xref: /openbmc/linux/sound/mips/hal2.c (revision 9ac8d3fb)
1 /*
2  *  Driver for A2 audio system used in SGI machines
3  *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
4  *
5  *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
6  *  was based on code from Ulf Carlsson
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License version 2 as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28 
29 #include <asm/sgi/hpc3.h>
30 #include <asm/sgi/ip22.h>
31 
32 #include <sound/core.h>
33 #include <sound/control.h>
34 #include <sound/pcm.h>
35 #include <sound/pcm-indirect.h>
36 #include <sound/initval.h>
37 
38 #include "hal2.h"
39 
40 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
41 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
42 
43 module_param(index, int, 0444);
44 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
45 module_param(id, charp, 0444);
46 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
47 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
48 MODULE_AUTHOR("Thomas Bogendoerfer");
49 MODULE_LICENSE("GPL");
50 
51 
52 #define H2_BLOCK_SIZE	1024
53 #define H2_BUF_SIZE	16384
54 
55 struct hal2_pbus {
56 	struct hpc3_pbus_dmacregs *pbus;
57 	int pbusnr;
58 	unsigned int ctrl;		/* Current state of pbus->pbdma_ctrl */
59 };
60 
61 struct hal2_desc {
62 	struct hpc_dma_desc desc;
63 	u32 pad;			/* padding */
64 };
65 
66 struct hal2_codec {
67 	struct snd_pcm_indirect pcm_indirect;
68 	struct snd_pcm_substream *substream;
69 
70 	unsigned char *buffer;
71 	dma_addr_t buffer_dma;
72 	struct hal2_desc *desc;
73 	dma_addr_t desc_dma;
74 	int desc_count;
75 	struct hal2_pbus pbus;
76 	int voices;			/* mono/stereo */
77 	unsigned int sample_rate;
78 	unsigned int master;		/* Master frequency */
79 	unsigned short mod;		/* MOD value */
80 	unsigned short inc;		/* INC value */
81 };
82 
83 #define H2_MIX_OUTPUT_ATT	0
84 #define H2_MIX_INPUT_GAIN	1
85 
86 struct snd_hal2 {
87 	struct snd_card *card;
88 
89 	struct hal2_ctl_regs *ctl_regs;	/* HAL2 ctl registers */
90 	struct hal2_aes_regs *aes_regs;	/* HAL2 aes registers */
91 	struct hal2_vol_regs *vol_regs;	/* HAL2 vol registers */
92 	struct hal2_syn_regs *syn_regs;	/* HAL2 syn registers */
93 
94 	struct hal2_codec dac;
95 	struct hal2_codec adc;
96 };
97 
98 #define H2_INDIRECT_WAIT(regs)	while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
99 
100 #define H2_READ_ADDR(addr)	(addr | (1<<7))
101 #define H2_WRITE_ADDR(addr)	(addr)
102 
103 static inline u32 hal2_read(u32 *reg)
104 {
105 	return __raw_readl(reg);
106 }
107 
108 static inline void hal2_write(u32 val, u32 *reg)
109 {
110 	__raw_writel(val, reg);
111 }
112 
113 
114 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
115 {
116 	u32 ret;
117 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
118 
119 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
120 	H2_INDIRECT_WAIT(regs);
121 	ret = hal2_read(&regs->idr0) & 0xffff;
122 	hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
123 	H2_INDIRECT_WAIT(regs);
124 	ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
125 	return ret;
126 }
127 
128 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
129 {
130 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
131 
132 	hal2_write(val, &regs->idr0);
133 	hal2_write(0, &regs->idr1);
134 	hal2_write(0, &regs->idr2);
135 	hal2_write(0, &regs->idr3);
136 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
137 	H2_INDIRECT_WAIT(regs);
138 }
139 
140 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
141 {
142 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
143 
144 	hal2_write(val & 0xffff, &regs->idr0);
145 	hal2_write(val >> 16, &regs->idr1);
146 	hal2_write(0, &regs->idr2);
147 	hal2_write(0, &regs->idr3);
148 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
149 	H2_INDIRECT_WAIT(regs);
150 }
151 
152 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
153 {
154 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
155 
156 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
157 	H2_INDIRECT_WAIT(regs);
