xref: /openbmc/linux/sound/pci/au88x0/au88x0_pcm.c (revision 87c2ce3b)
1 /*
2  *  This program is free software; you can redistribute it and/or modify
3  *  it under the terms of the GNU General Public License as published by
4  *  the Free Software Foundation; either version 2 of the License, or
5  *  (at your option) any later version.
6  *
7  *  This program is distributed in the hope that it will be useful,
8  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
9  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  *  GNU Library General Public License for more details.
11  *
12  *  You should have received a copy of the GNU General Public License
13  *  along with this program; if not, write to the Free Software
14  *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15  */
16 
17 /*
18  * Vortex PCM ALSA driver.
19  *
20  * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet.
21  * It remains stuck,and DMA transfers do not happen.
22  */
23 #include <sound/asoundef.h>
24 #include <sound/driver.h>
25 #include <linux/time.h>
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include "au88x0.h"
30 
31 #define VORTEX_PCM_TYPE(x) (x->name[40])
32 
33 /* hardware definition */
34 static struct snd_pcm_hardware snd_vortex_playback_hw_adb = {
35 	.info =
36 	    (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
37 	     SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
38 	     SNDRV_PCM_INFO_MMAP_VALID),
39 	.formats =
40 	    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
41 	    SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
42 	.rates = SNDRV_PCM_RATE_CONTINUOUS,
43 	.rate_min = 5000,
44 	.rate_max = 48000,
45 	.channels_min = 1,
46 #ifdef CHIP_AU8830
47 	.channels_max = 4,
48 #else
49 	.channels_max = 2,
50 #endif
51 	.buffer_bytes_max = 0x10000,
52 	.period_bytes_min = 0x1,
53 	.period_bytes_max = 0x1000,
54 	.periods_min = 2,
55 	.periods_max = 32,
56 };
57 
58 #ifndef CHIP_AU8820
59 static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = {
60 	.info =
61 	    (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
62 	     SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
63 	     SNDRV_PCM_INFO_MMAP_VALID),
64 	.formats =
65 	    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
66 	    SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
67 	.rates = SNDRV_PCM_RATE_CONTINUOUS,
68 	.rate_min = 5000,
69 	.rate_max = 48000,
70 	.channels_min = 1,
71 	.channels_max = 1,
72 	.buffer_bytes_max = 0x10000,
73 	.period_bytes_min = 0x100,
74 	.period_bytes_max = 0x1000,
75 	.periods_min = 2,
76 	.periods_max = 64,
77 };
78 #endif
79 static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = {
80 	.info =
81 	    (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
82 	     SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
83 	     SNDRV_PCM_INFO_MMAP_VALID),
84 	.formats =
85 	    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
86 	    SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW |
87 	    SNDRV_PCM_FMTBIT_A_LAW,
88 	.rates =
89 	    SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
90 	.rate_min = 32000,
91 	.rate_max = 48000,
92 	.channels_min = 1,
93 	.channels_max = 2,
94 	.buffer_bytes_max = 0x10000,
95 	.period_bytes_min = 0x100,
96 	.period_bytes_max = 0x1000,
97 	.periods_min = 2,
98 	.periods_max = 64,
99 };
100 
101 #ifndef CHIP_AU8810
102 static struct snd_pcm_hardware snd_vortex_playback_hw_wt = {
103 	.info = (SNDRV_PCM_INFO_MMAP |
104 		 SNDRV_PCM_INFO_INTERLEAVED |
105 		 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID),
106 	.formats = SNDRV_PCM_FMTBIT_S16_LE,
107 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,	// SNDRV_PCM_RATE_48000,
108 	.rate_min = 8000,
109 	.rate_max = 48000,
110 	.channels_min = 1,
111 	.channels_max = 2,
112 	.buffer_bytes_max = 0x10000,
113 	.period_bytes_min = 0x0400,
114 	.period_bytes_max = 0x1000,
115 	.periods_min = 2,
116 	.periods_max = 64,
117 };
118 #endif
119 /* open callback */
120 static int snd_vortex_pcm_open(struct snd_pcm_substream *substream)
121 {
122 	vortex_t *vortex = snd_pcm_substream_chip(substream);
123 	struct snd_pcm_runtime *runtime = substream->runtime;
124 	int err;
125 
126 	/* Force equal size periods */
127 	if ((err =
128 	     snd_pcm_hw_constraint_integer(runtime,
129 					   SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
