1 /* 2 * This program is free software; you can redistribute it and/or modify 3 * it under the terms of the GNU General Public License as published by 4 * the Free Software Foundation; either version 2 of the License, or 5 * (at your option) any later version. 6 * 7 * This program is distributed in the hope that it will be useful, 8 * but WITHOUT ANY WARRANTY; without even the implied warranty of 9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 * GNU Library General Public License for more details. 11 * 12 * You should have received a copy of the GNU General Public License 13 * along with this program; if not, write to the Free Software 14 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 15 */ 16 17 /* 18 * Vortex PCM ALSA driver. 19 * 20 * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet. 21 * It remains stuck,and DMA transfers do not happen. 22 */ 23 #include <sound/asoundef.h> 24 #include <linux/time.h> 25 #include <sound/core.h> 26 #include <sound/pcm.h> 27 #include <sound/pcm_params.h> 28 #include "au88x0.h" 29 30 #define VORTEX_PCM_TYPE(x) (x->name[40]) 31 32 /* hardware definition */ 33 static struct snd_pcm_hardware snd_vortex_playback_hw_adb = { 34 .info = 35 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */ 36 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED | 37 SNDRV_PCM_INFO_MMAP_VALID), 38 .formats = 39 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 | 40 SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW, 41 .rates = SNDRV_PCM_RATE_CONTINUOUS, 42 .rate_min = 5000, 43 .rate_max = 48000, 44 .channels_min = 1, 45 .channels_max = 2, 46 .buffer_bytes_max = 0x10000, 47 .period_bytes_min = 0x1, 48 .period_bytes_max = 0x1000, 49 .periods_min = 2, 50 .periods_max = 32, 51 }; 52 53 #ifndef CHIP_AU8820 54 static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = { 55 .info = 56 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */ 57 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED | 58 SNDRV_PCM_INFO_MMAP_VALID), 59 .formats = 60 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 | 61 SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW, 62 .rates = SNDRV_PCM_RATE_CONTINUOUS, 63 .rate_min = 5000, 64 .rate_max = 48000, 65 .channels_min = 1, 66 .channels_max = 1, 67 .buffer_bytes_max = 0x10000, 68 .period_bytes_min = 0x100, 69 .period_bytes_max = 0x1000, 70 .periods_min = 2, 71 .periods_max = 64, 72 }; 73 #endif 74 static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = { 75 .info = 76 (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */ 77 SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED | 78 SNDRV_PCM_INFO_MMAP_VALID), 79 .formats = 80 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 | 81 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW | 82 SNDRV_PCM_FMTBIT_A_LAW, 83 .rates = 84 SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000, 85 .rate_min = 32000, 86 .rate_max = 48000, 87 .channels_min = 1, 88 .channels_max = 2, 89 .buffer_bytes_max = 0x10000, 90 .period_bytes_min = 0x100, 91 .period_bytes_max = 0x1000, 92 .periods_min = 2, 93 .periods_max = 64, 94 }; 95 96 #ifndef CHIP_AU8810 97 static struct snd_pcm_hardware snd_vortex_playback_hw_wt = { 98 .info = (SNDRV_PCM_INFO_MMAP | 99 SNDRV_PCM_INFO_INTERLEAVED | 100 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID), 101 .formats = SNDRV_PCM_FMTBIT_S16_LE, 102 .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS, // SNDRV_PCM_RATE_48000, 103 .rate_min = 8000, 104 .rate_max = 48000, 105 .channels_min = 1, 106 .channels_max = 2, 107 .buffer_bytes_max = 0x10000, 108 .period_bytes_min = 0x0400, 109 .period_bytes_max = 0x1000, 110 .periods_min = 2, 111 .periods_max = 64, 112 }; 113 #endif 114 #ifdef CHIP_AU8830 115 static unsigned int au8830_channels[3] = { 116 1, 2, 4, 117 }; 118 119 static struct snd_pcm_hw_constraint_list hw_constraints_au8830_channels = { 120 .count = ARRAY_SIZE(au8830_channels), 121 .list = au8830_channels, 122 .mask = 0, 123 }; 124 #endif 125 /* open callback */ 126 static int snd_vortex_pcm_open(struct snd_pcm_substream *substream) 127 { 128 vortex_t *vortex = snd_pcm_substream_chip(substream); 129 struct snd_pcm_runtime *runtime = substream->runtime; 130 int err; 131 132 /* Force equal size periods */ 133 if ((err = 134 snd_pcm_hw_constraint_integer(runtime, 135 SNDRV_PCM_HW_PARAM_PERIODS)) < 