158 	hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
159 	hal2_write(0, &regs->idr1);
160 	hal2_write(0, &regs->idr2);
161 	hal2_write(0, &regs->idr3);
162 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
163 	H2_INDIRECT_WAIT(regs);
164 }
165 
166 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
167 {
168 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
169 
170 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
171 	H2_INDIRECT_WAIT(regs);
172 	hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
173 	hal2_write(0, &regs->idr1);
174 	hal2_write(0, &regs->idr2);
175 	hal2_write(0, &regs->idr3);
176 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
177 	H2_INDIRECT_WAIT(regs);
178 }
179 
180 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
181 			       struct snd_ctl_elem_info *uinfo)
182 {
183 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
184 	uinfo->count = 2;
185 	uinfo->value.integer.min = 0;
186 	switch ((int)kcontrol->private_value) {
187 	case H2_MIX_OUTPUT_ATT:
188 		uinfo->value.integer.max = 31;
189 		break;
190 	case H2_MIX_INPUT_GAIN:
191 		uinfo->value.integer.max = 15;
192 		break;
193 	}
194 	return 0;
195 }
196 
197 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
198 			       struct snd_ctl_elem_value *ucontrol)
199 {
200 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
201 	u32 tmp;
202 	int l, r;
203 
204 	switch ((int)kcontrol->private_value) {
205 	case H2_MIX_OUTPUT_ATT:
206 		tmp = hal2_i_read32(hal2, H2I_DAC_C2);
207 		if (tmp & H2I_C2_MUTE) {
208 			l = 0;
209 			r = 0;
210 		} else {
211 			l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
212 			r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
213 		}
214 		break;
215 	case H2_MIX_INPUT_GAIN:
216 		tmp = hal2_i_read32(hal2, H2I_ADC_C2);
217 		l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
218 		r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
219 		break;
220 	}
221 	ucontrol->value.integer.value[0] = l;
222 	ucontrol->value.integer.value[1] = r;
223 
224 	return 0;
225 }
226 
227 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
228 			 struct snd_ctl_elem_value *ucontrol)
229 {
230 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
231 	u32 old, new;
232 	int l, r;
233 
234 	l = ucontrol->value.integer.value[0];
235 	r = ucontrol->value.integer.value[1];
236 
237 	switch ((int)kcontrol->private_value) {
238 	case H2_MIX_OUTPUT_ATT:
239 		old = hal2_i_read32(hal2, H2I_DAC_C2);
240 		new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
241 		if (l | r) {
242 			l = 31 - l;
243 			r = 31 - r;
244 			new |= (l << H2I_C2_L_ATT_SHIFT);
245 			new |= (r << H2I_C2_R_ATT_SHIFT);
246 		} else
247 			new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
248 		hal2_i_write32(hal2, H2I_DAC_C2, new);
249 		break;
250 	case H2_MIX_INPUT_GAIN:
251 		old = hal2_i_read32(hal2, H2I_ADC_C2);
252 		new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
253 		new |= (l << H2I_C2_L_GAIN_SHIFT);
254 		new |= (r << H2I_C2_R_GAIN_SHIFT);
255 		hal2_i_write32(hal2, H2I_ADC_C2, new);
256 		break;
257 	}
258 	return old != new;
259 }
260 
261 static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = {
262 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
263 	.name           = "Headphone Playback Volume",
264 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
265 	.private_value  = H2_MIX_OUTPUT_ATT,
266 	.info           = hal2_gain_info,
267 	.get            = hal2_gain_get,
268 	.put            = hal2_gain_put,
269 };
270 
271 static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = {
272 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
273 	.name           = "Mic Capture Volume",
274 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
275 	.private_value  = H2_MIX_INPUT_GAIN,
276 	.info           = hal2_gain_info,
277 	.get            = hal2_gain_get,
278 	.put            = hal2_gain_put,
279 };
280 
281 static int __devinit hal2_mixer_create(struct snd_hal2 *hal2)
282 {
283 	int err;
284 
285 	/* mute DAC */
