0; idx < CM_SAVED_MIXERS; idx++) { 2747 struct snd_ctl_elem_id elem_id; 2748 struct snd_kcontrol *ctl; 2749 memset(&elem_id, 0, sizeof(elem_id)); 2750 elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER; 2751 strcpy(elem_id.name, cm_saved_mixer[idx].name); 2752 ctl = snd_ctl_find_id(cm->card, &elem_id); 2753 if (ctl) 2754 cm->mixer_res_ctl[idx] = ctl; 2755 } 2756 2757 return 0; 2758 } 2759 2760 2761 /* 2762 * proc interface 2763 */ 2764 2765 #ifdef CONFIG_PROC_FS 2766 static void snd_cmipci_proc_read(struct snd_info_entry *entry, 2767 struct snd_info_buffer *buffer) 2768 { 2769 struct cmipci *cm = entry->private_data; 2770 int i, v; 2771 2772 snd_iprintf(buffer, "%s\n", cm->card->longname); 2773 for (i = 0; i < 0x94; i++) { 2774 if (i == 0x28) 2775 i = 0x90; 2776 v = inb(cm->iobase + i); 2777 if (i % 4 == 0) 2778 snd_iprintf(buffer, "\n%02x:", i); 2779 snd_iprintf(buffer, " %02x", v); 2780 } 2781 snd_iprintf(buffer, "\n"); 2782 } 2783 2784 static void __devinit snd_cmipci_proc_init(struct cmipci *cm) 2785 { 2786 struct snd_info_entry *entry; 2787 2788 if (! snd_card_proc_new(cm->card, "cmipci", &entry)) 2789 snd_info_set_text_ops(entry, cm, snd_cmipci_proc_read); 2790 } 2791 #else /* !CONFIG_PROC_FS */ 2792 static inline void snd_cmipci_proc_init(struct cmipci *cm) {} 2793 #endif 2794 2795 2796 static struct pci_device_id snd_cmipci_ids[] = { 2797 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2798 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2799 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2800 {PCI_VENDOR_ID_CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2801 {PCI_VENDOR_ID_AL, PCI_DEVICE_ID_CMEDIA_CM8738, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2802 {0,}, 2803 }; 2804 2805 2806 /* 2807 * check chip version and capabilities 2808 * driver name is modified according to the chip model 2809 */ 2810 static void __devinit query_chip(struct cmipci *cm) 2811 { 2812 unsigned int detect; 2813 2814 /* check reg 0Ch, bit 24-31 */ 2815 detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2; 2816 if (! detect) { 2817 /* check reg 08h, bit 24-28 */ 2818 detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1; 2819 switch (detect) { 2820 case 0: 2821 cm->chip_version = 33; 2822 if (cm->do_soft_ac3) 2823 cm->can_ac3_sw = 1; 2824 else 2825 cm->can_ac3_hw = 1; 2826 break; 2827 case CM_CHIP_037: 2828 cm->chip_version = 37; 2829 cm->can_ac3_hw = 1; 2830 break; 2831 default: 2832 cm->chip_version = 39; 2833 cm->can_ac3_hw = 1; 2834 break; 2835 } 2836 cm->max_channels = 2; 2837 } else { 2838 if (detect & CM_CHIP_039) { 2839 cm->chip_version = 39; 2840 if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */ 2841 cm->max_channels = 6; 2842 else 2843 cm->max_channels = 4; 2844 } else if (detect & CM_CHIP_8768) { 2845 cm->chip_version = 68; 2846 cm->max_channels = 8; 2847 cm->can_96k = 1; 2848 } else { 2849 cm->chip_version = 55; 2850 cm->max_channels = 6; 2851 cm->can_96k = 1; 2852 } 2853 cm->can_ac3_hw = 1; 2854 cm->can_multi_ch = 1; 2855 } 2856 } 2857 2858 #ifdef SUPPORT_JOYSTICK 2859 static int __devinit snd_cmipci_create_gameport(struct cmipci *cm, int dev) 2860 { 2861 static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */ 2862 struct gameport *gp; 2863 struct resource *r = NULL; 2864 int i, io_port = 0; 2865 2866 if (joystick_port[dev] == 0) 2867 return -ENODEV; 2868 2869 if (joystick_port[dev] == 1) { /* auto-detect */ 2870 for (i = 0; ports[i]; i++) { 2871 io_port = ports[i]; 2872 r = request_region(io_port, 1, "CMIPCI gameport"); 2873 if (r) 2874 break; 2875 } 2876 } else { 2877 io_port = joystick_port[dev]; 2878 r = request_region(io_port, 1, "CMIPCI gameport"); 2879 } 2880 2881 if (!r) { 2882 printk(KERN_WARNING "cmipci: cannot reserve joystick ports\n"); 2883 return -EBUSY; 2884 } 2885 2886 cm->gameport = gp = gameport_allocate_port(); 2887 if (!gp) { 2888 printk(KERN_ERR "cmipci: cannot allocate memory for gameport\n"); 2889 release_and_free_resource(r); 2890 return -ENOMEM; 2891 } 2892 gameport_set_name(gp, "C-Media Gameport"); 2893 gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci)); 2894 gameport_set_dev_parent(gp, &cm->pci->dev); 2895 gp->io = io_port; 2896 gameport_set_port_data(gp, r); 2897 2898 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2899 2900 gameport_register_port(cm->gameport); 2901 2902 return 0; 2903 } 2904 2905 static void snd_cmipci_free_gameport(struct cmipci *cm) 2906 { 2907 if (cm->gameport) { 2908 struct resource *r = gameport_get_port_data(cm->gameport); 2909 2910 gameport_unregister_port(cm->gameport); 2911 cm->gameport = NULL; 2912 2913 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 2914 release_and_free_resource(r); 2915 } 2916 } 2917 #else 2918 static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; } 2919 static inline void snd_cmipci_free_gameport(struct cmipci *cm) { } 2920 #endif 2921 2922 static int snd_cmipci_free(struct cmipci *cm) 2923 { 2924 if (cm->irq >= 0) { 2925 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2926 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); 2927 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 2928 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 2929 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 2930 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 2931 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 2932 2933 /* reset mixer */ 2934 snd_cmipci_mixer_write(cm, 0, 0); 2935 2936 free_irq(cm->irq, cm); 2937 } 2938 2939 snd_cmipci_free_gameport(cm); 2940 pci_release_regions(cm->pci); 2941 pci_disable_device(cm->pci); 2942 kfree(cm); 2943 return 0; 2944 } 2945 2946 static int snd_cmipci_dev_free(struct snd_device *device) 2947 { 2948 struct cmipci *cm = device->device_data; 2949 return snd_cmipci_free(cm); 2950 } 2951 2952 static int __devinit snd_cmipci_create_fm(struct cmipci *cm, long fm_port) 2953 { 2954 long iosynth; 2955 unsigned int val; 2956 struct snd_opl3 *opl3; 2957 int err; 2958 2959 if (!fm_port) 2960 goto disable_fm; 2961 2962 if (cm->chip_version >= 39) { 2963 /* first try FM regs in PCI port range */ 2964 iosynth = cm->iobase + CM_REG_FM_PCI; 2965 err = snd_opl3_create(cm->card, iosynth, iosynth + 2, 2966 OPL3_HW_OPL3, 1, &opl3); 2967 } else { 2968 err = -EIO; 2969 } 2970 if (err < 0) { 2971 /* then try legacy ports */ 2972 val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK; 2973 iosynth = fm_port; 2974 switch (iosynth) { 2975 case 0x3E8: val |= CM_FMSEL_3E8; break; 2976 case 0x3E0: val |= CM_FMSEL_3E0; break; 2977 case 0x3C8: val |= CM_FMSEL_3C8; break; 2978 case 0x388: val |= CM_FMSEL_388; break; 2979 default: 2980 goto disable_fm; 2981 } 2982 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 2983 /* enable FM */ 2984 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 2985 2986 if (snd_opl3_create(cm->card, iosynth, iosynth + 2, 2987 OPL3_HW_OPL3, 0, &opl3) < 0) { 2988 printk(KERN_ERR "cmipci: no OPL device at %#lx, " 2989 "skipping...\n", iosynth); 2990 goto disable_fm; 2991 } 2992 } 2993 if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) { 2994 printk(KERN_ERR "cmipci: cannot create OPL3 hwdep\n"); 2995 return err; 2996 } 2997 return 0; 2998 2999 disable_fm: 3000 snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK); 3001 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN); 3002 return 0; 3003 } 3004 3005 static int __devinit snd_cmipci_create(struct snd_card *card, struct pci_dev *pci, 3006 int dev, struct cmipci **rcmipci) 3007 { 3008 struct cmipci *cm; 3009 int err; 3010 static struct snd_device_ops ops = { 3011 .dev_free = snd_cmipci_dev_free, 3012 }; 3013 unsigned int val; 3014 long iomidi; 3015 int integrated_midi = 0; 3016 char modelstr[16]; 3017 int pcm_index, pcm_spdif_index; 3018 static struct pci_device_id intel_82437vx[] = { 