xref: /openbmc/linux/sound/isa/sb/emu8000.c (revision 7eec52db361a6ae6fbbd86c2299718586866b664)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *     and (c) 1999 Steve Ratcliffe <steve@parabola.demon.co.uk>
4  *  Copyright (C) 1999-2000 Takashi Iwai <tiwai@suse.de>
5  *
6  *  Routines for control of EMU8000 chip
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <linux/wait.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/export.h>
28 #include <linux/delay.h>
29 #include <linux/io.h>
30 #include <sound/core.h>
31 #include <sound/emu8000.h>
32 #include <sound/emu8000_reg.h>
33 #include <linux/uaccess.h>
34 #include <linux/init.h>
35 #include <sound/control.h>
36 #include <sound/initval.h>
37 
38 /*
39  * emu8000 register controls
40  */
41 
42 /*
43  * The following routines read and write registers on the emu8000.  They
44  * should always be called via the EMU8000*READ/WRITE macros and never
45  * directly.  The macros handle the port number and command word.
46  */
47 /* Write a word */
48 void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
49 {
50 	unsigned long flags;
51 	spin_lock_irqsave(&emu->reg_lock, flags);
52 	if (reg != emu->last_reg) {
53 		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
54 		emu->last_reg = reg;
55 	}
56 	outw((unsigned short)val, port); /* Send data */
57 	spin_unlock_irqrestore(&emu->reg_lock, flags);
58 }
59 
60 /* Read a word */
61 unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
62 {
63 	unsigned short res;
64 	unsigned long flags;
65 	spin_lock_irqsave(&emu->reg_lock, flags);
66 	if (reg != emu->last_reg) {
67 		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
68 		emu->last_reg = reg;
69 	}
70 	res = inw(port);	/* Read data */
71 	spin_unlock_irqrestore(&emu->reg_lock, flags);
72 	return res;
73 }
74 
75 /* Write a double word */
76 void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
77 {
78 	unsigned long flags;
79 	spin_lock_irqsave(&emu->reg_lock, flags);
80 	if (reg != emu->last_reg) {
81 		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
82 		emu->last_reg = reg;
83 	}
84 	outw((unsigned short)val, port); /* Send low word of data */
85 	outw((unsigned short)(val>>16), port+2); /* Send high word of data */
86 	spin_unlock_irqrestore(&emu->reg_lock, flags);
87 }
88 
89 /* Read a double word */
90 unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
91 {
92 	unsigned short low;
93 	unsigned int res;
94 	unsigned long flags;
95 	spin_lock_irqsave(&emu->reg_lock, flags);
96 	if (reg != emu->last_reg) {
97 		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
98 		emu->last_reg = reg;
99 	}
100 	low = inw(port);	/* Read low word of data */
101 	res = low + (inw(port+2) << 16);
102 	spin_unlock_irqrestore(&emu->reg_lock, flags);
103 	return res;
104 }
105 
106 /*
107  * Set up / close a channel to be used for DMA.
108  */
109 /*exported*/ void
110 snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode)
111 {
112 	unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0;
113 	mode &= EMU8000_RAM_MODE_MASK;
114 	if (mode == EMU8000_RAM_CLOSE) {
115 		EMU8000_CCCA_WRITE(emu, ch, 0);
116 		EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F);
117 		return;
118 	}
119 	EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
120 	EMU8000_VTFT_WRITE(emu, ch, 0);
121 	EMU8000_CVCF_WRITE(emu, ch, 0);
122 	EMU8000_PTRX_WRITE(emu, ch, 0x40000000);
123 	EMU8000_CPF_WRITE(emu, ch, 0x40000000);
124 	EMU8000_PSST_WRITE(emu, ch, 0);
125 	EMU8000_CSL_WRITE(emu, ch, 0);
126 	if (mode == EMU8000_RAM_WRITE) /* DMA write */
127 		EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit);
128 	else	   /* DMA read */
129 		EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit);
130 }
131 
132 /*
133  */
134 static void
135 snd_emu8000_read_wait(struct snd_emu8000 *emu)
136 {
137 	while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) {
138 		schedule_timeout_interruptible(1);
139 		if (signal_pending(current))
140 			break;
141 	}
142 }
143 
144 /*
145  */
146 static void
147 snd_emu8000_write_wait(struct snd_emu8000 *emu)
148 {
149 	while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
150 		schedule_timeout_interruptible(1);
151 		if (signal_pending(current))
152 			break;
153 	}
154 }
155 
156 /*
157  * detect a card at the given port
158  */
159 static int
160 snd_emu8000_detect(struct snd_emu8000 *emu)
161 {
162 	/* Initialise */
163 	EMU8000_HWCF1_WRITE(emu, 0x0059);
164 	EMU8000_HWCF2_WRITE(emu, 0x0020);
165 	EMU8000_HWCF3_WRITE(emu, 0x0000);
