xref: /openbmc/linux/sound/mips/hal2.c (revision 31af04cd)
1 /*
2  *  Driver for A2 audio system used in SGI machines
3  *  Copyright (c) 2008 Thomas Bogendoerfer <tsbogend@alpha.fanken.de>
4  *
5  *  Based on OSS code from Ladislav Michl <ladis@linux-mips.org>, which
6  *  was based on code from Ulf Carlsson
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License version 2 as
10  *  published by the Free Software Foundation.
11  *
12  *  This program is distributed in the hope that it will be useful,
13  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *  GNU General Public License for more details.
16  *
17  *  You should have received a copy of the GNU General Public License
18  *  along with this program; if not, write to the Free Software
19  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  *
21  */
22 #include <linux/kernel.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28 #include <linux/slab.h>
29 #include <linux/module.h>
30 
31 #include <asm/sgi/hpc3.h>
32 #include <asm/sgi/ip22.h>
33 
34 #include <sound/core.h>
35 #include <sound/control.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm-indirect.h>
38 #include <sound/initval.h>
39 
40 #include "hal2.h"
41 
42 static int index = SNDRV_DEFAULT_IDX1;  /* Index 0-MAX */
43 static char *id = SNDRV_DEFAULT_STR1;   /* ID for this card */
44 
45 module_param(index, int, 0444);
46 MODULE_PARM_DESC(index, "Index value for SGI HAL2 soundcard.");
47 module_param(id, charp, 0444);
48 MODULE_PARM_DESC(id, "ID string for SGI HAL2 soundcard.");
49 MODULE_DESCRIPTION("ALSA driver for SGI HAL2 audio");
50 MODULE_AUTHOR("Thomas Bogendoerfer");
51 MODULE_LICENSE("GPL");
52 
53 
54 #define H2_BLOCK_SIZE	1024
55 #define H2_BUF_SIZE	16384
56 
57 struct hal2_pbus {
58 	struct hpc3_pbus_dmacregs *pbus;
59 	int pbusnr;
60 	unsigned int ctrl;		/* Current state of pbus->pbdma_ctrl */
61 };
62 
63 struct hal2_desc {
64 	struct hpc_dma_desc desc;
65 	u32 pad;			/* padding */
66 };
67 
68 struct hal2_codec {
69 	struct snd_pcm_indirect pcm_indirect;
70 	struct snd_pcm_substream *substream;
71 
72 	unsigned char *buffer;
73 	dma_addr_t buffer_dma;
74 	struct hal2_desc *desc;
75 	dma_addr_t desc_dma;
76 	int desc_count;
77 	struct hal2_pbus pbus;
78 	int voices;			/* mono/stereo */
79 	unsigned int sample_rate;
80 	unsigned int master;		/* Master frequency */
81 	unsigned short mod;		/* MOD value */
82 	unsigned short inc;		/* INC value */
83 };
84 
85 #define H2_MIX_OUTPUT_ATT	0
86 #define H2_MIX_INPUT_GAIN	1
87 
88 struct snd_hal2 {
89 	struct snd_card *card;
90 
91 	struct hal2_ctl_regs *ctl_regs;	/* HAL2 ctl registers */
92 	struct hal2_aes_regs *aes_regs;	/* HAL2 aes registers */
93 	struct hal2_vol_regs *vol_regs;	/* HAL2 vol registers */
94 	struct hal2_syn_regs *syn_regs;	/* HAL2 syn registers */
95 
96 	struct hal2_codec dac;
97 	struct hal2_codec adc;
98 };
99 
100 #define H2_INDIRECT_WAIT(regs)	while (hal2_read(&regs->isr) & H2_ISR_TSTATUS);
101 
102 #define H2_READ_ADDR(addr)	(addr | (1<<7))
103 #define H2_WRITE_ADDR(addr)	(addr)
104 
105 static inline u32 hal2_read(u32 *reg)
106 {
107 	return __raw_readl(reg);
108 }
109 
110 static inline void hal2_write(u32 val, u32 *reg)
111 {
112 	__raw_writel(val, reg);
113 }
114 
115 
116 static u32 hal2_i_read32(struct snd_hal2 *hal2, u16 addr)
117 {
118 	u32 ret;
119 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
120 
121 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
122 	H2_INDIRECT_WAIT(regs);
123 	ret = hal2_read(&regs->idr0) & 0xffff;
124 	hal2_write(H2_READ_ADDR(addr) | 0x1, &regs->iar);
125 	H2_INDIRECT_WAIT(regs);
126 	ret |= (hal2_read(&regs->idr0) & 0xffff) << 16;
127 	return ret;
128 }
129 
130 static void hal2_i_write16(struct snd_hal2 *hal2, u16 addr, u16 val)
131 {