130 		return err;
131 	/* Avoid PAGE_SIZE boundary to fall inside of a period. */
132 	if ((err =
133 	     snd_pcm_hw_constraint_pow2(runtime, 0,
134 					SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0)
135 		return err;
136 
137 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
138 #ifndef CHIP_AU8820
139 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) {
140 			runtime->hw = snd_vortex_playback_hw_a3d;
141 		}
142 #endif
143 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) {
144 			runtime->hw = snd_vortex_playback_hw_spdif;
145 			switch (vortex->spdif_sr) {
146 			case 32000:
147 				runtime->hw.rates = SNDRV_PCM_RATE_32000;
148 				break;
149 			case 44100:
150 				runtime->hw.rates = SNDRV_PCM_RATE_44100;
151 				break;
152 			case 48000:
153 				runtime->hw.rates = SNDRV_PCM_RATE_48000;
154 				break;
155 			}
156 		}
157 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB
158 		    || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S)
159 			runtime->hw = snd_vortex_playback_hw_adb;
160 		substream->runtime->private_data = NULL;
161 	}
162 #ifndef CHIP_AU8810
163 	else {
164 		runtime->hw = snd_vortex_playback_hw_wt;
165 		substream->runtime->private_data = NULL;
166 	}
167 #endif
168 	return 0;
169 }
170 
171 /* close callback */
172 static int snd_vortex_pcm_close(struct snd_pcm_substream *substream)
173 {
174 	//vortex_t *chip = snd_pcm_substream_chip(substream);
175 	stream_t *stream = (stream_t *) substream->runtime->private_data;
176 
177 	// the hardware-specific codes will be here
178 	if (stream != NULL) {
179 		stream->substream = NULL;
180 		stream->nr_ch = 0;
181 	}
182 	substream->runtime->private_data = NULL;
183 	return 0;
184 }
185 
186 /* hw_params callback */
187 static int
188 snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream,
189 			 struct snd_pcm_hw_params *hw_params)
190 {
191 	vortex_t *chip = snd_pcm_substream_chip(substream);
192 	stream_t *stream = (stream_t *) (substream->runtime->private_data);
193 	struct snd_sg_buf *sgbuf;
194 	int err;
195 
196 	// Alloc buffer memory.
197 	err =
198 	    snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
199 	if (err < 0) {
200 		printk(KERN_ERR "Vortex: pcm page alloc failed!\n");
201 		return err;
202 	}
203 	//sgbuf = (struct snd_sg_buf *) substream->runtime->dma_private;
204 	sgbuf = snd_pcm_substream_sgbuf(substream);
205 	/*
206 	   printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params),
207 	   params_period_bytes(hw_params), params_channels(hw_params));
208 	 */
209 	spin_lock_irq(&chip->lock);
210 	// Make audio routes and config buffer DMA.
211 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
212 		int dma, type = VORTEX_PCM_TYPE(substream->pcm);
213 		/* Dealloc any routes. */
214 		if (stream != NULL)
215 			vortex_adb_allocroute(chip, stream->dma,
216 					      stream->nr_ch, stream->dir,
217 					      stream->type);
218 		/* Alloc routes. */
219 		dma =
220 		    vortex_adb_allocroute(chip, -1,
221 					  params_channels(hw_params),
222 					  substream->stream, type);
223 		if (dma < 0) {
224 			spin_unlock_irq(&chip->lock);
225 			return dma;
226 		}
227 		stream = substream->runtime->private_data = &chip->dma_adb[dma];
228 		stream->substream = substream;
229 		/* Setup Buffers. */
230 		vortex_adbdma_setbuffers(chip, dma, sgbuf,
231 					 params_period_bytes(hw_params),
232 					 params_periods(hw_params));
233 	}
234 #ifndef CHIP_AU8810
235 	else {
236 		/* if (stream != NULL)
237 		   vortex_wt_allocroute(chip, substream->number, 0); */
238 		vortex_wt_allocroute(chip, substream->number,
239 				     params_channels(hw_params));
240 		stream = substream->runtime->private_data =
241 		    &chip->dma_wt[substream->number];
242 		stream->dma = substream->number;
243 		stream->substream = substream;
244 		vortex_wtdma_setbuffers(chip, substream->number, sgbuf,
245 					params_period_bytes(hw_params),
246 					params_periods(hw_params));
247 	}
248 #endif
249 	spin_unlock_irq(&chip->lock);
250 	return 0;
251 }
252 
253 /* hw_free callback */
254 static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream)
255 {
256 	vortex_t *chip = snd_pcm_substream_chip(substream);
257 	stream_t *stream = (stream_t *) (substream->runtime->private_data);
258 
259 	spin_lock_irq(&chip->lock);
260 	// Delete audio routes.
