xref: /openbmc/linux/sound/mips/hal2.c (revision 7fe2f639)
1 /*
2  *  Driver for A2 audio system used in SGI machines
3  *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
4  *
5  *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
6  *  was based on code from Ulf Carlsson
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License version 2 as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 
30 #include <asm/sgi/hpc3.h>
31 #include <asm/sgi/ip22.h>
32 
33 #include <sound/core.h>
34 #include <sound/control.h>
35 #include <sound/pcm.h>
36 #include <sound/pcm-indirect.h>
37 #include <sound/initval.h>
38 
39 #include "hal2.h"
40 
41 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
42 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
43 
44 module_param(index, int, 0444);
45 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
46 module_param(id, charp, 0444);
47 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
48 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
49 MODULE_AUTHOR("Thomas Bogendoerfer");
50 MODULE_LICENSE("GPL");
51 
52 
53 #define H2_BLOCK_SIZE	1024
54 #define H2_BUF_SIZE	16384
55 
56 struct hal2_pbus {
57 	struct hpc3_pbus_dmacregs *pbus;
58 	int pbusnr;
59 	unsigned int ctrl;		/* Current state of pbus->pbdma_ctrl */
60 };
61 
62 struct hal2_desc {
63 	struct hpc_dma_desc desc;
64 	u32 pad;			/* padding */
65 };
66 
67 struct hal2_codec {
68 	struct snd_pcm_indirect pcm_indirect;
69 	struct snd_pcm_substream *substream;
70 
71 	unsigned char *buffer;
72 	dma_addr_t buffer_dma;
73 	struct hal2_desc *desc;
74 	dma_addr_t desc_dma;
75 	int desc_count;
76 	struct hal2_pbus pbus;
77 	int voices;			/* mono/stereo */
78 	unsigned int sample_rate;
79 	unsigned int master;		/* Master frequency */
80 	unsigned short mod;		/* MOD value */
81 	unsigned short inc;		/* INC value */
82 };
83 
84 #define H2_MIX_OUTPUT_ATT	0
85 #define H2_MIX_INPUT_GAIN	1
86 
87 struct snd_hal2 {
88 	struct snd_card *card;
89 
90 	struct hal2_ctl_regs *ctl_regs;	/* HAL2 ctl registers */
91 	struct hal2_aes_regs *aes_regs;	/* HAL2 aes registers */
92 	struct hal2_vol_regs *vol_regs;	/* HAL2 vol registers */
93 	struct hal2_syn_regs *syn_regs;	/* HAL2 syn registers */
94 
95 	struct hal2_codec dac;
96 	struct hal2_codec adc;
97 };
98 
99 #define H2_INDIRECT_WAIT(regs)	while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
100 
101 #define H2_READ_ADDR(addr)	(addr | (1<<7))
102 #define H2_WRITE_ADDR(addr)	(addr)
103 
104 static inline u32 hal2_read(u32 *reg)
105 {
106 	return __raw_readl(reg);
107 }
108 
109 static inline void hal2_write(u32 val, u32 *reg)
110 {
111 	__raw_writel(val, reg);
112 }
113 
114 
115 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
116 {
117 	u32 ret;
118 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
119 
120 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
121 	H2_INDIRECT_WAIT(regs);
122 	ret = hal2_read(&regs->idr0) & 0xffff;
123 	hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
124 	H2_INDIRECT_WAIT(regs);
125 	ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
126 	return ret;
127 }
128 
129 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
130 {
131 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
132 
133 	hal2_write(val, &regs->idr0);
134 	hal2_write(0, &regs->idr1);
135 	hal2_write(0, &regs->idr2);
136 	hal2_write(0, &regs->idr3);
137 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
138 	H2_INDIRECT_WAIT(regs);
139 }
140 
141 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
142 {
143 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
144 
145 	hal2_write(val & 0xffff, &regs->idr0);
146 	hal2_write(val >> 16, &regs->idr1);
147 	hal2_write(0, &regs->idr2);
148 	hal2_write(0, &regs->idr3);
149 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
150 	H2_INDIRECT_WAIT(regs);
151 }
152 
153 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
154 {
155 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
156 
157 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
158 	H2_INDIRECT_WAIT(regs);