132 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
133 
134 	hal2_write(val, &regs->idr0);
135 	hal2_write(0, &regs->idr1);
136 	hal2_write(0, &regs->idr2);
137 	hal2_write(0, &regs->idr3);
138 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
139 	H2_INDIRECT_WAIT(regs);
140 }
141 
142 static void hal2_i_write32(struct snd_hal2 *hal2, u16 addr, u32 val)
143 {
144 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
145 
146 	hal2_write(val & 0xffff, &regs->idr0);
147 	hal2_write(val >> 16, &regs->idr1);
148 	hal2_write(0, &regs->idr2);
149 	hal2_write(0, &regs->idr3);
150 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
151 	H2_INDIRECT_WAIT(regs);
152 }
153 
154 static void hal2_i_setbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
155 {
156 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
157 
158 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
159 	H2_INDIRECT_WAIT(regs);
160 	hal2_write((hal2_read(&regs->idr0) & 0xffff) | bit, &regs->idr0);
161 	hal2_write(0, &regs->idr1);
162 	hal2_write(0, &regs->idr2);
163 	hal2_write(0, &regs->idr3);
164 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
165 	H2_INDIRECT_WAIT(regs);
166 }
167 
168 static void hal2_i_clearbit16(struct snd_hal2 *hal2, u16 addr, u16 bit)
169 {
170 	struct hal2_ctl_regs *regs = hal2->ctl_regs;
171 
172 	hal2_write(H2_READ_ADDR(addr), &regs->iar);
173 	H2_INDIRECT_WAIT(regs);
174 	hal2_write((hal2_read(&regs->idr0) & 0xffff) & ~bit, &regs->idr0);
175 	hal2_write(0, &regs->idr1);
176 	hal2_write(0, &regs->idr2);
177 	hal2_write(0, &regs->idr3);
178 	hal2_write(H2_WRITE_ADDR(addr), &regs->iar);
179 	H2_INDIRECT_WAIT(regs);
180 }
181 
182 static int hal2_gain_info(struct snd_kcontrol *kcontrol,
183 			       struct snd_ctl_elem_info *uinfo)
184 {
185 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
186 	uinfo->count = 2;
187 	uinfo->value.integer.min = 0;
188 	switch ((int)kcontrol->private_value) {
189 	case H2_MIX_OUTPUT_ATT:
190 		uinfo->value.integer.max = 31;
191 		break;
192 	case H2_MIX_INPUT_GAIN:
193 		uinfo->value.integer.max = 15;
194 		break;
195 	}
196 	return 0;
197 }
198 
199 static int hal2_gain_get(struct snd_kcontrol *kcontrol,
200 			       struct snd_ctl_elem_value *ucontrol)
201 {
202 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
203 	u32 tmp;
204 	int l, r;
205 
206 	switch ((int)kcontrol->private_value) {
207 	case H2_MIX_OUTPUT_ATT:
208 		tmp = hal2_i_read32(hal2, H2I_DAC_C2);
209 		if (tmp & H2I_C2_MUTE) {
210 			l = 0;
211 			r = 0;
212 		} else {
213 			l = 31 - ((tmp >> H2I_C2_L_ATT_SHIFT) & 31);
214 			r = 31 - ((tmp >> H2I_C2_R_ATT_SHIFT) & 31);
215 		}
216 		break;
217 	case H2_MIX_INPUT_GAIN:
218 		tmp = hal2_i_read32(hal2, H2I_ADC_C2);
219 		l = (tmp >> H2I_C2_L_GAIN_SHIFT) & 15;
220 		r = (tmp >> H2I_C2_R_GAIN_SHIFT) & 15;
221 		break;
222 	default:
223 		return -EINVAL;
224 	}
225 	ucontrol->value.integer.value[0] = l;
226 	ucontrol->value.integer.value[1] = r;
227 
228 	return 0;
229 }
230 
231 static int hal2_gain_put(struct snd_kcontrol *kcontrol,
232 			 struct snd_ctl_elem_value *ucontrol)
233 {
234 	struct snd_hal2 *hal2 = snd_kcontrol_chip(kcontrol);
235 	u32 old, new;
236 	int l, r;
237 
238 	l = ucontrol->value.integer.value[0];
239 	r = ucontrol->value.integer.value[1];
240 
241 	switch ((int)kcontrol->private_value) {
242 	case H2_MIX_OUTPUT_ATT:
243 		old = hal2_i_read32(hal2, H2I_DAC_C2);
244 		new = old & ~(H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
245 		if (l | r) {
246 			l = 31 - l;
247 			r = 31 - r;
248 			new |= (l << H2I_C2_L_ATT_SHIFT);
249 			new |= (r << H2I_C2_R_ATT_SHIFT);
250 		} else
251 			new |= H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE;
252 		hal2_i_write32(hal2, H2I_DAC_C2, new);
253 		break;