166 	/* Check for a recognisable emu8000 */
167 	/*
168 	if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c)
169 		return -ENODEV;
170 		*/
171 	if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058)
172 		return -ENODEV;
173 	if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003)
174 		return -ENODEV;
175 
176 	snd_printdd("EMU8000 [0x%lx]: Synth chip found\n",
177                     emu->port1);
178 	return 0;
179 }
180 
181 
182 /*
183  * intiailize audio channels
184  */
185 static void
186 init_audio(struct snd_emu8000 *emu)
187 {
188 	int ch;
189 
190 	/* turn off envelope engines */
191 	for (ch = 0; ch < EMU8000_CHANNELS; ch++)
192 		EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
193 
194 	/* reset all other parameters to zero */
195 	for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
196 		EMU8000_ENVVOL_WRITE(emu, ch, 0);
197 		EMU8000_ENVVAL_WRITE(emu, ch, 0);
198 		EMU8000_DCYSUS_WRITE(emu, ch, 0);
199 		EMU8000_ATKHLDV_WRITE(emu, ch, 0);
200 		EMU8000_LFO1VAL_WRITE(emu, ch, 0);
201 		EMU8000_ATKHLD_WRITE(emu, ch, 0);
202 		EMU8000_LFO2VAL_WRITE(emu, ch, 0);
203 		EMU8000_IP_WRITE(emu, ch, 0);
204 		EMU8000_IFATN_WRITE(emu, ch, 0);
205 		EMU8000_PEFE_WRITE(emu, ch, 0);
206 		EMU8000_FMMOD_WRITE(emu, ch, 0);
207 		EMU8000_TREMFRQ_WRITE(emu, ch, 0);
208 		EMU8000_FM2FRQ2_WRITE(emu, ch, 0);
209 		EMU8000_PTRX_WRITE(emu, ch, 0);
210 		EMU8000_VTFT_WRITE(emu, ch, 0);
211 		EMU8000_PSST_WRITE(emu, ch, 0);
212 		EMU8000_CSL_WRITE(emu, ch, 0);
213 		EMU8000_CCCA_WRITE(emu, ch, 0);
214 	}
215 
216 	for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
217 		EMU8000_CPF_WRITE(emu, ch, 0);
218 		EMU8000_CVCF_WRITE(emu, ch, 0);
219 	}
220 }
221 
222 
223 /*
224  * initialize DMA address
225  */
226 static void
227 init_dma(struct snd_emu8000 *emu)
228 {
229 	EMU8000_SMALR_WRITE(emu, 0);
230 	EMU8000_SMARR_WRITE(emu, 0);
231 	EMU8000_SMALW_WRITE(emu, 0);
232 	EMU8000_SMARW_WRITE(emu, 0);
233 }
234 
235 /*
236  * initialization arrays; from ADIP
237  */
238 static unsigned short init1[128] = {
239 	0x03ff, 0x0030,  0x07ff, 0x0130, 0x0bff, 0x0230,  0x0fff, 0x0330,
240 	0x13ff, 0x0430,  0x17ff, 0x0530, 0x1bff, 0x0630,  0x1fff, 0x0730,
241 	0x23ff, 0x0830,  0x27ff, 0x0930, 0x2bff, 0x0a30,  0x2fff, 0x0b30,
242 	0x33ff, 0x0c30,  0x37ff, 0x0d30, 0x3bff, 0x0e30,  0x3fff, 0x0f30,
243 
244 	0x43ff, 0x0030,  0x47ff, 0x0130, 0x4bff, 0x0230,  0x4fff, 0x0330,
245 	0x53ff, 0x0430,  0x57ff, 0x0530, 0x5bff, 0x0630,  0x5fff, 0x0730,
246 	0x63ff, 0x0830,  0x67ff, 0x0930, 0x6bff, 0x0a30,  0x6fff, 0x0b30,
247 	0x73ff, 0x0c30,  0x77ff, 0x0d30, 0x7bff, 0x0e30,  0x7fff, 0x0f30,
248 
249 	0x83ff, 0x0030,  0x87ff, 0x0130, 0x8bff, 0x0230,  0x8fff, 0x0330,
250 	0x93ff, 0x0430,  0x97ff, 0x0530, 0x9bff, 0x0630,  0x9fff, 0x0730,
251 	0xa3ff, 0x0830,  0xa7ff, 0x0930, 0xabff, 0x0a30,  0xafff, 0x0b30,
252 	0xb3ff, 0x0c30,  0xb7ff, 0x0d30, 0xbbff, 0x0e30,  0xbfff, 0x0f30,
253 
254 	0xc3ff, 0x0030,  0xc7ff, 0x0130, 0xcbff, 0x0230,  0xcfff, 0x0330,
255 	0xd3ff, 0x0430,  0xd7ff, 0x0530, 0xdbff, 0x0630,  0xdfff, 0x0730,
256 	0xe3ff, 0x0830,  0xe7ff, 0x0930, 0xebff, 0x0a30,  0xefff, 0x0b30,
257 	0xf3ff, 0x0c30,  0xf7ff, 0x0d30, 0xfbff, 0x0e30,  0xffff, 0x0f30,
258 };
259 
260 static unsigned short init2[128] = {
261 	0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
262 	0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
263 	0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
264 	0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
265 
266 	0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
267 	0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
268 	0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
269 	0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
270 
271 	0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
272 	0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
273 	0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
274 	0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
275 
276 	0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
277 	0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
278 	0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
279 	0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
280 };
281 
282 static unsigned short init3[128] = {
283 	0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
284 	0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
285 	0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
286 	0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
