xref: /openbmc/linux/sound/mips/hal2.c (revision afb46f79)
1 /*
2  *  Driver for A2 audio system used in SGI machines
3  *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
4  *
5  *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
6  *  was based on code from Ulf Carlsson
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License version 2 as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/module.h>
30 
31 #include <asm/sgi/hpc3.h>
32 #include <asm/sgi/ip22.h>
33 
34 #include <sound/core.h>
35 #include <sound/control.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm-indirect.h>
38 #include <sound/initval.h>
39 
40 #include "hal2.h"
41 
42 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
43 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
44 
45 module_param(index, int, 0444);
46 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
47 module_param(id, charp, 0444);
48 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
49 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
50 MODULE_AUTHOR("Thomas Bogendoerfer");
51 MODULE_LICENSE("GPL");
52 
53 
54 #define H2_BLOCK_SIZE	1024
55 #define H2_BUF_SIZE	16384
56 
57 struct hal2_pbus {
58 	struct hpc3_pbus_dmacregs *pbus;
59 	int pbusnr;
60 	unsigned int ctrl;		/* Current state of pbus->pbdma_ctrl */
61 };
62 
63 struct hal2_desc {
64 	struct hpc_dma_desc desc;
65 	u32 pad;			/* padding */
66 };
67 
68 struct hal2_codec {
69 	struct snd_pcm_indirect pcm_indirect;
70 	struct snd_pcm_substream *substream;
71 
72 	unsigned char *buffer;
73 	dma_addr_t buffer_dma;
74 	struct hal2_desc *desc;
75 	dma_addr_t desc_dma;
76 	int desc_count;
77 	struct hal2_pbus pbus;
78 	int voices;			/* mono/stereo */
79 	unsigned int sample_rate;
80 	unsigned int master;		/* Master frequency */
81 	unsigned short mod;		/* MOD value */
82 	unsigned short inc;		/* INC value */
83 };
84 
85 #define H2_MIX_OUTPUT_ATT	0
86 #define H2_MIX_INPUT_GAIN	1
87 
88 struct snd_hal2 {
89 	struct snd_card *card;
90 
91 	struct hal2_ctl_regs *ctl_regs;	/* HAL2 ctl registers */
92 	struct hal2_aes_regs *aes_regs;	/* HAL2 aes registers */
93 	struct hal2_vol_regs *vol_regs;	/* HAL2 vol registers */
94 	struct hal2_syn_regs *syn_regs;	/* HAL2 syn registers */
95 
96 	struct hal2_codec dac;
97 	struct hal2_codec adc;
98 };
99 
100 #define H2_INDIRECT_WAIT(regs)	while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
101 
102 #define H2_READ_ADDR(addr)	(addr | (1<<7))
103 #define H2_WRITE_ADDR(addr)	(addr)
104 
105 static inline u32 hal2_read(u32 *reg)
106 {
107 	return __raw_readl(reg);
108 }
109 
110 static inline void hal2_write(u32 val, u32 *reg)
111 {
112 	__raw_writel(val, reg);
113 }
114 
115 
116 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
117 {
118 	u32 ret;
119 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
120 
121 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
122 	H2_INDIRECT_WAIT(regs);
123 	ret = hal2_read(&regs->idr0) & 0xffff;
124 	hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
125 	H2_INDIRECT_WAIT(regs);
126 	ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
127 	return ret;
128 }
129 
130 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
131 {
132 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
133 
134 	hal2_write(val, &regs->idr0);
135 	hal2_write(0, &regs->idr1);
136 	hal2_write(0, &regs->idr2);
137 	hal2_write(0, &regs->idr3);
138 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
139 	H2_INDIRECT_WAIT(regs);
140 }
141 
142 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