254 	case H2_MIX_INPUT_GAIN:
255 		old = hal2_i_read32(hal2, H2I_ADC_C2);
256 		new = old & ~(H2I_C2_L_GAIN_M | H2I_C2_R_GAIN_M);
257 		new |= (l << H2I_C2_L_GAIN_SHIFT);
258 		new |= (r << H2I_C2_R_GAIN_SHIFT);
259 		hal2_i_write32(hal2, H2I_ADC_C2, new);
260 		break;
261 	default:
262 		return -EINVAL;
263 	}
264 	return old != new;
265 }
266 
267 static const struct snd_kcontrol_new hal2_ctrl_headphone = {
268 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
269 	.name           = "Headphone Playback Volume",
270 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
271 	.private_value  = H2_MIX_OUTPUT_ATT,
272 	.info           = hal2_gain_info,
273 	.get            = hal2_gain_get,
274 	.put            = hal2_gain_put,
275 };
276 
277 static const struct snd_kcontrol_new hal2_ctrl_mic = {
278 	.iface          = SNDRV_CTL_ELEM_IFACE_MIXER,
279 	.name           = "Mic Capture Volume",
280 	.access         = SNDRV_CTL_ELEM_ACCESS_READWRITE,
281 	.private_value  = H2_MIX_INPUT_GAIN,
282 	.info           = hal2_gain_info,
283 	.get            = hal2_gain_get,
284 	.put            = hal2_gain_put,
285 };
286 
287 static int hal2_mixer_create(struct snd_hal2 *hal2)
288 {
289 	int err;
290 
291 	/* mute DAC */
292 	hal2_i_write32(hal2, H2I_DAC_C2,
293 		       H2I_C2_L_ATT_M | H2I_C2_R_ATT_M | H2I_C2_MUTE);
294 	/* mute ADC */
295 	hal2_i_write32(hal2, H2I_ADC_C2, 0);
296 
297 	err = snd_ctl_add(hal2->card,
298 			  snd_ctl_new1(&hal2_ctrl_headphone, hal2));
299 	if (err < 0)
300 		return err;
301 
302 	err = snd_ctl_add(hal2->card,
303 			  snd_ctl_new1(&hal2_ctrl_mic, hal2));
304 	if (err < 0)
305 		return err;
306 
307 	return 0;
308 }
309 
310 static irqreturn_t hal2_interrupt(int irq, void *dev_id)
311 {
312 	struct snd_hal2 *hal2 = dev_id;
313 	irqreturn_t ret = IRQ_NONE;
314 
315 	/* decide what caused this interrupt */
316 	if (hal2->dac.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
317 		snd_pcm_period_elapsed(hal2->dac.substream);
318 		ret = IRQ_HANDLED;
319 	}
320 	if (hal2->adc.pbus.pbus->pbdma_ctrl & HPC3_PDMACTRL_INT) {
321 		snd_pcm_period_elapsed(hal2->adc.substream);
322 		ret = IRQ_HANDLED;
323 	}
324 	return ret;
325 }
326 
327 static int hal2_compute_rate(struct hal2_codec *codec, unsigned int rate)
328 {
329 	unsigned short mod;
330 
331 	if (44100 % rate < 48000 % rate) {
332 		mod = 4 * 44100 / rate;
333 		codec->master = 44100;
334 	} else {
335 		mod = 4 * 48000 / rate;
336 		codec->master = 48000;
337 	}
338 
339 	codec->inc = 4;
340 	codec->mod = mod;
341 	rate = 4 * codec->master / mod;
342 
343 	return rate;
344 }
345 
346 static void hal2_set_dac_rate(struct snd_hal2 *hal2)
347 {
348 	unsigned int master = hal2->dac.master;
349 	int inc = hal2->dac.inc;
350 	int mod = hal2->dac.mod;
351 
352 	hal2_i_write16(hal2, H2I_BRES1_C1, (master == 44100) ? 1 : 0);
353 	hal2_i_write32(hal2, H2I_BRES1_C2,
354 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
355 }
356 
357 static void hal2_set_adc_rate(struct snd_hal2 *hal2)
358 {
359 	unsigned int master = hal2->adc.master;
360 	int inc = hal2->adc.inc;
361 	int mod = hal2->adc.mod;
362 
363 	hal2_i_write16(hal2, H2I_BRES2_C1, (master == 44100) ? 1 : 0);
364 	hal2_i_write32(hal2, H2I_BRES2_C2,
365 		       ((0xffff & (inc - mod - 1)) << 16) | inc);
366 }
367 
368 static void hal2_setup_dac(struct snd_hal2 *hal2)
369 {
370 	unsigned int fifobeg, fifoend, highwater, sample_size;
371 	struct hal2_pbus *pbus = &hal2->dac.pbus;
372 
373 	/* Now we set up some PBUS information. The PBUS needs information about
374 	 * what portion of the fifo it will use. If it's receiving or
375 	 * transmitting, and finally whether the stream is little endian or big
376 	 * endian. The information is written later, on the start call.
