xref: /openbmc/linux/sound/pci/au88x0/au88x0_pcm.c (revision 384740dc)
1 /*
2  *  This program is free software; you can redistribute it and/or modify
3  *  it under the terms of the GNU General Public License as published by
4  *  the Free Software Foundation; either version 2 of the License, or
5  *  (at your option) any later version.
6  *
7  *  This program is distributed in the hope that it will be useful,
8  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
9  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  *  GNU Library General Public License for more details.
11  *
12  *  You should have received a copy of the GNU General Public License
13  *  along with this program; if not, write to the Free Software
14  *  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
15  */
16 
17 /*
18  * Vortex PCM ALSA driver.
19  *
20  * Supports ADB and WT DMA. Unfortunately, WT channels do not run yet.
21  * It remains stuck,and DMA transfers do not happen.
22  */
23 #include <sound/asoundef.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/pcm.h>
27 #include <sound/pcm_params.h>
28 #include "au88x0.h"
29 
30 #define VORTEX_PCM_TYPE(x) (x->name[40])
31 
32 /* hardware definition */
33 static struct snd_pcm_hardware snd_vortex_playback_hw_adb = {
34 	.info =
35 	    (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
36 	     SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
37 	     SNDRV_PCM_INFO_MMAP_VALID),
38 	.formats =
39 	    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
40 	    SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
41 	.rates = SNDRV_PCM_RATE_CONTINUOUS,
42 	.rate_min = 5000,
43 	.rate_max = 48000,
44 	.channels_min = 1,
45 #ifdef CHIP_AU8830
46 	.channels_max = 4,
47 #else
48 	.channels_max = 2,
49 #endif
50 	.buffer_bytes_max = 0x10000,
51 	.period_bytes_min = 0x1,
52 	.period_bytes_max = 0x1000,
53 	.periods_min = 2,
54 	.periods_max = 32,
55 };
56 
57 #ifndef CHIP_AU8820
58 static struct snd_pcm_hardware snd_vortex_playback_hw_a3d = {
59 	.info =
60 	    (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
61 	     SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
62 	     SNDRV_PCM_INFO_MMAP_VALID),
63 	.formats =
64 	    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
65 	    SNDRV_PCM_FMTBIT_MU_LAW | SNDRV_PCM_FMTBIT_A_LAW,
66 	.rates = SNDRV_PCM_RATE_CONTINUOUS,
67 	.rate_min = 5000,
68 	.rate_max = 48000,
69 	.channels_min = 1,
70 	.channels_max = 1,
71 	.buffer_bytes_max = 0x10000,
72 	.period_bytes_min = 0x100,
73 	.period_bytes_max = 0x1000,
74 	.periods_min = 2,
75 	.periods_max = 64,
76 };
77 #endif
78 static struct snd_pcm_hardware snd_vortex_playback_hw_spdif = {
79 	.info =
80 	    (SNDRV_PCM_INFO_MMAP | /* SNDRV_PCM_INFO_RESUME | */
81 	     SNDRV_PCM_INFO_PAUSE | SNDRV_PCM_INFO_INTERLEAVED |
82 	     SNDRV_PCM_INFO_MMAP_VALID),
83 	.formats =
84 	    SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U8 |
85 	    SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE | SNDRV_PCM_FMTBIT_MU_LAW |
86 	    SNDRV_PCM_FMTBIT_A_LAW,
87 	.rates =
88 	    SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
89 	.rate_min = 32000,
90 	.rate_max = 48000,
91 	.channels_min = 1,
92 	.channels_max = 2,
93 	.buffer_bytes_max = 0x10000,
94 	.period_bytes_min = 0x100,
95 	.period_bytes_max = 0x1000,
96 	.periods_min = 2,
97 	.periods_max = 64,
98 };
99 
100 #ifndef CHIP_AU8810
101 static struct snd_pcm_hardware snd_vortex_playback_hw_wt = {
102 	.info = (SNDRV_PCM_INFO_MMAP |