143 {
144 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
145 
146 	hal2_write(val & 0xffff, &regs->idr0);
147 	hal2_write(val >> 16, &regs->idr1);
148 	hal2_write(0, &regs->idr2);
149 	hal2_write(0, &regs->idr3);
150 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
151 	H2_INDIRECT_WAIT(regs);
152 }
153 
154 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
155 {
156 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
157 
158 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
159 	H2_INDIRECT_WAIT(regs);
160 	hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
161 	hal2_write(0, &regs->idr1);
162 	hal2_write(0, &regs->idr2);
163 	hal2_write(0, &regs->idr3);
164 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
165 	H2_INDIRECT_WAIT(regs);
166 }
167 
168 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
169 {
170 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
171 
172 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
173 	H2_INDIRECT_WAIT(regs);
174 	hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
175 	hal2_write(0, &regs->idr1);
176 	hal2_write(0, &regs->idr2);
177 	hal2_write(0, &regs->idr3);
178 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
179 	H2_INDIRECT_WAIT(regs);
180 }
181 
182 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
183 			       struct snd_ctl_elem_info *uinfo)
184 {
185 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
186 	uinfo->count = 2;
187 	uinfo->value.integer.min = 0;
188 	switch ((int)kcontrol->private_value) {
189 	case H2_MIX_OUTPUT_ATT:
190 		uinfo->value.integer.max = 31;
191 		break;
192 	case H2_MIX_INPUT_GAIN:
193 		uinfo->value.integer.max = 15;
194 		break;
195 	}
196 	return 0;
197 }
198 
199 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
200 			       struct snd_ctl_elem_value *ucontrol)
201 {
202 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
203 	u32 tmp;
204 	int l, r;
205 
206 	switch ((int)kcontrol->private_value) {
207 	case H2_MIX_OUTPUT_ATT:
208 		tmp = hal2_i_read32(hal2, H2I_DAC_C2);
209 		if (tmp & H2I_C2_MUTE) {
210 			l = 0;
211 			r = 0;
212 		} else {
213 			l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
214 			r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
215 		}
216 		break;
217 	case H2_MIX_INPUT_GAIN:
218 		tmp = hal2_i_read32(hal2, H2I_ADC_C2);
219 		l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
220 		r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
221 		break;
222 	}
223 	ucontrol->value.integer.value[0] = l;
224 	ucontrol->value.integer.value[1] = r;
225 
226 	return 0;
227 }
228 
229 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
230 			 struct snd_ctl_elem_value *ucontrol)
231 {
232 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
233 	u32 old, new;
234 	int l, r;
235 
236 	l = ucontrol->value.integer.value[0];
237 	r = ucontrol->value.integer.value[1];
238 
239 	switch ((int)kcontrol->private_value) {
240 	case H2_MIX_OUTPUT_ATT:
241 		old = hal2_i_read32(hal2, H2I_DAC_C2);
242 		new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
243 		if (l | r) {
244 			l = 31 - l;
245 			r = 31 - r;
246 			new |= (l << H2I_C2_L_ATT_SHIFT);
247 			new |= (r << H2I_C2_R_ATT_SHIFT);
248 		} else
249 			new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
250 		hal2_i_write32(hal2, H2I_DAC_C2, new);
251 		break;
252 	case H2_MIX_INPUT_GAIN:
253 		old = hal2_i_read32(hal2, H2I_ADC_C2);
254 		new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
255 		new |= (l << H2I_C2_L_GAIN_SHIFT);