287 
288 	0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
289 	0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
290 	0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
291 	0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
292 
293 	0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
294 	0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
295 	0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
296 	0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
297 
298 	0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
299 	0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
300 	0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
301 	0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
302 };
303 
304 static unsigned short init4[128] = {
305 	0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
306 	0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
307 	0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
308 	0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
309 
310 	0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
311 	0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
312 	0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
313 	0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
314 
315 	0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
316 	0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
317 	0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
318 	0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
319 
320 	0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
321 	0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
322 	0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
323 	0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
324 };
325 
326 /* send an initialization array
327  * Taken from the oss driver, not obvious from the doc how this
328  * is meant to work
329  */
330 static void
331 send_array(struct snd_emu8000 *emu, unsigned short *data, int size)
332 {
333 	int i;
334 	unsigned short *p;
335 
336 	p = data;
337 	for (i = 0; i < size; i++, p++)
338 		EMU8000_INIT1_WRITE(emu, i, *p);
339 	for (i = 0; i < size; i++, p++)
340 		EMU8000_INIT2_WRITE(emu, i, *p);
341 	for (i = 0; i < size; i++, p++)
342 		EMU8000_INIT3_WRITE(emu, i, *p);
343 	for (i = 0; i < size; i++, p++)
344 		EMU8000_INIT4_WRITE(emu, i, *p);
345 }
346 
347 
348 /*
349  * Send initialization arrays to start up, this just follows the
350  * initialisation sequence in the adip.
351  */
352 static void
353 init_arrays(struct snd_emu8000 *emu)
354 {
355 	send_array(emu, init1, ARRAY_SIZE(init1)/4);
356 
357 	msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */
358 	send_array(emu, init2, ARRAY_SIZE(init2)/4);
359 	send_array(emu, init3, ARRAY_SIZE(init3)/4);
360 
361 	EMU8000_HWCF4_WRITE(emu, 0);
362 	EMU8000_HWCF5_WRITE(emu, 0x83);
363 	EMU8000_HWCF6_WRITE(emu, 0x8000);
364 
365 	send_array(emu, init4, ARRAY_SIZE(init4)/4);
366 }
367 
368 
369 #define UNIQUE_ID1	0xa5b9
370 #define UNIQUE_ID2	0x9d53
371 
372 /*
373  * Size the onboard memory.
374  * This is written so as not to need arbitrary delays after the write. It
375  * seems that the only way to do this is to use the one channel and keep
376  * reallocating between read and write.
377  */
378 static void
379 size_dram(struct snd_emu8000 *emu)
380 {
381 	int i, size;
382 
383 	if (emu->dram_checked)
384 		return;
385 
386 	size = 0;
387 
388 	/* write out a magic number */
389 	snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);
390 	snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ);
391 	EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET);
392 	EMU8000_SMLD_WRITE(emu, UNIQUE_ID1);
393 	snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */
394 	snd_emu8000_write_wait(emu);
395 
396 	/*
397 	 * Detect first 512 KiB.  If a write succeeds at the beginning of a
398 	 * 512 KiB page we assume that the whole page is there.
399 	 */
400 	EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
401 	EMU8000_SMLD_READ(emu); /* discard stale data  */
402 	if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
403 		goto skip_detect;   /* No RAM */
404 	snd_emu8000_read_wait(emu);
405 
406 	for (size = 512 * 1024; size < EMU8000_MAX_DRAM; size += 512 * 1024) {
407 
408 		/* Write a unique data on the test address.
409 		 * if the address is out of range, the data is written on
410 		 * 0x200000(=EMU8000_DRAM_OFFSET).  Then the id word is
411 		 * changed by this data.
