xref: /openbmc/linux/sound/pci/au88x0/au88x0_pcm.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  */
4 
5 /*
6  * Vortex PCM ALSA driver.
7  *
8  * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet.
9  * It remains stuck,and DMA transfers do not happen.
10  */
11 #include <sound/asoundef.h>
12 #include <linux/time.h>
13 #include <sound/core.h>
14 #include <sound/pcm.h>
15 #include <sound/pcm_params.h>
16 #include "au88x0.h"
17 
18 #define VORTEX_PCM_TYPE(x) (x->name[40])
19 
20 /* hardware definition */
21 static const struct snd_pcm_hardware snd_vortex_playback_hw_adb = {
22 	.info =
23 	    (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
24 	     SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
25 	     SNDRV_PCM_INFO_MMAP_VALID),
26 	.formats =
27 	    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
28 	    SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
29 	.rates = SNDRV_PCM_RATE_CONTINUOUS,
30 	.rate_min = 5000,
31 	.rate_max = 48000,
32 	.channels_min = 1,
33 	.channels_max = 2,
34 	.buffer_bytes_max = 0x10000,
35 	.period_bytes_min = 0x20,
36 	.period_bytes_max = 0x1000,
37 	.periods_min = 2,
38 	.periods_max = 1024,
39 };
40 
41 #ifndef CHIP_AU8820
42 static const struct snd_pcm_hardware snd_vortex_playback_hw_a3d = {
43 	.info =
44 	    (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
45 	     SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
46 	     SNDRV_PCM_INFO_MMAP_VALID),
47 	.formats =
48 	    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
49 	    SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
50 	.rates = SNDRV_PCM_RATE_CONTINUOUS,
51 	.rate_min = 5000,
52 	.rate_max = 48000,
53 	.channels_min = 1,
54 	.channels_max = 1,
55 	.buffer_bytes_max = 0x10000,
56 	.period_bytes_min = 0x100,
57 	.period_bytes_max = 0x1000,
58 	.periods_min = 2,
59 	.periods_max = 64,
60 };
61 #endif
62 static const struct snd_pcm_hardware snd_vortex_playback_hw_spdif = {
63 	.info =
64 	    (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
65 	     SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
66 	     SNDRV_PCM_INFO_MMAP_VALID),
67 	.formats =
68 	    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
69 	    SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW |
70 	    SNDRV_PCM_FMTBIT_A_LAW,
71 	.rates =
72 	    SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
73 	.rate_min = 32000,
74 	.rate_max = 48000,
75 	.channels_min = 1,
76 	.channels_max = 2,
77 	.buffer_bytes_max = 0x10000,
78 	.period_bytes_min = 0x100,
79 	.period_bytes_max = 0x1000,
80 	.periods_min = 2,
81 	.periods_max = 64,
82 };
83 
84 #ifndef CHIP_AU8810
85 static const struct snd_pcm_hardware snd_vortex_playback_hw_wt = {
86 	.info = (SNDRV_PCM_INFO_MMAP |
87 		 SNDRV_PCM_INFO_INTERLEAVED |
88 		 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID),
89 	.formats = SNDRV_PCM_FMTBIT_S16_LE,
90 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,	// SNDRV_PCM_RATE_48000,
91 	.rate_min = 8000,
92 	.rate_max = 48000,
93 	.channels_min = 1,
94 	.channels_max = 2,
95 	.buffer_bytes_max = 0x10000,
96 	.period_bytes_min = 0x0400,
97 	.period_bytes_max = 0x1000,
98 	.periods_min = 2,
99 	.periods_max = 64,
100 };
101 #endif
102 #ifdef CHIP_AU8830
103 static const unsigned int au8830_channels[3] = {
104 	1, 2, 4,
105 };
106 
107 static const struct snd_pcm_hw_constraint_list hw_constraints_au8830_channels = {
108 	.count = ARRAY_SIZE(au8830_channels),
109 	.list = au8830_channels,
110 	.mask = 0,
111 };
112 #endif
113 
114 static void vortex_notify_pcm_vol_change(struct snd_card *card,
115 			struct snd_kcontrol *kctl, int activate)