256 		new |= (r << H2I_C2_R_GAIN_SHIFT);
257 		hal2_i_write32(hal2, H2I_ADC_C2, new);
258 		break;
259 	}
260 	return old != new;
261 }
262 
263 static struct snd_kcontrol_new hal2_ctrl_headphone = {
264 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
265 	.name           = "Headphone Playback Volume",
266 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
267 	.private_value  = H2_MIX_OUTPUT_ATT,
268 	.info           = hal2_gain_info,
269 	.get            = hal2_gain_get,
270 	.put            = hal2_gain_put,
271 };
272 
273 static struct snd_kcontrol_new hal2_ctrl_mic = {
274 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
275 	.name           = "Mic Capture Volume",
276 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
277 	.private_value  = H2_MIX_INPUT_GAIN,
278 	.info           = hal2_gain_info,
279 	.get            = hal2_gain_get,
280 	.put            = hal2_gain_put,
281 };
282 
283 static int hal2_mixer_create(struct snd_hal2 *hal2)
284 {
285 	int err;
286 
287 	/* mute DAC */
288 	hal2_i_write32(hal2, H2I_DAC_C2,
289 		       H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
290 	/* mute ADC */
291 	hal2_i_write32(hal2, H2I_ADC_C2, 0);
292 
293 	err = snd_ctl_add(hal2->card,
294 			  snd_ctl_new1(&hal2_ctrl_headphone, hal2));
295 	if (err < 0)
296 		return err;
297 
298 	err = snd_ctl_add(hal2->card,
299 			  snd_ctl_new1(&hal2_ctrl_mic, hal2));
300 	if (err < 0)
301 		return err;
302 
303 	return 0;
304 }
305 
306 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
307 {
308 	struct snd_hal2 *hal2 = dev_id;
309 	irqreturn_t ret = IRQ_NONE;
310 
311 	/* decide what caused this interrupt */
312 	if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
313 		snd_pcm_period_elapsed(hal2->dac.substream);
314 		ret = IRQ_HANDLED;
315 	}
316 	if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
317 		snd_pcm_period_elapsed(hal2->adc.substream);
318 		ret = IRQ_HANDLED;
319 	}
320 	return ret;
321 }
322 
323 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
324 {
325 	unsigned short mod;
326 
327 	if (44100 % rate < 48000 % rate) {
328 		mod = 4 * 44100 / rate;
329 		codec->master = 44100;
330 	} else {
331 		mod = 4 * 48000 / rate;
332 		codec->master = 48000;
333 	}
334 
335 	codec->inc = 4;
336 	codec->mod = mod;
337 	rate = 4 * codec->master / mod;
338 
339 	return rate;
340 }
341 
342 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
343 {
344 	unsigned int master = hal2->dac.master;
345 	int inc = hal2->dac.inc;
346 	int mod = hal2->dac.mod;
347 
348 	hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
349 	hal2_i_write32(hal2, H2I_BRES1_C2,
350 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
351 }
352 
353 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
354 {
355 	unsigned int master = hal2->adc.master;
356 	int inc = hal2->adc.inc;
357 	int mod = hal2->adc.mod;
358 
359 	hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
360 	hal2_i_write32(hal2, H2I_BRES2_C2,
361 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
362 }
363 
364 static void hal2_setup_dac(struct snd_hal2 *hal2)
365 {
366 	unsigned int fifobeg, fifoend, highwater, sample_size;
367 	struct hal2_pbus *pbus = &hal2->dac.pbus;
368 
369 	/* Now we set up some PBUS information. The PBUS needs information about
370 	 * what portion of the fifo it will use. If it's receiving or
371 	 * transmitting, and finally whether the stream is little endian or big
372 	 * endian. The information is written later, on the start call.
