1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Driver for A2 audio system used in SGI machines 4 * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de> 5 * 6 * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which 7 * was based on code from Ulf Carlsson 8 */ 9 #include <linux/kernel.h> 10 #include <linux/init.h> 11 #include <linux/interrupt.h> 12 #include <linux/dma-mapping.h> 13 #include <linux/platform_device.h> 14 #include <linux/io.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 18 #include <asm/sgi/hpc3.h> 19 #include <asm/sgi/ip22.h> 20 21 #include <sound/core.h> 22 #include <sound/control.h> 23 #include <sound/pcm.h> 24 #include <sound/pcm-indirect.h> 25 #include <sound/initval.h> 26 27 #include "hal2.h" 28 29 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 30 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 31 32 module_param(index, int, 0444); 33 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard."); 34 module_param(id, charp, 0444); 35 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard."); 36 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio"); 37 MODULE_AUTHOR("Thomas Bogendoerfer"); 38 MODULE_LICENSE("GPL"); 39 40 41 #define H2_BLOCK_SIZE 1024 42 #define H2_BUF_SIZE 16384 43 44 struct hal2_pbus { 45 struct hpc3_pbus_dmacregs *pbus; 46 int pbusnr; 47 unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */ 48 }; 49 50 struct hal2_desc { 51 struct hpc_dma_desc desc; 52 u32 pad; /* padding */ 53 }; 54 55 struct hal2_codec { 56 struct snd_pcm_indirect pcm_indirect; 57 struct snd_pcm_substream *substream; 58 59 unsigned char *buffer; 60 dma_addr_t buffer_dma; 61 struct hal2_desc *desc; 62 dma_addr_t desc_dma; 63 int desc_count; 64 struct hal2_pbus pbus; 65 int voices; /* mono/stereo */ 66 unsigned int sample_rate; 67 unsigned int master; /* Master frequency */ 68 unsigned short mod; /* MOD value */ 69 unsigned short inc; /* INC value */ 70 }; 71 72 #define H2_MIX_OUTPUT_ATT 0 73 #define H2_MIX_INPUT_GAIN 1 74 75 struct snd_hal2 { 76 struct snd_card *card; 77 78 struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */ 79 struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */ 80 struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */ 81 struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */ 82 83 struct hal2_codec dac; 84 struct hal2_codec adc; 85 }; 86 87 #define H2_INDIRECT_WAIT(regs) while (hal2_read(®s->isr) & H2_ISR_TSTATUS); 88 89 #define H2_READ_ADDR(addr) (addr | (1<<7)) 90 #define H2_WRITE_ADDR(addr) (addr) 91 92 static inline u32 hal2_read(u32 *reg) 93 { 94 return __raw_readl(reg); 95 } 96 97 static inline void hal2_write(u32 val, u32 *reg) 98 { 99 __raw_writel(val, reg); 100 } 101 102 103 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr) 104 { 105 u32 ret; 106 struct hal2_ctl_regs *regs = hal2->ctl_regs; 107 108 hal2_write(H2_READ_ADDR(addr), ®s->iar); 109 H2_INDIRECT_WAIT(regs); 110 ret = hal2_read(®s->idr0) & 0xffff; 111 hal2_write(H2_READ_ADDR(addr) | 0x1, ®s->iar); 112 H2_INDIRECT_WAIT(regs); 113 ret |= (hal2_read(®s->idr0) & 0xffff) << 16; 114 return ret; 115 } 116 117 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val) 118 { 119 struct hal2_ctl_regs *regs = hal2->ctl_regs; 120 121 hal2_write(val, ®s->idr0); 122 hal2_write(0, ®s->idr1); 123 hal2_write(0, ®s->idr2); 124 hal2_write(0, ®s->idr3); 125 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 126 H2_INDIRECT_WAIT(regs); 127 } 128 129 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val) 130 { 131 struct hal2_ctl_regs *regs = hal2->ctl_regs; 132 133 hal2_write(val & 0xffff, ®s->idr0); 134 hal2_write(val >> 16, ®s->idr1); 135 hal2_write(0, ®s->idr2); 136 hal2_write(0, ®s->idr3); 137 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 138 