116 {
117 	if (activate)
118 		kctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
119 	else
120 		kctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
121 	snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE |
122 				SNDRV_CTL_EVENT_MASK_INFO, &(kctl->id));
123 }
124 
125 /* open callback */
126 static int snd_vortex_pcm_open(struct snd_pcm_substream *substream)
127 {
128 	vortex_t *vortex = snd_pcm_substream_chip(substream);
129 	struct snd_pcm_runtime *runtime = substream->runtime;
130 	int err;
131 
132 	/* Force equal size periods */
133 	if ((err =
134 	     snd_pcm_hw_constraint_integer(runtime,
135 					   SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
136 		return err;
137 	/* Avoid PAGE_SIZE boundary to fall inside of a period. */
138 	if ((err =
139 	     snd_pcm_hw_constraint_pow2(runtime, 0,
140 					SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0)
141 		return err;
142 
143 	snd_pcm_hw_constraint_step(runtime, 0,
144 					SNDRV_PCM_HW_PARAM_BUFFER_BYTES, 64);
145 
146 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
147 #ifndef CHIP_AU8820
148 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) {
149 			runtime->hw = snd_vortex_playback_hw_a3d;
150 		}
151 #endif
152 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) {
153 			runtime->hw = snd_vortex_playback_hw_spdif;
154 			switch (vortex->spdif_sr) {
155 			case 32000:
156 				runtime->hw.rates = SNDRV_PCM_RATE_32000;
157 				break;
158 			case 44100:
159 				runtime->hw.rates = SNDRV_PCM_RATE_44100;
160 				break;
161 			case 48000:
162 				runtime->hw.rates = SNDRV_PCM_RATE_48000;
163 				break;
164 			}
165 		}
166 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB
167 		    || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S)
168 			runtime->hw = snd_vortex_playback_hw_adb;
169 #ifdef CHIP_AU8830
170 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
171 			VORTEX_IS_QUAD(vortex) &&
172 			VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
173 			runtime->hw.channels_max = 4;
174 			snd_pcm_hw_constraint_list(runtime, 0,
175 				SNDRV_PCM_HW_PARAM_CHANNELS,
176 				&hw_constraints_au8830_channels);
177 		}
178 #endif
179 		substream->runtime->private_data = NULL;
180 	}
181 #ifndef CHIP_AU8810
182 	else {
183 		runtime->hw = snd_vortex_playback_hw_wt;
184 		substream->runtime->private_data = NULL;
185 	}
186 #endif
187 	return 0;
188 }
189 
190 /* close callback */
191 static int snd_vortex_pcm_close(struct snd_pcm_substream *substream)
192 {
193 	//vortex_t *chip = snd_pcm_substream_chip(substream);
194 	stream_t *stream = (stream_t *) substream->runtime->private_data;
195 
196 	// the hardware-specific codes will be here
197 	if (stream != NULL) {
198 		stream->substream = NULL;
199 		stream->nr_ch = 0;
200 	}
201 	substream->runtime->private_data = NULL;
202 	return 0;
203 }
204 
205 /* hw_params callback */
206 static int
207 snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream,
208 			 struct snd_pcm_hw_params *hw_params)
209 {
210 	vortex_t *chip = snd_pcm_substream_chip(substream);
211 	stream_t *stream = (stream_t *) (substream->runtime->private_data);
212 	int err;
213 
214 	// Alloc buffer memory.
215 	err =
216 	    snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
217 	if (err < 0) {
218 		dev_err(chip->card->dev, "Vortex: pcm page alloc failed!\n");
219 		return err;
220 	}
221 	/*
222 	   pr_info( "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params),
223 	   params_period_bytes(hw_params), params_channels(hw_params));
224 	 */
225 	spin_lock_irq(&chip->lock);
226 	// Make audio routes and config buffer DMA.