159 	hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
160 	hal2_write(0, &regs->idr1);
161 	hal2_write(0, &regs->idr2);
162 	hal2_write(0, &regs->idr3);
163 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
164 	H2_INDIRECT_WAIT(regs);
165 }
166 
167 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
168 {
169 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
170 
171 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
172 	H2_INDIRECT_WAIT(regs);
173 	hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
174 	hal2_write(0, &regs->idr1);
175 	hal2_write(0, &regs->idr2);
176 	hal2_write(0, &regs->idr3);
177 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
178 	H2_INDIRECT_WAIT(regs);
179 }
180 
181 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
182 			       struct snd_ctl_elem_info *uinfo)
183 {
184 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
185 	uinfo->count = 2;
186 	uinfo->value.integer.min = 0;
187 	switch ((int)kcontrol->private_value) {
188 	case H2_MIX_OUTPUT_ATT:
189 		uinfo->value.integer.max = 31;
190 		break;
191 	case H2_MIX_INPUT_GAIN:
192 		uinfo->value.integer.max = 15;
193 		break;
194 	}
195 	return 0;
196 }
197 
198 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
199 			       struct snd_ctl_elem_value *ucontrol)
200 {
201 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
202 	u32 tmp;
203 	int l, r;
204 
205 	switch ((int)kcontrol->private_value) {
206 	case H2_MIX_OUTPUT_ATT:
207 		tmp = hal2_i_read32(hal2, H2I_DAC_C2);
208 		if (tmp & H2I_C2_MUTE) {
209 			l = 0;
210 			r = 0;
211 		} else {
212 			l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
213 			r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
214 		}
215 		break;
216 	case H2_MIX_INPUT_GAIN:
217 		tmp = hal2_i_read32(hal2, H2I_ADC_C2);
218 		l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
219 		r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
220 		break;
221 	}
222 	ucontrol->value.integer.value[0] = l;
223 	ucontrol->value.integer.value[1] = r;
224 
225 	return 0;
226 }
227 
228 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
229 			 struct snd_ctl_elem_value *ucontrol)
230 {
231 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
232 	u32 old, new;
233 	int l, r;
234 
235 	l = ucontrol->value.integer.value[0];
236 	r = ucontrol->value.integer.value[1];
237 
238 	switch ((int)kcontrol->private_value) {
239 	case H2_MIX_OUTPUT_ATT:
240 		old = hal2_i_read32(hal2, H2I_DAC_C2);
241 		new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
242 		if (l | r) {
243 			l = 31 - l;
244 			r = 31 - r;
245 			new |= (l << H2I_C2_L_ATT_SHIFT);
246 			new |= (r << H2I_C2_R_ATT_SHIFT);
247 		} else
248 			new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
249 		hal2_i_write32(hal2, H2I_DAC_C2, new);
250 		break;
251 	case H2_MIX_INPUT_GAIN:
252 		old = hal2_i_read32(hal2, H2I_ADC_C2);
253 		new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
254 		new |= (l << H2I_C2_L_GAIN_SHIFT);
255 		new |= (r << H2I_C2_R_GAIN_SHIFT);
256 		hal2_i_write32(hal2, H2I_ADC_C2, new);
257 		break;
258 	}
259 	return old != new;
260 }
261 
262 static struct snd_kcontrol_new hal2_ctrl_headphone __devinitdata = {
263 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
264 	.name           = "Headphone Playback Volume",
265 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
266 	.private_value  = H2_MIX_OUTPUT_ATT,
267 	.info           = hal2_gain_info,
268 	.get            = hal2_gain_get,
269 	.put            = hal2_gain_put,
270 };
271 
272 static struct snd_kcontrol_new hal2_ctrl_mic __devinitdata = {
273 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
274 	.name           = "Mic Capture Volume",
275 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
276 	.private_value  = H2_MIX_INPUT_GAIN,
277 	.info           = hal2_gain_info,
278 	.get            = hal2_gain_get,
279 	.put            = hal2_gain_put,
280 };
281 
282 static int __devinit hal2_mixer_create(struct snd_hal2 *hal2)
283 {
284 	int err;
285 
286 	/* mute DAC */