412 		 */
413 		/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/
414 		EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
415 		EMU8000_SMLD_WRITE(emu, UNIQUE_ID2);
416 		snd_emu8000_write_wait(emu);
417 
418 		/*
419 		 * read the data on the just written DRAM address
420 		 * if not the same then we have reached the end of ram.
421 		 */
422 		/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/
423 		EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
424 		/*snd_emu8000_read_wait(emu);*/
425 		EMU8000_SMLD_READ(emu); /* discard stale data  */
426 		if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2)
427 			break; /* no memory at this address */
428 		snd_emu8000_read_wait(emu);
429 
430 		/*
431 		 * If it is the same it could be that the address just
432 		 * wraps back to the beginning; so check to see if the
433 		 * initial value has been overwritten.
434 		 */
435 		EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
436 		EMU8000_SMLD_READ(emu); /* discard stale data  */
437 		if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
438 			break; /* we must have wrapped around */
439 		snd_emu8000_read_wait(emu);
440 
441 		/* Otherwise, it's valid memory. */
442 	}
443 
444 skip_detect:
445 	/* wait until FULL bit in SMAxW register is false */
446 	for (i = 0; i < 10000; i++) {
447 		if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0)
448 			break;
449 		schedule_timeout_interruptible(1);
450 		if (signal_pending(current))
451 			break;
452 	}
453 	snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE);
454 	snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE);
455 
456 	pr_info("EMU8000 [0x%lx]: %d KiB on-board DRAM detected\n",
457 		    emu->port1, size/1024);
458 
459 	emu->mem_size = size;
460 	emu->dram_checked = 1;
461 }
462 
463 
464 /*
465  * Initiailise the FM section.  You have to do this to use sample RAM
466  * and therefore lose 2 voices.
467  */
468 /*exported*/ void
469 snd_emu8000_init_fm(struct snd_emu8000 *emu)
470 {
471 	unsigned long flags;
472 
473 	/* Initialize the last two channels for DRAM refresh and producing
474 	   the reverb and chorus effects for Yamaha OPL-3 synthesizer */
475 
476 	/* 31: FM left channel, 0xffffe0-0xffffe8 */
477 	EMU8000_DCYSUSV_WRITE(emu, 30, 0x80);
478 	EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */
479 	EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24));
480 	EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8));
481 	EMU8000_CPF_WRITE(emu, 30, 0);
482 	EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3);
483 
484 	/* 32: FM right channel, 0xfffff0-0xfffff8 */
485 	EMU8000_DCYSUSV_WRITE(emu, 31, 0x80);
486 	EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */
487 	EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24));
488 	EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8));
489 	EMU8000_CPF_WRITE(emu, 31, 0x8000);
490 	EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3);
491 
492 	snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0);
493 
494 	spin_lock_irqsave(&emu->reg_lock, flags);
495 	while (!(inw(EMU8000_PTR(emu)) & 0x1000))
496 		;
497 	while ((inw(EMU8000_PTR(emu)) & 0x1000))
498 		;
499 	spin_unlock_irqrestore(&emu->reg_lock, flags);
500 	snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828);
501 	/* this is really odd part.. */
502 	outb(0x3C, EMU8000_PTR(emu));
503 	outb(0, EMU8000_DATA1(emu));
504 
505 	/* skew volume & cutoff */
506 	EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF);
507 	EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF);
508 }
509 
510 
511 /*
512  * The main initialization routine.
513  */
514 static void
515 snd_emu8000_init_hw(struct snd_emu8000 *emu)
516 {
517 	int i;
518 
519 	emu->last_reg = 0xffff; /* reset the last register index */
520 
521 	/* initialize hardware configuration */
522 	EMU8000_HWCF1_WRITE(emu, 0x0059);
523 	EMU8000_HWCF2_WRITE(emu, 0x0020);
524 
525 	/* disable audio; this seems to reduce a clicking noise a bit.. */
526 	EMU8000_HWCF3_WRITE(emu, 0);
527 
528 	/* initialize audio channels */
529 	init_audio(emu);
530 
531 	/* initialize DMA */
532 	init_dma(emu);
533 
534 	/* initialize init arrays */
535 	init_arrays(emu);
536 
537 	/*
538 	 * Initialize the FM section of the AWE32, this is needed
539 	 * for DRAM refresh as well
540 	 */
541 	snd_emu8000_init_fm(emu);
542 
543 	/* terminate all voices */
544 	for (i = 0; i < EMU8000_DRAM_VOICES; i++)
545 		EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F);
546 
547 	/* check DRAM memory size */
548 	size_dram(emu);
549 
550 	/* enable audio */
551 	EMU8000_HWCF3_WRITE(emu, 0x4);
552 
553 	/* set equzlier, chorus and reverb modes */
554 	snd_emu8000_update_equalizer(emu);
555 	snd_emu8000_update_chorus_mode(emu);
556 	snd_emu8000_update_reverb_mode(emu);
557 }
558 
559 
560 /*----------------------------------------------------------------
561  * Bass/Treble Equalizer
562  *----------------------------------------------------------------*/
563 
564 static unsigned short bass_parm[12][3] = {