227 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
228 		int dma, type = VORTEX_PCM_TYPE(substream->pcm);
229 		/* Dealloc any routes. */
230 		if (stream != NULL)
231 			vortex_adb_allocroute(chip, stream->dma,
232 					      stream->nr_ch, stream->dir,
233 					      stream->type,
234 					      substream->number);
235 		/* Alloc routes. */
236 		dma =
237 		    vortex_adb_allocroute(chip, -1,
238 					  params_channels(hw_params),
239 					  substream->stream, type,
240 					  substream->number);
241 		if (dma < 0) {
242 			spin_unlock_irq(&chip->lock);
243 			return dma;
244 		}
245 		stream = substream->runtime->private_data = &chip->dma_adb[dma];
246 		stream->substream = substream;
247 		/* Setup Buffers. */
248 		vortex_adbdma_setbuffers(chip, dma,
249 					 params_period_bytes(hw_params),
250 					 params_periods(hw_params));
251 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
252 			chip->pcm_vol[substream->number].active = 1;
253 			vortex_notify_pcm_vol_change(chip->card,
254 				chip->pcm_vol[substream->number].kctl, 1);
255 		}
256 	}
257 #ifndef CHIP_AU8810
258 	else {
259 		/* if (stream != NULL)
260 		   vortex_wt_allocroute(chip, substream->number, 0); */
261 		vortex_wt_allocroute(chip, substream->number,
262 				     params_channels(hw_params));
263 		stream = substream->runtime->private_data =
264 		    &chip->dma_wt[substream->number];
265 		stream->dma = substream->number;
266 		stream->substream = substream;
267 		vortex_wtdma_setbuffers(chip, substream->number,
268 					params_period_bytes(hw_params),
269 					params_periods(hw_params));
270 	}
271 #endif
272 	spin_unlock_irq(&chip->lock);
273 	return 0;
274 }
275 
276 /* hw_free callback */
277 static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream)
278 {
279 	vortex_t *chip = snd_pcm_substream_chip(substream);
280 	stream_t *stream = (stream_t *) (substream->runtime->private_data);
281 
282 	spin_lock_irq(&chip->lock);
283 	// Delete audio routes.
284 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
285 		if (stream != NULL) {
286 			if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB) {
287 				chip->pcm_vol[substream->number].active = 0;
288 				vortex_notify_pcm_vol_change(chip->card,
289 					chip->pcm_vol[substream->number].kctl,
290 					0);
291 			}
292 			vortex_adb_allocroute(chip, stream->dma,
293 					      stream->nr_ch, stream->dir,
294 					      stream->type,
295 					      substream->number);
296 		}
297 	}
298 #ifndef CHIP_AU8810
299 	else {
300 		if (stream != NULL)
301 			vortex_wt_allocroute(chip, stream->dma, 0);
302 	}
303 #endif
304 	substream->runtime->private_data = NULL;
305 	spin_unlock_irq(&chip->lock);
306 
307 	return snd_pcm_lib_free_pages(substream);
308 }
309 
310 /* prepare callback */
311 static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream)
312 {
313 	vortex_t *chip = snd_pcm_substream_chip(substream);
314 	struct snd_pcm_runtime *runtime = substream->runtime;
315 	stream_t *stream = (stream_t *) substream->runtime->private_data;
316 	int dma = stream->dma, fmt, dir;
317 
318 	// set up the hardware with the current configuration.
319 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
320 		dir = 1;
321 	else
322 		dir = 0;
323 	fmt = vortex_alsafmt_aspfmt(runtime->format, chip);
324 	spin_lock_irq(&chip->lock);
325 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
326 		vortex_adbdma_setmode(chip, dma, 1, dir, fmt,
327 				runtime->channels == 1 ? 0 : 1, 0);
328 		vortex_adbdma_setstartbuffer(chip, dma, 0);
329 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF)
330 			vortex_adb_setsrc(chip, dma, runtime->rate, dir);
331 	}
332 #ifndef CHIP_AU8810
333 	else {
334 		vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0);
335 		// FIXME: Set rate (i guess using vortex_wt_writereg() somehow).