286 	hal2_i_write32(hal2, H2I_DAC_C2,
287 		       H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
288 	/* mute ADC */
289 	hal2_i_write32(hal2, H2I_ADC_C2, 0);
290 
291 	err = snd_ctl_add(hal2->card,
292 			  snd_ctl_new1(&hal2_ctrl_headphone, hal2));
293 	if (err < 0)
294 		return err;
295 
296 	err = snd_ctl_add(hal2->card,
297 			  snd_ctl_new1(&hal2_ctrl_mic, hal2));
298 	if (err < 0)
299 		return err;
300 
301 	return 0;
302 }
303 
304 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
305 {
306 	struct snd_hal2 *hal2 = dev_id;
307 	irqreturn_t ret = IRQ_NONE;
308 
309 	/* decide what caused this interrupt */
310 	if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
311 		snd_pcm_period_elapsed(hal2->dac.substream);
312 		ret = IRQ_HANDLED;
313 	}
314 	if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
315 		snd_pcm_period_elapsed(hal2->adc.substream);
316 		ret = IRQ_HANDLED;
317 	}
318 	return ret;
319 }
320 
321 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
322 {
323 	unsigned short mod;
324 
325 	if (44100 % rate < 48000 % rate) {
326 		mod = 4 * 44100 / rate;
327 		codec->master = 44100;
328 	} else {
329 		mod = 4 * 48000 / rate;
330 		codec->master = 48000;
331 	}
332 
333 	codec->inc = 4;
334 	codec->mod = mod;
335 	rate = 4 * codec->master / mod;
336 
337 	return rate;
338 }
339 
340 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
341 {
342 	unsigned int master = hal2->dac.master;
343 	int inc = hal2->dac.inc;
344 	int mod = hal2->dac.mod;
345 
346 	hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
347 	hal2_i_write32(hal2, H2I_BRES1_C2,
348 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
349 }
350 
351 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
352 {
353 	unsigned int master = hal2->adc.master;
354 	int inc = hal2->adc.inc;
355 	int mod = hal2->adc.mod;
356 
357 	hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
358 	hal2_i_write32(hal2, H2I_BRES2_C2,
359 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
360 }
361 
362 static void hal2_setup_dac(struct snd_hal2 *hal2)
363 {
364 	unsigned int fifobeg, fifoend, highwater, sample_size;
365 	struct hal2_pbus *pbus = &hal2->dac.pbus;
366 
367 	/* Now we set up some PBUS information. The PBUS needs information about
368 	 * what portion of the fifo it will use. If it's receiving or
369 	 * transmitting, and finally whether the stream is little endian or big
370 	 * endian. The information is written later, on the start call.
371 	 */
372 	sample_size = 2 * hal2->dac.voices;
373 	/* Fifo should be set to hold exactly four samples. Highwater mark
374 	 * should be set to two samples. */
375 	highwater = (sample_size * 2) >> 1;	/* halfwords */
376 	fifobeg = 0;				/* playback is first */
377 	fifoend = (sample_size * 4) >> 3;	/* doublewords */
378 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
379 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
380 	/* We disable everything before we do anything at all */
381 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
382 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
383 	/* Setup the HAL2 for playback */
384 	hal2_set_dac_rate(hal2);
385 	/* Set endianess */
386 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
387 	/* Set DMA bus */
388 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
389 	/* We are using 1st Bresenham clock generator for playback */
390 	hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
391 			| (1 << H2I_C1_CLKID_SHIFT)
392 			| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
393 }
394 
395 static void hal2_setup_adc(struct snd_hal2 *hal2)
396 {
397 	unsigned int fifobeg, fifoend, highwater, sample_size;
398 	struct hal2_pbus *pbus = &hal2->adc.pbus;
399 
400 	sample_size = 2 * hal2->adc.voices;
401 	highwater = (sample_size * 2) >> 1;		/* halfwords */
402 	fifobeg = (4 * 4) >> 3;				/* record is second */
403 	fifoend = (4 * 4 + sample_size * 4) >> 3;	/* doublewords */
404 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
