1 /* 2 * Driver for A2 audio system used in SGI machines 3 * Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de> 4 * 5 * Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which 6 * was based on code from Ulf Carlsson 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program; if not, write to the Free Software 19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 20 * 21 */ 22 #include <linux/kernel.h> 23 #include <linux/init.h> 24 #include <linux/interrupt.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/platform_device.h> 27 #include <linux/io.h> 28 #include <linux/slab.h> 29 #include <linux/module.h> 30 31 #include <asm/sgi/hpc3.h> 32 #include <asm/sgi/ip22.h> 33 34 #include <sound/core.h> 35 #include <sound/control.h> 36 #include <sound/pcm.h> 37 #include <sound/pcm-indirect.h> 38 #include <sound/initval.h> 39 40 #include "hal2.h" 41 42 static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */ 43 static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */ 44 45 module_param(index, int, 0444); 46 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard."); 47 module_param(id, charp, 0444); 48 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard."); 49 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio"); 50 MODULE_AUTHOR("Thomas Bogendoerfer"); 51 MODULE_LICENSE("GPL"); 52 53 54 #define H2_BLOCK_SIZE 1024 55 #define H2_BUF_SIZE 16384 56 57 struct hal2_pbus { 58 struct hpc3_pbus_dmacregs *pbus; 59 int pbusnr; 60 unsigned int ctrl; /* Current state of pbus->pbdma_ctrl */ 61 }; 62 63 struct hal2_desc { 64 struct hpc_dma_desc desc; 65 u32 pad; /* padding */ 66 }; 67 68 struct hal2_codec { 69 struct snd_pcm_indirect pcm_indirect; 70 struct snd_pcm_substream *substream; 71 72 unsigned char *buffer; 73 dma_addr_t buffer_dma; 74 struct hal2_desc *desc; 75 dma_addr_t desc_dma; 76 int desc_count; 77 struct hal2_pbus pbus; 78 int voices; /* mono/stereo */ 79 unsigned int sample_rate; 80 unsigned int master; /* Master frequency */ 81 unsigned short mod; /* MOD value */ 82 unsigned short inc; /* INC value */ 83 }; 84 85 #define H2_MIX_OUTPUT_ATT 0 86 #define H2_MIX_INPUT_GAIN 1 87 88 struct snd_hal2 { 89 struct snd_card *card; 90 91 struct hal2_ctl_regs *ctl_regs; /* HAL2 ctl registers */ 92 struct hal2_aes_regs *aes_regs; /* HAL2 aes registers */ 93 struct hal2_vol_regs *vol_regs; /* HAL2 vol registers */ 94 struct hal2_syn_regs *syn_regs; /* HAL2 syn registers */ 95 96 struct hal2_codec dac; 97 struct hal2_codec adc; 98 }; 99 100 #define H2_INDIRECT_WAIT(regs) while (hal2_read(®s->isr) & H2_ISR_TSTATUS); 101 102 #define H2_READ_ADDR(addr) (addr | (1<<7)) 103 #define H2_WRITE_ADDR(addr) (addr) 104 105 static inline u32 hal2_read(u32 *reg) 106 { 107 return __raw_readl(reg); 108 } 109 110 static inline void hal2_write(u32 val, u32 *reg) 111 { 112 __raw_writel(val, reg); 113 } 114 115 116 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr) 117 { 118 u32 ret; 119 struct hal2_ctl_regs *regs = hal2->ctl_regs; 120 121 hal2_write(H2_READ_ADDR(addr), ®s->iar); 122 H2_INDIRECT_WAIT(regs); 123 ret = hal2_read(®s->idr0) & 0xffff; 124 hal2_write(H2_READ_ADDR(addr) | 0x1, ®s->iar); 125 H2_INDIRECT_WAIT(regs); 126 ret |= (hal2_read(®s->idr0) & 0xffff) << 16; 127 return ret; 128 } 129 130 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val) 131 { 132 struct hal2_ctl_regs *regs = hal2->ctl_regs; 133 134 hal2_write(val, ®s->idr0); 135 hal2_write(0, ®s->idr1); 136 hal2_write(0, ®s->idr2); 137 hal2_write(0, ®s->idr3); 138 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 139 H2_INDIRECT_WAIT(regs); 140 } 141 142 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val) 143 { 144 struct hal2_ctl_regs *regs = hal2->ctl_regs; 145 146 hal2_write(val & 0xffff, ®s->idr0); 147 hal2_write(val >> 16, ®s->idr1); 148 hal2_write(0, ®s->idr2); 149 hal2_write(0, ®s->idr3); 150 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 