xref: /openbmc/linux/sound/isa/sb/sb_mixer.c (revision 9cfc5c90)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *  Routines for Sound Blaster mixer control
4  *
5  *
6  *   This program is free software; you can redistribute it and/or modify
7  *   it under the terms of the GNU General Public License as published by
8  *   the Free Software Foundation; either version 2 of the License, or
9  *   (at your option) any later version.
10  *
11  *   This program is distributed in the hope that it will be useful,
12  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *   GNU General Public License for more details.
15  *
16  *   You should have received a copy of the GNU General Public License
17  *   along with this program; if not, write to the Free Software
18  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
19  *
20  */
21 
22 #include <linux/io.h>
23 #include <linux/delay.h>
24 #include <linux/time.h>
25 #include <sound/core.h>
26 #include <sound/sb.h>
27 #include <sound/control.h>
28 
29 #undef IO_DEBUG
30 
31 void snd_sbmixer_write(struct snd_sb *chip, unsigned char reg, unsigned char data)
32 {
33 	outb(reg, SBP(chip, MIXER_ADDR));
34 	udelay(10);
35 	outb(data, SBP(chip, MIXER_DATA));
36 	udelay(10);
37 #ifdef IO_DEBUG
38 	snd_printk(KERN_DEBUG "mixer_write 0x%x 0x%x\n", reg, data);
39 #endif
40 }
41 
42 unsigned char snd_sbmixer_read(struct snd_sb *chip, unsigned char reg)
43 {
44 	unsigned char result;
45 
46 	outb(reg, SBP(chip, MIXER_ADDR));
47 	udelay(10);
48 	result = inb(SBP(chip, MIXER_DATA));
49 	udelay(10);
50 #ifdef IO_DEBUG
51 	snd_printk(KERN_DEBUG "mixer_read 0x%x 0x%x\n", reg, result);
52 #endif
53 	return result;
54 }
55 
56 /*
57  * Single channel mixer element
58  */
59 
60 static int snd_sbmixer_info_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
61 {
62 	int mask = (kcontrol->private_value >> 24) & 0xff;
63 
64 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
65 	uinfo->count = 1;
66 	uinfo->value.integer.min = 0;
67 	uinfo->value.integer.max = mask;
68 	return 0;
69 }
70 
71 static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
72 {
73 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
74 	unsigned long flags;
75 	int reg = kcontrol->private_value & 0xff;
76 	int shift = (kcontrol->private_value >> 16) & 0xff;
77 	int mask = (kcontrol->private_value >> 24) & 0xff;
78 	unsigned char val;
79 
80 	spin_lock_irqsave(&sb->mixer_lock, flags);
81 	val = (snd_sbmixer_read(sb, reg) >> shift) & mask;
82 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
83 	ucontrol->value.integer.value[0] = val;
84 	return 0;
85 }
86 
87 static int snd_sbmixer_put_single(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
88 {
89 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
90 	unsigned long flags;
91 	int reg = kcontrol->private_value & 0xff;
92 	int shift = (kcontrol->private_value >> 16) & 0x07;
93 	int mask = (kcontrol->private_value >> 24) & 0xff;
94 	int change;
95 	unsigned char val, oval;
96 
97 	val = (ucontrol->value.integer.value[0] & mask) << shift;
98 	spin_lock_irqsave(&sb->mixer_lock, flags);
99 	oval = snd_sbmixer_read(sb, reg);
100 	val = (oval & ~(mask << shift)) | val;
101 	change = val != oval;
102 	if (change)
103 		snd_sbmixer_write(sb, reg, val);
104 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
105 	return change;
106 }
107 
108 /*
109  * Double channel mixer element
110  */
111 
112 static int snd_sbmixer_info_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
113 {
114 	int mask = (kcontrol->private_value >> 24) & 0xff;
115 
116 	uinfo->type = mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
117 	uinfo->count = 2;
118 	uinfo->value.integer.min = 0;
119 	uinfo->value.integer.max = mask;
120 	return 0;
121 }
122 
123 static int snd_sbmixer_get_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
124 {
125 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
126 	unsigned long flags;
127 	int left_reg = kcontrol->private_value & 0xff;
128 	int right_reg = (kcontrol->private_value >> 8) & 0xff;