377 	 */
378 	sample_size = 2 * hal2->dac.voices;
379 	/* Fifo should be set to hold exactly four samples. Highwater mark
380 	 * should be set to two samples. */
381 	highwater = (sample_size * 2) >> 1;	/* halfwords */
382 	fifobeg = 0;				/* playback is first */
383 	fifoend = (sample_size * 4) >> 3;	/* doublewords */
384 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_LD |
385 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
386 	/* We disable everything before we do anything at all */
387 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
388 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
389 	/* Setup the HAL2 for playback */
390 	hal2_set_dac_rate(hal2);
391 	/* Set endianess */
392 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECTX);
393 	/* Set DMA bus */
394 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
395 	/* We are using 1st Bresenham clock generator for playback */
396 	hal2_i_write16(hal2, H2I_DAC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
397 			| (1 << H2I_C1_CLKID_SHIFT)
398 			| (hal2->dac.voices << H2I_C1_DATAT_SHIFT));
399 }
400 
401 static void hal2_setup_adc(struct snd_hal2 *hal2)
402 {
403 	unsigned int fifobeg, fifoend, highwater, sample_size;
404 	struct hal2_pbus *pbus = &hal2->adc.pbus;
405 
406 	sample_size = 2 * hal2->adc.voices;
407 	highwater = (sample_size * 2) >> 1;		/* halfwords */
408 	fifobeg = (4 * 4) >> 3;				/* record is second */
409 	fifoend = (4 * 4 + sample_size * 4) >> 3;	/* doublewords */
410 	pbus->ctrl = HPC3_PDMACTRL_RT | HPC3_PDMACTRL_RCV | HPC3_PDMACTRL_LD |
411 		     (highwater << 8) | (fifobeg << 16) | (fifoend << 24);
412 	pbus->pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
413 	hal2_i_clearbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
414 	/* Setup the HAL2 for record */
415 	hal2_set_adc_rate(hal2);
416 	/* Set endianess */
417 	hal2_i_clearbit16(hal2, H2I_DMA_END, H2I_DMA_END_CODECR);
418 	/* Set DMA bus */
419 	hal2_i_setbit16(hal2, H2I_DMA_DRV, (1 << pbus->pbusnr));
420 	/* We are using 2nd Bresenham clock generator for record */
421 	hal2_i_write16(hal2, H2I_ADC_C1, (pbus->pbusnr << H2I_C1_DMA_SHIFT)
422 			| (2 << H2I_C1_CLKID_SHIFT)
423 			| (hal2->adc.voices << H2I_C1_DATAT_SHIFT));
424 }
425 
426 static void hal2_start_dac(struct snd_hal2 *hal2)
427 {
428 	struct hal2_pbus *pbus = &hal2->dac.pbus;
429 
430 	pbus->pbus->pbdma_dptr = hal2->dac.desc_dma;
431 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
432 	/* enable DAC */
433 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECTX);
434 }
435 
436 static void hal2_start_adc(struct snd_hal2 *hal2)
437 {
438 	struct hal2_pbus *pbus = &hal2->adc.pbus;
439 
440 	pbus->pbus->pbdma_dptr = hal2->adc.desc_dma;
441 	pbus->pbus->pbdma_ctrl = pbus->ctrl | HPC3_PDMACTRL_ACT;
442 	/* enable ADC */
443 	hal2_i_setbit16(hal2, H2I_DMA_PORT_EN, H2I_DMA_PORT_EN_CODECR);
444 }
445 
446 static inline void hal2_stop_dac(struct snd_hal2 *hal2)
447 {
448 	hal2->dac.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
449 	/* The HAL2 itself may remain enabled safely */
450 }
451 
452 static inline void hal2_stop_adc(struct snd_hal2 *hal2)
453 {
454 	hal2->adc.pbus.pbus->pbdma_ctrl = HPC3_PDMACTRL_LD;
455 }
456 
457 static int hal2_alloc_dmabuf(struct hal2_codec *codec)
458 {
459 	struct hal2_desc *desc;
460 	dma_addr_t desc_dma, buffer_dma;
461 	int count = H2_BUF_SIZE / H2_BLOCK_SIZE;
462 	int i;
463 
464 	codec->buffer = dma_alloc_attrs(NULL, H2_BUF_SIZE, &buffer_dma,
465 					GFP_KERNEL, DMA_ATTR_NON_CONSISTENT);
466 	if (!codec->buffer)
467 		return -ENOMEM;
468 	desc = dma_alloc_attrs(NULL, count * sizeof(struct hal2_desc),
469 			       &desc_dma, GFP_KERNEL, DMA_ATTR_NON_CONSISTENT);
470 	if (!desc) {
471 		dma_free_attrs(NULL, H2_BUF_SIZE, codec->buffer, buffer_dma,
472 			       DMA_ATTR_NON_CONSISTENT);
473 		return -ENOMEM;
474 	}
475 	codec->buffer_dma = buffer_dma;
476 	codec->desc_dma = desc_dma;
477 	codec->desc = desc;
478 	for (i = 0; i < count; i++) {
479 		desc->desc.pbuf = buffer_dma + i * H2_BLOCK_SIZE;
480 		desc->desc.cntinfo = HPCDMA_XIE | H2_BLOCK_SIZE;
481 		desc->desc.pnext = (i == count - 1) ?