151 H2_INDIRECT_WAIT(regs); 152 } 153 154 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) 155 { 156 struct hal2_ctl_regs *regs = hal2->ctl_regs; 157 158 hal2_write(H2_READ_ADDR(addr), ®s->iar); 159 H2_INDIRECT_WAIT(regs); 160 hal2_write((hal2_read(®s->idr0) & 0xffff) | bit, ®s->idr0); 161 hal2_write(0, ®s->idr1); 162 hal2_write(0, ®s->idr2); 163 hal2_write(0, ®s->idr3); 164 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 165 H2_INDIRECT_WAIT(regs); 166 } 167 168 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit) 169 { 170 struct hal2_ctl_regs *regs = hal2->ctl_regs; 171 172 hal2_write(H2_READ_ADDR(addr), ®s->iar); 173 H2_INDIRECT_WAIT(regs); 174 hal2_write((hal2_read(®s->idr0) & 0xffff) & ~bit, ®s->idr0); 175 hal2_write(0, ®s->idr1); 176 hal2_write(0, ®s->idr2); 177 hal2_write(0, ®s->idr3); 178 hal2_write(H2_WRITE_ADDR(addr), ®s->iar); 179 H2_INDIRECT_WAIT(regs); 180 } 181 182 static int hal2_gain_info(struct snd_kcontrol *kcontrol, 183 struct snd_ctl_elem_info *uinfo) 184 { 185 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; 186 uinfo->count = 2; 187 uinfo->value.integer.min = 0; 188 switch ((int)kcontrol->private_value) { 189 case H2_MIX_OUTPUT_ATT: 190 uinfo->value.integer.max = 31; 191 break; 192 case H2_MIX_INPUT_GAIN: 193 uinfo->value.integer.max = 15; 194 break; 195 } 196 return 0; 197 } 198 199 static int hal2_gain_get(struct snd_kcontrol *kcontrol, 200 struct snd_ctl_elem_value *ucontrol) 201 { 202 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); 203 u32 tmp; 204 int l, r; 205 206 switch ((int)kcontrol->private_value) { 207 case H2_MIX_OUTPUT_ATT: 208 tmp = hal2_i_read32(hal2, H2I_DAC_C2); 209 if (tmp & H2I_C2_MUTE) { 210 l = 0; 211 r = 0; 212 } else { 213 l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31); 214 r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31); 215 } 216 break; 217 case H2_MIX_INPUT_GAIN: 218 tmp = hal2_i_read32(hal2, H2I_ADC_C2); 219 l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15; 220 r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15; 221 break; 222 default: 223 return -EINVAL; 224 } 225 ucontrol->value.integer.value[0] = l; 226 ucontrol->value.integer.value[1] = r; 227 228 return 0; 229 } 230 231 static int hal2_gain_put(struct snd_kcontrol *kcontrol, 232 struct snd_ctl_elem_value *ucontrol) 233 { 234 struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol); 235 u32 old, new; 236 int l, r; 237 238 l = ucontrol->value.integer.value[0]; 239 r = ucontrol->value.integer.value[1]; 240 241 switch ((int)kcontrol->private_value) { 242 case H2_MIX_OUTPUT_ATT: 243 old = hal2_i_read32(hal2, H2I_DAC_C2); 244 new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); 245 if (l | r) { 246 l = 31 - l; 247 r = 31 - r; 248 new |= (l << H2I_C2_L_ATT_SHIFT); 249 new |= (r << H2I_C2_R_ATT_SHIFT); 250 } else 251 new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE; 252 hal2_i_write32(hal2, H2I_DAC_C2, new); 253 break; 254 case H2_MIX_INPUT_GAIN: 255 old = hal2_i_read32(hal2, H2I_ADC_C2); 256 new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M); 257 new |= (l << H2I_C2_L_GAIN_SHIFT); 258 new |= (r << H2I_C2_R_GAIN_SHIFT); 259 hal2_i_write32(hal2, H2I_ADC_C2, new); 260 break; 261 default: 262 return -EINVAL; 263 } 264 return old != new; 265 } 266 267 static const struct snd_kcontrol_new hal2_ctrl_headphone = { 268 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 269 .name = "Headphone Playback Volume", 270 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 271 .private_value = H2_MIX_OUTPUT_ATT, 272 .info = hal2_gain_info, 273 .get = hal2_gain_get, 274 .put = hal2_gain_put, 275 }; 276 277 static const struct snd_kcontrol_new hal2_ctrl_mic = { 278 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, 279 .name = "Mic Capture Volume", 280 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, 281 .private_value = H2_MIX_INPUT_GAIN, 