373 	 */
374 	sample_size = 2 * hal2->dac.voices;
375 	/* Fifo should be set to hold exactly four samples. Highwater mark
376 	 * should be set to two samples. */
377 	highwater = (sample_size * 2) >> 1;	/* halfwords */
378 	fifobeg = 0;				/* playback is first */
379 	fifoend = (sample_size * 4) >> 3;	/* doublewords */
380 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
381 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
382 	/* We disable everything before we do anything at all */
383 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
384 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
385 	/* Setup the HAL2 for playback */
386 	hal2_set_dac_rate(hal2);
387 	/* Set endianess */
388 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
389 	/* Set DMA bus */
390 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
391 	/* We are using 1st Bresenham clock generator for playback */
392 	hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
393 			| (1 << H2I_C1_CLKID_SHIFT)
394 			| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
395 }
396 
397 static void hal2_setup_adc(struct snd_hal2 *hal2)
398 {
399 	unsigned int fifobeg, fifoend, highwater, sample_size;
400 	struct hal2_pbus *pbus = &hal2->adc.pbus;
401 
402 	sample_size = 2 * hal2->adc.voices;
403 	highwater = (sample_size * 2) >> 1;		/* halfwords */
404 	fifobeg = (4 * 4) >> 3;				/* record is second */
405 	fifoend = (4 * 4 + sample_size * 4) >> 3;	/* doublewords */
406 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
407 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
408 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
409 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
410 	/* Setup the HAL2 for record */
411 	hal2_set_adc_rate(hal2);
412 	/* Set endianess */
413 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
414 	/* Set DMA bus */
415 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
416 	/* We are using 2nd Bresenham clock generator for record */
417 	hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
418 			| (2 << H2I_C1_CLKID_SHIFT)
419 			| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
420 }
421 
422 static void hal2_start_dac(struct snd_hal2 *hal2)
423 {
424 	struct hal2_pbus *pbus = &hal2->dac.pbus;
425 
426 	pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
427 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
428 	/* enable DAC */
429 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
430 }
431 
432 static void hal2_start_adc(struct snd_hal2 *hal2)
433 {
434 	struct hal2_pbus *pbus = &hal2->adc.pbus;
435 
436 	pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
437 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
438 	/* enable ADC */
439 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
440 }
441 
442 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
443 {
444 	hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
445 	/* The HAL2 itself may remain enabled safely */
446 }
447 
448 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
449 {
450 	hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
451 }
452 
453 static int hal2_alloc_dmabuf(struct hal2_codec *codec)
454 {
455 	struct hal2_desc *desc;
456 	dma_addr_t desc_dma, buffer_dma;
457 	int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
458 	int i;
459 
460 	codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
461 					      &buffer_dma, GFP_KERNEL);
462 	if (!codec->buffer)
463 		return -ENOMEM;
464 	desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
465 				     &desc_dma, GFP_KERNEL);
466 	if (!desc) {
467 		dma_free_noncoherent(NULL, H2_BUF_SIZE,
468 				     codec->buffer, buffer_dma);
469 		return -ENOMEM;
470 	}
471 	codec->buffer_dma = buffer_dma;
472 	codec->desc_dma = desc_dma;
473 	codec->desc = desc;
474 	for (i = 0; i < count; i++) {
475 		desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
476 		desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
477 		desc->desc.pnext = (i == count - 1) ?
478 		      desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
479 		desc++;
480 	}
481 	dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
482 		       DMA_TO_DEVICE);
483 	codec->desc_count = count;
484 	return 0;
485 }
486 
487 static void hal2_free_dmabuf(struct hal2_codec *codec)
488 {