482 		      desc_dma : desc_dma + (i + 1) * sizeof(struct hal2_desc);
483 		desc++;
484 	}
485 	dma_cache_sync(NULL, codec->desc, count * sizeof(struct hal2_desc),
486 		       DMA_TO_DEVICE);
487 	codec->desc_count = count;
488 	return 0;
489 }
490 
491 static void hal2_free_dmabuf(struct hal2_codec *codec)
492 {
493 	dma_free_attrs(NULL, codec->desc_count * sizeof(struct hal2_desc),
494 		       codec->desc, codec->desc_dma, DMA_ATTR_NON_CONSISTENT);
495 	dma_free_attrs(NULL, H2_BUF_SIZE, codec->buffer, codec->buffer_dma,
496 		       DMA_ATTR_NON_CONSISTENT);
497 }
498 
499 static const struct snd_pcm_hardware hal2_pcm_hw = {
500 	.info = (SNDRV_PCM_INFO_MMAP |
501 		 SNDRV_PCM_INFO_MMAP_VALID |
502 		 SNDRV_PCM_INFO_INTERLEAVED |
503 		 SNDRV_PCM_INFO_BLOCK_TRANSFER |
504 		 SNDRV_PCM_INFO_SYNC_APPLPTR),
505 	.formats =          SNDRV_PCM_FMTBIT_S16_BE,
506 	.rates =            SNDRV_PCM_RATE_8000_48000,
507 	.rate_min =         8000,
508 	.rate_max =         48000,
509 	.channels_min =     2,
510 	.channels_max =     2,
511 	.buffer_bytes_max = 65536,
512 	.period_bytes_min = 1024,
513 	.period_bytes_max = 65536,
514 	.periods_min =      2,
515 	.periods_max =      1024,
516 };
517 
518 static int hal2_pcm_hw_params(struct snd_pcm_substream *substream,
519 			      struct snd_pcm_hw_params *params)
520 {
521 	int err;
522 
523 	err = snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(params));
524 	if (err < 0)
525 		return err;
526 
527 	return 0;
528 }
529 
530 static int hal2_pcm_hw_free(struct snd_pcm_substream *substream)
531 {
532 	return snd_pcm_lib_free_pages(substream);
533 }
534 
535 static int hal2_playback_open(struct snd_pcm_substream *substream)
536 {
537 	struct snd_pcm_runtime *runtime = substream->runtime;
538 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
539 	int err;
540 
541 	runtime->hw = hal2_pcm_hw;
542 
543 	err = hal2_alloc_dmabuf(&hal2->dac);
544 	if (err)
545 		return err;
546 	return 0;
547 }
548 
549 static int hal2_playback_close(struct snd_pcm_substream *substream)
550 {
551 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
552 
553 	hal2_free_dmabuf(&hal2->dac);
554 	return 0;
555 }
556 
557 static int hal2_playback_prepare(struct snd_pcm_substream *substream)
558 {
559 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
560 	struct snd_pcm_runtime *runtime = substream->runtime;
561 	struct hal2_codec *dac = &hal2->dac;
562 
563 	dac->voices = runtime->channels;
564 	dac->sample_rate = hal2_compute_rate(dac, runtime->rate);
565 	memset(&dac->pcm_indirect, 0, sizeof(dac->pcm_indirect));
566 	dac->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
567 	dac->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
568 	dac->pcm_indirect.hw_io = dac->buffer_dma;
569 	dac->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
570 	dac->substream = substream;
571 	hal2_setup_dac(hal2);
572 	return 0;
573 }
574 
575 static int hal2_playback_trigger(struct snd_pcm_substream *substream, int cmd)
576 {
577 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
578 
579 	switch (cmd) {
580 	case SNDRV_PCM_TRIGGER_START:
581 		hal2_start_dac(hal2);
582 		break;
583 	case SNDRV_PCM_TRIGGER_STOP:
584 		hal2_stop_dac(hal2);
585 		break;
586 	default:
587 		return -EINVAL;
588 	}
589 	return 0;
590 }
591 
592 static snd_pcm_uframes_t
593 hal2_playback_pointer(struct snd_pcm_substream *substream)