3019 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) }, 3020 { }, 3021 }; 3022 3023 *rcmipci = NULL; 3024 3025 if ((err = pci_enable_device(pci)) < 0) 3026 return err; 3027 3028 cm = kzalloc(sizeof(*cm), GFP_KERNEL); 3029 if (cm == NULL) { 3030 pci_disable_device(pci); 3031 return -ENOMEM; 3032 } 3033 3034 spin_lock_init(&cm->reg_lock); 3035 mutex_init(&cm->open_mutex); 3036 cm->device = pci->device; 3037 cm->card = card; 3038 cm->pci = pci; 3039 cm->irq = -1; 3040 cm->channel[0].ch = 0; 3041 cm->channel[1].ch = 1; 3042 cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */ 3043 3044 if ((err = pci_request_regions(pci, card->driver)) < 0) { 3045 kfree(cm); 3046 pci_disable_device(pci); 3047 return err; 3048 } 3049 cm->iobase = pci_resource_start(pci, 0); 3050 3051 if (request_irq(pci->irq, snd_cmipci_interrupt, 3052 IRQF_SHARED, card->driver, cm)) { 3053 snd_printk(KERN_ERR "unable to grab IRQ %d\n", pci->irq); 3054 snd_cmipci_free(cm); 3055 return -EBUSY; 3056 } 3057 cm->irq = pci->irq; 3058 3059 pci_set_master(cm->pci); 3060 3061 /* 3062 * check chip version, max channels and capabilities 3063 */ 3064 3065 cm->chip_version = 0; 3066 cm->max_channels = 2; 3067 cm->do_soft_ac3 = soft_ac3[dev]; 3068 3069 if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A && 3070 pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B) 3071 query_chip(cm); 3072 /* added -MCx suffix for chip supporting multi-channels */ 3073 if (cm->can_multi_ch) 3074 sprintf(cm->card->driver + strlen(cm->card->driver), 3075 "-MC%d", cm->max_channels); 3076 else if (cm->can_ac3_sw) 3077 strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC"); 3078 3079 cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3080 cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF; 3081 3082 #if CM_CH_PLAY == 1 3083 cm->ctrl = CM_CHADC0; /* default FUNCNTRL0 */ 3084 #else 3085 cm->ctrl = CM_CHADC1; /* default FUNCNTRL0 */ 3086 #endif 3087 3088 /* initialize codec registers */ 3089 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3090 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET); 3091 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); /* disable ints */ 3092 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3093 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3094 snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */ 3095 snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0); 3096 3097 snd_cmipci_write(cm, CM_REG_CHFORMAT, 0); 3098 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D); 3099 #if CM_CH_PLAY == 1 3100 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3101 #else 3102 snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC); 3103 #endif 3104 if (cm->chip_version) { 3105 snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */ 3106 snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */ 3107 } 3108 /* Set Bus Master Request */ 3109 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ); 3110 3111 /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */ 3112 switch (pci->device) { 3113 case PCI_DEVICE_ID_CMEDIA_CM8738: 3114 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3115 if (!pci_dev_present(intel_82437vx)) 3116 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX); 3117 break; 3118 default: 3119 break; 3120 } 3121 3122 if (cm->chip_version < 68) { 3123 val = pci->device < 0x110 ? 