261 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
262 		if (stream != NULL)
263 			vortex_adb_allocroute(chip, stream->dma,
264 					      stream->nr_ch, stream->dir,
265 					      stream->type);
266 	}
267 #ifndef CHIP_AU8810
268 	else {
269 		if (stream != NULL)
270 			vortex_wt_allocroute(chip, stream->dma, 0);
271 	}
272 #endif
273 	substream->runtime->private_data = NULL;
274 	spin_unlock_irq(&chip->lock);
275 
276 	return snd_pcm_lib_free_pages(substream);
277 }
278 
279 /* prepare callback */
280 static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream)
281 {
282 	vortex_t *chip = snd_pcm_substream_chip(substream);
283 	struct snd_pcm_runtime *runtime = substream->runtime;
284 	stream_t *stream = (stream_t *) substream->runtime->private_data;
285 	int dma = stream->dma, fmt, dir;
286 
287 	// set up the hardware with the current configuration.
288 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
289 		dir = 1;
290 	else
291 		dir = 0;
292 	fmt = vortex_alsafmt_aspfmt(runtime->format);
293 	spin_lock_irq(&chip->lock);
294 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
295 		vortex_adbdma_setmode(chip, dma, 1, dir, fmt, 0 /*? */ ,
296 				      0);
297 		vortex_adbdma_setstartbuffer(chip, dma, 0);
298 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF)
299 			vortex_adb_setsrc(chip, dma, runtime->rate, dir);
300 	}
301 #ifndef CHIP_AU8810
302 	else {
303 		vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0);
304 		// FIXME: Set rate (i guess using vortex_wt_writereg() somehow).
305 		vortex_wtdma_setstartbuffer(chip, dma, 0);
306 	}
307 #endif
308 	spin_unlock_irq(&chip->lock);
309 	return 0;
310 }
311 
312 /* trigger callback */
313 static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
314 {
315 	vortex_t *chip = snd_pcm_substream_chip(substream);
316 	stream_t *stream = (stream_t *) substream->runtime->private_data;
317 	int dma = stream->dma;
318 
319 	spin_lock(&chip->lock);
320 	switch (cmd) {
321 	case SNDRV_PCM_TRIGGER_START:
322 		// do something to start the PCM engine
323 		//printk(KERN_INFO "vortex: start %d\n", dma);
324 		stream->fifo_enabled = 1;
325 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
326 			vortex_adbdma_resetup(chip, dma);
327 			vortex_adbdma_startfifo(chip, dma);
328 		}
329 #ifndef CHIP_AU8810
330 		else {
331 			printk(KERN_INFO "vortex: wt start %d\n", dma);
332 			vortex_wtdma_startfifo(chip, dma);
333 		}
334 #endif
335 		break;
336 	case SNDRV_PCM_TRIGGER_STOP:
337 		// do something to stop the PCM engine
338 		//printk(KERN_INFO "vortex: stop %d\n", dma);
339 		stream->fifo_enabled = 0;
340 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
341 			vortex_adbdma_pausefifo(chip, dma);
342 		//vortex_adbdma_stopfifo(chip, dma);
343 #ifndef CHIP_AU8810
344 		else {
345 			printk(KERN_INFO "vortex: wt stop %d\n", dma);
346 			vortex_wtdma_stopfifo(chip, dma);
347 		}
348 #endif
349 		break;
350 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
351 		//printk(KERN_INFO "vortex: pause %d\n", dma);
352 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
353 			vortex_adbdma_pausefifo(chip, dma);
354 #ifndef CHIP_AU8810
355 		else
356 			vortex_wtdma_pausefifo(chip, dma);
357 #endif
358 		break;
359 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
360 		//printk(KERN_INFO "vortex: resume %d\n", dma);
361 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
362 			vortex_adbdma_resumefifo(chip, dma);
363 #ifndef CHIP_AU8810
364 		else
365 			vortex_wtdma_resumefifo(chip, dma);
366 #endif
367 		break;
368 	default:
369 		spin_unlock(&chip->lock);
370 		return -EINVAL;
371 	}
372 	spin_unlock(&chip->lock);
373 	return 0;
374 }
375 
376 /* pointer callback */
377 static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream)
378 {
379 	vortex_t *chip = snd_pcm_substream_chip(substream);
380 	stream_t *stream = (stream_t *) substream->runtime->private_data;
381 	int dma = stream->dma;
382 	snd_pcm_uframes_t current_ptr = 0;
383 
384 	spin_lock(&chip->lock);
385 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
386 		current_ptr = vortex_adbdma_getlinearpos(chip, dma);
387 #ifndef CHIP_AU8810
388 	else
389 		current_ptr = vortex_wtdma_getlinearpos(chip, dma);
390 #endif
391 	//printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr);
392 	spin_unlock(&chip->lock);
393 	return (bytes_to_frames(substream->runtime, current_ptr));
394 }
395 
396 /* Page callback. */
397 /*
398 static struct page *snd_pcm_sgbuf_ops_page(struct snd_pcm_substream *substream, unsigned long offset) {
399 
400 
401 }
402 */
403 /* operators */
404 static struct snd_pcm_ops snd_vortex_playback_ops = {
405 	.open = snd_vortex_pcm_open,
406 	.close = snd_vortex_pcm_close,
407 	.ioctl = snd_pcm_lib_ioctl,
408 	.hw_params = snd_vortex_pcm_hw_params,
409 	.hw_free = snd_vortex_pcm_hw_free,
410 	.prepare = snd_vortex_pcm_prepare,
411 	.trigger = snd_vortex_pcm_trigger,
412 	.pointer = snd_vortex_pcm_pointer,
413 	.page = snd_pcm_sgbuf_ops_page,
414 };
415 
416 /*
417 *  definitions of capture are omitted here...