565 	{0xD26A, 0xD36A, 0x0000}, /* -12 dB */
566 	{0xD25B, 0xD35B, 0x0000}, /*  -8 */
567 	{0xD24C, 0xD34C, 0x0000}, /*  -6 */
568 	{0xD23D, 0xD33D, 0x0000}, /*  -4 */
569 	{0xD21F, 0xD31F, 0x0000}, /*  -2 */
570 	{0xC208, 0xC308, 0x0001}, /*   0 (HW default) */
571 	{0xC219, 0xC319, 0x0001}, /*  +2 */
572 	{0xC22A, 0xC32A, 0x0001}, /*  +4 */
573 	{0xC24C, 0xC34C, 0x0001}, /*  +6 */
574 	{0xC26E, 0xC36E, 0x0001}, /*  +8 */
575 	{0xC248, 0xC384, 0x0002}, /* +10 */
576 	{0xC26A, 0xC36A, 0x0002}, /* +12 dB */
577 };
578 
579 static unsigned short treble_parm[12][9] = {
580 	{0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
581 	{0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
582 	{0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
583 	{0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
584 	{0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
585 	{0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
586 	{0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
587 	{0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
588 	{0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
589 	{0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
590 	{0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
591 	{0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}  /* +12 dB */
592 };
593 
594 
595 /*
596  * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
597  */
598 /*exported*/ void
599 snd_emu8000_update_equalizer(struct snd_emu8000 *emu)
600 {
601 	unsigned short w;
602 	int bass = emu->bass_level;
603 	int treble = emu->treble_level;
604 
605 	if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
606 		return;
607 	EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]);
608 	EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]);
609 	EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]);
610 	EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]);
611 	EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]);
612 	EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]);
613 	EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]);
614 	EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]);
615 	EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]);
616 	EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]);
617 	w = bass_parm[bass][2] + treble_parm[treble][8];
618 	EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262));
619 	EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362));
620 }
621 
622 
623 /*----------------------------------------------------------------
624  * Chorus mode control
625  *----------------------------------------------------------------*/
626 
627 /*
628  * chorus mode parameters
629  */
630 #define SNDRV_EMU8000_CHORUS_1		0
631 #define	SNDRV_EMU8000_CHORUS_2		1
632 #define	SNDRV_EMU8000_CHORUS_3		2
633 #define	SNDRV_EMU8000_CHORUS_4		3
634 #define	SNDRV_EMU8000_CHORUS_FEEDBACK	4
635 #define	SNDRV_EMU8000_CHORUS_FLANGER	5
636 #define	SNDRV_EMU8000_CHORUS_SHORTDELAY	6
637 #define	SNDRV_EMU8000_CHORUS_SHORTDELAY2	7
638 #define SNDRV_EMU8000_CHORUS_PREDEFINED	8
639 /* user can define chorus modes up to 32 */
640 #define SNDRV_EMU8000_CHORUS_NUMBERS	32
641 
642 struct soundfont_chorus_fx {
643 	unsigned short feedback;	/* feedback level (0xE600-0xE6FF) */
644 	unsigned short delay_offset;	/* delay (0-0x0DA3) [1/44100 sec] */
645 	unsigned short lfo_depth;	/* LFO depth (0xBC00-0xBCFF) */
646 	unsigned int delay;	/* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */
647 	unsigned int lfo_freq;		/* LFO freq LFO freq (0-0xFFFFFFFF) */
648 };
649 
650 /* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
651 static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
652 static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = {
653 	{0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
654 	{0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
655 	{0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
656 	{0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
657 	{0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
658 	{0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
659 	{0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */
660 	{0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */
661 };
662 
663 /*exported*/ int
664 snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
665 {
666 	struct soundfont_chorus_fx rec;
667 	if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) {
668 		snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode);
669 		return -EINVAL;
670 	}
671 	if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
672 		return -EFAULT;
673 	chorus_parm[mode] = rec;
674 	chorus_defined[mode] = 1;
675 	return 0;
676 }
677 
678 /*exported*/ void
679 snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu)
680 {
681 	int effect = emu->chorus_mode;
682 	if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS ||
683 	    (effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect]))
684 		return;