H2_INDIRECT_WAIT(regs); 139 } 140 141 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) 142 { 143 struct hal2_ctl_regs *regs = hal2->ctl_regs; 144 145 hal2_write(H2_READ_ADDR(addr), ®s->iar); 146 H2_INDIRECT_WAIT(regs); 147 hal2_write((hal2_read(®s->idr0) & 0xffff) | bit, ®s->idr0); 148 hal2_write(0, ®s->idr1); 149 hal2_write(0, ®s->idr2); 150 hal2_write(0, ®s->idr3); 151 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 152 H2_INDIRECT_WAIT(regs); 153 } 154 155 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) 156 { 157 struct hal2_ctl_regs *regs = hal2->ctl_regs; 158 159 hal2_write(H2_READ_ADDR(addr), ®s->iar); 160 H2_INDIRECT_WAIT(regs); 161 hal2_write((hal2_read(®s->idr0) & 0xffff) & ~bit, ®s->idr0); 162 hal2_write(0, ®s->idr1); 163 hal2_write(0, ®s->idr2); 164 hal2_write(0, ®s->idr3); 165 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 166 H2_INDIRECT_WAIT(regs); 167 } 168 169 static int hal2_gain_info(struct snd_kcontrol *kcontrol, 170 struct snd_ctl_elem_info *uinfo) 171 { 172 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 173 uinfo->count = 2; 174 uinfo->value.integer.min = 0; 175 switch ((int)kcontrol->private_value) { 176 case H2_MIX_OUTPUT_ATT: 177 uinfo->value.integer.max = 31; 178 break; 179 case H2_MIX_INPUT_GAIN: 180 uinfo->value.integer.max = 15; 181 break; 182 } 183 return 0; 184 } 185 186 static int hal2_gain_get(struct snd_kcontrol *kcontrol, 187 struct snd_ctl_elem_value *ucontrol) 188 { 189 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); 190 u32 tmp; 191 int l, r; 192 193 switch ((int)kcontrol->private_value) { 194 case H2_MIX_OUTPUT_ATT: 195 tmp = hal2_i_read32(hal2, H2I_DAC_C2); 196 if (tmp & H2I_C2_MUTE) { 197 l = 0; 198 r = 0; 199 } else { 200 l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31); 201 r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31); 202 } 203 break; 204 case H2_MIX_INPUT_GAIN: 205 tmp = hal2_i_read32(hal2, H2I_ADC_C2); 206 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15; 207 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15; 208 break; 209 default: 210 return -EINVAL; 211 } 212 ucontrol->value.integer.value[0] = l; 213 ucontrol->value.integer.value[1] = r; 214 215 return 0; 216 } 217 218 static int hal2_gain_put(struct snd_kcontrol *kcontrol, 219 struct snd_ctl_elem_value *ucontrol) 220 { 221 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); 222 u32 old, new; 223 int l, r; 224 225 l = ucontrol->value.integer.value[0]; 226 r = ucontrol->value.integer.value[1]; 227 228 switch ((int)kcontrol->private_value) { 229 case H2_MIX_OUTPUT_ATT: 230 old = hal2_i_read32(hal2, H2I_DAC_C2); 231 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); 232 if (l | r) { 233 l = 31 - l; 234 r = 31 - r; 235 new |= (l << H2I_C2_L_ATT_SHIFT); 236 new |= (r << H2I_C2_R_ATT_SHIFT); 237 } else 238 new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE; 239 hal2_i_write32(hal2, H2I_DAC_C2, new); 240 break; 241 case H2_MIX_INPUT_GAIN: 242 old = hal2_i_read32(hal2, H2I_ADC_C2); 243 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M); 244 new |= (l << H2I_C2_L_GAIN_SHIFT); 245 new |= (r << H2I_C2_R_GAIN_SHIFT); 246 hal2_i_write32(hal2, H2I_ADC_C2, new); 247 break; 248 default: 249 return -EINVAL; 250 } 251 return old != new; 252 } 253 254 static const struct snd_kcontrol_new hal2_ctrl_headphone = { 255 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 256 .name = "Headphone Playback Volume", 257 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 258 .private_value = H2_MIX_OUTPUT_ATT, 259 .info = hal2_gain_info, 260 .get = hal2_gain_get, 261 .put = hal2_gain_put, 262 }; 263 264 static const struct snd_kcontrol_new hal2_ctrl_mic = { 265 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 266 .name = "Mic Capture Volume", 