336 		vortex_wtdma_setstartbuffer(chip, dma, 0);
337 	}
338 #endif
339 	spin_unlock_irq(&chip->lock);
340 	return 0;
341 }
342 
343 /* trigger callback */
344 static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
345 {
346 	vortex_t *chip = snd_pcm_substream_chip(substream);
347 	stream_t *stream = (stream_t *) substream->runtime->private_data;
348 	int dma = stream->dma;
349 
350 	spin_lock(&chip->lock);
351 	switch (cmd) {
352 	case SNDRV_PCM_TRIGGER_START:
353 		// do something to start the PCM engine
354 		//printk(KERN_INFO "vortex: start %d\n", dma);
355 		stream->fifo_enabled = 1;
356 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
357 			vortex_adbdma_resetup(chip, dma);
358 			vortex_adbdma_startfifo(chip, dma);
359 		}
360 #ifndef CHIP_AU8810
361 		else {
362 			dev_info(chip->card->dev, "wt start %d\n", dma);
363 			vortex_wtdma_startfifo(chip, dma);
364 		}
365 #endif
366 		break;
367 	case SNDRV_PCM_TRIGGER_STOP:
368 		// do something to stop the PCM engine
369 		//printk(KERN_INFO "vortex: stop %d\n", dma);
370 		stream->fifo_enabled = 0;
371 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
372 			vortex_adbdma_stopfifo(chip, dma);
373 #ifndef CHIP_AU8810
374 		else {
375 			dev_info(chip->card->dev, "wt stop %d\n", dma);
376 			vortex_wtdma_stopfifo(chip, dma);
377 		}
378 #endif
379 		break;
380 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
381 		//printk(KERN_INFO "vortex: pause %d\n", dma);
382 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
383 			vortex_adbdma_pausefifo(chip, dma);
384 #ifndef CHIP_AU8810
385 		else
386 			vortex_wtdma_pausefifo(chip, dma);
387 #endif
388 		break;
389 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
390 		//printk(KERN_INFO "vortex: resume %d\n", dma);
391 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
392 			vortex_adbdma_resumefifo(chip, dma);
393 #ifndef CHIP_AU8810
394 		else
395 			vortex_wtdma_resumefifo(chip, dma);
396 #endif
397 		break;
398 	default:
399 		spin_unlock(&chip->lock);
400 		return -EINVAL;
401 	}
402 	spin_unlock(&chip->lock);
403 	return 0;
404 }
405 
406 /* pointer callback */
407 static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream)
408 {
409 	vortex_t *chip = snd_pcm_substream_chip(substream);
410 	stream_t *stream = (stream_t *) substream->runtime->private_data;
411 	int dma = stream->dma;
412 	snd_pcm_uframes_t current_ptr = 0;
413 
414 	spin_lock(&chip->lock);
415 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
416 		current_ptr = vortex_adbdma_getlinearpos(chip, dma);
417 #ifndef CHIP_AU8810
418 	else
419 		current_ptr = vortex_wtdma_getlinearpos(chip, dma);
420 #endif
421 	//printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr);
422 	spin_unlock(&chip->lock);
423 	current_ptr = bytes_to_frames(substream->runtime, current_ptr);
424 	if (current_ptr >= substream->runtime->buffer_size)
425 		current_ptr = 0;
426 	return current_ptr;
427 }
428 
429 /* operators */
430 static const struct snd_pcm_ops snd_vortex_playback_ops = {
431 	.open = snd_vortex_pcm_open,
432 	.close = snd_vortex_pcm_close,
433 	.ioctl = snd_pcm_lib_ioctl,
434 	.hw_params = snd_vortex_pcm_hw_params,
435 	.hw_free = snd_vortex_pcm_hw_free,
436 	.prepare = snd_vortex_pcm_prepare,
437 	.trigger = snd_vortex_pcm_trigger,
438 	.pointer = snd_vortex_pcm_pointer,
439 	.page = snd_pcm_sgbuf_ops_page,
440 };
441 
442 /*
443 *  definitions of capture are omitted here...