282 .info = hal2_gain_info, 283 .get = hal2_gain_get, 284 .put = hal2_gain_put, 285 }; 286 287 static int hal2_mixer_create(struct snd_hal2 *hal2) 288 { 289 int err; 290 291 /* mute DAC */ 292 hal2_i_write32(hal2, H2I_DAC_C2, 293 H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE); 294 /* mute ADC */ 295 hal2_i_write32(hal2, H2I_ADC_C2, 0); 296 297 err = snd_ctl_add(hal2->card, 298 snd_ctl_new1(&hal2_ctrl_headphone, hal2)); 299 if (err < 0) 300 return err; 301 302 err = snd_ctl_add(hal2->card, 303 snd_ctl_new1(&hal2_ctrl_mic, hal2)); 304 if (err < 0) 305 return err; 306 307 return 0; 308 } 309 310 static irqreturn_t hal2_interrupt(int irq, void *dev_id) 311 { 312 struct snd_hal2 *hal2 = dev_id; 313 irqreturn_t ret = IRQ_NONE; 314 315 /* decide what caused this interrupt */ 316 if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { 317 snd_pcm_period_elapsed(hal2->dac.substream); 318 ret = IRQ_HANDLED; 319 } 320 if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) { 321 snd_pcm_period_elapsed(hal2->adc.substream); 322 ret = IRQ_HANDLED; 323 } 324 return ret; 325 } 326 327 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate) 328 { 329 unsigned short mod; 330 331 if (44100 % rate < 48000 % rate) { 332 mod = 4 * 44100 / rate; 333 codec->master = 44100; 334 } else { 335 mod = 4 * 48000 / rate; 336 codec->master = 48000; 337 } 338 339 codec->inc = 4; 340 codec->mod = mod; 341 rate = 4 * codec->master / mod; 342 343 return rate; 344 } 345 346 static void hal2_set_dac_rate(struct snd_hal2 *hal2) 347 { 348 unsigned int master = hal2->dac.master; 349 int inc = hal2->dac.inc; 350 int mod = hal2->dac.mod; 351 352 hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0); 353 hal2_i_write32(hal2, H2I_BRES1_C2, 354 ((0xffff & (inc - mod - 1)) << 16) | inc); 355 } 356 357 static void hal2_set_adc_rate(struct snd_hal2 *hal2) 358 { 359 unsigned int master = hal2->adc.master; 360 int inc = hal2->adc.inc; 361 int mod = hal2->adc.mod; 362 363 hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0); 364 hal2_i_write32(hal2, H2I_BRES2_C2, 365 ((0xffff & (inc - mod - 1)) << 16) | inc); 366 } 367 368 static void hal2_setup_dac(struct snd_hal2 *hal2) 369 { 370 unsigned int fifobeg, fifoend, highwater, sample_size; 371 struct hal2_pbus *pbus = &hal2->dac.pbus; 372 373 /* Now we set up some PBUS information. The PBUS needs information about 374 * what portion of the fifo it will use. If it's receiving or 375 * transmitting, and finally whether the stream is little endian or big 376 * endian. The information is written later, on the start call. 377 */ 378 sample_size = 2 * hal2->dac.voices; 379 /* Fifo should be set to hold exactly four samples. Highwater mark 380 * should be set to two samples. */ 381 highwater = (sample_size * 2) >> 1; /* halfwords */ 382 fifobeg = 0; /* playback is first */ 383 fifoend = (sample_size * 4) >> 3; /* doublewords */ 384 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD | 385 (highwater << 8) | (fifobeg << 16) | (fifoend << 24); 386 /* We disable everything before we do anything at all */ 387 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 388 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); 389 /* Setup the HAL2 for playback */ 390 hal2_set_dac_rate(hal2); 391 /* Set endianess */ 392 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX); 393 /* Set DMA bus */ 394 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); 395 /* We are using 1st Bresenham clock generator for playback */ 396 hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) 397 | (1 << H2I_C1_CLKID_SHIFT) 398 | (hal2->dac.voices << H2I_C1_DATAT_SHIFT)); 399 } 400 401 static void hal2_setup_adc(struct snd_hal2 *hal2) 402 { 403 unsigned int fifobeg, fifoend, highwater, sample_size; 404 struct hal2_pbus *pbus = &hal2->adc.pbus; 405 406 sample_size = 2 * hal2->adc.voices; 407 highwater = (sample_size * 2) >> 