489 	dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
490 			     codec->desc, codec->desc_dma);
491 	dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
492 			     codec->buffer_dma);
493 }
494 
495 static struct snd_pcm_hardware hal2_pcm_hw = {
496 	.info = (SNDRV_PCM_INFO_MMAP |
497 		 SNDRV_PCM_INFO_MMAP_VALID |
498 		 SNDRV_PCM_INFO_INTERLEAVED |
499 		 SNDRV_PCM_INFO_BLOCK_TRANSFER),
500 	.formats =          SNDRV_PCM_FMTBIT_S16_BE,
501 	.rates =            SNDRV_PCM_RATE_8000_48000,
502 	.rate_min =         8000,
503 	.rate_max =         48000,
504 	.channels_min =     2,
505 	.channels_max =     2,
506 	.buffer_bytes_max = 65536,
507 	.period_bytes_min = 1024,
508 	.period_bytes_max = 65536,
509 	.periods_min =      2,
510 	.periods_max =      1024,
511 };
512 
513 static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
514 			      struct snd_pcm_hw_params *params)
515 {
516 	int err;
517 
518 	err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
519 	if (err < 0)
520 		return err;
521 
522 	return 0;
523 }
524 
525 static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
526 {
527 	return snd_pcm_lib_free_pages(substream);
528 }
529 
530 static int hal2_playback_open(struct snd_pcm_substream *substream)
531 {
532 	struct snd_pcm_runtime *runtime = substream->runtime;
533 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
534 	int err;
535 
536 	runtime->hw = hal2_pcm_hw;
537 
538 	err = hal2_alloc_dmabuf(&hal2->dac);
539 	if (err)
540 		return err;
541 	return 0;
542 }
543 
544 static int hal2_playback_close(struct snd_pcm_substream *substream)
545 {
546 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
547 
548 	hal2_free_dmabuf(&hal2->dac);
549 	return 0;
550 }
551 
552 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
553 {
554 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
555 	struct snd_pcm_runtime *runtime = substream->runtime;
556 	struct hal2_codec *dac = &hal2->dac;
557 
558 	dac->voices = runtime->channels;
559 	dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
560 	memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
561 	dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
562 	dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
563 	dac->substream = substream;
564 	hal2_setup_dac(hal2);
565 	return 0;
566 }
567 
568 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
569 {
570 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
571 
572 	switch (cmd) {
573 	case SNDRV_PCM_TRIGGER_START:
574 		hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
575 		hal2->dac.pcm_indirect.hw_data = 0;
576 		substream->ops->ack(substream);
577 		hal2_start_dac(hal2);
578 		break;
579 	case SNDRV_PCM_TRIGGER_STOP:
580 		hal2_stop_dac(hal2);
581 		break;
582 	default:
583 		return -EINVAL;
584 	}
585 	return 0;
586 }
587 
588 static snd_pcm_uframes_t
589 hal2_playback_pointer(struct snd_pcm_substream *substream)
590 {
591 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
592 	struct hal2_codec *dac = &hal2->dac;
593 
594 	return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
595 						 dac->pbus.pbus->pbdma_bptr);
596 }
597 
598 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
599 				   struct snd_pcm_indirect *rec, size_t bytes)
600 {
601 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
602 	unsigned char *buf = hal2->dac.buffer + rec->hw_data;
603 
604 	memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
605 	dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
606 
607 }
608 
609 static int hal2_playback_ack(struct snd_pcm_substream *substream)
610 {
611 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
612 	struct hal2_codec *dac = &hal2->dac;
613 
614 	dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
615 	snd_pcm_indirect_playback_transfer(substream,
616 					   &dac->pcm_indirect,
617 					   hal2_playback_transfer);
618 	return 0;
619 }
620 
621 static int hal2_capture_open(struct snd_pcm_substream *substream)
622 {
623 	struct snd_pcm_runtime *runtime = substream->runtime;
624 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
625 	struct hal2_codec *adc = &hal2->adc;
626 	int err;
627 
628 	runtime->hw = hal2_pcm_hw;
629 
630 	err = hal2_alloc_dmabuf(adc);
631 	if (err)
632 		return err;
633 	return 0;
634 }
635 
636 static int hal2_capture_close(struct snd_pcm_substream *substream)