129 	int left_shift = (kcontrol->private_value >> 16) & 0x07;
130 	int right_shift = (kcontrol->private_value >> 19) & 0x07;
131 	int mask = (kcontrol->private_value >> 24) & 0xff;
132 	unsigned char left, right;
133 
134 	spin_lock_irqsave(&sb->mixer_lock, flags);
135 	left = (snd_sbmixer_read(sb, left_reg) >> left_shift) & mask;
136 	right = (snd_sbmixer_read(sb, right_reg) >> right_shift) & mask;
137 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
138 	ucontrol->value.integer.value[0] = left;
139 	ucontrol->value.integer.value[1] = right;
140 	return 0;
141 }
142 
143 static int snd_sbmixer_put_double(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
144 {
145 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
146 	unsigned long flags;
147 	int left_reg = kcontrol->private_value & 0xff;
148 	int right_reg = (kcontrol->private_value >> 8) & 0xff;
149 	int left_shift = (kcontrol->private_value >> 16) & 0x07;
150 	int right_shift = (kcontrol->private_value >> 19) & 0x07;
151 	int mask = (kcontrol->private_value >> 24) & 0xff;
152 	int change;
153 	unsigned char left, right, oleft, oright;
154 
155 	left = (ucontrol->value.integer.value[0] & mask) << left_shift;
156 	right = (ucontrol->value.integer.value[1] & mask) << right_shift;
157 	spin_lock_irqsave(&sb->mixer_lock, flags);
158 	if (left_reg == right_reg) {
159 		oleft = snd_sbmixer_read(sb, left_reg);
160 		left = (oleft & ~((mask << left_shift) | (mask << right_shift))) | left | right;
161 		change = left != oleft;
162 		if (change)
163 			snd_sbmixer_write(sb, left_reg, left);
164 	} else {
165 		oleft = snd_sbmixer_read(sb, left_reg);
166 		oright = snd_sbmixer_read(sb, right_reg);
167 		left = (oleft & ~(mask << left_shift)) | left;
168 		right = (oright & ~(mask << right_shift)) | right;
169 		change = left != oleft || right != oright;
170 		if (change) {
171 			snd_sbmixer_write(sb, left_reg, left);
172 			snd_sbmixer_write(sb, right_reg, right);
173 		}
174 	}
175 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
176 	return change;
177 }
178 
179 /*
180  * DT-019x / ALS-007 capture/input switch
181  */
182 
183 static int snd_dt019x_input_sw_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
184 {
185 	static const char * const texts[5] = {
186 		"CD", "Mic", "Line", "Synth", "Master"
187 	};
188 
189 	return snd_ctl_enum_info(uinfo, 1, 5, texts);
190 }
191 
192 static int snd_dt019x_input_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
193 {
194 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
195 	unsigned long flags;
196 	unsigned char oval;
197 
198 	spin_lock_irqsave(&sb->mixer_lock, flags);
199 	oval = snd_sbmixer_read(sb, SB_DT019X_CAPTURE_SW);
200 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
201 	switch (oval & 0x07) {
202 	case SB_DT019X_CAP_CD:
203 		ucontrol->value.enumerated.item[0] = 0;
204 		break;
205 	case SB_DT019X_CAP_MIC:
206 		ucontrol->value.enumerated.item[0] = 1;
207 		break;
208 	case SB_DT019X_CAP_LINE:
209 		ucontrol->value.enumerated.item[0] = 2;
210 		break;
211 	case SB_DT019X_CAP_MAIN:
212 		ucontrol->value.enumerated.item[0] = 4;
213 		break;
214 	/* To record the synth on these cards you must record the main.   */
215 	/* Thus SB_DT019X_CAP_SYNTH == SB_DT019X_CAP_MAIN and would cause */
216 	/* duplicate case labels if left uncommented. */
217 	/* case SB_DT019X_CAP_SYNTH:
218 	 *	ucontrol->value.enumerated.item[0] = 3;
219 	 *	break;
220 	 */
221 	default:
222 		ucontrol->value.enumerated.item[0] = 4;
223 		break;
224 	}
225 	return 0;
226 }
227 
228 static int snd_dt019x_input_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
229 {
230 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
231 	unsigned long flags;
232 	int change;
233 	unsigned char nval, oval;
234 
235 	if (ucontrol->value.enumerated.item[0] > 4)
236 		return -EINVAL;
237 	switch (ucontrol->value.enumerated.item[0]) {
238 	case 0:
239 		nval = SB_DT019X_CAP_CD;
240 		break;
241 	case 1:
242 		nval = SB_DT019X_CAP_MIC;
243 		break;
244 	case 2:
245 		nval = SB_DT019X_CAP_LINE;
246 		break;
247 	case 3:
248 		nval = SB_DT019X_CAP_SYNTH;
249 		break;
250 	case 4:
251 		nval = SB_DT019X_CAP_MAIN;
252 		break;
253 	default:
254 		nval = SB_DT019X_CAP_MAIN;
255 	}
256 	spin_lock_irqsave(&sb->mixer_lock, flags);
257 	oval = snd_sbmixer_read(sb, SB_DT019X_CAPTURE_SW);
258 	change = nval != oval;
259 	if (change)
260 		snd_sbmixer_write(sb, SB_DT019X_CAPTURE_SW, nval);
261 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
262 	return change;
263 }
264 
265 /*
266  * ALS4000 mono recording control switch
267  */
268 
269 static int snd_als4k_mono_capture_route_info(struct snd_kcontrol *kcontrol,
270 					     struct snd_ctl_elem_info *uinfo)
271 {
272 	static const char * const texts[3] = {
273 		"L chan only", "R chan only", "L ch/2 + R ch/2"
274 	};
275 
276 	return snd_ctl_enum_info(uinfo, 1, 3, texts);
277 }
278 
279 static int snd_als4k_mono_capture_route_get(struct snd_kcontrol *kcontrol,
280 				struct snd_ctl_elem_value *ucontrol)
281 {
282 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
283 	unsigned long flags;
284 	unsigned char oval;
285 
286 	spin_lock_irqsave(&sb->mixer_lock, flags);
287 	oval = snd_sbmixer_read(sb, SB_ALS4000_MONO_IO_CTRL);
288 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
289 	oval >>= 6;
290 	if (oval > 2)
291 		oval = 2;
292 
293 	ucontrol->value.enumerated.item[0] = oval;
294 	return 0;
295 }
296 
297 static int snd_als4k_mono_capture_route_put(struct snd_kcontrol *kcontrol,
298 				struct snd_ctl_elem_value *ucontrol)
299 {
300 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
301 	unsigned long flags;
302 	int change;
303 	unsigned char nval, oval;
304 
305 	if (ucontrol->value.enumerated.item[0] > 2)
306 		return -EINVAL;
307 	spin_lock_irqsave(&sb->mixer_lock, flags);
308 	oval = snd_sbmixer_read(sb, SB_ALS4000_MONO_IO_CTRL);
309 
310 	nval = (oval & ~(3 << 6))
311 	     | (ucontrol->value.enumerated.item[0] << 6);
312 	change = nval != oval;
313 	if (change)
314 		snd_sbmixer_write(sb, SB_ALS4000_MONO_IO_CTRL, nval);
315 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
316 	return change;
317 }
318 
319 /*
320  * SBPRO input multiplexer
321  */
322 
323 static int snd_sb8mixer_info_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
324 {
325 	static const char * const texts[3] = {
326 		"Mic", "CD", "Line"
327 	};
328 
329 	return snd_ctl_enum_info(uinfo, 1, 3, texts);
330 }
331 
332 
333 static int snd_sb8mixer_get_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
334 {
335 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
336 	unsigned long flags;
337 	unsigned char oval;
338 
339 	spin_lock_irqsave(&sb->mixer_lock, flags);
340 	oval = snd_sbmixer_read(sb, SB_DSP_CAPTURE_SOURCE);
341 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
342 	switch ((oval >> 0x01) & 0x03) {
343 	case SB_DSP_MIXS_CD:
344 		ucontrol->value.enumerated.item[0] = 1;
345 		break;
346 	case SB_DSP_MIXS_LINE:
347 		ucontrol->value.enumerated.item[0] = 2;
348 		break;
349 	default:
350 		ucontrol->value.enumerated.item[0] = 0;
351 		break;
352 	}
353 	return 0;
354 }
355 
356 static int snd_sb8mixer_put_mux(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
357 {
358 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
359 	unsigned long flags;
360 	int change;
361 	unsigned char nval, oval;
362 
363 	if (ucontrol->value.enumerated.item[0] > 2)
364 		return -EINVAL;
365 	switch (ucontrol->value.enumerated.item[0]) {
366 	case 1:
367 		nval = SB_DSP_MIXS_CD;
368 		break;
369 	case 2:
370 		nval = SB_DSP_MIXS_LINE;
371 		break;
372 	default:
373 		nval = SB_DSP_MIXS_MIC;
374 	}
375 	nval <<= 1;
376 	spin_lock_irqsave(&sb->mixer_lock, flags);
377 	oval = snd_sbmixer_read(sb, SB_DSP_CAPTURE_SOURCE);
378 	nval |= oval & ~0x06;
379 	change = nval != oval;
380 	if (change)
381 		snd_sbmixer_write(sb, SB_DSP_CAPTURE_SOURCE, nval);
382 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
383 	return change;
384 }
385 
386 /*
387  * SB16 input switch
388  */
389 