1; /* halfwords */ 408 fifobeg = (4 * 4) >> 3; /* record is second */ 409 fifoend = (4 * 4 + sample_size * 4) >> 3; /* doublewords */ 410 pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD | 411 (highwater << 8) | (fifobeg << 16) | (fifoend << 24); 412 pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 413 hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); 414 /* Setup the HAL2 for record */ 415 hal2_set_adc_rate(hal2); 416 /* Set endianess */ 417 hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR); 418 /* Set DMA bus */ 419 hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr)); 420 /* We are using 2nd Bresenham clock generator for record */ 421 hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT) 422 | (2 << H2I_C1_CLKID_SHIFT) 423 | (hal2->adc.voices << H2I_C1_DATAT_SHIFT)); 424 } 425 426 static void hal2_start_dac(struct snd_hal2 *hal2) 427 { 428 struct hal2_pbus *pbus = &hal2->dac.pbus; 429 430 pbus->pbus->pbdma_dptr = hal2->dac.desc_dma; 431 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; 432 /* enable DAC */ 433 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX); 434 } 435 436 static void hal2_start_adc(struct snd_hal2 *hal2) 437 { 438 struct hal2_pbus *pbus = &hal2->adc.pbus; 439 440 pbus->pbus->pbdma_dptr = hal2->adc.desc_dma; 441 pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT; 442 /* enable ADC */ 443 hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR); 444 } 445 446 static inline void hal2_stop_dac(struct snd_hal2 *hal2) 447 { 448 hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 449 /* The HAL2 itself may remain enabled safely */ 450 } 451 452 static inline void hal2_stop_adc(struct snd_hal2 *hal2) 453 { 454 hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD; 455 } 456 457 static int hal2_alloc_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec) 458 { 459 struct device *dev = hal2->card->dev; 460 struct hal2_desc *desc; 461 dma_addr_t desc_dma, buffer_dma; 462 int count = H2_BUF_SIZE / H2_BLOCK_SIZE; 463 int i; 464 465 codec->buffer = dma_alloc_attrs(dev, H2_BUF_SIZE, &buffer_dma, 466 GFP_KERNEL, DMA_ATTR_NON_CONSISTENT); 467 if (!codec->buffer) 468 return -ENOMEM; 469 desc = dma_alloc_attrs(dev, count * sizeof(struct hal2_desc), 470 &desc_dma, GFP_KERNEL, DMA_ATTR_NON_CONSISTENT); 471 if (!desc) { 472 dma_free_attrs(dev, H2_BUF_SIZE, codec->buffer, buffer_dma, 473 DMA_ATTR_NON_CONSISTENT); 474 return -ENOMEM; 475 } 476 codec->buffer_dma = buffer_dma; 477 codec->desc_dma = desc_dma; 478 codec->desc = desc; 479 for (i = 0; i < count; i++) { 480 desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE; 481 desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE; 482 desc->desc.pnext = (i == count - 1) ? 483 desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc); 484 desc++; 485 } 486 dma_cache_sync(dev, codec->desc, count * sizeof(struct hal2_desc), 487 DMA_TO_DEVICE); 488 codec->desc_count = count; 489 return 0; 490 } 491 492 static void hal2_free_dmabuf(struct snd_hal2 *hal2, struct hal2_codec *codec) 493 { 494 struct device *dev = hal2->card->dev; 495 496 dma_free_attrs(dev, codec->desc_count * sizeof(struct hal2_desc), 497 codec->desc, codec->desc_dma, DMA_ATTR_NON_CONSISTENT); 498 dma_free_attrs(dev, H2_BUF_SIZE, codec->buffer, codec->buffer_dma, 499 DMA_ATTR_NON_CONSISTENT); 500 } 501 502 static const struct snd_pcm_hardware hal2_pcm_hw = { 503 .info = (SNDRV_PCM_INFO_MMAP | 504 SNDRV_PCM_INFO_MMAP_VALID | 505 SNDRV_PCM_INFO_INTERLEAVED | 506 SNDRV_PCM_INFO_BLOCK_TRANSFER | 507 SNDRV_PCM_INFO_SYNC_APPLPTR), 508 .formats = SNDRV_PCM_FMTBIT_S16_BE, 509 .rates = SNDRV_PCM_RATE_8000_48000, 510 .rate_min = 8000, 511 .rate_max = 48000, 512 .channels_min = 2, 513 .channels_max = 2, 514 .buffer_bytes_max = 65536, 515 .period_bytes_min = 1024, 516 .period_bytes_max = 65536, 517 .periods_min = 2, 518 .periods_max = 1024, 519 }; 520 521 static int