594 {
595 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
596 	struct hal2_codec *dac = &hal2->dac;
597 
598 	return snd_pcm_indirect_playback_pointer(substream, &dac->pcm_indirect,
599 						 dac->pbus.pbus->pbdma_bptr);
600 }
601 
602 static void hal2_playback_transfer(struct snd_pcm_substream *substream,
603 				   struct snd_pcm_indirect *rec, size_t bytes)
604 {
605 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
606 	unsigned char *buf = hal2->dac.buffer + rec->hw_data;
607 
608 	memcpy(buf, substream->runtime->dma_area + rec->sw_data, bytes);
609 	dma_cache_sync(NULL, buf, bytes, DMA_TO_DEVICE);
610 
611 }
612 
613 static int hal2_playback_ack(struct snd_pcm_substream *substream)
614 {
615 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
616 	struct hal2_codec *dac = &hal2->dac;
617 
618 	return snd_pcm_indirect_playback_transfer(substream,
619 						  &dac->pcm_indirect,
620 						  hal2_playback_transfer);
621 }
622 
623 static int hal2_capture_open(struct snd_pcm_substream *substream)
624 {
625 	struct snd_pcm_runtime *runtime = substream->runtime;
626 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
627 	struct hal2_codec *adc = &hal2->adc;
628 	int err;
629 
630 	runtime->hw = hal2_pcm_hw;
631 
632 	err = hal2_alloc_dmabuf(adc);
633 	if (err)
634 		return err;
635 	return 0;
636 }
637 
638 static int hal2_capture_close(struct snd_pcm_substream *substream)
639 {
640 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
641 
642 	hal2_free_dmabuf(&hal2->adc);
643 	return 0;
644 }
645 
646 static int hal2_capture_prepare(struct snd_pcm_substream *substream)
647 {
648 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
649 	struct snd_pcm_runtime *runtime = substream->runtime;
650 	struct hal2_codec *adc = &hal2->adc;
651 
652 	adc->voices = runtime->channels;
653 	adc->sample_rate = hal2_compute_rate(adc, runtime->rate);
654 	memset(&adc->pcm_indirect, 0, sizeof(adc->pcm_indirect));
655 	adc->pcm_indirect.hw_buffer_size = H2_BUF_SIZE;
656 	adc->pcm_indirect.hw_queue_size = H2_BUF_SIZE / 2;
657 	adc->pcm_indirect.hw_io = adc->buffer_dma;
658 	adc->pcm_indirect.sw_buffer_size = snd_pcm_lib_buffer_bytes(substream);
659 	adc->substream = substream;
660 	hal2_setup_adc(hal2);
661 	return 0;
662 }
663 
664 static int hal2_capture_trigger(struct snd_pcm_substream *substream, int cmd)
665 {
666 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
667 
668 	switch (cmd) {
669 	case SNDRV_PCM_TRIGGER_START:
670 		hal2_start_adc(hal2);
671 		break;
672 	case SNDRV_PCM_TRIGGER_STOP:
673 		hal2_stop_adc(hal2);
674 		break;
675 	default:
676 		return -EINVAL;
677 	}
678 	return 0;
679 }
680 
681 static snd_pcm_uframes_t
682 hal2_capture_pointer(struct snd_pcm_substream *substream)
683 {
684 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
685 	struct hal2_codec *adc = &hal2->adc;
686 
687 	return snd_pcm_indirect_capture_pointer(substream, &adc->pcm_indirect,
688 						adc->pbus.pbus->pbdma_bptr);
689 }
690 
691 static void hal2_capture_transfer(struct snd_pcm_substream *substream,
692 				  struct snd_pcm_indirect *rec, size_t bytes)
693 {
694 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
695 	unsigned char *buf = hal2->adc.buffer + rec->hw_data;
696 
697 	dma_cache_sync(NULL, buf, bytes, DMA_FROM_DEVICE);
698 	memcpy(substream->runtime->dma_area + rec->sw_data, buf, bytes);
699 }
700 