390 static int snd_sb16mixer_info_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
391 {
392 	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
393 	uinfo->count = 4;
394 	uinfo->value.integer.min = 0;
395 	uinfo->value.integer.max = 1;
396 	return 0;
397 }
398 
399 static int snd_sb16mixer_get_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
400 {
401 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
402 	unsigned long flags;
403 	int reg1 = kcontrol->private_value & 0xff;
404 	int reg2 = (kcontrol->private_value >> 8) & 0xff;
405 	int left_shift = (kcontrol->private_value >> 16) & 0x0f;
406 	int right_shift = (kcontrol->private_value >> 24) & 0x0f;
407 	unsigned char val1, val2;
408 
409 	spin_lock_irqsave(&sb->mixer_lock, flags);
410 	val1 = snd_sbmixer_read(sb, reg1);
411 	val2 = snd_sbmixer_read(sb, reg2);
412 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
413 	ucontrol->value.integer.value[0] = (val1 >> left_shift) & 0x01;
414 	ucontrol->value.integer.value[1] = (val2 >> left_shift) & 0x01;
415 	ucontrol->value.integer.value[2] = (val1 >> right_shift) & 0x01;
416 	ucontrol->value.integer.value[3] = (val2 >> right_shift) & 0x01;
417 	return 0;
418 }
419 
420 static int snd_sb16mixer_put_input_sw(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
421 {
422 	struct snd_sb *sb = snd_kcontrol_chip(kcontrol);
423 	unsigned long flags;
424 	int reg1 = kcontrol->private_value & 0xff;
425 	int reg2 = (kcontrol->private_value >> 8) & 0xff;
426 	int left_shift = (kcontrol->private_value >> 16) & 0x0f;
427 	int right_shift = (kcontrol->private_value >> 24) & 0x0f;
428 	int change;
429 	unsigned char val1, val2, oval1, oval2;
430 
431 	spin_lock_irqsave(&sb->mixer_lock, flags);
432 	oval1 = snd_sbmixer_read(sb, reg1);
433 	oval2 = snd_sbmixer_read(sb, reg2);
434 	val1 = oval1 & ~((1 << left_shift) | (1 << right_shift));
435 	val2 = oval2 & ~((1 << left_shift) | (1 << right_shift));
436 	val1 |= (ucontrol->value.integer.value[0] & 1) << left_shift;
437 	val2 |= (ucontrol->value.integer.value[1] & 1) << left_shift;
438 	val1 |= (ucontrol->value.integer.value[2] & 1) << right_shift;
439 	val2 |= (ucontrol->value.integer.value[3] & 1) << right_shift;
440 	change = val1 != oval1 || val2 != oval2;
441 	if (change) {
442 		snd_sbmixer_write(sb, reg1, val1);
443 		snd_sbmixer_write(sb, reg2, val2);
444 	}
445 	spin_unlock_irqrestore(&sb->mixer_lock, flags);
446 	return change;
447 }
448 
449 
450 /*
451  */
452 /*
453  */
454 int snd_sbmixer_add_ctl(struct snd_sb *chip, const char *name, int index, int type, unsigned long value)
455 {
456 	static struct snd_kcontrol_new newctls[] = {
457 		[SB_MIX_SINGLE] = {
458 			.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
459 			.info = snd_sbmixer_info_single,
460 			.get = snd_sbmixer_get_single,
461 			.put = snd_sbmixer_put_single,
462 		},
463 		[SB_MIX_DOUBLE] = {
464 			.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
465 			.info = snd_sbmixer_info_double,
466 			.get = snd_sbmixer_get_double,
467 			.put = snd_sbmixer_put_double,
468 		},
469 		[SB_MIX_INPUT_SW] = {
470 			.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
471 			.info = snd_sb16mixer_info_input_sw,
472 			.get = snd_sb16mixer_get_input_sw,
473 			.put = snd_sb16mixer_put_input_sw,
474 		},
475 		[SB_MIX_CAPTURE_PRO] = {
476 			.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
477 			.info = snd_sb8mixer_info_mux,
478 			.get = snd_sb8mixer_get_mux,
479 			.put = snd_sb8mixer_put_mux,
480 		},
481 		[SB_MIX_CAPTURE_DT019X] = {
482 			.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
483 			.info = snd_dt019x_input_sw_info,
484 			.get = snd_dt019x_input_sw_get,
485 			.put = snd_dt019x_input_sw_put,
486 		},
487 		[SB_MIX_MONO_CAPTURE_ALS4K] = {
488 			.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
489 			.info = snd_als4k_mono_capture_route_info,
490 			.get = snd_als4k_mono_capture_route_get,
491 			.put = snd_als4k_mono_capture_route_put,
492 		},
493 	};
494 	struct snd_kcontrol *ctl;
495 	int err;
496 