103 		 SNDRV_PCM_INFO_INTERLEAVED |
104 		 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID),
105 	.formats = SNDRV_PCM_FMTBIT_S16_LE,
106 	.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,	// SNDRV_PCM_RATE_48000,
107 	.rate_min = 8000,
108 	.rate_max = 48000,
109 	.channels_min = 1,
110 	.channels_max = 2,
111 	.buffer_bytes_max = 0x10000,
112 	.period_bytes_min = 0x0400,
113 	.period_bytes_max = 0x1000,
114 	.periods_min = 2,
115 	.periods_max = 64,
116 };
117 #endif
118 /* open callback */
119 static int snd_vortex_pcm_open(struct snd_pcm_substream *substream)
120 {
121 	vortex_t *vortex = snd_pcm_substream_chip(substream);
122 	struct snd_pcm_runtime *runtime = substream->runtime;
123 	int err;
124 
125 	/* Force equal size periods */
126 	if ((err =
127 	     snd_pcm_hw_constraint_integer(runtime,
128 					   SNDRV_PCM_HW_PARAM_PERIODS)) < 0)
129 		return err;
130 	/* Avoid PAGE_SIZE boundary to fall inside of a period. */
131 	if ((err =
132 	     snd_pcm_hw_constraint_pow2(runtime, 0,
133 					SNDRV_PCM_HW_PARAM_PERIOD_BYTES)) < 0)
134 		return err;
135 
136 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
137 #ifndef CHIP_AU8820
138 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_A3D) {
139 			runtime->hw = snd_vortex_playback_hw_a3d;
140 		}
141 #endif
142 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_SPDIF) {
143 			runtime->hw = snd_vortex_playback_hw_spdif;
144 			switch (vortex->spdif_sr) {
145 			case 32000:
146 				runtime->hw.rates = SNDRV_PCM_RATE_32000;
147 				break;
148 			case 44100:
149 				runtime->hw.rates = SNDRV_PCM_RATE_44100;
150 				break;
151 			case 48000:
152 				runtime->hw.rates = SNDRV_PCM_RATE_48000;
153 				break;
154 			}
155 		}
156 		if (VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_ADB
157 		    || VORTEX_PCM_TYPE(substream->pcm) == VORTEX_PCM_I2S)
158 			runtime->hw = snd_vortex_playback_hw_adb;
159 		substream->runtime->private_data = NULL;
160 	}
161 #ifndef CHIP_AU8810
162 	else {
163 		runtime->hw = snd_vortex_playback_hw_wt;
164 		substream->runtime->private_data = NULL;
165 	}
166 #endif
167 	return 0;
168 }
169 
170 /* close callback */
171 static int snd_vortex_pcm_close(struct snd_pcm_substream *substream)
172 {
173 	//vortex_t *chip = snd_pcm_substream_chip(substream);
174 	stream_t *stream = (stream_t *) substream->runtime->private_data;
175 
176 	// the hardware-specific codes will be here
177 	if (stream != NULL) {
178 		stream->substream = NULL;
179 		stream->nr_ch = 0;
180 	}
181 	substream->runtime->private_data = NULL;
182 	return 0;
183 }
184 
185 /* hw_params callback */
186 static int
187 snd_vortex_pcm_hw_params(struct snd_pcm_substream *substream,
188 			 struct snd_pcm_hw_params *hw_params)
189 {
190 	vortex_t *chip = snd_pcm_substream_chip(substream);
191 	stream_t *stream = (stream_t *) (substream->runtime->private_data);
192 	struct snd_sg_buf *sgbuf;
193 	int err;
194 
195 	// Alloc buffer memory.
196 	err =
197 	    snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
198 	if (err < 0) {
199 		printk(KERN_ERR "Vortex: pcm page alloc failed!\n");
200 		return err;
201 	}
202 	//sgbuf = (struct snd_sg_buf *) substream->runtime->dma_private;
203 	sgbuf = snd_pcm_substream_sgbuf(substream);
204 	/*
205 	   printk(KERN_INFO "Vortex: periods %d, period_bytes %d, channels = %d\n", params_periods(hw_params),
206 	   params_period_bytes(hw_params), params_channels(hw_params));
207 	 */
208 	spin_lock_irq(&chip->lock);
209 	// Make audio routes and config buffer DMA.