701 static int hal2_capture_ack(struct snd_pcm_substream *substream)
702 {
703 	struct snd_hal2 *hal2 = snd_pcm_substream_chip(substream);
704 	struct hal2_codec *adc = &hal2->adc;
705 
706 	return snd_pcm_indirect_capture_transfer(substream,
707 						 &adc->pcm_indirect,
708 						 hal2_capture_transfer);
709 }
710 
711 static const struct snd_pcm_ops hal2_playback_ops = {
712 	.open =        hal2_playback_open,
713 	.close =       hal2_playback_close,
714 	.ioctl =       snd_pcm_lib_ioctl,
715 	.hw_params =   hal2_pcm_hw_params,
716 	.hw_free =     hal2_pcm_hw_free,
717 	.prepare =     hal2_playback_prepare,
718 	.trigger =     hal2_playback_trigger,
719 	.pointer =     hal2_playback_pointer,
720 	.ack =         hal2_playback_ack,
721 };
722 
723 static const struct snd_pcm_ops hal2_capture_ops = {
724 	.open =        hal2_capture_open,
725 	.close =       hal2_capture_close,
726 	.ioctl =       snd_pcm_lib_ioctl,
727 	.hw_params =   hal2_pcm_hw_params,
728 	.hw_free =     hal2_pcm_hw_free,
729 	.prepare =     hal2_capture_prepare,
730 	.trigger =     hal2_capture_trigger,
731 	.pointer =     hal2_capture_pointer,
732 	.ack =         hal2_capture_ack,
733 };
734 
735 static int hal2_pcm_create(struct snd_hal2 *hal2)
736 {
737 	struct snd_pcm *pcm;
738 	int err;
739 
740 	/* create first pcm device with one outputs and one input */
741 	err = snd_pcm_new(hal2->card, "SGI HAL2 Audio", 0, 1, 1, &pcm);
742 	if (err < 0)
743 		return err;
744 
745 	pcm->private_data = hal2;
746 	strcpy(pcm->name, "SGI HAL2");
747 
748 	/* set operators */
749 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK,
750 			&hal2_playback_ops);
751 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE,
752 			&hal2_capture_ops);
753 	snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
754 					   snd_dma_continuous_data(GFP_KERNEL),
755 					   0, 1024 * 1024);
756 
757 	return 0;
758 }
759 
760 static int hal2_dev_free(struct snd_device *device)
761 {
762 	struct snd_hal2 *hal2 = device->device_data;
763 
764 	free_irq(SGI_HPCDMA_IRQ, hal2);
765 	kfree(hal2);
766 	return 0;
767 }
768 
769 static struct snd_device_ops hal2_ops = {
770 	.dev_free = hal2_dev_free,
771 };
772 
773 static void hal2_init_codec(struct hal2_codec *codec, struct hpc3_regs *hpc3,
774 			    int index)
775 {
776 	codec->pbus.pbusnr = index;
777 	codec->pbus.pbus = &hpc3->pbdma[index];
778 }
779 
780 static int hal2_detect(struct snd_hal2 *hal2)
781 {
782 	unsigned short board, major, minor;
783 	unsigned short rev;
784 
785 	/* reset HAL2 */
786 	hal2_write(0, &hal2->ctl_regs->isr);
787 
788 	/* release reset */
789 	hal2_write(H2_ISR_GLOBAL_RESET_N | H2_ISR_CODEC_RESET_N,
790 		   &hal2->ctl_regs->isr);
791 
792 
793 	hal2_i_write16(hal2, H2I_RELAY_C, H2I_RELAY_C_STATE);
794 	rev = hal2_read(&hal2->ctl_regs->rev);
795 	if (rev & H2_REV_AUDIO_PRESENT)
796 		return -ENODEV;
797 
798 	board = (rev & H2_REV_BOARD_M) >> 12;
799 	major = (rev & H2_REV_MAJOR_CHIP_M) >> 4;
800 	minor = (rev & H2_REV_MINOR_CHIP_M);
801 
802 	printk(KERN_INFO "SGI HAL2 revision %i.%i.%i\n",
803 	       board, major, minor);
804 
805 	return 0;
806 }
807 
808 static int hal2_create(struct snd_card *card, struct snd_hal2 **rchip)
809 {
810 	struct snd_hal2 *hal2;
811 	struct hpc3_regs *hpc3 = hpc3c0;
812 	int err;
813 
814 	hal2 = kzalloc(sizeof(*hal2), GFP_KERNEL);
815 	if (!hal2)
816 		return -ENOMEM;
817 