497 	ctl = snd_ctl_new1(&newctls[type], chip);
498 	if (! ctl)
499 		return -ENOMEM;
500 	strlcpy(ctl->id.name, name, sizeof(ctl->id.name));
501 	ctl->id.index = index;
502 	ctl->private_value = value;
503 	if ((err = snd_ctl_add(chip->card, ctl)) < 0)
504 		return err;
505 	return 0;
506 }
507 
508 /*
509  * SB 2.0 specific mixer elements
510  */
511 
512 static struct sbmix_elem snd_sb20_controls[] = {
513 	SB_SINGLE("Master Playback Volume", SB_DSP20_MASTER_DEV, 1, 7),
514 	SB_SINGLE("PCM Playback Volume", SB_DSP20_PCM_DEV, 1, 3),
515 	SB_SINGLE("Synth Playback Volume", SB_DSP20_FM_DEV, 1, 7),
516 	SB_SINGLE("CD Playback Volume", SB_DSP20_CD_DEV, 1, 7)
517 };
518 
519 static unsigned char snd_sb20_init_values[][2] = {
520 	{ SB_DSP20_MASTER_DEV, 0 },
521 	{ SB_DSP20_FM_DEV, 0 },
522 };
523 
524 /*
525  * SB Pro specific mixer elements
526  */
527 static struct sbmix_elem snd_sbpro_controls[] = {
528 	SB_DOUBLE("Master Playback Volume",
529 		  SB_DSP_MASTER_DEV, SB_DSP_MASTER_DEV, 5, 1, 7),
530 	SB_DOUBLE("PCM Playback Volume",
531 		  SB_DSP_PCM_DEV, SB_DSP_PCM_DEV, 5, 1, 7),
532 	SB_SINGLE("PCM Playback Filter", SB_DSP_PLAYBACK_FILT, 5, 1),
533 	SB_DOUBLE("Synth Playback Volume",
534 		  SB_DSP_FM_DEV, SB_DSP_FM_DEV, 5, 1, 7),
535 	SB_DOUBLE("CD Playback Volume", SB_DSP_CD_DEV, SB_DSP_CD_DEV, 5, 1, 7),
536 	SB_DOUBLE("Line Playback Volume",
537 		  SB_DSP_LINE_DEV, SB_DSP_LINE_DEV, 5, 1, 7),
538 	SB_SINGLE("Mic Playback Volume", SB_DSP_MIC_DEV, 1, 3),
539 	{
540 		.name = "Capture Source",
541 		.type = SB_MIX_CAPTURE_PRO
542 	},
543 	SB_SINGLE("Capture Filter", SB_DSP_CAPTURE_FILT, 5, 1),
544 	SB_SINGLE("Capture Low-Pass Filter", SB_DSP_CAPTURE_FILT, 3, 1)
545 };
546 
547 static unsigned char snd_sbpro_init_values[][2] = {
548 	{ SB_DSP_MASTER_DEV, 0 },
549 	{ SB_DSP_PCM_DEV, 0 },
550 	{ SB_DSP_FM_DEV, 0 },
551 };
552 
553 /*
554  * SB16 specific mixer elements
555  */
556 static struct sbmix_elem snd_sb16_controls[] = {
557 	SB_DOUBLE("Master Playback Volume",
558 		  SB_DSP4_MASTER_DEV, (SB_DSP4_MASTER_DEV + 1), 3, 3, 31),
559 	SB_DOUBLE("PCM Playback Volume",
560 		  SB_DSP4_PCM_DEV, (SB_DSP4_PCM_DEV + 1), 3, 3, 31),
561 	SB16_INPUT_SW("Synth Capture Route",
562 		      SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 6, 5),
563 	SB_DOUBLE("Synth Playback Volume",
564 		  SB_DSP4_SYNTH_DEV, (SB_DSP4_SYNTH_DEV + 1), 3, 3, 31),
565 	SB16_INPUT_SW("CD Capture Route",
566 		      SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 2, 1),
567 	SB_DOUBLE("CD Playback Switch",
568 		  SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 2, 1, 1),
569 	SB_DOUBLE("CD Playback Volume",
570 		  SB_DSP4_CD_DEV, (SB_DSP4_CD_DEV + 1), 3, 3, 31),
571 	SB16_INPUT_SW("Mic Capture Route",
572 		      SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0),
573 	SB_SINGLE("Mic Playback Switch", SB_DSP4_OUTPUT_SW, 0, 1),
574 	SB_SINGLE("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
575 	SB_SINGLE("Beep Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
576 	SB_DOUBLE("Capture Volume",
577 		  SB_DSP4_IGAIN_DEV, (SB_DSP4_IGAIN_DEV + 1), 6, 6, 3),
578 	SB_DOUBLE("Playback Volume",
579 		  SB_DSP4_OGAIN_DEV, (SB_DSP4_OGAIN_DEV + 1), 6, 6, 3),
580 	SB16_INPUT_SW("Line Capture Route",
581 		      SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 4, 3),
582 	SB_DOUBLE("Line Playback Switch",
583 		  SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 4, 3, 1),
584 	SB_DOUBLE("Line Playback Volume",
585 		  SB_DSP4_LINE_DEV, (SB_DSP4_LINE_DEV + 1), 3, 3, 31),
586 	SB_SINGLE("Mic Auto Gain", SB_DSP4_MIC_AGC, 0, 1),
587 	SB_SINGLE("3D Enhancement Switch", SB_DSP4_3DSE, 0, 1),
588 	SB_DOUBLE("Tone Control - Bass",
589 		  SB_DSP4_BASS_DEV, (SB_DSP4_BASS_DEV + 1), 4, 4, 15),
590 	SB_DOUBLE("Tone Control - Treble",
591 		  SB_DSP4_TREBLE_DEV, (SB_DSP4_TREBLE_DEV + 1), 4, 4, 15)
592 };
593 
594 static unsigned char snd_sb16_init_values[][2] = {
595 	{ SB_DSP4_MASTER_DEV + 0, 0 },
596 	{ SB_DSP4_MASTER_DEV + 1, 0 },
597 	{ SB_DSP4_PCM_DEV + 0, 0 },
598 	{ SB_DSP4_PCM_DEV + 1, 0 },