405 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
406 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
407 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
408 	/* Setup the HAL2 for record */
409 	hal2_set_adc_rate(hal2);
410 	/* Set endianess */
411 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
412 	/* Set DMA bus */
413 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
414 	/* We are using 2nd Bresenham clock generator for record */
415 	hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
416 			| (2 << H2I_C1_CLKID_SHIFT)
417 			| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
418 }
419 
420 static void hal2_start_dac(struct snd_hal2 *hal2)
421 {
422 	struct hal2_pbus *pbus = &hal2->dac.pbus;
423 
424 	pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
425 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
426 	/* enable DAC */
427 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
428 }
429 
430 static void hal2_start_adc(struct snd_hal2 *hal2)
431 {
432 	struct hal2_pbus *pbus = &hal2->adc.pbus;
433 
434 	pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
435 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
436 	/* enable ADC */
437 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
438 }
439 
440 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
441 {
442 	hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
443 	/* The HAL2 itself may remain enabled safely */
444 }
445 
446 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
447 {
448 	hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
449 }
450 
451 static int hal2_alloc_dmabuf(struct hal2_codec *codec)
452 {
453 	struct hal2_desc *desc;
454 	dma_addr_t desc_dma, buffer_dma;
455 	int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
456 	int i;
457 
458 	codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
459 					      &buffer_dma, GFP_KERNEL);
460 	if (!codec->buffer)
461 		return -ENOMEM;
462 	desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
463 				     &desc_dma, GFP_KERNEL);
464 	if (!desc) {
465 		dma_free_noncoherent(NULL, H2_BUF_SIZE,
466 				     codec->buffer, buffer_dma);
467 		return -ENOMEM;
468 	}
469 	codec->buffer_dma = buffer_dma;
470 	codec->desc_dma = desc_dma;
471 	codec->desc = desc;
472 	for (i = 0; i < count; i++) {
473 		desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
474 		desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
475 		desc->desc.pnext = (i == count - 1) ?
476 		      desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
477 		desc++;
478 	}
479 	dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
480 		       DMA_TO_DEVICE);
481 	codec->desc_count = count;
482 	return 0;
483 }
484 
485 static void hal2_free_dmabuf(struct hal2_codec *codec)
486 {
487 	dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
488 			     codec->desc, codec->desc_dma);
489 	dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
490 			     codec->buffer_dma);
491 }
492 
493 static struct snd_pcm_hardware hal2_pcm_hw = {
494 	.info = (SNDRV_PCM_INFO_MMAP |
495 		 SNDRV_PCM_INFO_MMAP_VALID |
496 		 SNDRV_PCM_INFO_INTERLEAVED |
497 		 SNDRV_PCM_INFO_BLOCK_TRANSFER),
498 	.formats =          SNDRV_PCM_FMTBIT_S16_BE,
499 	.rates =            SNDRV_PCM_RATE_8000_48000,
500 	.rate_min =         8000,
501 	.rate_max =         48000,
502 	.channels_min =     2,
503 	.channels_max =     2,
504 	.buffer_bytes_max = 65536,
505 	.period_bytes_min = 1024,
506 	.period_bytes_max = 65536,
507 	.periods_min =      2,
508 	.periods_max =      1024,
509 };
510 
511 static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
512 			      struct snd_pcm_hw_params *params)
513 {
514 	int err;
515 
516 	err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
517 	if (err < 0)
518 		return err;
519 
520 	return 0;
521 }
522 
523 static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
524 {
525 	return snd_pcm_lib_free_pages(substream);
526 }
527 
528 static int hal2_playback_open(struct snd_pcm_substream *substream)
529 {