287 	hal2_i_write32(hal2, H2I_DAC_C2,
288 		       H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
289 	/* mute ADC */
290 	hal2_i_write32(hal2, H2I_ADC_C2, 0);
291 
292 	err = snd_ctl_add(hal2->card,
293 			  snd_ctl_new1(&hal2_ctrl_headphone, hal2));
294 	if (err < 0)
295 		return err;
296 
297 	err = snd_ctl_add(hal2->card,
298 			  snd_ctl_new1(&hal2_ctrl_mic, hal2));
299 	if (err < 0)
300 		return err;
301 
302 	return 0;
303 }
304 
305 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
306 {
307 	struct snd_hal2 *hal2 = dev_id;
308 	irqreturn_t ret = IRQ_NONE;
309 
310 	/* decide what caused this interrupt */
311 	if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
312 		snd_pcm_period_elapsed(hal2->dac.substream);
313 		ret = IRQ_HANDLED;
314 	}
315 	if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
316 		snd_pcm_period_elapsed(hal2->adc.substream);
317 		ret = IRQ_HANDLED;
318 	}
319 	return ret;
320 }
321 
322 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
323 {
324 	unsigned short mod;
325 
326 	if (44100 % rate < 48000 % rate) {
327 		mod = 4 * 44100 / rate;
328 		codec->master = 44100;
329 	} else {
330 		mod = 4 * 48000 / rate;
331 		codec->master = 48000;
332 	}
333 
334 	codec->inc = 4;
335 	codec->mod = mod;
336 	rate = 4 * codec->master / mod;
337 
338 	return rate;
339 }
340 
341 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
342 {
343 	unsigned int master = hal2->dac.master;
344 	int inc = hal2->dac.inc;
345 	int mod = hal2->dac.mod;
346 
347 	hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
348 	hal2_i_write32(hal2, H2I_BRES1_C2,
349 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
350 }
351 
352 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
353 {
354 	unsigned int master = hal2->adc.master;
355 	int inc = hal2->adc.inc;
356 	int mod = hal2->adc.mod;
357 
358 	hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
359 	hal2_i_write32(hal2, H2I_BRES2_C2,
360 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
361 }
362 
363 static void hal2_setup_dac(struct snd_hal2 *hal2)
364 {
365 	unsigned int fifobeg, fifoend, highwater, sample_size;
366 	struct hal2_pbus *pbus = &hal2->dac.pbus;
367 
368 	/* Now we set up some PBUS information. The PBUS needs information about
369 	 * what portion of the fifo it will use. If it's receiving or
370 	 * transmitting, and finally whether the stream is little endian or big
371 	 * endian. The information is written later, on the start call.
372 	 */
373 	sample_size = 2 * hal2->dac.voices;
374 	/* Fifo should be set to hold exactly four samples. Highwater mark
375 	 * should be set to two samples. */
376 	highwater = (sample_size * 2) >> 1;	/* halfwords */
377 	fifobeg = 0;				/* playback is first */
378 	fifoend = (sample_size * 4) >> 3;	/* doublewords */
379 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
380 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
381 	/* We disable everything before we do anything at all */
382 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
383 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
384 	/* Setup the HAL2 for playback */
385 	hal2_set_dac_rate(hal2);
386 	/* Set endianess */
387 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
388 	/* Set DMA bus */
389 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
390 	/* We are using 1st Bresenham clock generator for playback */
391 	hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
392 			| (1 << H2I_C1_CLKID_SHIFT)
393 			| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
394 }
395 
396 static void hal2_setup_adc(struct snd_hal2 *hal2)
397 {
398 	unsigned int fifobeg, fifoend, highwater, sample_size;
399 	struct hal2_pbus *pbus = &hal2->adc.pbus;
400 
401 	sample_size = 2 * hal2->adc.voices;
402 	highwater = (sample_size * 2) >> 1;		/* halfwords */
403 	fifobeg = (4 * 4) >> 3;				/* record is second */
404 	fifoend = (4 * 4 + sample_size * 4) >> 3;	/* doublewords */
405 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
406 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