418 */
419 
420 static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = {
421 	"AU88x0 ADB",
422 	"AU88x0 SPDIF",
423 	"AU88x0 A3D",
424 	"AU88x0 WT",
425 	"AU88x0 I2S",
426 };
427 static char *vortex_pcm_name[VORTEX_PCM_LAST] = {
428 	"adb",
429 	"spdif",
430 	"a3d",
431 	"wt",
432 	"i2s",
433 };
434 
435 /* SPDIF kcontrol */
436 
437 static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
438 {
439 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
440 	uinfo->count = 1;
441 	return 0;
442 }
443 
444 static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
445 {
446 	ucontrol->value.iec958.status[0] = 0xff;
447 	ucontrol->value.iec958.status[1] = 0xff;
448 	ucontrol->value.iec958.status[2] = 0xff;
449 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
450 	return 0;
451 }
452 
453 static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
454 {
455 	vortex_t *vortex = snd_kcontrol_chip(kcontrol);
456 	ucontrol->value.iec958.status[0] = 0x00;
457 	ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID;
458 	ucontrol->value.iec958.status[2] = 0x00;
459 	switch (vortex->spdif_sr) {
460 	case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break;
461 	case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break;
462 	case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break;
463 	}
464 	return 0;
465 }
466 
467 static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
468 {
469 	vortex_t *vortex = snd_kcontrol_chip(kcontrol);
470 	int spdif_sr = 48000;
471 	switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) {
472 	case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break;
473 	case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break;
474 	case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break;
475 	}
476 	if (spdif_sr == vortex->spdif_sr)
477 		return 0;
478 	vortex->spdif_sr = spdif_sr;
479 	vortex_spdif_init(vortex, vortex->spdif_sr, 1);
480 	return 1;
481 }
482 
483 /* spdif controls */
484 static struct snd_kcontrol_new snd_vortex_mixer_spdif[] __devinitdata = {
485 	{
486 		.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
487 		.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
488 		.info =		snd_vortex_spdif_info,
489 		.get =		snd_vortex_spdif_get,
490 		.put =		snd_vortex_spdif_put,
491 	},
492 	{
493 		.access =	SNDRV_CTL_ELEM_ACCESS_READ,
494 		.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
495 		.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
496 		.info =		snd_vortex_spdif_info,
497 		.get =		snd_vortex_spdif_mask_get
498 	},
499 };
500 
501 /* create a pcm device */
502 static int __devinit snd_vortex_new_pcm(vortex_t * chip, int idx, int nr)
503 {
504 	struct snd_pcm *pcm;
505 	struct snd_kcontrol *kctl;
506 	int i;
507 	int err, nr_capt;
508 
509 	if ((chip == 0) || (idx < 0) || (idx > VORTEX_PCM_LAST))
510 		return -ENODEV;
511 
512 	/* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the
513 	 * same dma engine. WT uses it own separate dma engine whcih cant capture. */
514 	if (idx == VORTEX_PCM_ADB)
515 		nr_capt = nr;
516 	else
517 		nr_capt = 0;
518 	if ((err =
519 	     snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr,
520 			 nr_capt, &pcm)) < 0)
521 		return err;
522 	strcpy(pcm->name, vortex_pcm_name[idx]);
523 	chip->pcm[idx] = pcm;
524 	// This is an evil hack, but it saves a lot of duplicated code.
525 	VORTEX_PCM_TYPE(pcm) = idx;
526 	pcm->private_data = chip;
527 	/* set operators */
528 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
529 			&snd_vortex_playback_ops);
530 	if (idx == VORTEX_PCM_ADB)
531 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
532 				&snd_vortex_playback_ops);
533 
534 	/* pre-allocation of Scatter-Gather buffers */
535 
536 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
537 					      snd_dma_pci_data(chip->pci_dev),
538 					      0x10000, 0x10000);
539 
540 	if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) {
541 		for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) {
542 			kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip);
543 			if (!kctl)
544 				return -ENOMEM;
545 			if ((err = snd_ctl_add(chip->card, kctl)) < 0)
546 				return err;
547 		}
548 	}
549 	return 0;
550 }
551