818 	hal2->card = card;
819 
820 	if (request_irq(SGI_HPCDMA_IRQ, hal2_interrupt, IRQF_SHARED,
821 			"SGI HAL2", hal2)) {
822 		printk(KERN_ERR "HAL2: Can't get irq %d\n", SGI_HPCDMA_IRQ);
823 		kfree(hal2);
824 		return -EAGAIN;
825 	}
826 
827 	hal2->ctl_regs = (struct hal2_ctl_regs *)hpc3->pbus_extregs[0];
828 	hal2->aes_regs = (struct hal2_aes_regs *)hpc3->pbus_extregs[1];
829 	hal2->vol_regs = (struct hal2_vol_regs *)hpc3->pbus_extregs[2];
830 	hal2->syn_regs = (struct hal2_syn_regs *)hpc3->pbus_extregs[3];
831 
832 	if (hal2_detect(hal2) < 0) {
833 		kfree(hal2);
834 		return -ENODEV;
835 	}
836 
837 	hal2_init_codec(&hal2->dac, hpc3, 0);
838 	hal2_init_codec(&hal2->adc, hpc3, 1);
839 
840 	/*
841 	 * All DMA channel interfaces in HAL2 are designed to operate with
842 	 * PBUS programmed for 2 cycles in D3, 2 cycles in D4 and 2 cycles
843 	 * in D5. HAL2 is a 16-bit device which can accept both big and little
844 	 * endian format. It assumes that even address bytes are on high
845 	 * portion of PBUS (15:8) and assumes that HPC3 is programmed to
846 	 * accept a live (unsynchronized) version of P_DREQ_N from HAL2.
847 	 */
848 #define HAL2_PBUS_DMACFG ((0 << HPC3_DMACFG_D3R_SHIFT) | \
849 			  (2 << HPC3_DMACFG_D4R_SHIFT) | \
850 			  (2 << HPC3_DMACFG_D5R_SHIFT) | \
851 			  (0 << HPC3_DMACFG_D3W_SHIFT) | \
852 			  (2 << HPC3_DMACFG_D4W_SHIFT) | \
853 			  (2 << HPC3_DMACFG_D5W_SHIFT) | \
854 				HPC3_DMACFG_DS16 | \
855 				HPC3_DMACFG_EVENHI | \
856 				HPC3_DMACFG_RTIME | \
857 			  (8 << HPC3_DMACFG_BURST_SHIFT) | \
858 				HPC3_DMACFG_DRQLIVE)
859 	/*
860 	 * Ignore what's mentioned in the specification and write value which
861 	 * works in The Real World (TM)
862 	 */
863 	hpc3->pbus_dmacfg[hal2->dac.pbus.pbusnr][0] = 0x8208844;
864 	hpc3->pbus_dmacfg[hal2->adc.pbus.pbusnr][0] = 0x8208844;
865 
866 	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, hal2, &hal2_ops);
867 	if (err < 0) {
868 		free_irq(SGI_HPCDMA_IRQ, hal2);
869 		kfree(hal2);
870 		return err;
871 	}
872 	*rchip = hal2;
873 	return 0;
874 }
875 
876 static int hal2_probe(struct platform_device *pdev)
877 {
878 	struct snd_card *card;
879 	struct snd_hal2 *chip;
880 	int err;
881 
882 	err = snd_card_new(&pdev->dev, index, id, THIS_MODULE, 0, &card);
883 	if (err < 0)
884 		return err;
885 
886 	err = hal2_create(card, &chip);
887 	if (err < 0) {
888 		snd_card_free(card);
889 		return err;
890 	}
891 
892 	err = hal2_pcm_create(chip);
893 	if (err < 0) {
894 		snd_card_free(card);
895 		return err;
896 	}
897 	err = hal2_mixer_create(chip);
898 	if (err < 0) {
899 		snd_card_free(card);
900 		return err;
901 	}
902 
903 	strcpy(card->driver, "SGI HAL2 Audio");
904 	strcpy(card->shortname, "SGI HAL2 Audio");
905 	sprintf(card->longname, "%s irq %i",
906 		card->shortname,
907 		SGI_HPCDMA_IRQ);
908 
909 	err = snd_card_register(card);
910 	if (err < 0) {
911 		snd_card_free(card);
912 		return err;
913 	}
914 	platform_set_drvdata(pdev, card);
915 	return 0;
916 }
917 
918 static int hal2_remove(struct platform_device *pdev)
919 {
920 	struct snd_card *card = platform_get_drvdata(pdev);
921 
922 	snd_card_free(card);
923 	return 0;
924 }
925 
926 static struct platform_driver hal2_driver = {
927 	.probe	= hal2_probe,
928 	.remove	= hal2_remove,
929 	.driver = {
930 		.name	= "sgihal2",
931 	}
932 };
933 
934 module_platform_driver(hal2_driver);
935