407 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
408 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
409 	/* Setup the HAL2 for record */
410 	hal2_set_adc_rate(hal2);
411 	/* Set endianess */
412 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
413 	/* Set DMA bus */
414 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
415 	/* We are using 2nd Bresenham clock generator for record */
416 	hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
417 			| (2 << H2I_C1_CLKID_SHIFT)
418 			| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
419 }
420 
421 static void hal2_start_dac(struct snd_hal2 *hal2)
422 {
423 	struct hal2_pbus *pbus = &hal2->dac.pbus;
424 
425 	pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
426 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
427 	/* enable DAC */
428 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
429 }
430 
431 static void hal2_start_adc(struct snd_hal2 *hal2)
432 {
433 	struct hal2_pbus *pbus = &hal2->adc.pbus;
434 
435 	pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
436 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
437 	/* enable ADC */
438 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
439 }
440 
441 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
442 {
443 	hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
444 	/* The HAL2 itself may remain enabled safely */
445 }
446 
447 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
448 {
449 	hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
450 }
451 
452 static int hal2_alloc_dmabuf(struct hal2_codec *codec)
453 {
454 	struct hal2_desc *desc;
455 	dma_addr_t desc_dma, buffer_dma;
456 	int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
457 	int i;
458 
459 	codec->buffer = dma_alloc_noncoherent(NULL, H2_BUF_SIZE,
460 					      &buffer_dma, GFP_KERNEL);
461 	if (!codec->buffer)
462 		return -ENOMEM;
463 	desc = dma_alloc_noncoherent(NULL, count * sizeof(struct hal2_desc),
464 				     &desc_dma, GFP_KERNEL);
465 	if (!desc) {
466 		dma_free_noncoherent(NULL, H2_BUF_SIZE,
467 				     codec->buffer, buffer_dma);
468 		return -ENOMEM;
469 	}
470 	codec->buffer_dma = buffer_dma;
471 	codec->desc_dma = desc_dma;
472 	codec->desc = desc;
473 	for (i = 0; i < count; i++) {
474 		desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
475 		desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
476 		desc->desc.pnext = (i == count - 1) ?
477 		      desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
478 		desc++;
479 	}
480 	dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
481 		       DMA_TO_DEVICE);
482 	codec->desc_count = count;
483 	return 0;
484 }
485 
486 static void hal2_free_dmabuf(struct hal2_codec *codec)
487 {
488 	dma_free_noncoherent(NULL, codec->desc_count * sizeof(struct hal2_desc),
489 			     codec->desc, codec->desc_dma);
490 	dma_free_noncoherent(NULL, H2_BUF_SIZE, codec->buffer,
491 			     codec->buffer_dma);
492 }
493 
494 static struct snd_pcm_hardware hal2_pcm_hw = {
495 	.info = (SNDRV_PCM_INFO_MMAP |
496 		 SNDRV_PCM_INFO_MMAP_VALID |
497 		 SNDRV_PCM_INFO_INTERLEAVED |
498 		 SNDRV_PCM_INFO_BLOCK_TRANSFER),
499 	.formats =          SNDRV_PCM_FMTBIT_S16_BE,
500 	.rates =            SNDRV_PCM_RATE_8000_48000,
501 	.rate_min =         8000,
502 	.rate_max =         48000,
503 	.channels_min =     2,
504 	.channels_max =     2,
505 	.buffer_bytes_max = 65536,
506 	.period_bytes_min = 1024,
507 	.period_bytes_max = 65536,
508 	.periods_min =      2,
509 	.periods_max =      1024,
510 };
511 
512 static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
513 			      struct snd_pcm_hw_params *params)
514 {
515 	int err;
516 
517 	err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
518 	if (err < 0)
519 		return err;
520 
521 	return 0;
522 }
523 
524 static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
525 {
526 	return snd_pcm_lib_free_pages(substream);
527 }
528 
529 static int hal2_playback_open(struct snd_pcm_substream *substream)
530 {