hal2_pcm_hw_params(struct snd_pcm_substream *substream, 522 struct snd_pcm_hw_params *params) 523 { 524 int err; 525 526 err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params)); 527 if (err < 0) 528 return err; 529 530 return 0; 531 } 532 533 static int hal2_pcm_hw_free(struct snd_pcm_substream *substream) 534 { 535 return snd_pcm_lib_free_pages(substream); 536 } 537 538 static int hal2_playback_open(struct snd_pcm_substream *substream) 539 { 540 struct snd_pcm_runtime *runtime = substream->runtime; 541 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 542 int err; 543 544 runtime->hw = hal2_pcm_hw; 545 546 err = hal2_alloc_dmabuf(hal2, &hal2->dac); 547 if (err) 548 return err; 549 return 0; 550 } 551 552 static int hal2_playback_close(struct snd_pcm_substream *substream) 553 { 554 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 555 556 hal2_free_dmabuf(hal2, &hal2->dac); 557 return 0; 558 } 559 560 static int hal2_playback_prepare(struct snd_pcm_substream *substream) 561 { 562 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 563 struct snd_pcm_runtime *runtime = substream->runtime; 564 struct hal2_codec *dac = &hal2->dac; 565 566 dac->voices = runtime->channels; 567 dac->sample_rate = hal2_compute_rate(dac, runtime->rate); 568 memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect)); 569 dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; 570 dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; 571 dac->pcm_indirect.hw_io = dac->buffer_dma; 572 dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 573 dac->substream = substream; 574 hal2_setup_dac(hal2); 575 return 0; 576 } 577 578 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd) 579 { 580 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 581 582 switch (cmd) { 583 case SNDRV_PCM_TRIGGER_START: 584 hal2_start_dac(hal2); 585 break; 586 case SNDRV_PCM_TRIGGER_STOP: 587 hal2_stop_dac(hal2); 588 break; 589 default: 590 return -EINVAL; 591 } 592 return 0; 593 } 594 595 static snd_pcm_uframes_t 596 hal2_playback_pointer(struct snd_pcm_substream *substream) 597 { 598 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 599 struct hal2_codec *dac = &hal2->dac; 600 601 return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect, 602 dac->pbus.pbus->pbdma_bptr); 603 } 604 605 static void hal2_playback_transfer(struct snd_pcm_substream *substream, 606 struct snd_pcm_indirect *rec, size_t bytes) 607 { 608 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 609 unsigned char *buf = hal2->dac.buffer + rec->hw_data; 610 611 memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes); 612 dma_cache_sync(hal2->card->dev, buf, bytes, DMA_TO_DEVICE); 613 614 } 615 616 static int hal2_playback_ack(struct snd_pcm_substream *substream) 617 { 618 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 619 struct hal2_codec *dac = &hal2->dac; 620 621 return snd_pcm_indirect_playback_transfer(substream, 622 &dac->pcm_indirect, 623 hal2_playback_transfer); 624 } 625 626 static int hal2_capture_open(struct snd_pcm_substream *substream) 627 { 628 struct snd_pcm_runtime *runtime = substream->runtime; 629 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 630 struct hal2_codec *adc = &hal2->adc; 631 int err; 632 633 runtime->hw = hal2_pcm_hw; 634 635 err = hal2_alloc_dmabuf(hal2, adc); 636 if (err) 637 return err; 638 return 0; 639 } 640 641 static int hal2_capture_close(struct snd_pcm_substream *substream) 642 { 643 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 644 645 hal2_free_dmabuf(hal2, &hal2->adc); 646 return 0; 647 } 648 649 static int hal2_capture_prepare(struct snd_pcm_substream *substream) 650 { 651 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 652 struct snd_pcm_runtime *runtime = substream->runtime; 653 struct hal2_codec *adc = &hal2->adc; 654 655 adc->voices = runtime->channels; 656 adc->sample_rate = hal2_compute_rate(adc, runtime->rate); 