8338 : 8738; 3124 } else { 3125 switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) { 3126 case 0: 3127 val = 8769; 3128 break; 3129 case 2: 3130 val = 8762; 3131 break; 3132 default: 3133 switch ((pci->subsystem_vendor << 16) | 3134 pci->subsystem_device) { 3135 case 0x13f69761: 3136 case 0x584d3741: 3137 case 0x584d3751: 3138 case 0x584d3761: 3139 case 0x584d3771: 3140 case 0x72848384: 3141 val = 8770; 3142 break; 3143 default: 3144 val = 8768; 3145 break; 3146 } 3147 } 3148 } 3149 sprintf(card->shortname, "C-Media CMI%d", val); 3150 if (cm->chip_version < 68) 3151 sprintf(modelstr, " (model %d)", cm->chip_version); 3152 else 3153 modelstr[0] = '\0'; 3154 sprintf(card->longname, "%s%s at %#lx, irq %i", 3155 card->shortname, modelstr, cm->iobase, cm->irq); 3156 3157 if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) { 3158 snd_cmipci_free(cm); 3159 return err; 3160 } 3161 3162 if (cm->chip_version >= 39) { 3163 val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1); 3164 if (val != 0x00 && val != 0xff) { 3165 iomidi = cm->iobase + CM_REG_MPU_PCI; 3166 integrated_midi = 1; 3167 } 3168 } 3169 if (!integrated_midi) { 3170 val = 0; 3171 iomidi = mpu_port[dev]; 3172 switch (iomidi) { 3173 case 0x320: val = CM_VMPU_320; break; 3174 case 0x310: val = CM_VMPU_310; break; 3175 case 0x300: val = CM_VMPU_300; break; 3176 case 0x330: val = CM_VMPU_330; break; 3177 default: 3178 iomidi = 0; break; 3179 } 3180 if (iomidi > 0) { 3181 snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val); 3182 /* enable UART */ 3183 snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN); 3184 if (inb(iomidi + 1) == 0xff) { 3185 snd_printk(KERN_ERR "cannot enable MPU-401 port" 3186 " at %#lx\n", iomidi); 3187 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, 3188 CM_UART_EN); 3189 iomidi = 0; 3190 } 3191 } 3192 } 3193 3194 if (cm->chip_version < 68) { 3195 err = snd_cmipci_create_fm(cm, fm_port[dev]); 3196 if (err < 0) 3197 return err; 3198 } 3199 3200 /* reset mixer */ 3201 snd_cmipci_mixer_write(cm, 0, 0); 3202 3203 snd_cmipci_proc_init(cm); 3204 3205 /* create pcm devices */ 3206 pcm_index = pcm_spdif_index = 0; 3207 if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0) 3208 return err; 3209 pcm_index++; 3210 if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0) 3211 return err; 3212 pcm_index++; 3213 if (cm->can_ac3_hw || cm->can_ac3_sw) { 3214 pcm_spdif_index = pcm_index; 3215 if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0) 3216 return err; 3217 } 3218 3219 /* create mixer interface & switches */ 3220 if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0) 3221 return err; 3222 3223 if (iomidi > 0) { 3224 if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI, 3225 iomidi, 3226 (integrated_midi ? 3227 MPU401_INFO_INTEGRATED : 0), 3228 cm->irq, 0, &cm->rmidi)) < 0) { 3229 printk(KERN_ERR "cmipci: no UART401 device at 0x%lx\n", iomidi); 3230 } 3231 } 3232 3233 #ifdef USE_VAR48KRATE 3234 for (val = 0; val < ARRAY_SIZE(rates); val++) 3235 snd_cmipci_set_pll(cm, rates[val], val); 3236 3237 /* 3238 * (Re-)Enable external switch spdo_48k 3239 */ 3240 snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97); 3241 #endif /* USE_VAR48KRATE */ 3242 3243 if (snd_cmipci_create_gameport(cm, dev) < 0) 3244 snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN); 3245 3246 snd_card_set_dev(card, &pci->dev); 3247 3248 *rcmipci = cm; 3249 return 0; 3250 } 3251 3252 /* 3253 */ 3254 3255 MODULE_DEVICE_TABLE(pci, snd_cmipci_ids); 3256 3257 static int __devinit snd_cmipci_probe(struct pci_dev *pci, 3258 const struct pci_device_id *pci_id) 3259 { 3260 static int dev; 3261 struct snd_card *card; 3262 struct cmipci *cm; 3263 int err; 3264 3265 if (dev >= SNDRV_CARDS) 3266 return -ENODEV; 3267 if (! enable[dev]) { 3268 dev++; 3269 return -ENOENT; 3270 } 3271 3272 card = snd_card_new(index[dev], id[dev], THIS_MODULE, 0); 3273 if (card == NULL) 3274 return -ENOMEM; 3275 3276 switch (pci->device) { 3277 case PCI_DEVICE_ID_CMEDIA_CM8738: 3278 case PCI_DEVICE_ID_CMEDIA_CM8738B: 3279 strcpy(card->driver, "CMI8738"); 3280 break; 3281 case PCI_DEVICE_ID_CMEDIA_CM8338A: 3282 case PCI_DEVICE_ID_CMEDIA_CM8338B: 3283 strcpy(card->driver, "CMI8338"); 3284 break; 3285 default: 3286 strcpy(card->driver, "CMIPCI"); 3287 break; 3288 } 3289 3290 if ((err = snd_cmipci_create(card, pci, dev, &cm)) < 0) { 3291 snd_card_free(card); 3292 return err; 3293 } 3294 