210 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
211 		int dma, type = VORTEX_PCM_TYPE(substream->pcm);
212 		/* Dealloc any routes. */
213 		if (stream != NULL)
214 			vortex_adb_allocroute(chip, stream->dma,
215 					      stream->nr_ch, stream->dir,
216 					      stream->type);
217 		/* Alloc routes. */
218 		dma =
219 		    vortex_adb_allocroute(chip, -1,
220 					  params_channels(hw_params),
221 					  substream->stream, type);
222 		if (dma < 0) {
223 			spin_unlock_irq(&chip->lock);
224 			return dma;
225 		}
226 		stream = substream->runtime->private_data = &chip->dma_adb[dma];
227 		stream->substream = substream;
228 		/* Setup Buffers. */
229 		vortex_adbdma_setbuffers(chip, dma, sgbuf,
230 					 params_period_bytes(hw_params),
231 					 params_periods(hw_params));
232 	}
233 #ifndef CHIP_AU8810
234 	else {
235 		/* if (stream != NULL)
236 		   vortex_wt_allocroute(chip, substream->number, 0); */
237 		vortex_wt_allocroute(chip, substream->number,
238 				     params_channels(hw_params));
239 		stream = substream->runtime->private_data =
240 		    &chip->dma_wt[substream->number];
241 		stream->dma = substream->number;
242 		stream->substream = substream;
243 		vortex_wtdma_setbuffers(chip, substream->number, sgbuf,
244 					params_period_bytes(hw_params),
245 					params_periods(hw_params));
246 	}
247 #endif
248 	spin_unlock_irq(&chip->lock);
249 	return 0;
250 }
251 
252 /* hw_free callback */
253 static int snd_vortex_pcm_hw_free(struct snd_pcm_substream *substream)
254 {
255 	vortex_t *chip = snd_pcm_substream_chip(substream);
256 	stream_t *stream = (stream_t *) (substream->runtime->private_data);
257 
258 	spin_lock_irq(&chip->lock);
259 	// Delete audio routes.
260 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
261 		if (stream != NULL)
262 			vortex_adb_allocroute(chip, stream->dma,
263 					      stream->nr_ch, stream->dir,
264 					      stream->type);
265 	}
266 #ifndef CHIP_AU8810
267 	else {
268 		if (stream != NULL)
269 			vortex_wt_allocroute(chip, stream->dma, 0);
270 	}
271 #endif
272 	substream->runtime->private_data = NULL;
273 	spin_unlock_irq(&chip->lock);
274 
275 	return snd_pcm_lib_free_pages(substream);
276 }
277 
278 /* prepare callback */
279 static int snd_vortex_pcm_prepare(struct snd_pcm_substream *substream)
280 {
281 	vortex_t *chip = snd_pcm_substream_chip(substream);
282 	struct snd_pcm_runtime *runtime = substream->runtime;
283 	stream_t *stream = (stream_t *) substream->runtime->private_data;
284 	int dma = stream->dma, fmt, dir;
285 
286 	// set up the hardware with the current configuration.
287 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
288 		dir = 1;
289 	else
290 		dir = 0;
291 	fmt = vortex_alsafmt_aspfmt(runtime->format);
292 	spin_lock_irq(&chip->lock);
293 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
294 		vortex_adbdma_setmode(chip, dma, 1, dir, fmt, 0 /*? */ ,
295 				      0);
296 		vortex_adbdma_setstartbuffer(chip, dma, 0);
297 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_SPDIF)
298 			vortex_adb_setsrc(chip, dma, runtime->rate, dir);
299 	}
300 #ifndef CHIP_AU8810
301 	else {
302 		vortex_wtdma_setmode(chip, dma, 1, fmt, 0, 0);
303 		// FIXME: Set rate (i guess using vortex_wt_writereg() somehow).