444 */
445 
446 static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = {
447 	CARD_NAME " ADB",
448 	CARD_NAME " SPDIF",
449 	CARD_NAME " A3D",
450 	CARD_NAME " WT",
451 	CARD_NAME " I2S",
452 };
453 static char *vortex_pcm_name[VORTEX_PCM_LAST] = {
454 	"adb",
455 	"spdif",
456 	"a3d",
457 	"wt",
458 	"i2s",
459 };
460 
461 /* SPDIF kcontrol */
462 
463 static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
464 {
465 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
466 	uinfo->count = 1;
467 	return 0;
468 }
469 
470 static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
471 {
472 	ucontrol->value.iec958.status[0] = 0xff;
473 	ucontrol->value.iec958.status[1] = 0xff;
474 	ucontrol->value.iec958.status[2] = 0xff;
475 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
476 	return 0;
477 }
478 
479 static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
480 {
481 	vortex_t *vortex = snd_kcontrol_chip(kcontrol);
482 	ucontrol->value.iec958.status[0] = 0x00;
483 	ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID;
484 	ucontrol->value.iec958.status[2] = 0x00;
485 	switch (vortex->spdif_sr) {
486 	case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break;
487 	case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break;
488 	case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break;
489 	}
490 	return 0;
491 }
492 
493 static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
494 {
495 	vortex_t *vortex = snd_kcontrol_chip(kcontrol);
496 	int spdif_sr = 48000;
497 	switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) {
498 	case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break;
499 	case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break;
500 	case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break;
501 	}
502 	if (spdif_sr == vortex->spdif_sr)
503 		return 0;
504 	vortex->spdif_sr = spdif_sr;
505 	vortex_spdif_init(vortex, vortex->spdif_sr, 1);
506 	return 1;
507 }
508 
509 /* spdif controls */
510 static struct snd_kcontrol_new snd_vortex_mixer_spdif[] = {
511 	{
512 		.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
513 		.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
514 		.info =		snd_vortex_spdif_info,
515 		.get =		snd_vortex_spdif_get,
516 		.put =		snd_vortex_spdif_put,
517 	},
518 	{
519 		.access =	SNDRV_CTL_ELEM_ACCESS_READ,
520 		.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
521 		.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
522 		.info =		snd_vortex_spdif_info,
523 		.get =		snd_vortex_spdif_mask_get
524 	},
525 };
526 
527 /* subdevice PCM Volume control */
528 
529 static int snd_vortex_pcm_vol_info(struct snd_kcontrol *kcontrol,
530 				struct snd_ctl_elem_info *uinfo)
531 {
532 	vortex_t *vortex = snd_kcontrol_chip(kcontrol);
533 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
534 	uinfo->count = (VORTEX_IS_QUAD(vortex) ? 4 : 2);
535 	uinfo->value.integer.min = -128;
536 	uinfo->value.integer.max = 32;
537 	return 0;
538 }
539 
540 static int snd_vortex_pcm_vol_get(struct snd_kcontrol *kcontrol,
541 				struct snd_ctl_elem_value *ucontrol)
542 {
543 	int i;
544 	vortex_t *vortex = snd_kcontrol_chip(kcontrol);
545 	int subdev = kcontrol->id.subdevice;
546 	struct pcm_vol *p = &vortex->pcm_vol[subdev];
547 	int max_chn = (VORTEX_IS_QUAD(vortex) ? 4 : 2);
548 	for (i = 0; i < max_chn; i++)
549 		ucontrol->value.integer.value[i] = p->vol[i];
550 	return 0;
551 }
552 
553 static int snd_vortex_pcm_vol_put(struct snd_kcontrol *kcontrol,
554 				struct snd_ctl_elem_value *ucontrol)
555 {
556 	int i;
557 	int changed = 0;
558 	int mixin;
559 	unsigned char vol;
560 	vortex_t *vortex = snd_kcontrol_chip(kcontrol);
561 	int subdev = kcontrol->id.subdevice;
562 	struct pcm_vol *p = &vortex->pcm_vol[subdev];
563 	int max_chn = (VORTEX_IS_QUAD(vortex) ? 4 : 2);
564 	for (i = 0; i < max_chn; i++) {
565 		if (p->vol[i] != ucontrol->value.integer.value[i]) {