267 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 268 .private_value = H2_MIX_INPUT_GAIN, 269 .info = hal2_gain_info, 270 .get = hal2_gain_get, 271 .put = hal2_gain_put, 272 }; 273 274 static int hal2_mixer_create(struct snd_hal2 *hal2) 275 { 276 int err; 277 278 /* mute DAC */ 279 hal2_i_write32(hal2, H2I_DAC_C2, 280 H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); 281 /* mute ADC */ 282 hal2_i_write32(hal2, H2I_ADC_C2, 0); 283 284 err = snd_ctl_add(hal2->card, 285 snd_ctl_new1(&hal2_ctrl_headphone, hal2)); 286 if (err < 0) 287 return err; 288 289 err = snd_ctl_add(hal2->card, 290 snd_ctl_new1(&hal2_ctrl_mic, hal2)); 291 if (err < 0) 292 return err; 293 294 return 0; 295 } 296 297 static irqreturn_t hal2_interrupt(int irq, void *dev_id) 298 { 299 struct snd_hal2 *hal2 = dev_id; 300 irqreturn_t ret = IRQ_NONE; 301 302 /* decide what caused this interrupt */ 303 if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { 304 snd_pcm_period_elapsed(hal2->dac.substream); 305 ret = IRQ_HANDLED; 306 } 307 if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { 308 snd_pcm_period_elapsed(hal2->adc.substream); 309 ret = IRQ_HANDLED; 310 } 311 return ret; 312 } 313 314 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate) 315 { 316 unsigned short mod; 317 318 if (44100 % rate < 48000 % rate) { 319 mod = 4 * 44100 / rate; 320 codec->master = 44100; 321 } else { 322 mod = 4 * 48000 / rate; 323 codec->master = 48000; 324 } 325 326 codec->inc = 4; 327 codec->mod = mod; 328 rate = 4 * codec->master / mod; 329 330 return rate; 331 } 332 333 static void hal2_set_dac_rate(struct snd_hal2 *hal2) 334 { 335 unsigned int master = hal2->dac.master; 336 int inc = hal2->dac.inc; 337 int mod = hal2->dac.mod; 338 339 hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0); 340 hal2_i_write32(hal2, H2I_BRES1_C2, 341 ((0xffff & (inc - mod - 1)) << 16) | inc); 342 } 343 344 static void hal2_set_adc_rate(struct snd_hal2 *hal2) 345 { 346 unsigned int master = hal2->adc.master; 347 int inc = hal2->adc.inc; 348 int mod = hal2->adc.mod; 349 350 hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0); 351 hal2_i_write32(hal2, H2I_BRES2_C2, 352 ((0xffff & (inc - mod - 1)) << 16) | inc); 353 } 354 355 static void hal2_setup_dac(struct snd_hal2 *hal2) 356 { 357 unsigned int fifobeg, fifoend, highwater, sample_size; 358 struct hal2_pbus *pbus = &hal2->dac.pbus; 359 360 /* Now we set up some PBUS information. The PBUS needs information about 361 * what portion of the fifo it will use. If it's receiving or 362 * transmitting, and finally whether the stream is little endian or big 363 * endian. The information is written later, on the start call. 364 */ 365 sample_size = 2 * hal2->dac.voices; 366 /* Fifo should be set to hold exactly four samples. Highwater mark 367 * should be set to two samples. */ 368 highwater = (sample_size * 2) >> 1; /* halfwords */ 369 fifobeg = 0; /* playback is first */ 370 fifoend = (sample_size * 4) >> 3; /* doublewords */ 371 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD | 372 (highwater << 8) | (fifobeg << 16) | (fifoend << 24); 373 /* We disable everything before we do anything at all */ 374 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 375 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); 376 /* Setup the HAL2 for playback */ 377 hal2_set_dac_rate(hal2); 378 /* Set endianess */ 379 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX); 380 /* Set DMA bus */ 381 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); 382 /* We are using 1st Bresenham clock generator for playback */ 383 hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) 384 | (1 << H2I_C1_CLKID_SHIFT) 385 | (hal2->dac.voices << H2I_C1_DATAT_SHIFT)); 386 } 387 388 static void hal2_setup_adc(struct snd_hal2 *hal2) 389 { 390 unsigned int fifobeg, fifoend, highwater, sample_size; 391 struct hal2_pbus *pbus = &hal2->adc.pbus; 392 393 sample_size = 2 * hal2->adc.voices; 394 highwater = (sample_size * 2) >> 1; /* halfwords */ 395 fifobeg = (4 * 4) >> 3; /* record is second */ 396 fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */ 397 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD | 398 (highwater << 8) | (fifobeg << 16) | (fifoend << 24); 399 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 400 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); 401 /* Setup the HAL2 for record */ 402 hal2_set_adc_rate(hal2); 403 /* Set endianess */ 404 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR); 405 /* Set DMA bus */ 406 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); 407 /* We are using 2nd Bresenham clock generator for record */ 408 hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) 409 | (2 << H2I_C1_CLKID_SHIFT) 410 | (hal2->adc.voices << H2I_C1_DATAT_SHIFT)); 411 } 412 413 static void hal2_start_dac(struct snd_hal2 *hal2) 414 { 415 struct hal2_pbus *pbus = &hal2->dac.pbus; 416 417 pbus->pbus->pbdma_dptr = hal2->dac.desc_dma; 418 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; 419 /* enable DAC */ 420 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); 421 } 422 423 static void hal2_start_adc(struct snd_hal2 *hal2) 424 { 425 struct hal2_pbus *pbus = &hal2->adc.pbus; 426 427 pbus->pbus->pbdma_dptr = hal2->adc.desc_dma; 428 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; 429 /* enable ADC */ 430 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); 431 } 432 433 static inline void hal2_stop_dac(struct snd_hal2 *hal2) 434 { 435 hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 436 /* The HAL2 itself may remain enabled safely */ 437 } 438 439 static inline void hal2_stop_adc(struct snd_hal2 *hal2) 440 { 441 hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 442 } 443 444 static int hal2_alloc_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec) 445 { 446 struct device *dev = hal2->card->dev; 447 struct hal2_desc *desc; 448 dma_addr_t desc_dma, buffer_dma; 449 int count = H2_BUF_SIZE / H2_BLOCK_SIZE; 450 int i; 451 452 codec->buffer = dma_alloc_attrs(dev, H2_BUF_SIZE, &buffer_dma, 453 GFP_KERNEL, DMA_ATTR_NON_CONSISTENT); 454 if (!codec->buffer) 455 return -ENOMEM; 456 desc = dma_alloc_attrs(dev, count * sizeof(struct hal2_desc), 457 &desc_dma, GFP_KERNEL, DMA_ATTR_NON_CONSISTENT); 458 if (!desc) { 459 dma_free_attrs(dev, H2_BUF_SIZE, codec->buffer, buffer_dma, 460 DMA_ATTR_NON_CONSISTENT); 461 return -ENOMEM; 462 } 463 codec->buffer_dma = buffer_dma; 464 codec->desc_dma = desc_dma; 465 codec->desc = desc; 466 for (i = 0; i < count; i++) { 467 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE; 468 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE; 469 desc->desc.pnext = (i == count - 1) ? 470 desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc); 471 desc++; 472 } 473 dma_cache_sync(dev, codec->desc, count * sizeof(struct hal2_desc), 474 DMA_TO_DEVICE); 475 codec->desc_count = count; 476 return 0; 477 } 478 479 static void hal2_free_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec) 480 { 481 struct device *dev = hal2->card->dev; 482 483 dma_free_attrs(dev, codec->desc_count * sizeof(struct hal2_desc), 484 codec->desc, codec->desc_dma, DMA_ATTR_NON_CONSISTENT); 485 dma_free_attrs(dev, H2_BUF_SIZE, codec->buffer, codec->buffer_dma, 486 DMA_ATTR_NON_CONSISTENT); 487 } 488 489 static const struct snd_pcm_hardware hal2_pcm_hw = { 490 .info = (SNDRV_PCM_INFO_MMAP | 491 SNDRV_PCM_INFO_MMAP_VALID | 492 SNDRV_PCM_INFO_INTERLEAVED | 493 SNDRV_PCM_INFO_BLOCK_TRANSFER | 494 SNDRV_PCM_INFO_SYNC_APPLPTR), 495 .formats = SNDRV_PCM_FMTBIT_S16_BE, 