657 memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect)); 658 adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE; 659 adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2; 660 adc->pcm_indirect.hw_io = adc->buffer_dma; 661 adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream); 662 adc->substream = substream; 663 hal2_setup_adc(hal2); 664 return 0; 665 } 666 667 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd) 668 { 669 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 670 671 switch (cmd) { 672 case SNDRV_PCM_TRIGGER_START: 673 hal2_start_adc(hal2); 674 break; 675 case SNDRV_PCM_TRIGGER_STOP: 676 hal2_stop_adc(hal2); 677 break; 678 default: 679 return -EINVAL; 680 } 681 return 0; 682 } 683 684 static snd_pcm_uframes_t 685 hal2_capture_pointer(struct snd_pcm_substream *substream) 686 { 687 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 688 struct hal2_codec *adc = &hal2->adc; 689 690 return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect, 691 adc->pbus.pbus->pbdma_bptr); 692 } 693 694 static void hal2_capture_transfer(struct snd_pcm_substream *substream, 695 struct snd_pcm_indirect *rec, size_t bytes) 696 { 697 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 698 unsigned char *buf = hal2->adc.buffer + rec->hw_data; 699 700 dma_cache_sync(hal2->card->dev, buf, bytes, DMA_FROM_DEVICE); 701 memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes); 702 } 703 704 static int hal2_capture_ack(struct snd_pcm_substream *substream) 705 { 706 struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream); 707 struct hal2_codec *adc = &hal2->adc; 708 709 return snd_pcm_indirect_capture_transfer(substream, 710 &adc->pcm_indirect, 711 hal2_capture_transfer); 712 } 713 714 static const struct snd_pcm_ops hal2_playback_ops = { 715 .open = hal2_playback_open, 716 .close = hal2_playback_close, 717 .ioctl = snd_pcm_lib_ioctl, 718 .hw_params = hal2_pcm_hw_params, 719 .hw_free = hal2_pcm_hw_free, 720 .prepare = hal2_playback_prepare, 721 .trigger = hal2_playback_trigger, 722 .pointer = hal2_playback_pointer, 723 .ack = hal2_playback_ack, 724 }; 725 726 static const struct snd_pcm_ops hal2_capture_ops = { 727 .open = hal2_capture_open, 728 .close = hal2_capture_close, 729 .ioctl = snd_pcm_lib_ioctl, 730 .hw_params = hal2_pcm_hw_params, 731 .hw_free = hal2_pcm_hw_free, 732 .prepare = hal2_capture_prepare, 733 .trigger = hal2_capture_trigger, 734 .pointer = hal2_capture_pointer, 735 .ack = hal2_capture_ack, 736 }; 737 738 static int hal2_pcm_create(struct snd_hal2 *hal2) 739 { 740 struct snd_pcm *pcm; 741 int err; 742 743 /* create first pcm device with one outputs and one input */ 744 err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm); 745 if (err < 0) 746 return err; 747 748 pcm->private_data = hal2; 749 strcpy(pcm->name, "SGI HAL2"); 750 751 /* set operators */ 752 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, 753 &hal2_playback_ops); 754 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, 755 &hal2_capture_ops); 756 snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, 757 snd_dma_continuous_data(GFP_KERNEL), 758 0, 1024 * 1024); 759 760 return 0; 761 } 762 763 static int hal2_dev_free(struct snd_device *device) 764 { 765 struct snd_hal2 *hal2 = device->device_data; 766 767 free_irq(SGI_HPCDMA_IRQ, hal2); 768 kfree(hal2); 769 return 0; 770 } 771 772 static struct snd_device_ops hal2_ops = { 773 .dev_free = hal2_dev_free, 774 }; 775 776 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3, 777 int index) 778 { 779 codec->pbus.pbusnr = index; 780 codec->pbus.pbus = &hpc3->pbdma[index]; 781 } 782 783 static int hal2_detect(struct snd_hal2 *hal2) 784 { 785 unsigned short board, major, minor; 786 unsigned short rev; 787 788 /* reset HAL2 */ 789 hal2_write(0, &hal2->ctl_regs->isr); 790 791 /* release reset */ 792 hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N, 