566 			p->vol[i] = ucontrol->value.integer.value[i];
567 			if (p->active) {
568 				switch (vortex->dma_adb[p->dma].nr_ch) {
569 				case 1:
570 					mixin = p->mixin[0];
571 					break;
572 				case 2:
573 				default:
574 					mixin = p->mixin[(i < 2) ? i : (i - 2)];
575 					break;
576 				case 4:
577 					mixin = p->mixin[i];
578 					break;
579 				}
580 				vol = p->vol[i];
581 				vortex_mix_setinputvolumebyte(vortex,
582 					vortex->mixplayb[i], mixin, vol);
583 			}
584 			changed = 1;
585 		}
586 	}
587 	return changed;
588 }
589 
590 static const DECLARE_TLV_DB_MINMAX(vortex_pcm_vol_db_scale, -9600, 2400);
591 
592 static const struct snd_kcontrol_new snd_vortex_pcm_vol = {
593 	.iface = SNDRV_CTL_ELEM_IFACE_PCM,
594 	.name = "PCM Playback Volume",
595 	.access = SNDRV_CTL_ELEM_ACCESS_READWRITE |
596 		SNDRV_CTL_ELEM_ACCESS_TLV_READ |
597 		SNDRV_CTL_ELEM_ACCESS_INACTIVE,
598 	.info = snd_vortex_pcm_vol_info,
599 	.get = snd_vortex_pcm_vol_get,
600 	.put = snd_vortex_pcm_vol_put,
601 	.tlv = { .p = vortex_pcm_vol_db_scale },
602 };
603 
604 /* create a pcm device */
605 static int snd_vortex_new_pcm(vortex_t *chip, int idx, int nr)
606 {
607 	struct snd_pcm *pcm;
608 	struct snd_kcontrol *kctl;
609 	int i;
610 	int err, nr_capt;
611 
612 	if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST)
613 		return -ENODEV;
614 
615 	/* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the
616 	 * same dma engine. WT uses it own separate dma engine which can't capture. */
617 	if (idx == VORTEX_PCM_ADB)
618 		nr_capt = nr;
619 	else
620 		nr_capt = 0;
621 	err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr,
622 			  nr_capt, &pcm);
623 	if (err < 0)
624 		return err;
625 	snprintf(pcm->name, sizeof(pcm->name),
626 		"%s %s", CARD_NAME_SHORT, vortex_pcm_name[idx]);
627 	chip->pcm[idx] = pcm;
628 	// This is an evil hack, but it saves a lot of duplicated code.
629 	VORTEX_PCM_TYPE(pcm) = idx;
630 	pcm->private_data = chip;
631 	/* set operators */
632 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
633 			&snd_vortex_playback_ops);
634 	if (idx == VORTEX_PCM_ADB)
635 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
636 				&snd_vortex_playback_ops);
637 
638 	/* pre-allocation of Scatter-Gather buffers */
639 
640 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
641 					      snd_dma_pci_data(chip->pci_dev),
642 					      0x10000, 0x10000);
643 
644 	switch (VORTEX_PCM_TYPE(pcm)) {
645 	case VORTEX_PCM_ADB:
646 		err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
647 					     snd_pcm_std_chmaps,
648 					     VORTEX_IS_QUAD(chip) ? 4 : 2,
649 					     0, NULL);
650 		if (err < 0)
651 			return err;
652 		err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_CAPTURE,
653 					     snd_pcm_std_chmaps, 2, 0, NULL);
654 		if (err < 0)
655 			return err;
656 		break;
657 #ifdef CHIP_AU8830
658 	case VORTEX_PCM_A3D:
659 		err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
660 					     snd_pcm_std_chmaps, 1, 0, NULL);
661 		if (err < 0)
662 			return err;
663 		break;
664 #endif
665 	}
666 
667 	if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) {
668 		for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) {
669 			kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip);
670 			if (!kctl)
671 				return -ENOMEM;
672 			if ((err = snd_ctl_add(chip->card, kctl)) < 0)
673 				return err;
674 		}
675 	}
676 	if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_ADB) {
677 		for (i = 0; i < NR_PCM; i++) {
678 			chip->pcm_vol[i].active = 0;
679 			chip->pcm_vol[i].dma = -1;
680 			kctl = snd_ctl_new1(&snd_vortex_pcm_vol, chip);
681 			if (!kctl)
682 				return -ENOMEM;
683 			chip->pcm_vol[i].kctl = kctl;
684 			kctl->id.device = 0;
685 			kctl->id.subdevice = i;
686 			err = snd_ctl_add(chip->card, kctl);
687 			if (err < 0)
688 				return err;
689 		}
690 	}
691 	return 0;
692 }
693