496 .rates = SNDRV_PCM_RATE_8000_48000, 497 .rate_min = 8000, 498 .rate_max = 48000, 499 .channels_min = 2, 500 .channels_max = 2, 501 .buffer_bytes_max = 65536, 502 .period_bytes_min = 1024, 503 .period_bytes_max = 65536, 504 .periods_min = 2, 505 .periods_max = 1024, 506 }; 507 508 static int hal2_playback_open(struct snd_pcm_substream *substream) 509 { 510 struct snd_pcm_runtime *runtime = substream->runtime; 511 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 512 int err; 513 514 runtime->hw = hal2_pcm_hw; 515 516 err = hal2_alloc_dmabuf(hal2, &hal2->dac); 517 if (err) 518 return err; 519 return 0; 520 } 521 522 static int hal2_playback_close(struct snd_pcm_substream *substream) 523 { 524 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 525 526 hal2_free_dmabuf(hal2, &hal2->dac); 527 return 0; 528 } 529 530 static int hal2_playback_prepare(struct snd_pcm_substream *substream) 531 { 532 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 533 struct snd_pcm_runtime *runtime = substream->runtime; 534 struct hal2_codec *dac = &hal2->dac; 535 536 dac->voices = runtime->channels; 537 dac->sample_rate = hal2_compute_rate(dac, runtime->rate); 538 memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect)); 539 dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; 540 dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; 541 dac->pcm_indirect.hw_io = dac->buffer_dma; 542 dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 543 dac->substream = substream; 544 hal2_setup_dac(hal2); 545 return 0; 546 } 547 548 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd) 549 { 550 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 551 552 switch (cmd) { 553 case SNDRV_PCM_TRIGGER_START: 554 hal2_start_dac(hal2); 555 break; 556 case SNDRV_PCM_TRIGGER_STOP: 557 hal2_stop_dac(hal2); 558 break; 559 default: 560 return -EINVAL; 561 } 562 return 0; 563 } 564 565 static snd_pcm_uframes_t 566 hal2_playback_pointer(struct snd_pcm_substream *substream) 567 { 568 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 569 struct hal2_codec *dac = &hal2->dac; 570 571 return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect, 572 dac->pbus.pbus->pbdma_bptr); 573 } 574 575 static void hal2_playback_transfer(struct snd_pcm_substream *substream, 576 struct snd_pcm_indirect *rec, size_t bytes) 577 { 578 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 579 unsigned char *buf = hal2->dac.buffer + rec->hw_data; 580 581 memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes); 582 dma_cache_sync(hal2->card->dev, buf, bytes, DMA_TO_DEVICE); 583 584 } 585 586 static int hal2_playback_ack(struct snd_pcm_substream *substream) 587 { 588 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 589 struct hal2_codec *dac = &hal2->dac; 590 591 return snd_pcm_indirect_playback_transfer(substream, 592 &dac->pcm_indirect, 593 hal2_playback_transfer); 594 } 595 596 static int hal2_capture_open(struct snd_pcm_substream *substream) 597 { 598 struct snd_pcm_runtime *runtime = substream->runtime; 599 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 600 struct hal2_codec *adc = &hal2->adc; 601 int err; 602 603 runtime->hw = hal2_pcm_hw; 604 605 err = hal2_alloc_dmabuf(hal2, adc); 606 if (err) 607 return err; 608 return 0; 609 } 610 611 static int hal2_capture_close(struct snd_pcm_substream *substream) 612 { 613 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 614 615 hal2_free_dmabuf(hal2, &hal2->adc); 616 return 0; 617 } 618 619 static int hal2_capture_prepare(struct snd_pcm_substream *substream) 620 { 621 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 622 struct snd_pcm_runtime *runtime = substream->runtime; 623 struct hal2_codec *adc = &hal2->adc; 624 625 adc->voices = runtime->channels; 626 adc->sample_rate = hal2_compute_rate(adc, runtime->rate); 627 memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect)); 628 adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; 629 adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; 630 adc->pcm_indirect.hw_io = adc->buffer_dma; 631 adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 632 adc->substream = substream; 633 hal2_setup_adc(hal2); 634 return 0; 635 } 636 637 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd) 638 { 639 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 640 641 switch (cmd) { 642 case SNDRV_PCM_TRIGGER_START: 643 hal2_start_adc(hal2); 644 break; 645 case SNDRV_PCM_TRIGGER_STOP: 646 hal2_stop_adc(hal2); 647 break; 648 default: 649 return -EINVAL; 650 } 651 return 0; 652 } 653 654 static snd_pcm_uframes_t 655 hal2_capture_pointer(struct snd_pcm_substream *substream) 656 { 657 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 658 struct hal2_codec *adc = &hal2->adc; 659 660 return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect, 661 adc->pbus.pbus->pbdma_bptr); 662 } 663 664 static void hal2_capture_transfer(struct snd_pcm_substream *substream, 665 struct snd_pcm_indirect *rec, size_t bytes) 666 { 667 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 668 unsigned char *buf = hal2->adc.buffer + rec->hw_data; 669 670 dma_cache_sync(hal2->card->dev, buf, bytes, DMA_FROM_DEVICE); 671 memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes); 672 } 673 674 static int hal2_capture_ack(struct snd_pcm_substream *substream) 675 { 676 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 677 struct hal2_codec *adc = &hal2->adc; 678 679 return snd_pcm_indirect_capture_transfer(substream, 680 &adc->pcm_indirect, 681 hal2_capture_transfer); 682 } 683 684 static const struct snd_pcm_ops hal2_playback_ops = { 685 .open = hal2_playback_open, 686 .close = hal2_playback_close, 687 .prepare = hal2_playback_prepare, 688 .trigger = hal2_playback_trigger, 689 .pointer = hal2_playback_pointer, 690 .ack = hal2_playback_ack, 691 }; 692 693 static const struct snd_pcm_ops hal2_capture_ops = { 694 .open = hal2_capture_open, 695 .close = hal2_capture_close, 696 .prepare = hal2_capture_prepare, 697 .trigger = hal2_capture_trigger, 698 .pointer = hal2_capture_pointer, 699 .ack = hal2_capture_ack, 700 }; 701 702 static int hal2_pcm_create(struct snd_hal2 *hal2) 703 { 704 struct snd_pcm *pcm; 705 int err; 706 707 /* create first pcm device with one outputs and one input */ 708 err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm); 709 if (err < 0) 710 return err; 711 712 pcm->private_data = hal2; 713 strcpy(pcm->name, "SGI HAL2"); 714 715 /* set operators */ 716 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 717 &hal2_playback_ops); 718 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 719 &hal2_capture_ops); 720 snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, 721 NULL, 0, 1024 * 1024); 722 723 return 0; 724 } 725 726 static int hal2_dev_free(struct snd_device *device) 727 { 728 struct snd_hal2 *hal2 = device->device_data; 729 730 free_irq(SGI_HPCDMA_IRQ, hal2); 731 kfree(hal2); 732 return 0; 733 } 734 735 static struct snd_device_ops hal2_ops = { 736 .dev_free = hal2_dev_free, 737 }; 738 739 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3, 740 int index) 741 { 742 codec->pbus.pbusnr = index; 743 codec->pbus.pbus = &hpc3->pbdma[index]; 744 } 745 746 static int hal2_detect(struct snd_hal2 *hal2) 747 { 748 unsigned short board, major, minor; 749 unsigned short rev; 750 751 /* reset HAL2 */ 752 hal2_write(0, &hal2->ctl_regs->isr); 753 754 /* release reset */ 755 hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N, 756 &hal2->ctl_regs->isr); 757 758 759 hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE); 