599 	{ SB_DSP4_SYNTH_DEV + 0, 0 },
600 	{ SB_DSP4_SYNTH_DEV + 1, 0 },
601 	{ SB_DSP4_INPUT_LEFT, 0 },
602 	{ SB_DSP4_INPUT_RIGHT, 0 },
603 	{ SB_DSP4_OUTPUT_SW, 0 },
604 	{ SB_DSP4_SPEAKER_DEV, 0 },
605 };
606 
607 /*
608  * DT019x specific mixer elements
609  */
610 static struct sbmix_elem snd_dt019x_controls[] = {
611 	/* ALS4000 below has some parts which we might be lacking,
612 	 * e.g. snd_als4000_ctl_mono_playback_switch - check it! */
613 	SB_DOUBLE("Master Playback Volume",
614 		  SB_DT019X_MASTER_DEV, SB_DT019X_MASTER_DEV, 4, 0, 15),
615 	SB_DOUBLE("PCM Playback Switch",
616 		  SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 2, 1, 1),
617 	SB_DOUBLE("PCM Playback Volume",
618 		  SB_DT019X_PCM_DEV, SB_DT019X_PCM_DEV, 4, 0, 15),
619 	SB_DOUBLE("Synth Playback Switch",
620 		  SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 4, 3, 1),
621 	SB_DOUBLE("Synth Playback Volume",
622 		  SB_DT019X_SYNTH_DEV, SB_DT019X_SYNTH_DEV, 4, 0, 15),
623 	SB_DOUBLE("CD Playback Switch",
624 		  SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 2, 1, 1),
625 	SB_DOUBLE("CD Playback Volume",
626 		  SB_DT019X_CD_DEV, SB_DT019X_CD_DEV, 4, 0, 15),
627 	SB_SINGLE("Mic Playback Switch", SB_DSP4_OUTPUT_SW, 0, 1),
628 	SB_SINGLE("Mic Playback Volume", SB_DT019X_MIC_DEV, 4, 7),
629 	SB_SINGLE("Beep Volume", SB_DT019X_SPKR_DEV, 0,  7),
630 	SB_DOUBLE("Line Playback Switch",
631 		  SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, 4, 3, 1),
632 	SB_DOUBLE("Line Playback Volume",
633 		  SB_DT019X_LINE_DEV, SB_DT019X_LINE_DEV, 4, 0, 15),
634 	{
635 		.name = "Capture Source",
636 		.type = SB_MIX_CAPTURE_DT019X
637 	}
638 };
639 
640 static unsigned char snd_dt019x_init_values[][2] = {
641         { SB_DT019X_MASTER_DEV, 0 },
642         { SB_DT019X_PCM_DEV, 0 },
643         { SB_DT019X_SYNTH_DEV, 0 },
644         { SB_DT019X_CD_DEV, 0 },
645         { SB_DT019X_MIC_DEV, 0 },	/* Includes PC-speaker in high nibble */
646         { SB_DT019X_LINE_DEV, 0 },
647         { SB_DSP4_OUTPUT_SW, 0 },
648         { SB_DT019X_OUTPUT_SW2, 0 },
649         { SB_DT019X_CAPTURE_SW, 0x06 },
650 };
651 
652 /*
653  * ALS4000 specific mixer elements
654  */
655 static struct sbmix_elem snd_als4000_controls[] = {
656 	SB_DOUBLE("PCM Playback Switch",
657 		  SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 2, 1, 1),
658 	SB_DOUBLE("Synth Playback Switch",
659 		  SB_DT019X_OUTPUT_SW2, SB_DT019X_OUTPUT_SW2, 4, 3, 1),
660 	SB_SINGLE("Mic Boost (+20dB)", SB_ALS4000_MIC_IN_GAIN, 0, 0x03),
661 	SB_SINGLE("Master Mono Playback Switch", SB_ALS4000_MONO_IO_CTRL, 5, 1),
662 	{
663 		.name = "Master Mono Capture Route",
664 		.type = SB_MIX_MONO_CAPTURE_ALS4K
665 	},
666 	SB_SINGLE("Mono Playback Switch", SB_DT019X_OUTPUT_SW2, 0, 1),
667 	SB_SINGLE("Analog Loopback Switch", SB_ALS4000_MIC_IN_GAIN, 7, 0x01),
668 	SB_SINGLE("3D Control - Switch", SB_ALS4000_3D_SND_FX, 6, 0x01),
669 	SB_SINGLE("Digital Loopback Switch",
670 		  SB_ALS4000_CR3_CONFIGURATION, 7, 0x01),
671 	/* FIXME: functionality of 3D controls might be swapped, I didn't find
672 	 * a description of how to identify what is supposed to be what */
673 	SB_SINGLE("3D Control - Level", SB_ALS4000_3D_SND_FX, 0, 0x07),
674 	/* FIXME: maybe there's actually some standard 3D ctrl name for it?? */
675 	SB_SINGLE("3D Control - Freq", SB_ALS4000_3D_SND_FX, 4, 0x03),
676 	/* FIXME: ALS4000a.pdf mentions BBD (Bucket Brigade Device) time delay,
677 	 * but what ALSA 3D attribute is that actually? "Center", "Depth",
678 	 * "Wide" or "Space" or even "Level"? Assuming "Wide" for now... */
679 	SB_SINGLE("3D Control - Wide", SB_ALS4000_3D_TIME_DELAY, 0, 0x0f),
680 	SB_SINGLE("3D PowerOff Switch", SB_ALS4000_3D_TIME_DELAY, 4, 0x01),
681 	SB_SINGLE("Master Playback 8kHz / 20kHz LPF Switch",
682 		  SB_ALS4000_FMDAC, 5, 0x01),
683 #ifdef NOT_AVAILABLE
684 	SB_SINGLE("FMDAC Switch (Option ?)", SB_ALS4000_FMDAC, 0, 0x01),
685 	SB_SINGLE("QSound Mode", SB_ALS4000_QSOUND, 1, 0x1f),
686 #endif
687 };
688 
689 static unsigned char snd_als4000_init_values[][2] = {