637 {
638 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
639 
640 	hal2_free_dmabuf(&hal2->adc);
641 	return 0;
642 }
643 
644 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
645 {
646 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
647 	struct snd_pcm_runtime *runtime = substream->runtime;
648 	struct hal2_codec *adc = &hal2->adc;
649 
650 	adc->voices = runtime->channels;
651 	adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
652 	memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
653 	adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
654 	adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
655 	adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
656 	adc->substream = substream;
657 	hal2_setup_adc(hal2);
658 	return 0;
659 }
660 
661 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
662 {
663 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
664 
665 	switch (cmd) {
666 	case SNDRV_PCM_TRIGGER_START:
667 		hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
668 		hal2->adc.pcm_indirect.hw_data = 0;
669 		printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
670 		hal2_start_adc(hal2);
671 		break;
672 	case SNDRV_PCM_TRIGGER_STOP:
673 		hal2_stop_adc(hal2);
674 		break;
675 	default:
676 		return -EINVAL;
677 	}
678 	return 0;
679 }
680 
681 static snd_pcm_uframes_t
682 hal2_capture_pointer(struct snd_pcm_substream *substream)
683 {
684 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
685 	struct hal2_codec *adc = &hal2->adc;
686 
687 	return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
688 						adc->pbus.pbus->pbdma_bptr);
689 }
690 
691 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
692 				  struct snd_pcm_indirect *rec, size_t bytes)
693 {
694 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
695 	unsigned char *buf = hal2->adc.buffer + rec->hw_data;
696 
697 	dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
698 	memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
699 }
700 
701 static int hal2_capture_ack(struct snd_pcm_substream *substream)
702 {
703 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
704 	struct hal2_codec *adc = &hal2->adc;
705 
706 	snd_pcm_indirect_capture_transfer(substream,
707 					  &adc->pcm_indirect,
708 					  hal2_capture_transfer);
709 	return 0;
710 }
711 
712 static struct snd_pcm_ops hal2_playback_ops = {
713 	.open =        hal2_playback_open,
714 	.close =       hal2_playback_close,
715 	.ioctl =       snd_pcm_lib_ioctl,
716 	.hw_params =   hal2_pcm_hw_params,
717 	.hw_free =     hal2_pcm_hw_free,
718 	.prepare =     hal2_playback_prepare,
719 	.trigger =     hal2_playback_trigger,
720 	.pointer =     hal2_playback_pointer,
721 	.ack =         hal2_playback_ack,
722 };
723 
724 static struct snd_pcm_ops hal2_capture_ops = {
725 	.open =        hal2_capture_open,
726 	.close =       hal2_capture_close,
727 	.ioctl =       snd_pcm_lib_ioctl,
728 	.hw_params =   hal2_pcm_hw_params,
729 	.hw_free =     hal2_pcm_hw_free,
730 	.prepare =     hal2_capture_prepare,
731 	.trigger =     hal2_capture_trigger,
732 	.pointer =     hal2_capture_pointer,
733 	.ack =         hal2_capture_ack,
734 };
735 
736 static int hal2_pcm_create(struct snd_hal2 *hal2)
737 {
738 	struct snd_pcm *pcm;
739 	int err;
740 
741 	/* create first pcm device with one outputs and one input */
742 	err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
743 	if (err < 0)
744 		return err;
745 
746 	pcm->private_data = hal2;
747 	strcpy(pcm->name, "SGI HAL2");
748 
749 	/* set operators */
750 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
751 			&hal2_playback_ops);
752 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
753 			&hal2_capture_ops);
754 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
755 					   snd_dma_continuous_data(GFP_KERNEL),
756 					   0, 1024 * 1024);
757 
758 	return 0;
759 }
760 
761 static int hal2_dev_free(struct snd_device *device)
762 {
763 	struct snd_hal2 *hal2 = device->device_data;
764 
765 	free_irq(SGI_HPCDMA_IRQ, hal2);
766 	kfree(hal2);
767 	return 0;
768 }
769 
770 static struct snd_device_ops hal2_ops = {
771 	.dev_free = hal2_dev_free,
772 };
773 
774 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
775 			    int index)
776 {
777 	codec->pbus.pbusnr = index;
778 	codec->pbus.pbus = &hpc3->pbdma[index];