0) 136 return err; 137 /* Avoid PAGE_SIZE boundary to fall inside of a period. */ 138 if ((err = 139 snd_pcm_hw_constraint_pow2(runtime, 0, 140 SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0) 141 return err; 142 143 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 144 #ifndef CHIP_AU8820 145 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) { 146 runtime->hw = snd_vortex_playback_hw_a3d; 147 } 148 #endif 149 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) { 150 runtime->hw = snd_vortex_playback_hw_spdif; 151 switch (vortex->spdif_sr) { 152 case 32000: 153 runtime->hw.rates = SNDRV_PCM_RATE_32000; 154 break; 155 case 44100: 156 runtime->hw.rates = SNDRV_PCM_RATE_44100; 157 break; 158 case 48000: 159 runtime->hw.rates = SNDRV_PCM_RATE_48000; 160 break; 161 } 162 } 163 if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB 164 || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S) 165 runtime->hw = snd_vortex_playback_hw_adb; 166 #ifdef CHIP_AU8830 167 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK && 168 VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) { 169 runtime->hw.channels_max = 4; 170 snd_pcm_hw_constraint_list(runtime, 0, 171 SNDRV_PCM_HW_PARAM_CHANNELS, 172 &hw_constraints_au8830_channels); 173 } 174 #endif 175 substream->runtime->private_data = NULL; 176 } 177 #ifndef CHIP_AU8810 178 else { 179 runtime->hw = snd_vortex_playback_hw_wt; 180 substream->runtime->private_data = NULL; 181 } 182 #endif 183 return 0; 184 } 185 186 /* close callback */ 187 static int snd_vortex_pcm_close(struct snd_pcm_substream *substream) 188 { 189 //vortex_t *chip = snd_pcm_substream_chip(substream); 190 stream_t *stream = (stream_t *) substream->runtime->private_data; 191 192 // the hardware-specific codes will be here 193 if (stream != NULL) { 194 stream->substream = NULL; 195 stream->nr_ch = 0; 196 } 197 substream->runtime->private_data = NULL; 198 return 0; 199 } 200 201 /* hw_params callback */ 202 static int 203 snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream, 204 struct snd_pcm_hw_params *hw_params) 205 { 206 vortex_t *chip = snd_pcm_substream_chip(substream); 207 stream_t *stream = (stream_t *) (substream->runtime->private_data); 208 int err; 209 210 // Alloc buffer memory. 211 err = 212 snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); 213 if (err < 0) { 214 printk(KERN_ERR "Vortex: pcm page alloc failed!\n"); 215 return err; 216 } 217 /* 218 printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params), 219 params_period_bytes(hw_params), params_channels(hw_params)); 220 */ 221 spin_lock_irq(&chip->lock); 222 // Make audio routes and config buffer DMA. 223 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 224 int dma, type = VORTEX_PCM_TYPE(substream->pcm); 225 /* Dealloc any routes. */ 226 if (stream != NULL) 227 vortex_adb_allocroute(chip, stream->dma, 228 stream->nr_ch, stream->dir, 229 stream->type); 230 /* Alloc routes. */ 231 dma = 232 vortex_adb_allocroute(chip, -1, 233 params_channels(hw_params), 234 substream->stream, type); 235 if (dma < 0) { 236 spin_unlock_irq(&chip->lock); 237 return dma; 238 } 239 stream = substream->runtime->private_data = &chip->dma_adb[dma]; 240 stream->substream = substream; 241 /* Setup Buffers. */ 242 vortex_adbdma_setbuffers(chip, dma, 243 params_period_bytes(hw_params), 244 params_periods(hw_params)); 245 } 246 #ifndef CHIP_AU8810 247 else { 248 /* if (stream != NULL) 249 vortex_wt_allocroute(chip, substream->number, 0); */ 250 vortex_wt_allocroute(chip, substream->number, 251 params_channels(hw_params)); 252 stream = substream->runtime->private_data = 253 &chip->dma_wt[substream->number]; 254 stream->dma = substream->number; 255 stream->substream = substream; 256 vortex_wtdma_setbuffers(chip, substream->number, 257 params_period_bytes(hw_params), 258 params_periods(hw_params)); 259 } 260 #endif 261 spin_unlock_irq(&chip->lock); 262 return 0; 263 } 264 265 /* hw_free callback */ 266 static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream) 267 { 268 vortex_t *chip = snd_pcm_substream_chip(substream); 269 stream_t *stream = (stream_t *) (substream->runtime->private_data); 270 271 spin_lock_irq(&chip->lock); 272 // Delete audio routes. 