690 	{ SB_DSP4_MASTER_DEV + 0, 0 },
691 	{ SB_DSP4_MASTER_DEV + 1, 0 },
692 	{ SB_DSP4_PCM_DEV + 0, 0 },
693 	{ SB_DSP4_PCM_DEV + 1, 0 },
694 	{ SB_DSP4_SYNTH_DEV + 0, 0 },
695 	{ SB_DSP4_SYNTH_DEV + 1, 0 },
696 	{ SB_DSP4_SPEAKER_DEV, 0 },
697 	{ SB_DSP4_OUTPUT_SW, 0 },
698 	{ SB_DSP4_INPUT_LEFT, 0 },
699 	{ SB_DSP4_INPUT_RIGHT, 0 },
700 	{ SB_DT019X_OUTPUT_SW2, 0 },
701 	{ SB_ALS4000_MIC_IN_GAIN, 0 },
702 };
703 
704 /*
705  */
706 static int snd_sbmixer_init(struct snd_sb *chip,
707 			    struct sbmix_elem *controls,
708 			    int controls_count,
709 			    unsigned char map[][2],
710 			    int map_count,
711 			    char *name)
712 {
713 	unsigned long flags;
714 	struct snd_card *card = chip->card;
715 	int idx, err;
716 
717 	/* mixer reset */
718 	spin_lock_irqsave(&chip->mixer_lock, flags);
719 	snd_sbmixer_write(chip, 0x00, 0x00);
720 	spin_unlock_irqrestore(&chip->mixer_lock, flags);
721 
722 	/* mute and zero volume channels */
723 	for (idx = 0; idx < map_count; idx++) {
724 		spin_lock_irqsave(&chip->mixer_lock, flags);
725 		snd_sbmixer_write(chip, map[idx][0], map[idx][1]);
726 		spin_unlock_irqrestore(&chip->mixer_lock, flags);
727 	}
728 
729 	for (idx = 0; idx < controls_count; idx++) {
730 		err = snd_sbmixer_add_ctl_elem(chip, &controls[idx]);
731 		if (err < 0)
732 			return err;
733 	}
734 	snd_component_add(card, name);
735 	strcpy(card->mixername, name);
736 	return 0;
737 }
738 
739 int snd_sbmixer_new(struct snd_sb *chip)
740 {
741 	struct snd_card *card;
742 	int err;
743 
744 	if (snd_BUG_ON(!chip || !chip->card))
745 		return -EINVAL;
746 
747 	card = chip->card;
748 
749 	switch (chip->hardware) {
750 	case SB_HW_10:
751 		return 0; /* no mixer chip on SB1.x */
752 	case SB_HW_20:
753 	case SB_HW_201:
754 		if ((err = snd_sbmixer_init(chip,
755 					    snd_sb20_controls,
756 					    ARRAY_SIZE(snd_sb20_controls),
757 					    snd_sb20_init_values,
758 					    ARRAY_SIZE(snd_sb20_init_values),
759 					    "CTL1335")) < 0)
760 			return err;
761 		break;
762 	case SB_HW_PRO:
763 	case SB_HW_JAZZ16:
764 		if ((err = snd_sbmixer_init(chip,
765 					    snd_sbpro_controls,
766 					    ARRAY_SIZE(snd_sbpro_controls),
767 					    snd_sbpro_init_values,
768 					    ARRAY_SIZE(snd_sbpro_init_values),
769 					    "CTL1345")) < 0)
770 			return err;
771 		break;
772 	case SB_HW_16:
773 	case SB_HW_ALS100:
774 	case SB_HW_CS5530:
775 		if ((err = snd_sbmixer_init(chip,
776 					    snd_sb16_controls,
777 					    ARRAY_SIZE(snd_sb16_controls),
778 					    snd_sb16_init_values,
779 					    ARRAY_SIZE(snd_sb16_init_values),
780 					    "CTL1745")) < 0)
781 			return err;
782 		break;
783 	case SB_HW_ALS4000:
784 		/* use only the first 16 controls from SB16 */
785 		err = snd_sbmixer_init(chip,
786 					snd_sb16_controls,
787 					16,
788 					snd_sb16_init_values,
789 					ARRAY_SIZE(snd_sb16_init_values),
790 					"ALS4000");
791 		if (err < 0)
792 			return err;
793 		if ((err = snd_sbmixer_init(chip,
794 					    snd_als4000_controls,
795 					    ARRAY_SIZE(snd_als4000_controls),
796 					    snd_als4000_init_values,
797 					    ARRAY_SIZE(snd_als4000_init_values),
798 					    "ALS4000")) < 0)
799 			return err;
800 		break;
801 	case SB_HW_DT019X:
802 		err = snd_sbmixer_init(chip,
803 				       snd_dt019x_controls,
804 				       ARRAY_SIZE(snd_dt019x_controls),
805 				       snd_dt019x_init_values,
806 				       ARRAY_SIZE(snd_dt019x_init_values),
807 				       "DT019X");
808 		if (err < 0)
809 			return err;
810 		break;
811 	default:
812 		strcpy(card->mixername, "???");
813 	}
814 	return 0;
815 }
816 
817 #ifdef CONFIG_PM
818 static unsigned char sb20_saved_regs[] = {
819 	SB_DSP20_MASTER_DEV,
820 	SB_DSP20_PCM_DEV,
821 	SB_DSP20_FM_DEV,
822 	SB_DSP20_CD_DEV,
823 };
824 
825 static unsigned char sbpro_saved_regs[] = {
826 	SB_DSP_MASTER_DEV,
827 	SB_DSP_PCM_DEV,
828 	SB_DSP_PLAYBACK_FILT,
829 	SB_DSP_FM_DEV,
830 	SB_DSP_CD_DEV,
831 	SB_DSP_LINE_DEV,
832 	SB_DSP_MIC_DEV,
833 	SB_DSP_CAPTURE_SOURCE,