685 	EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback);
686 	EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset);
687 	EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth);
688 	EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay);
689 	EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq);
690 	EMU8000_HWCF6_WRITE(emu, 0x8000);
691 	EMU8000_HWCF7_WRITE(emu, 0x0000);
692 }
693 
694 /*----------------------------------------------------------------
695  * Reverb mode control
696  *----------------------------------------------------------------*/
697 
698 /*
699  * reverb mode parameters
700  */
701 #define	SNDRV_EMU8000_REVERB_ROOM1	0
702 #define SNDRV_EMU8000_REVERB_ROOM2	1
703 #define	SNDRV_EMU8000_REVERB_ROOM3	2
704 #define	SNDRV_EMU8000_REVERB_HALL1	3
705 #define	SNDRV_EMU8000_REVERB_HALL2	4
706 #define	SNDRV_EMU8000_REVERB_PLATE	5
707 #define	SNDRV_EMU8000_REVERB_DELAY	6
708 #define	SNDRV_EMU8000_REVERB_PANNINGDELAY 7
709 #define SNDRV_EMU8000_REVERB_PREDEFINED	8
710 /* user can define reverb modes up to 32 */
711 #define SNDRV_EMU8000_REVERB_NUMBERS	32
712 
713 struct soundfont_reverb_fx {
714 	unsigned short parms[28];
715 };
716 
717 /* reverb mode settings; write the following 28 data of 16 bit length
718  *   on the corresponding ports in the reverb_cmds array
719  */
720 static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
721 static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = {
722 {{  /* room 1 */
723 	0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
724 	0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
725 	0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
726 	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
727 }},
728 {{  /* room 2 */
729 	0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
730 	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
731 	0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
732 	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
733 }},
734 {{  /* room 3 */
735 	0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
736 	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
737 	0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
738 	0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
739 }},
740 {{  /* hall 1 */
741 	0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
742 	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
743 	0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
744 	0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
745 }},
746 {{  /* hall 2 */
747 	0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
748 	0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
749 	0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
750 	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
751 }},
752 {{  /* plate */
753 	0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
754 	0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
755 	0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
756 	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
757 }},
758 {{  /* delay */
759 	0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
760 	0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
761 	0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
762 	0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
763 }},
764 {{  /* panning delay */
765 	0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
766 	0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
767 	0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
768 	0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
769 }},
770 };
771 
772 enum { DATA1, DATA2 };
773 #define AWE_INIT1(c)	EMU8000_CMD(2,c), DATA1
774 #define AWE_INIT2(c)	EMU8000_CMD(2,c), DATA2
775 #define AWE_INIT3(c)	EMU8000_CMD(3,c), DATA1
776 #define AWE_INIT4(c)	EMU8000_CMD(3,c), DATA2
777 
778 static struct reverb_cmd_pair {
779 	unsigned short cmd, port;
780 } reverb_cmds[28] = {
781   {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
782   {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
783   {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
784   {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
785   {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
786   {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
787   {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
788 };
789 
790 /*exported*/ int
791 snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
792 {
793 	struct soundfont_reverb_fx rec;
794 
795 	if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) {
796 		snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode);
797 		return -EINVAL;
798 	}
799 	if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
800 		return -EFAULT;
801 	reverb_parm[mode] = rec;
802 	reverb_defined[mode] = 1;
803 	return 0;
804 }
805 
806 /*exported*/ void
807 snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu)
808 {
809 	int effect = emu->reverb_mode;
810 	int i;
811 
812 	if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS ||
813 	    (effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect]))