273 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 274 if (stream != NULL) 275 vortex_adb_allocroute(chip, stream->dma, 276 stream->nr_ch, stream->dir, 277 stream->type); 278 } 279 #ifndef CHIP_AU8810 280 else { 281 if (stream != NULL) 282 vortex_wt_allocroute(chip, stream->dma, 0); 283 } 284 #endif 285 substream->runtime->private_data = NULL; 286 spin_unlock_irq(&chip->lock); 287 288 return snd_pcm_lib_free_pages(substream); 289 } 290 291 /* prepare callback */ 292 static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream) 293 { 294 vortex_t *chip = snd_pcm_substream_chip(substream); 295 struct snd_pcm_runtime *runtime = substream->runtime; 296 stream_t *stream = (stream_t *) substream->runtime->private_data; 297 int dma = stream->dma, fmt, dir; 298 299 // set up the hardware with the current configuration. 300 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) 301 dir = 1; 302 else 303 dir = 0; 304 fmt = vortex_alsafmt_aspfmt(runtime->format); 305 spin_lock_irq(&chip->lock); 306 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 307 vortex_adbdma_setmode(chip, dma, 1, dir, fmt, 0 /*? */ , 308 0); 309 vortex_adbdma_setstartbuffer(chip, dma, 0); 310 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF) 311 vortex_adb_setsrc(chip, dma, runtime->rate, dir); 312 } 313 #ifndef CHIP_AU8810 314 else { 315 vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0); 316 // FIXME: Set rate (i guess using vortex_wt_writereg() somehow). 317 vortex_wtdma_setstartbuffer(chip, dma, 0); 318 } 319 #endif 320 spin_unlock_irq(&chip->lock); 321 return 0; 322 } 323 324 /* trigger callback */ 325 static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd) 326 { 327 vortex_t *chip = snd_pcm_substream_chip(substream); 328 stream_t *stream = (stream_t *) substream->runtime->private_data; 329 int dma = stream->dma; 330 331 spin_lock(&chip->lock); 332 switch (cmd) { 333 case SNDRV_PCM_TRIGGER_START: 334 // do something to start the PCM engine 335 //printk(KERN_INFO "vortex: start %d\n", dma); 336 stream->fifo_enabled = 1; 337 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) { 338 vortex_adbdma_resetup(chip, dma); 339 vortex_adbdma_startfifo(chip, dma); 340 } 341 #ifndef CHIP_AU8810 342 else { 343 printk(KERN_INFO "vortex: wt start %d\n", dma); 344 vortex_wtdma_startfifo(chip, dma); 345 } 346 #endif 347 break; 348 case SNDRV_PCM_TRIGGER_STOP: 349 // do something to stop the PCM engine 350 //printk(KERN_INFO "vortex: stop %d\n", dma); 351 stream->fifo_enabled = 0; 352 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) 353 vortex_adbdma_pausefifo(chip, dma); 354 //vortex_adbdma_stopfifo(chip, dma); 355 #ifndef CHIP_AU8810 356 else { 357 printk(KERN_INFO "vortex: wt stop %d\n", dma); 358 vortex_wtdma_stopfifo(chip, dma); 359 } 360 #endif 361 break; 362 case SNDRV_PCM_TRIGGER_PAUSE_PUSH: 363 //printk(KERN_INFO "vortex: pause %d\n", dma); 364 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) 365 vortex_adbdma_pausefifo(chip, dma); 366 #ifndef CHIP_AU8810 367 else 368 vortex_wtdma_pausefifo(chip, dma); 369 #endif 370 break; 371 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: 372 //printk(KERN_INFO "vortex: resume %d\n", dma); 373 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) 374 vortex_adbdma_resumefifo(chip, dma); 375 #ifndef CHIP_AU8810 376 else 377 vortex_wtdma_resumefifo(chip, dma); 378 #endif 379 break; 380 default: 381 spin_unlock(&chip->lock); 382 return -EINVAL; 383 } 384 spin_unlock(&chip->lock); 385 return 0; 386 } 387 388 /* pointer callback */ 389 static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream) 390 { 391 vortex_t *chip = snd_pcm_substream_chip(substream); 392 stream_t *stream = (stream_t *) substream->runtime->private_data; 393 int dma = stream->dma; 394 snd_pcm_uframes_t current_ptr = 0; 395 396 spin_lock(&chip->lock); 397 if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) 398 current_ptr = vortex_adbdma_getlinearpos(chip, dma); 399 #ifndef CHIP_AU8810 400 else 401 current_ptr = vortex_wtdma_getlinearpos(chip, dma); 402 #endif 403 //printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr); 404 spin_unlock(&chip->lock); 405 return (bytes_to_frames(substream->runtime, current_ptr)); 406 } 407 408 /* operators */ 409 static struct snd_pcm_ops snd_vortex_playback_ops = { 410 .open = snd_vortex_pcm_open, 411 .close = snd_vortex_pcm_close, 412 .ioctl = snd_pcm_lib_ioctl, 413 .hw_params = snd_vortex_pcm_hw_params, 414 .hw_free = snd_vortex_pcm_hw_free, 415 .prepare = snd_vortex_pcm_prepare, 416 .trigger = snd_vortex_pcm_trigger, 417 .pointer = snd_vortex_pcm_pointer, 418 .page = snd_pcm_sgbuf_ops_page, 419 }; 420 421 /* 422 * definitions of capture are omitted here... 423 */ 424 425 static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = { 426 "AU88x0 ADB", 427 "AU88x0 SPDIF", 428 "AU88x0 A3D", 429 "AU88x0 WT", 430 "AU88x0 I2S", 431 }; 432 static char *vortex_pcm_name[VORTEX_PCM_LAST] = { 433 "adb", 434 "spdif", 435 "a3d", 436 "wt", 437 "i2s", 438 }; 439 440 /* SPDIF kcontrol */ 441 442 static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) 443 { 444 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; 445 uinfo->count = 1; 446 return 0; 447 } 448 449 static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 450 { 451 ucontrol->value.iec958.status[0] = 0xff; 452 ucontrol->value.iec958.status[1] = 0xff; 453 ucontrol->value.iec958.status[2] = 0xff; 454 ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS; 455 return 0; 456 } 457 458 static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 459 { 460 vortex_t *vortex = snd_kcontrol_chip(kcontrol); 461 ucontrol->value.iec958.status[0] = 0x00; 462 ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID; 463 ucontrol->value.iec958.status[2] = 0x00; 464 switch (vortex->spdif_sr) { 465 case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break; 466 case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break; 467 case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break; 468 } 469 return 0; 470 } 471 472 static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) 473 { 474 vortex_t *vortex = snd_kcontrol_chip(kcontrol); 475 int spdif_sr = 48000; 476 switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) { 477 case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break; 478 case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break; 479 case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break; 480 } 481 if (spdif_sr == vortex->spdif_sr) 482 return 0; 483 vortex->spdif_sr = spdif_sr; 484 vortex_spdif_init(vortex, vortex->spdif_sr, 1); 485 return 1; 486 } 487 488 /* spdif controls */ 489 static struct snd_kcontrol_new snd_vortex_mixer_spdif[] __devinitdata = { 490 { 491 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 492 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), 493 .info = snd_vortex_spdif_info, 494 .get = snd_vortex_spdif_get, 495 .put = snd_vortex_spdif_put, 496 }, 497 { 498 .access = SNDRV_CTL_ELEM_ACCESS_READ, 499 .iface = SNDRV_CTL_ELEM_IFACE_PCM, 500 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), 501 .info = snd_vortex_spdif_info, 502 .get = snd_vortex_spdif_mask_get 503 }, 504 }; 505 506 /* create a pcm device */ 507 static int __devinit snd_vortex_new_pcm(vortex_t *chip, int idx, int nr) 508 { 509 struct snd_pcm *pcm; 510 struct snd_kcontrol *kctl; 511 int i; 512 int err, nr_capt; 513 514 if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST) 515 return -ENODEV; 516 517 /* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the 518 * same dma engine. WT uses it own separate dma engine whcih cant capture. */ 519 if (idx == VORTEX_PCM_ADB) 520 nr_capt = nr; 521 else 522 nr_capt = 0; 523 err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr, 524 nr_capt, &pcm); 525 if (err < 0) 526 return err; 527 strcpy(pcm->name, vortex_pcm_name[idx]); 528 chip->pcm[idx] = pcm; 529 // This is an evil hack, but it saves a lot of duplicated code. 530 VORTEX_PCM_TYPE(pcm) = idx; 531 pcm->private_data = chip; 532 /* set operators */ 533 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 534 &snd_vortex_playback_ops); 535 if (idx == VORTEX_PCM_ADB) 536 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 537 &snd_vortex_playback_ops); 538 539 /* pre-allocation of Scatter-Gather buffers */ 540 541 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG, 542 snd_dma_pci_data(chip->pci_dev), 543 0x10000, 0x10000); 544 545 if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) { 546 for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) { 547 kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip); 548 if (!kctl) 549 return -ENOMEM; 550 if ((err = snd_ctl_add(chip->card, kctl)) < 0) 551 return err; 552 } 553 } 554 return 0; 555 } 556