834 	SB_DSP_CAPTURE_FILT,
835 };
836 
837 static unsigned char sb16_saved_regs[] = {
838 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
839 	SB_DSP4_3DSE,
840 	SB_DSP4_BASS_DEV, SB_DSP4_BASS_DEV + 1,
841 	SB_DSP4_TREBLE_DEV, SB_DSP4_TREBLE_DEV + 1,
842 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
843 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
844 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
845 	SB_DSP4_OUTPUT_SW,
846 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
847 	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
848 	SB_DSP4_MIC_DEV,
849 	SB_DSP4_SPEAKER_DEV,
850 	SB_DSP4_IGAIN_DEV, SB_DSP4_IGAIN_DEV + 1,
851 	SB_DSP4_OGAIN_DEV, SB_DSP4_OGAIN_DEV + 1,
852 	SB_DSP4_MIC_AGC
853 };
854 
855 static unsigned char dt019x_saved_regs[] = {
856 	SB_DT019X_MASTER_DEV,
857 	SB_DT019X_PCM_DEV,
858 	SB_DT019X_SYNTH_DEV,
859 	SB_DT019X_CD_DEV,
860 	SB_DT019X_MIC_DEV,
861 	SB_DT019X_SPKR_DEV,
862 	SB_DT019X_LINE_DEV,
863 	SB_DSP4_OUTPUT_SW,
864 	SB_DT019X_OUTPUT_SW2,
865 	SB_DT019X_CAPTURE_SW,
866 };
867 
868 static unsigned char als4000_saved_regs[] = {
869 	/* please verify in dsheet whether regs to be added
870 	   are actually real H/W or just dummy */
871 	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
872 	SB_DSP4_OUTPUT_SW,
873 	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
874 	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
875 	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
876 	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
877 	SB_DSP4_MIC_DEV,
878 	SB_DSP4_SPEAKER_DEV,
879 	SB_DSP4_IGAIN_DEV, SB_DSP4_IGAIN_DEV + 1,
880 	SB_DSP4_OGAIN_DEV, SB_DSP4_OGAIN_DEV + 1,
881 	SB_DT019X_OUTPUT_SW2,
882 	SB_ALS4000_MONO_IO_CTRL,
883 	SB_ALS4000_MIC_IN_GAIN,
884 	SB_ALS4000_FMDAC,
885 	SB_ALS4000_3D_SND_FX,
886 	SB_ALS4000_3D_TIME_DELAY,
887 	SB_ALS4000_CR3_CONFIGURATION,
888 };
889 
890 static void save_mixer(struct snd_sb *chip, unsigned char *regs, int num_regs)
891 {
892 	unsigned char *val = chip->saved_regs;
893 	if (snd_BUG_ON(num_regs > ARRAY_SIZE(chip->saved_regs)))
894 		return;
895 	for (; num_regs; num_regs--)
896 		*val++ = snd_sbmixer_read(chip, *regs++);
897 }
898 
899 static void restore_mixer(struct snd_sb *chip, unsigned char *regs, int num_regs)
900 {
901 	unsigned char *val = chip->saved_regs;
902 	if (snd_BUG_ON(num_regs > ARRAY_SIZE(chip->saved_regs)))
903 		return;
904 	for (; num_regs; num_regs--)
905 		snd_sbmixer_write(chip, *regs++, *val++);
906 }
907 
908 void snd_sbmixer_suspend(struct snd_sb *chip)
909 {
910 	switch (chip->hardware) {
911 	case SB_HW_20:
912 	case SB_HW_201:
913 		save_mixer(chip, sb20_saved_regs, ARRAY_SIZE(sb20_saved_regs));
914 		break;
915 	case SB_HW_PRO:
916 	case SB_HW_JAZZ16:
917 		save_mixer(chip, sbpro_saved_regs, ARRAY_SIZE(sbpro_saved_regs));
918 		break;
919 	case SB_HW_16:
920 	case SB_HW_ALS100:
921 	case SB_HW_CS5530:
922 		save_mixer(chip, sb16_saved_regs, ARRAY_SIZE(sb16_saved_regs));
923 		break;
924 	case SB_HW_ALS4000:
925 		save_mixer(chip, als4000_saved_regs, ARRAY_SIZE(als4000_saved_regs));
926 		break;
927 	case SB_HW_DT019X:
928 		save_mixer(chip, dt019x_saved_regs, ARRAY_SIZE(dt019x_saved_regs));
929 		break;
930 	default:
931 		break;
932 	}
933 }
934 
935 void snd_sbmixer_resume(struct snd_sb *chip)
936 {
937 	switch (chip->hardware) {
938 	case SB_HW_20:
939 	case SB_HW_201:
940 		restore_mixer(chip, sb20_saved_regs, ARRAY_SIZE(sb20_saved_regs));
941 		break;
942 	case SB_HW_PRO:
943 	case SB_HW_JAZZ16:
944 		restore_mixer(chip, sbpro_saved_regs, ARRAY_SIZE(sbpro_saved_regs));
945 		break;
946 	case SB_HW_16:
947 	case SB_HW_ALS100:
948 	case SB_HW_CS5530:
949 		restore_mixer(chip, sb16_saved_regs, ARRAY_SIZE(sb16_saved_regs));
950 		break;
951 	case SB_HW_ALS4000:
952 		restore_mixer(chip, als4000_saved_regs, ARRAY_SIZE(als4000_saved_regs));
953 		break;
954 	case SB_HW_DT019X:
955 		restore_mixer(chip, dt019x_saved_regs, ARRAY_SIZE(dt019x_saved_regs));
956 		break;
957 	default:
958 		break;
959 	}
960 }
961 #endif
962