760 rev = hal2_read(&hal2->ctl_regs->rev); 761 if (rev & H2_REV_AUDIO_PRESENT) 762 return -ENODEV; 763 764 board = (rev & H2_REV_BOARD_M) >> 12; 765 major = (rev & H2_REV_MAJOR_CHIP_M) >> 4; 766 minor = (rev & H2_REV_MINOR_CHIP_M); 767 768 printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n", 769 board, major, minor); 770 771 return 0; 772 } 773 774 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip) 775 { 776 struct snd_hal2 *hal2; 777 struct hpc3_regs *hpc3 = hpc3c0; 778 int err; 779 780 hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL); 781 if (!hal2) 782 return -ENOMEM; 783 784 hal2->card = card; 785 786 if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED, 787 "SGI HAL2", hal2)) { 788 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ); 789 kfree(hal2); 790 return -EAGAIN; 791 } 792 793 hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0]; 794 hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1]; 795 hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2]; 796 hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3]; 797 798 if (hal2_detect(hal2) < 0) { 799 kfree(hal2); 800 return -ENODEV; 801 } 802 803 hal2_init_codec(&hal2->dac, hpc3, 0); 804 hal2_init_codec(&hal2->adc, hpc3, 1); 805 806 /* 807 * All DMA channel interfaces in HAL2 are designed to operate with 808 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles 809 * in D5. HAL2 is a 16-bit device which can accept both big and little 810 * endian format. It assumes that even address bytes are on high 811 * portion of PBUS (15:8) and assumes that HPC3 is programmed to 812 * accept a live (unsynchronized) version of P_DREQ_N from HAL2. 813 */ 814 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \ 815 (2 << HPC3_DMACFG_D4R_SHIFT) | \ 816 (2 << HPC3_DMACFG_D5R_SHIFT) | \ 817 (0 << HPC3_DMACFG_D3W_SHIFT) | \ 818 (2 << HPC3_DMACFG_D4W_SHIFT) | \ 819 (2 << HPC3_DMACFG_D5W_SHIFT) | \ 820 HPC3_DMACFG_DS16 | \ 821 HPC3_DMACFG_EVENHI | \ 822 HPC3_DMACFG_RTIME | \ 823 (8 << HPC3_DMACFG_BURST_SHIFT) | \ 824 HPC3_DMACFG_DRQLIVE) 825 /* 826 * Ignore what's mentioned in the specification and write value which 827 * works in The Real World (TM) 828 */ 829 hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844; 830 hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844; 831 832 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops); 833 if (err < 0) { 834 free_irq(SGI_HPCDMA_IRQ, hal2); 835 kfree(hal2); 836 return err; 837 } 838 *rchip = hal2; 839 return 0; 840 } 841 842 static int hal2_probe(struct platform_device *pdev) 843 { 844 struct snd_card *card; 845 struct snd_hal2 *chip; 846 int err; 847 848 err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card); 849 if (err < 0) 850 return err; 851 852 err = hal2_create(card, &chip); 853 if (err < 0) { 854 snd_card_free(card); 855 return err; 856 } 857 858 err = hal2_pcm_create(chip); 859 if (err < 0) { 860 snd_card_free(card); 861 return err; 862 } 863 err = hal2_mixer_create(chip); 864 if (err < 0) { 865 snd_card_free(card); 866 return err; 867 } 868 869 strcpy(card->driver, "SGI HAL2 Audio"); 870 strcpy(card->shortname, "SGI HAL2 Audio"); 871 sprintf(card->longname, "%s irq %i", 872 card->shortname, 873 SGI_HPCDMA_IRQ); 874 875 err = snd_card_register(card); 876 if (err < 0) { 877 snd_card_free(card); 878 return err; 879 } 880 platform_set_drvdata(pdev, card); 881 return 0; 882 } 883 884 static int hal2_remove(struct platform_device *pdev) 885 { 886 struct snd_card *card = platform_get_drvdata(pdev); 887 888 snd_card_free(card); 889 return 0; 890 } 891 892 static struct platform_driver hal2_driver = { 893 .probe = hal2_probe, 894 .remove = hal2_remove, 895 .driver = { 896 .name = "sgihal2", 897 } 898 }; 899 900 module_platform_driver(hal2_driver); 901