779 }
780 
781 static int hal2_detect(struct snd_hal2 *hal2)
782 {
783 	unsigned short board, major, minor;
784 	unsigned short rev;
785 
786 	/* reset HAL2 */
787 	hal2_write(0, &hal2->ctl_regs->isr);
788 
789 	/* release reset */
790 	hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
791 		   &hal2->ctl_regs->isr);
792 
793 
794 	hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
795 	rev = hal2_read(&hal2->ctl_regs->rev);
796 	if (rev & H2_REV_AUDIO_PRESENT)
797 		return -ENODEV;
798 
799 	board = (rev & H2_REV_BOARD_M) >> 12;
800 	major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
801 	minor = (rev & H2_REV_MINOR_CHIP_M);
802 
803 	printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
804 	       board, major, minor);
805 
806 	return 0;
807 }
808 
809 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
810 {
811 	struct snd_hal2 *hal2;
812 	struct hpc3_regs *hpc3 = hpc3c0;
813 	int err;
814 
815 	hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
816 	if (!hal2)
817 		return -ENOMEM;
818 
819 	hal2->card = card;
820 
821 	if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
822 			"SGI HAL2", hal2)) {
823 		printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
824 		kfree(hal2);
825 		return -EAGAIN;
826 	}
827 
828 	hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
829 	hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
830 	hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
831 	hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
832 
833 	if (hal2_detect(hal2) < 0) {
834 		kfree(hal2);
835 		return -ENODEV;
836 	}
837 
838 	hal2_init_codec(&hal2->dac, hpc3, 0);
839 	hal2_init_codec(&hal2->adc, hpc3, 1);
840 
841 	/*
842 	 * All DMA channel interfaces in HAL2 are designed to operate with
843 	 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
844 	 * in D5. HAL2 is a 16-bit device which can accept both big and little
845 	 * endian format. It assumes that even address bytes are on high
846 	 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
847 	 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
848 	 */
849 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
850 			  (2 << HPC3_DMACFG_D4R_SHIFT) | \
851 			  (2 << HPC3_DMACFG_D5R_SHIFT) | \
852 			  (0 << HPC3_DMACFG_D3W_SHIFT) | \
853 			  (2 << HPC3_DMACFG_D4W_SHIFT) | \
854 			  (2 << HPC3_DMACFG_D5W_SHIFT) | \
855 				HPC3_DMACFG_DS16 | \
856 				HPC3_DMACFG_EVENHI | \
857 				HPC3_DMACFG_RTIME | \
858 			  (8 << HPC3_DMACFG_BURST_SHIFT) | \
859 				HPC3_DMACFG_DRQLIVE)
860 	/*
861 	 * Ignore what's mentioned in the specification and write value which
862 	 * works in The Real World (TM)
863 	 */
864 	hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
865 	hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
866 
867 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
868 	if (err < 0) {
869 		free_irq(SGI_HPCDMA_IRQ, hal2);
870 		kfree(hal2);
871 		return err;
872 	}
873 	*rchip = hal2;
874 	return 0;
875 }
876 
877 static int hal2_probe(struct platform_device *pdev)
878 {
879 	struct snd_card *card;
880 	struct snd_hal2 *chip;
881 	int err;
882 
883 	err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
884 	if (err < 0)
885 		return err;
886 
887 	err = hal2_create(card, &chip);
888 	if (err < 0) {
889 		snd_card_free(card);
890 		return err;
891 	}
892 
893 	err = hal2_pcm_create(chip);
894 	if (err < 0) {
895 		snd_card_free(card);
896 		return err;
897 	}
898 	err = hal2_mixer_create(chip);
899 	if (err < 0) {
900 		snd_card_free(card);
901 		return err;
902 	}
903 
904 	strcpy(card->driver, "SGI HAL2 Audio");
905 	strcpy(card->shortname, "SGI HAL2 Audio");
906 	sprintf(card->longname, "%s irq %i",
907 		card->shortname,
908 		SGI_HPCDMA_IRQ);
909 
910 	err = snd_card_register(card);
911 	if (err < 0) {
912 		snd_card_free(card);
913 		return err;
914 	}
915 	platform_set_drvdata(pdev, card);
916 	return 0;
917 }
918 
919 static int hal2_remove(struct platform_device *pdev)
920 {
921 	struct snd_card *card = platform_get_drvdata(pdev);
922 
923 	snd_card_free(card);
924 	return 0;
925 }
926 
927 static struct platform_driver hal2_driver = {
928 	.probe	= hal2_probe,
929 	.remove	= hal2_remove,
930 	.driver = {
931 		.name	= "sgihal2",
932 		.owner	= THIS_MODULE,
933 	}
934 };
935 
936 module_platform_driver(hal2_driver);
937