814 		return;
815 	for (i = 0; i < 28; i++) {
816 		int port;
817 		if (reverb_cmds[i].port == DATA1)
818 			port = EMU8000_DATA1(emu);
819 		else
820 			port = EMU8000_DATA2(emu);
821 		snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]);
822 	}
823 }
824 
825 
826 /*----------------------------------------------------------------
827  * mixer interface
828  *----------------------------------------------------------------*/
829 
830 /*
831  * bass/treble
832  */
833 static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
834 {
835 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
836 	uinfo->count = 1;
837 	uinfo->value.integer.min = 0;
838 	uinfo->value.integer.max = 11;
839 	return 0;
840 }
841 
842 static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
843 {
844 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
845 
846 	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level;
847 	return 0;
848 }
849 
850 static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
851 {
852 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
853 	unsigned long flags;
854 	int change;
855 	unsigned short val1;
856 
857 	val1 = ucontrol->value.integer.value[0] % 12;
858 	spin_lock_irqsave(&emu->control_lock, flags);
859 	if (kcontrol->private_value) {
860 		change = val1 != emu->treble_level;
861 		emu->treble_level = val1;
862 	} else {
863 		change = val1 != emu->bass_level;
864 		emu->bass_level = val1;
865 	}
866 	spin_unlock_irqrestore(&emu->control_lock, flags);
867 	snd_emu8000_update_equalizer(emu);
868 	return change;
869 }
870 
871 static struct snd_kcontrol_new mixer_bass_control =
872 {
873 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
874 	.name = "Synth Tone Control - Bass",
875 	.info = mixer_bass_treble_info,
876 	.get = mixer_bass_treble_get,
877 	.put = mixer_bass_treble_put,
878 	.private_value = 0,
879 };
880 
881 static struct snd_kcontrol_new mixer_treble_control =
882 {
883 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
884 	.name = "Synth Tone Control - Treble",
885 	.info = mixer_bass_treble_info,
886 	.get = mixer_bass_treble_get,
887 	.put = mixer_bass_treble_put,
888 	.private_value = 1,
889 };
890 
891 /*
892  * chorus/reverb mode
893  */
894 static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
895 {
896 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
897 	uinfo->count = 1;
898 	uinfo->value.integer.min = 0;
899 	uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1);
900 	return 0;
901 }
902 
903 static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
904 {
905 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
906 
907 	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode;
908 	return 0;
909 }
910 
911 static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
912 {
913 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
914 	unsigned long flags;
915 	int change;
916 	unsigned short val1;
917 
918 	spin_lock_irqsave(&emu->control_lock, flags);
919 	if (kcontrol->private_value) {
920 		val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS;
921 		change = val1 != emu->chorus_mode;
922 		emu->chorus_mode = val1;
923 	} else {
924 		val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS;
925 		change = val1 != emu->reverb_mode;
926 		emu->reverb_mode = val1;
927 	}
928 	spin_unlock_irqrestore(&emu->control_lock, flags);
929 	if (change) {
930 		if (kcontrol->private_value)
931 			snd_emu8000_update_chorus_mode(emu);
932 		else
933 			snd_emu8000_update_reverb_mode(emu);
934 	}
935 	return change;
936 }
937 
938 static struct snd_kcontrol_new mixer_chorus_mode_control =
939 {
940 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
941 	.name = "Chorus Mode",
942 	.info = mixer_chorus_reverb_info,
943 	.get = mixer_chorus_reverb_get,
944 	.put = mixer_chorus_reverb_put,
945 	.private_value = 1,
946 };
947 
948 static struct snd_kcontrol_new mixer_reverb_mode_control =
949 {
950 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
951 	.name = "Reverb Mode",
952 	.info = mixer_chorus_reverb_info,
953 	.get = mixer_chorus_reverb_get,
954 	.put = mixer_chorus_reverb_put,
955 	.private_value = 0,
956 };
957 
958 /*
959  * FM OPL3 chorus/reverb depth
960  */
961 static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
962 {
963 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
964 	uinfo->count = 1;
965 	uinfo->value.integer.min = 0;
966 	uinfo->value.integer.max = 255;
967 	return 0;
968 }
969 
970 static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
971 {
972 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
973 
974 	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth;
975 	return 0;
976 }
977 
978 static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
979 {
980 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
981 	unsigned long flags;
982 	int change;
983 	unsigned short val1;
984 
985 	val1 = ucontrol->value.integer.value[0] % 256;
986 	spin_lock_irqsave(&emu->control_lock, flags);
987 	if (kcontrol->private_value) {