531 	struct snd_pcm_runtime *runtime = substream->runtime;
532 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
533 	int err;
534 
535 	runtime->hw = hal2_pcm_hw;
536 
537 	err = hal2_alloc_dmabuf(&hal2->dac);
538 	if (err)
539 		return err;
540 	return 0;
541 }
542 
543 static int hal2_playback_close(struct snd_pcm_substream *substream)
544 {
545 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
546 
547 	hal2_free_dmabuf(&hal2->dac);
548 	return 0;
549 }
550 
551 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
552 {
553 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
554 	struct snd_pcm_runtime *runtime = substream->runtime;
555 	struct hal2_codec *dac = &hal2->dac;
556 
557 	dac->voices = runtime->channels;
558 	dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
559 	memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
560 	dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
561 	dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
562 	dac->substream = substream;
563 	hal2_setup_dac(hal2);
564 	return 0;
565 }
566 
567 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
568 {
569 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
570 
571 	switch (cmd) {
572 	case SNDRV_PCM_TRIGGER_START:
573 		hal2->dac.pcm_indirect.hw_io = hal2->dac.buffer_dma;
574 		hal2->dac.pcm_indirect.hw_data = 0;
575 		substream->ops->ack(substream);
576 		hal2_start_dac(hal2);
577 		break;
578 	case SNDRV_PCM_TRIGGER_STOP:
579 		hal2_stop_dac(hal2);
580 		break;
581 	default:
582 		return -EINVAL;
583 	}
584 	return 0;
585 }
586 
587 static snd_pcm_uframes_t
588 hal2_playback_pointer(struct snd_pcm_substream *substream)
589 {
590 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
591 	struct hal2_codec *dac = &hal2->dac;
592 
593 	return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
594 						 dac->pbus.pbus->pbdma_bptr);
595 }
596 
597 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
598 				   struct snd_pcm_indirect *rec, size_t bytes)
599 {
600 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
601 	unsigned char *buf = hal2->dac.buffer + rec->hw_data;
602 
603 	memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
604 	dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
605 
606 }
607 
608 static int hal2_playback_ack(struct snd_pcm_substream *substream)
609 {
610 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
611 	struct hal2_codec *dac = &hal2->dac;
612 
613 	dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
614 	snd_pcm_indirect_playback_transfer(substream,
615 					   &dac->pcm_indirect,
616 					   hal2_playback_transfer);
617 	return 0;
618 }
619 
620 static int hal2_capture_open(struct snd_pcm_substream *substream)
621 {
622 	struct snd_pcm_runtime *runtime = substream->runtime;
623 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
624 	struct hal2_codec *adc = &hal2->adc;
625 	int err;
626 
627 	runtime->hw = hal2_pcm_hw;
628 
629 	err = hal2_alloc_dmabuf(adc);
630 	if (err)
631 		return err;
632 	return 0;
633 }
634 
635 static int hal2_capture_close(struct snd_pcm_substream *substream)
636 {
637 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
638 
639 	hal2_free_dmabuf(&hal2->adc);
640 	return 0;
641 }
642 
643 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
644 {
645 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
646 	struct snd_pcm_runtime *runtime = substream->runtime;
647 	struct hal2_codec *adc = &hal2->adc;
648 
649 	adc->voices = runtime->channels;
650 	adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
651 	memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
652 	adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
653 	adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
654 	adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
655 	adc->substream = substream;
656 	hal2_setup_adc(hal2);
657 	return 0;
658 }
659 
660 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
661 {
662 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
663 
664 	switch (cmd) {
665 	case SNDRV_PCM_TRIGGER_START:
666 		hal2->adc.pcm_indirect.hw_io = hal2->adc.buffer_dma;
667 		hal2->adc.pcm_indirect.hw_data = 0;
668 		printk(KERN_DEBUG "buffer_dma %x\n", hal2->adc.buffer_dma);
669 		hal2_start_adc(hal2);
670 		break;
671 	case SNDRV_PCM_TRIGGER_STOP:
672 		hal2_stop_adc(hal2);
673 		break;
674 	default:
675 		return -EINVAL;
676 	}
677 	return 0;
678 }
679 
680 static snd_pcm_uframes_t
681 hal2_capture_pointer(struct snd_pcm_substream *substream)
682 {
683 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
684 	struct hal2_codec *adc = &hal2->adc;
685 
686 	return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
687 						adc->pbus.pbus->pbdma_bptr);
688 }
689 
690 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
691 				  struct snd_pcm_indirect *rec, size_t bytes)
692 {
693 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
694 	unsigned char *buf = hal2->adc.buffer + rec->hw_data;
695 
696 	dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
697 	memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
698 }
699 
700 static int hal2_capture_ack(struct snd_pcm_substream *substream)
701 {
702 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
703 	struct hal2_codec *adc = &hal2->adc;
704 
705 	snd_pcm_indirect_capture_transfer(substream,
706 					  &adc->pcm_indirect,
707 					  hal2_capture_transfer);
708 	return 0;
709 }
710 
711 static struct snd_pcm_ops hal2_playback_ops = {
712 	.open =        hal2_playback_open,
713 	.close =       hal2_playback_close,
714 	.ioctl =       snd_pcm_lib_ioctl,
715 	.hw_params =   hal2_pcm_hw_params,
716 	.hw_free =     hal2_pcm_hw_free,
717 	.prepare =     hal2_playback_prepare,
718 	.trigger =     hal2_playback_trigger,
719 	.pointer =     hal2_playback_pointer,
720 	.ack =         hal2_playback_ack,
721 };
722 
723 static struct snd_pcm_ops hal2_capture_ops = {
724 	.open =        hal2_capture_open,
725 	.close =       hal2_capture_close,
726 	.ioctl =       snd_pcm_lib_ioctl,
727 	.hw_params =   hal2_pcm_hw_params,
728 	.hw_free =     hal2_pcm_hw_free,
729 	.prepare =     hal2_capture_prepare,
730 	.trigger =     hal2_capture_trigger,
731 	.pointer =     hal2_capture_pointer,
732 	.ack =         hal2_capture_ack,
733 };
734 
735 static int __devinit hal2_pcm_create(struct snd_hal2 *hal2)
736 {
737 	struct snd_pcm *pcm;
738 	int err;
739 
740 	/* create first pcm device with one outputs and one input */
741 	err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
742 	if (err < 0)
743 		return err;
744 
745 	pcm->private_data = hal2;
746 	strcpy(pcm->name, "SGI HAL2");
747 
748 	/* set operators */
749 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
750 			&hal2_playback_ops);
751 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
752 			&hal2_capture_ops);
753 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
754 					   snd_dma_continuous_data(GFP_KERNEL),
755 					   0, 1024 * 1024);
756 
757 	return 0;
758 }
759 
760 static int hal2_dev_free(struct snd_device *device)
761 {
762 	struct snd_hal2 *hal2 = device->device_data;
763 
764 	free_irq(SGI_HPCDMA_IRQ, hal2);
765 	kfree(hal2);
766 	return 0;
767 }
768 
769 static struct snd_device_ops hal2_ops = {
770 	.dev_free = hal2_dev_free,
771 };
772 
773 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
774 			    int index)
775 {
776 	codec->pbus.pbusnr = index;
777 	codec->pbus.pbus = &hpc3->pbdma[index];
778 }
779 
780 static int hal2_detect(struct snd_hal2 *hal2)
781 {
782 	unsigned short board, major, minor;
783 	unsigned short rev;
784 
785 	/* reset HAL2 */
786 	hal2_write(0, &hal2->ctl_regs->isr);
787 
788 	/* release reset */
789 	hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
790 		   &hal2->ctl_regs->isr);
791 
792 
793 	hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
794 	rev = hal2_read(&hal2->ctl_regs->rev);
795 	if (rev & H2_REV_AUDIO_PRESENT)
796 		return -ENODEV;
797 
798 	board = (rev & H2_REV_BOARD_M) >> 12;
799 	major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
800 	minor = (rev & H2_REV_MINOR_CHIP_M);
801 