530 	struct snd_pcm_runtime *runtime = substream->runtime;
531 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
532 	int err;
533 
534 	runtime->hw = hal2_pcm_hw;
535 
536 	err = hal2_alloc_dmabuf(&hal2->dac);
537 	if (err)
538 		return err;
539 	return 0;
540 }
541 
542 static int hal2_playback_close(struct snd_pcm_substream *substream)
543 {
544 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
545 
546 	hal2_free_dmabuf(&hal2->dac);
547 	return 0;
548 }
549 
550 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
551 {
552 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
553 	struct snd_pcm_runtime *runtime = substream->runtime;
554 	struct hal2_codec *dac = &hal2->dac;
555 
556 	dac->voices = runtime->channels;
557 	dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
558 	memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
559 	dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
560 	dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
561 	dac->substream = substream;
562 	hal2_setup_dac(hal2);
563 	return 0;
564 }
565 
566 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
567 {
568 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
569 
570 	switch (cmd) {
571 	case SNDRV_PCM_TRIGGER_START:
572 		hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
573 		hal2->dac.pcm_indirect.hw_data = 0;
574 		substream->ops->ack(substream);
575 		hal2_start_dac(hal2);
576 		break;
577 	case SNDRV_PCM_TRIGGER_STOP:
578 		hal2_stop_dac(hal2);
579 		break;
580 	default:
581 		return -EINVAL;
582 	}
583 	return 0;
584 }
585 
586 static snd_pcm_uframes_t
587 hal2_playback_pointer(struct snd_pcm_substream *substream)
588 {
589 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
590 	struct hal2_codec *dac = &hal2->dac;
591 
592 	return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
593 						 dac->pbus.pbus->pbdma_bptr);
594 }
595 
596 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
597 				   struct snd_pcm_indirect *rec, size_t bytes)
598 {
599 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
600 	unsigned char *buf = hal2->dac.buffer + rec->hw_data;
601 
602 	memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
603 	dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
604 
605 }
606 
607 static int hal2_playback_ack(struct snd_pcm_substream *substream)
608 {
609 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
610 	struct hal2_codec *dac = &hal2->dac;
611 
612 	dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
613 	snd_pcm_indirect_playback_transfer(substream,
614 					   &dac->pcm_indirect,
615 					   hal2_playback_transfer);
616 	return 0;
617 }
618 
619 static int hal2_capture_open(struct snd_pcm_substream *substream)
620 {
621 	struct snd_pcm_runtime *runtime = substream->runtime;
622 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
623 	struct hal2_codec *adc = &hal2->adc;
624 	int err;
625 
626 	runtime->hw = hal2_pcm_hw;
627 
628 	err = hal2_alloc_dmabuf(adc);
629 	if (err)
630 		return err;
631 	return 0;
632 }
633 
634 static int hal2_capture_close(struct snd_pcm_substream *substream)
635 {
636 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
637 
638 	hal2_free_dmabuf(&hal2->adc);
639 	return 0;
640 }
641 
642 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
643 {
644 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
645 	struct snd_pcm_runtime *runtime = substream->runtime;
646 	struct hal2_codec *adc = &hal2->adc;
647 
648 	adc->voices = runtime->channels;
649 	adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
650 	memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
651 	adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
652 	adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
653 	adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
654 	adc->substream = substream;
655 	hal2_setup_adc(hal2);
656 	return 0;
657 }
658 
659 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
660 {
661 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
662 
663 	switch (cmd) {
664 	case SNDRV_PCM_TRIGGER_START:
665 		hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
666 		hal2->adc.pcm_indirect.hw_data = 0;
667 		printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
668 		hal2_start_adc(hal2);
669 		break;
670 	case SNDRV_PCM_TRIGGER_STOP:
671 		hal2_stop_adc(hal2);
672 		break;
673 	default:
674 		return -EINVAL;
675 	}
676 	return 0;
677 }
678 
679 static snd_pcm_uframes_t
680 hal2_capture_pointer(struct snd_pcm_substream *substream)
681 {
682 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
683 	struct hal2_codec *adc = &hal2->adc;
684 
685 	return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
686 						adc->pbus.pbus->pbdma_bptr);
687 }
688 
689 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
690 				  struct snd_pcm_indirect *rec, size_t bytes)
691 {
692 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
693 	unsigned char *buf = hal2->adc.buffer + rec->hw_data;
694 
695 	dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
696 	memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
697 }
698 
699 static int hal2_capture_ack(struct snd_pcm_substream *substream)
700 {
701 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
702 	struct hal2_codec *adc = &hal2->adc;
703 
704 	snd_pcm_indirect_capture_transfer(substream,
705 					  &adc->pcm_indirect,
706 					  hal2_capture_transfer);
707 	return 0;
708 }
709 
710 static struct snd_pcm_ops hal2_playback_ops = {
711 	.open =        hal2_playback_open,
712 	.close =       hal2_playback_close,
713 	.ioctl =       snd_pcm_lib_ioctl,
714 	.hw_params =   hal2_pcm_hw_params,
715 	.hw_free =     hal2_pcm_hw_free,
716 	.prepare =     hal2_playback_prepare,
717 	.trigger =     hal2_playback_trigger,
718 	.pointer =     hal2_playback_pointer,
719 	.ack =         hal2_playback_ack,
720 };
721 
722 static struct snd_pcm_ops hal2_capture_ops = {
723 	.open =        hal2_capture_open,
724 	.close =       hal2_capture_close,
725 	.ioctl =       snd_pcm_lib_ioctl,
726 	.hw_params =   hal2_pcm_hw_params,
727 	.hw_free =     hal2_pcm_hw_free,
728 	.prepare =     hal2_capture_prepare,
729 	.trigger =     hal2_capture_trigger,
730 	.pointer =     hal2_capture_pointer,
731 	.ack =         hal2_capture_ack,
732 };
733 
734 static int __devinit hal2_pcm_create(struct snd_hal2 *hal2)
735 {
736 	struct snd_pcm *pcm;
737 	int err;
738 
739 	/* create first pcm device with one outputs and one input */
740 	err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
741 	if (err < 0)
742 		return err;
743 
744 	pcm->private_data = hal2;
745 	strcpy(pcm->name, "SGI HAL2");
746 
747 	/* set operators */
748 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
749 			&hal2_playback_ops);
750 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
751 			&hal2_capture_ops);
752 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
753 					   snd_dma_continuous_data(GFP_KERNEL),
754 					   0, 1024 * 1024);
755 
756 	return 0;
757 }
758 
759 static int hal2_dev_free(struct snd_device *device)
760 {
761 	struct snd_hal2 *hal2 = device->device_data;
762 
763 	free_irq(SGI_HPCDMA_IRQ, hal2);
764 	kfree(hal2);
765 	return 0;
766 }
767 
768 static struct snd_device_ops hal2_ops = {
769 	.dev_free = hal2_dev_free,
770 };
771 
772 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
773 			    int index)
774 {
775 	codec->pbus.pbusnr = index;
776 	codec->pbus.pbus = &hpc3->pbdma[index];
777 }
778 
779 static int hal2_detect(struct snd_hal2 *hal2)
780 {
781 	unsigned short board, major, minor;
782 	unsigned short rev;
783 
784 	/* reset HAL2 */
785 	hal2_write(0, &hal2->ctl_regs->isr);
786 
787 	/* release reset */
788 	hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
789 		   &hal2->ctl_regs->isr);
790 
791 
792 	hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
793 	rev = hal2_read(&hal2->ctl_regs->rev);
794 	if (rev & H2_REV_AUDIO_PRESENT)
795 		return -ENODEV;
796 
797 	board = (rev & H2_REV_BOARD_M) >> 12;
798 	major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
799 	minor = (rev & H2_REV_MINOR_CHIP_M);
800 