card->private_data = cm; 3295 3296 if ((err = snd_card_register(card)) < 0) { 3297 snd_card_free(card); 3298 return err; 3299 } 3300 pci_set_drvdata(pci, card); 3301 dev++; 3302 return 0; 3303 3304 } 3305 3306 static void __devexit snd_cmipci_remove(struct pci_dev *pci) 3307 { 3308 snd_card_free(pci_get_drvdata(pci)); 3309 pci_set_drvdata(pci, NULL); 3310 } 3311 3312 3313 #ifdef CONFIG_PM 3314 /* 3315 * power management 3316 */ 3317 static unsigned char saved_regs[] = { 3318 CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL, 3319 CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL, 3320 CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2, 3321 CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC, 3322 CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0, 3323 }; 3324 3325 static unsigned char saved_mixers[] = { 3326 SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1, 3327 SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1, 3328 SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1, 3329 SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1, 3330 SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1, 3331 SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV, 3332 CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW, 3333 SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 3334 }; 3335 3336 static int snd_cmipci_suspend(struct pci_dev *pci, pm_message_t state) 3337 { 3338 struct snd_card *card = pci_get_drvdata(pci); 3339 struct cmipci *cm = card->private_data; 3340 int i; 3341 3342 snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); 3343 3344 snd_pcm_suspend_all(cm->pcm); 3345 snd_pcm_suspend_all(cm->pcm2); 3346 snd_pcm_suspend_all(cm->pcm_spdif); 3347 3348 /* save registers */ 3349 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3350 cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]); 3351 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3352 cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]); 3353 3354 /* disable ints */ 3355 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3356 3357 pci_disable_device(pci); 3358 pci_save_state(pci); 3359 pci_set_power_state(pci, pci_choose_state(pci, state)); 3360 return 0; 3361 } 3362 3363 static int snd_cmipci_resume(struct pci_dev *pci) 3364 { 3365 struct snd_card *card = pci_get_drvdata(pci); 3366 struct cmipci *cm = card->private_data; 3367 int i; 3368 3369 pci_set_power_state(pci, PCI_D0); 3370 pci_restore_state(pci); 3371 if (pci_enable_device(pci) < 0) { 3372 printk(KERN_ERR "cmipci: pci_enable_device failed, " 3373 "disabling device\n"); 3374 snd_card_disconnect(card); 3375 return -EIO; 3376 } 3377 pci_set_master(pci); 3378 3379 /* reset / initialize to a sane state */ 3380 snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0); 3381 snd_cmipci_ch_reset(cm, CM_CH_PLAY); 3382 snd_cmipci_ch_reset(cm, CM_CH_CAPT); 3383 snd_cmipci_mixer_write(cm, 0, 0); 3384 3385 /* restore registers */ 3386 for (i = 0; i < ARRAY_SIZE(saved_regs); i++) 3387 snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]); 3388 for (i = 0; i < ARRAY_SIZE(saved_mixers); i++) 3389 snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]); 3390 3391 snd_power_change_state(card, SNDRV_CTL_POWER_D0); 3392 return 0; 3393 } 3394 #endif /* CONFIG_PM */ 3395 3396 static struct pci_driver driver = { 3397 .name = "C-Media PCI", 3398 .id_table = snd_cmipci_ids, 3399 .probe = snd_cmipci_probe, 3400 .remove = __devexit_p(snd_cmipci_remove), 3401 #ifdef CONFIG_PM 3402 .suspend = snd_cmipci_suspend, 3403 .resume = snd_cmipci_resume, 3404 #endif 3405 }; 3406 3407 static int __init alsa_card_cmipci_init(void) 3408 { 3409 return pci_register_driver(&driver); 3410 } 3411 3412 static void __exit alsa_card_cmipci_exit(void) 3413 { 3414 pci_unregister_driver(&driver); 3415 } 3416 3417 module_init(alsa_card_cmipci_init) 3418 module_exit(alsa_card_cmipci_exit) 3419