304 		vortex_wtdma_setstartbuffer(chip, dma, 0);
305 	}
306 #endif
307 	spin_unlock_irq(&chip->lock);
308 	return 0;
309 }
310 
311 /* trigger callback */
312 static int snd_vortex_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
313 {
314 	vortex_t *chip = snd_pcm_substream_chip(substream);
315 	stream_t *stream = (stream_t *) substream->runtime->private_data;
316 	int dma = stream->dma;
317 
318 	spin_lock(&chip->lock);
319 	switch (cmd) {
320 	case SNDRV_PCM_TRIGGER_START:
321 		// do something to start the PCM engine
322 		//printk(KERN_INFO "vortex: start %d\n", dma);
323 		stream->fifo_enabled = 1;
324 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT) {
325 			vortex_adbdma_resetup(chip, dma);
326 			vortex_adbdma_startfifo(chip, dma);
327 		}
328 #ifndef CHIP_AU8810
329 		else {
330 			printk(KERN_INFO "vortex: wt start %d\n", dma);
331 			vortex_wtdma_startfifo(chip, dma);
332 		}
333 #endif
334 		break;
335 	case SNDRV_PCM_TRIGGER_STOP:
336 		// do something to stop the PCM engine
337 		//printk(KERN_INFO "vortex: stop %d\n", dma);
338 		stream->fifo_enabled = 0;
339 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
340 			vortex_adbdma_pausefifo(chip, dma);
341 		//vortex_adbdma_stopfifo(chip, dma);
342 #ifndef CHIP_AU8810
343 		else {
344 			printk(KERN_INFO "vortex: wt stop %d\n", dma);
345 			vortex_wtdma_stopfifo(chip, dma);
346 		}
347 #endif
348 		break;
349 	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
350 		//printk(KERN_INFO "vortex: pause %d\n", dma);
351 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
352 			vortex_adbdma_pausefifo(chip, dma);
353 #ifndef CHIP_AU8810
354 		else
355 			vortex_wtdma_pausefifo(chip, dma);
356 #endif
357 		break;
358 	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
359 		//printk(KERN_INFO "vortex: resume %d\n", dma);
360 		if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
361 			vortex_adbdma_resumefifo(chip, dma);
362 #ifndef CHIP_AU8810
363 		else
364 			vortex_wtdma_resumefifo(chip, dma);
365 #endif
366 		break;
367 	default:
368 		spin_unlock(&chip->lock);
369 		return -EINVAL;
370 	}
371 	spin_unlock(&chip->lock);
372 	return 0;
373 }
374 
375 /* pointer callback */
376 static snd_pcm_uframes_t snd_vortex_pcm_pointer(struct snd_pcm_substream *substream)
377 {
378 	vortex_t *chip = snd_pcm_substream_chip(substream);
379 	stream_t *stream = (stream_t *) substream->runtime->private_data;
380 	int dma = stream->dma;
381 	snd_pcm_uframes_t current_ptr = 0;
382 
383 	spin_lock(&chip->lock);
384 	if (VORTEX_PCM_TYPE(substream->pcm) != VORTEX_PCM_WT)
385 		current_ptr = vortex_adbdma_getlinearpos(chip, dma);
386 #ifndef CHIP_AU8810
387 	else
388 		current_ptr = vortex_wtdma_getlinearpos(chip, dma);
389 #endif
390 	//printk(KERN_INFO "vortex: pointer = 0x%x\n", current_ptr);
391 	spin_unlock(&chip->lock);
392 	return (bytes_to_frames(substream->runtime, current_ptr));
393 }
394 
395 /* Page callback. */
396 /*
397 static struct page *snd_pcm_sgbuf_ops_page(struct snd_pcm_substream *substream, unsigned long offset) {
398 
399 
400 }
401 */
402 /* operators */
403 static struct snd_pcm_ops snd_vortex_playback_ops = {
404 	.open = snd_vortex_pcm_open,
405 	.close = snd_vortex_pcm_close,
406 	.ioctl = snd_pcm_lib_ioctl,
407 	.hw_params = snd_vortex_pcm_hw_params,
408 	.hw_free = snd_vortex_pcm_hw_free,
409 	.prepare = snd_vortex_pcm_prepare,
410 	.trigger = snd_vortex_pcm_trigger,
411 	.pointer = snd_vortex_pcm_pointer,
412 	.page = snd_pcm_sgbuf_ops_page,
413 };
414 
415 /*
416 *  definitions of capture are omitted here...