801 	printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
802 	       board, major, minor);
803 
804 	return 0;
805 }
806 
807 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
808 {
809 	struct snd_hal2 *hal2;
810 	struct hpc3_regs *hpc3 = hpc3c0;
811 	int err;
812 
813 	hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
814 	if (!hal2)
815 		return -ENOMEM;
816 
817 	hal2->card = card;
818 
819 	if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
820 			"SGI HAL2", hal2)) {
821 		printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
822 		kfree(hal2);
823 		return -EAGAIN;
824 	}
825 
826 	hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
827 	hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
828 	hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
829 	hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
830 
831 	if (hal2_detect(hal2) < 0) {
832 		kfree(hal2);
833 		return -ENODEV;
834 	}
835 
836 	hal2_init_codec(&hal2->dac, hpc3, 0);
837 	hal2_init_codec(&hal2->adc, hpc3, 1);
838 
839 	/*
840 	 * All DMA channel interfaces in HAL2 are designed to operate with
841 	 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
842 	 * in D5. HAL2 is a 16-bit device which can accept both big and little
843 	 * endian format. It assumes that even address bytes are on high
844 	 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
845 	 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
846 	 */
847 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
848 			  (2 << HPC3_DMACFG_D4R_SHIFT) | \
849 			  (2 << HPC3_DMACFG_D5R_SHIFT) | \
850 			  (0 << HPC3_DMACFG_D3W_SHIFT) | \
851 			  (2 << HPC3_DMACFG_D4W_SHIFT) | \
852 			  (2 << HPC3_DMACFG_D5W_SHIFT) | \
853 				HPC3_DMACFG_DS16 | \
854 				HPC3_DMACFG_EVENHI | \
855 				HPC3_DMACFG_RTIME | \
856 			  (8 << HPC3_DMACFG_BURST_SHIFT) | \
857 				HPC3_DMACFG_DRQLIVE)
858 	/*
859 	 * Ignore what's mentioned in the specification and write value which
860 	 * works in The Real World (TM)
861 	 */
862 	hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
863 	hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
864 
865 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
866 	if (err < 0) {
867 		free_irq(SGI_HPCDMA_IRQ, hal2);
868 		kfree(hal2);
869 		return err;
870 	}
871 	*rchip = hal2;
872 	return 0;
873 }
874 
875 static int __devinit hal2_probe(struct platform_device *pdev)
876 {
877 	struct snd_card *card;
878 	struct snd_hal2 *chip;
879 	int err;
880 
881 	card = snd_card_new(index, id, THIS_MODULE, 0);
882 	if (card == NULL)
883 		return -ENOMEM;
884 
885 	err = hal2_create(card, &chip);
886 	if (err < 0) {
887 		snd_card_free(card);
888 		return err;
889 	}
890 	snd_card_set_dev(card, &pdev->dev);
891 
892 	err = hal2_pcm_create(chip);
893 	if (err < 0) {
894 		snd_card_free(card);
895 		return err;
896 	}
897 	err = hal2_mixer_create(chip);
898 	if (err < 0) {
899 		snd_card_free(card);
900 		return err;
901 	}
902 
903 	strcpy(card->driver, "SGI HAL2 Audio");
904 	strcpy(card->shortname, "SGI HAL2 Audio");
905 	sprintf(card->longname, "%s irq %i",
906 		card->shortname,
907 		SGI_HPCDMA_IRQ);
908 
909 	err = snd_card_register(card);
910 	if (err < 0) {
911 		snd_card_free(card);
912 		return err;
913 	}
914 	platform_set_drvdata(pdev, card);
915 	return 0;
916 }
917 
918 static int __exit hal2_remove(struct platform_device *pdev)
919 {
920 	struct snd_card *card = platform_get_drvdata(pdev);
921 
922 	snd_card_free(card);
923 	platform_set_drvdata(pdev, NULL);
924 	return 0;
925 }
926 
927 static struct platform_driver hal2_driver = {
928 	.probe	= hal2_probe,
929 	.remove	= __devexit_p(hal2_remove),
930 	.driver = {
931 		.name	= "sgihal2",
932 		.owner	= THIS_MODULE,
933 	}
934 };
935 
936 static int __init alsa_card_hal2_init(void)
937 {
938 	return platform_driver_register(&hal2_driver);
939 }
940 
941 static void __exit alsa_card_hal2_exit(void)
942 {
943 	platform_driver_unregister(&hal2_driver);
944 }
945 
946 module_init(alsa_card_hal2_init);
947 module_exit(alsa_card_hal2_exit);
948