802 	printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
803 	       board, major, minor);
804 
805 	return 0;
806 }
807 
808 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
809 {
810 	struct snd_hal2 *hal2;
811 	struct hpc3_regs *hpc3 = hpc3c0;
812 	int err;
813 
814 	hal2 = kzalloc(sizeof(struct snd_hal2), GFP_KERNEL);
815 	if (!hal2)
816 		return -ENOMEM;
817 
818 	hal2->card = card;
819 
820 	if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
821 			"SGI HAL2", hal2)) {
822 		printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
823 		kfree(hal2);
824 		return -EAGAIN;
825 	}
826 
827 	hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
828 	hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
829 	hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
830 	hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
831 
832 	if (hal2_detect(hal2) < 0) {
833 		kfree(hal2);
834 		return -ENODEV;
835 	}
836 
837 	hal2_init_codec(&hal2->dac, hpc3, 0);
838 	hal2_init_codec(&hal2->adc, hpc3, 1);
839 
840 	/*
841 	 * All DMA channel interfaces in HAL2 are designed to operate with
842 	 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
843 	 * in D5. HAL2 is a 16-bit device which can accept both big and little
844 	 * endian format. It assumes that even address bytes are on high
845 	 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
846 	 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
847 	 */
848 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
849 			  (2 << HPC3_DMACFG_D4R_SHIFT) | \
850 			  (2 << HPC3_DMACFG_D5R_SHIFT) | \
851 			  (0 << HPC3_DMACFG_D3W_SHIFT) | \
852 			  (2 << HPC3_DMACFG_D4W_SHIFT) | \
853 			  (2 << HPC3_DMACFG_D5W_SHIFT) | \
854 				HPC3_DMACFG_DS16 | \
855 				HPC3_DMACFG_EVENHI | \
856 				HPC3_DMACFG_RTIME | \
857 			  (8 << HPC3_DMACFG_BURST_SHIFT) | \
858 				HPC3_DMACFG_DRQLIVE)
859 	/*
860 	 * Ignore what's mentioned in the specification and write value which
861 	 * works in The Real World (TM)
862 	 */
863 	hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
864 	hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
865 
866 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
867 	if (err < 0) {
868 		free_irq(SGI_HPCDMA_IRQ, hal2);
869 		kfree(hal2);
870 		return err;
871 	}
872 	*rchip = hal2;
873 	return 0;
874 }
875 
876 static int __devinit hal2_probe(struct platform_device *pdev)
877 {
878 	struct snd_card *card;
879 	struct snd_hal2 *chip;
880 	int err;
881 
882 	err = snd_card_create(index, id, THIS_MODULE, 0, &card);
883 	if (err < 0)
884 		return err;
885 
886 	err = hal2_create(card, &chip);
887 	if (err < 0) {
888 		snd_card_free(card);
889 		return err;
890 	}
891 	snd_card_set_dev(card, &pdev->dev);
892 
893 	err = hal2_pcm_create(chip);
894 	if (err < 0) {
895 		snd_card_free(card);
896 		return err;
897 	}
898 	err = hal2_mixer_create(chip);
899 	if (err < 0) {
900 		snd_card_free(card);
901 		return err;
902 	}
903 
904 	strcpy(card->driver, "SGI HAL2 Audio");
905 	strcpy(card->shortname, "SGI HAL2 Audio");
906 	sprintf(card->longname, "%s irq %i",
907 		card->shortname,
908 		SGI_HPCDMA_IRQ);
909 
910 	err = snd_card_register(card);
911 	if (err < 0) {
912 		snd_card_free(card);
913 		return err;
914 	}
915 	platform_set_drvdata(pdev, card);
916 	return 0;
917 }
918 
919 static int __devexit hal2_remove(struct platform_device *pdev)
920 {
921 	struct snd_card *card = platform_get_drvdata(pdev);
922 
923 	snd_card_free(card);
924 	platform_set_drvdata(pdev, NULL);
925 	return 0;
926 }
927 
928 static struct platform_driver hal2_driver = {
929 	.probe	= hal2_probe,
930 	.remove	= __devexit_p(hal2_remove),
931 	.driver = {
932 		.name	= "sgihal2",
933 		.owner	= THIS_MODULE,
934 	}
935 };
936 
937 static int __init alsa_card_hal2_init(void)
938 {
939 	return platform_driver_register(&hal2_driver);
940 }
941 
942 static void __exit alsa_card_hal2_exit(void)
943 {
944 	platform_driver_unregister(&hal2_driver);
945 }
946 
947 module_init(alsa_card_hal2_init);
948 module_exit(alsa_card_hal2_exit);
949