417 */
418 
419 static char *vortex_pcm_prettyname[VORTEX_PCM_LAST] = {
420 	"AU88x0 ADB",
421 	"AU88x0 SPDIF",
422 	"AU88x0 A3D",
423 	"AU88x0 WT",
424 	"AU88x0 I2S",
425 };
426 static char *vortex_pcm_name[VORTEX_PCM_LAST] = {
427 	"adb",
428 	"spdif",
429 	"a3d",
430 	"wt",
431 	"i2s",
432 };
433 
434 /* SPDIF kcontrol */
435 
436 static int snd_vortex_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
437 {
438 	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
439 	uinfo->count = 1;
440 	return 0;
441 }
442 
443 static int snd_vortex_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
444 {
445 	ucontrol->value.iec958.status[0] = 0xff;
446 	ucontrol->value.iec958.status[1] = 0xff;
447 	ucontrol->value.iec958.status[2] = 0xff;
448 	ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS;
449 	return 0;
450 }
451 
452 static int snd_vortex_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
453 {
454 	vortex_t *vortex = snd_kcontrol_chip(kcontrol);
455 	ucontrol->value.iec958.status[0] = 0x00;
456 	ucontrol->value.iec958.status[1] = IEC958_AES1_CON_ORIGINAL|IEC958_AES1_CON_DIGDIGCONV_ID;
457 	ucontrol->value.iec958.status[2] = 0x00;
458 	switch (vortex->spdif_sr) {
459 	case 32000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_32000; break;
460 	case 44100: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_44100; break;
461 	case 48000: ucontrol->value.iec958.status[3] = IEC958_AES3_CON_FS_48000; break;
462 	}
463 	return 0;
464 }
465 
466 static int snd_vortex_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
467 {
468 	vortex_t *vortex = snd_kcontrol_chip(kcontrol);
469 	int spdif_sr = 48000;
470 	switch (ucontrol->value.iec958.status[3] & IEC958_AES3_CON_FS) {
471 	case IEC958_AES3_CON_FS_32000: spdif_sr = 32000; break;
472 	case IEC958_AES3_CON_FS_44100: spdif_sr = 44100; break;
473 	case IEC958_AES3_CON_FS_48000: spdif_sr = 48000; break;
474 	}
475 	if (spdif_sr == vortex->spdif_sr)
476 		return 0;
477 	vortex->spdif_sr = spdif_sr;
478 	vortex_spdif_init(vortex, vortex->spdif_sr, 1);
479 	return 1;
480 }
481 
482 /* spdif controls */
483 static struct snd_kcontrol_new snd_vortex_mixer_spdif[] __devinitdata = {
484 	{
485 		.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
486 		.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
487 		.info =		snd_vortex_spdif_info,
488 		.get =		snd_vortex_spdif_get,
489 		.put =		snd_vortex_spdif_put,
490 	},
491 	{
492 		.access =	SNDRV_CTL_ELEM_ACCESS_READ,
493 		.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
494 		.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
495 		.info =		snd_vortex_spdif_info,
496 		.get =		snd_vortex_spdif_mask_get
497 	},
498 };
499 
500 /* create a pcm device */
501 static int __devinit snd_vortex_new_pcm(vortex_t *chip, int idx, int nr)
502 {
503 	struct snd_pcm *pcm;
504 	struct snd_kcontrol *kctl;
505 	int i;
506 	int err, nr_capt;
507 
508 	if (!chip || idx < 0 || idx >= VORTEX_PCM_LAST)
509 		return -ENODEV;
510 
511 	/* idx indicates which kind of PCM device. ADB, SPDIF, I2S and A3D share the
512 	 * same dma engine. WT uses it own separate dma engine whcih cant capture. */
513 	if (idx == VORTEX_PCM_ADB)
514 		nr_capt = nr;
515 	else
516 		nr_capt = 0;
517 	err = snd_pcm_new(chip->card, vortex_pcm_prettyname[idx], idx, nr,
518 			  nr_capt, &pcm);
519 	if (err < 0)
520 		return err;
521 	strcpy(pcm->name, vortex_pcm_name[idx]);
522 	chip->pcm[idx] = pcm;
523 	// This is an evil hack, but it saves a lot of duplicated code.
524 	VORTEX_PCM_TYPE(pcm) = idx;
525 	pcm->private_data = chip;
526 	/* set operators */
527 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
528 			&snd_vortex_playback_ops);
529 	if (idx == VORTEX_PCM_ADB)
530 		snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
531 				&snd_vortex_playback_ops);
532 
533 	/* pre-allocation of Scatter-Gather buffers */
534 
535 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV_SG,
536 					      snd_dma_pci_data(chip->pci_dev),
537 					      0x10000, 0x10000);
538 
539 	if (VORTEX_PCM_TYPE(pcm) == VORTEX_PCM_SPDIF) {
540 		for (i = 0; i < ARRAY_SIZE(snd_vortex_mixer_spdif); i++) {
541 			kctl = snd_ctl_new1(&snd_vortex_mixer_spdif[i], chip);
542 			if (!kctl)
543 				return -ENOMEM;
544 			if ((err = snd_ctl_add(chip->card, kctl)) < 0)
545 				return err;
546 		}
547 	}
548 	return 0;
549 }
550