793 &hal2->ctl_regs->isr); 794 795 796 hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE); 797 rev = hal2_read(&hal2->ctl_regs->rev); 798 if (rev & H2_REV_AUDIO_PRESENT) 799 return -ENODEV; 800 801 board = (rev & H2_REV_BOARD_M) >> 12; 802 major = (rev & H2_REV_MAJOR_CHIP_M) >> 4; 803 minor = (rev & H2_REV_MINOR_CHIP_M); 804 805 printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n", 806 board, major, minor); 807 808 return 0; 809 } 810 811 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip) 812 { 813 struct snd_hal2 *hal2; 814 struct hpc3_regs *hpc3 = hpc3c0; 815 int err; 816 817 hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL); 818 if (!hal2) 819 return -ENOMEM; 820 821 hal2->card = card; 822 823 if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED, 824 "SGI HAL2", hal2)) { 825 printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ); 826 kfree(hal2); 827 return -EAGAIN; 828 } 829 830 hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0]; 831 hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1]; 832 hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2]; 833 hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3]; 834 835 if (hal2_detect(hal2) < 0) { 836 kfree(hal2); 837 return -ENODEV; 838 } 839 840 hal2_init_codec(&hal2->dac, hpc3, 0); 841 hal2_init_codec(&hal2->adc, hpc3, 1); 842 843 /* 844 * All DMA channel interfaces in HAL2 are designed to operate with 845 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles 846 * in D5. HAL2 is a 16-bit device which can accept both big and little 847 * endian format. It assumes that even address bytes are on high 848 * portion of PBUS (15:8) and assumes that HPC3 is programmed to 849 * accept a live (unsynchronized) version of P_DREQ_N from HAL2. 850 */ 851 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \ 852 (2 << HPC3_DMACFG_D4R_SHIFT) | \ 853 (2 << HPC3_DMACFG_D5R_SHIFT) | \ 854 (0 << HPC3_DMACFG_D3W_SHIFT) | \ 855 (2 << HPC3_DMACFG_D4W_SHIFT) | \ 856 (2 << HPC3_DMACFG_D5W_SHIFT) | \ 857 HPC3_DMACFG_DS16 | \ 858 HPC3_DMACFG_EVENHI | \ 859 HPC3_DMACFG_RTIME | \ 860 (8 << HPC3_DMACFG_BURST_SHIFT) | \ 861 HPC3_DMACFG_DRQLIVE) 862 /* 863 * Ignore what's mentioned in the specification and write value which 864 * works in The Real World (TM) 865 */ 866 hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844; 867 hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844; 868 869 err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops); 870 if (err < 0) { 871 free_irq(SGI_HPCDMA_IRQ, hal2); 872 kfree(hal2); 873 return err; 874 } 875 *rchip = hal2; 876 return 0; 877 } 878 879 static int hal2_probe(struct platform_device *pdev) 880 { 881 struct snd_card *card; 882 struct snd_hal2 *chip; 883 int err; 884 885 err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card); 886 if (err < 0) 887 return err; 888 889 err = hal2_create(card, &chip); 890 if (err < 0) { 891 snd_card_free(card); 892 return err; 893 } 894 895 err = hal2_pcm_create(chip); 896 if (err < 0) { 897 snd_card_free(card); 898 return err; 899 } 900 err = hal2_mixer_create(chip); 901 if (err < 0) { 902 snd_card_free(card); 903 return err; 904 } 905 906 strcpy(card->driver, "SGI HAL2 Audio"); 907 strcpy(card->shortname, "SGI HAL2 Audio"); 908 sprintf(card->longname, "%s irq %i", 909 card->shortname, 910 SGI_HPCDMA_IRQ); 911 912 err = snd_card_register(card); 913 if (err < 0) { 914 snd_card_free(card); 915 return err; 916 } 917 platform_set_drvdata(pdev, card); 918 return 0; 919 } 920 921 static int hal2_remove(struct platform_device *pdev) 922 { 923 struct snd_card *card = platform_get_drvdata(pdev); 924 925 snd_card_free(card); 926 return 0; 927 } 928 929 static struct platform_driver hal2_driver = { 930 .probe = hal2_probe, 931 .remove = hal2_remove, 932 .driver = { 933 .name = "sgihal2", 934 } 935 }; 936 937 module_platform_driver(hal2_driver); 938