988 		change = val1 != emu->fm_chorus_depth;
989 		emu->fm_chorus_depth = val1;
990 	} else {
991 		change = val1 != emu->fm_reverb_depth;
992 		emu->fm_reverb_depth = val1;
993 	}
994 	spin_unlock_irqrestore(&emu->control_lock, flags);
995 	if (change)
996 		snd_emu8000_init_fm(emu);
997 	return change;
998 }
999 
1000 static struct snd_kcontrol_new mixer_fm_chorus_depth_control =
1001 {
1002 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1003 	.name = "FM Chorus Depth",
1004 	.info = mixer_fm_depth_info,
1005 	.get = mixer_fm_depth_get,
1006 	.put = mixer_fm_depth_put,
1007 	.private_value = 1,
1008 };
1009 
1010 static struct snd_kcontrol_new mixer_fm_reverb_depth_control =
1011 {
1012 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1013 	.name = "FM Reverb Depth",
1014 	.info = mixer_fm_depth_info,
1015 	.get = mixer_fm_depth_get,
1016 	.put = mixer_fm_depth_put,
1017 	.private_value = 0,
1018 };
1019 
1020 
1021 static struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = {
1022 	&mixer_bass_control,
1023 	&mixer_treble_control,
1024 	&mixer_chorus_mode_control,
1025 	&mixer_reverb_mode_control,
1026 	&mixer_fm_chorus_depth_control,
1027 	&mixer_fm_reverb_depth_control,
1028 };
1029 
1030 /*
1031  * create and attach mixer elements for WaveTable treble/bass controls
1032  */
1033 static int
1034 snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu)
1035 {
1036 	int i, err = 0;
1037 
1038 	if (snd_BUG_ON(!emu || !card))
1039 		return -EINVAL;
1040 
1041 	spin_lock_init(&emu->control_lock);
1042 
1043 	memset(emu->controls, 0, sizeof(emu->controls));
1044 	for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1045 		if ((err = snd_ctl_add(card, emu->controls[i] = snd_ctl_new1(mixer_defs[i], emu))) < 0)
1046 			goto __error;
1047 	}
1048 	return 0;
1049 
1050 __error:
1051 	for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1052 		down_write(&card->controls_rwsem);
1053 		if (emu->controls[i])
1054 			snd_ctl_remove(card, emu->controls[i]);
1055 		up_write(&card->controls_rwsem);
1056 	}
1057 	return err;
1058 }
1059 
1060 
1061 /*
1062  * free resources
1063  */
1064 static int snd_emu8000_free(struct snd_emu8000 *hw)
1065 {
1066 	release_and_free_resource(hw->res_port1);
1067 	release_and_free_resource(hw->res_port2);
1068 	release_and_free_resource(hw->res_port3);
1069 	kfree(hw);
1070 	return 0;
1071 }
1072 
1073 /*
1074  */
1075 static int snd_emu8000_dev_free(struct snd_device *device)
1076 {
1077 	struct snd_emu8000 *hw = device->device_data;
1078 	return snd_emu8000_free(hw);
1079 }
1080 
1081 /*
1082  * initialize and register emu8000 synth device.
1083  */
1084 int
1085 snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports,
1086 		struct snd_seq_device **awe_ret)
1087 {
1088 	struct snd_seq_device *awe;
1089 	struct snd_emu8000 *hw;
1090 	int err;
1091 	static struct snd_device_ops ops = {
1092 		.dev_free = snd_emu8000_dev_free,
1093 	};
1094 
1095 	if (awe_ret)
1096 		*awe_ret = NULL;
1097 
1098 	if (seq_ports <= 0)
1099 		return 0;
1100 
1101 	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
1102 	if (hw == NULL)
1103 		return -ENOMEM;
1104 	spin_lock_init(&hw->reg_lock);
1105 	hw->index = index;
1106 	hw->port1 = port;
1107 	hw->port2 = port + 0x400;
1108 	hw->port3 = port + 0x800;
1109 	if (!(hw->res_port1 = request_region(hw->port1, 4, "Emu8000-1")) ||
1110 	    !(hw->res_port2 = request_region(hw->port2, 4, "Emu8000-2")) ||
1111 	    !(hw->res_port3 = request_region(hw->port3, 4, "Emu8000-3"))) {
1112 		snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3);
1113 		snd_emu8000_free(hw);
1114 		return -EBUSY;
1115 	}
1116 	hw->mem_size = 0;
1117 	hw->card = card;
1118 	hw->seq_ports = seq_ports;
1119 	hw->bass_level = 5;
1120 	hw->treble_level = 9;
1121 	hw->chorus_mode = 2;
1122 	hw->reverb_mode = 4;
1123 	hw->fm_chorus_depth = 0;
1124 	hw->fm_reverb_depth = 0;
1125 
1126 	if (snd_emu8000_detect(hw) < 0) {
1127 		snd_emu8000_free(hw);
1128 		return -ENODEV;
1129 	}
1130 
1131 	snd_emu8000_init_hw(hw);
1132 	if ((err = snd_emu8000_create_mixer(card, hw)) < 0) {
1133 		snd_emu8000_free(hw);
1134 		return err;
1135 	}
1136 
1137 	if ((err = snd_device_new(card, SNDRV_DEV_CODEC, hw, &ops)) < 0) {
1138 		snd_emu8000_free(hw);
1139 		return err;
1140 	}
1141 #if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE))
1142 	if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000,
1143 			       sizeof(struct snd_emu8000*), &awe) >= 0) {
1144 		strcpy(awe->name, "EMU-8000");
1145 		*(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw;
1146 	}
1147 #else
1148 	awe = NULL;
1149 #endif
1150 	if (awe_ret)
1151 		*awe_ret = awe;
1152 
1153 	return 0;
1154 }
1155 
1156 
1157 /*
1158  * exported stuff
1159  */
1160 
1161 EXPORT_SYMBOL(snd_emu8000_poke);
1162 EXPORT_SYMBOL(snd_emu8000_peek);
1163 EXPORT_SYMBOL(snd_emu8000_poke_dw);
1164 EXPORT_SYMBOL(snd_emu8000_peek_dw);
1165 EXPORT_SYMBOL(snd_emu8000_dma_chan);
1166 EXPORT_SYMBOL(snd_emu8000_init_fm);
1167 EXPORT_SYMBOL(snd_emu8000_load_chorus_fx);
1168 EXPORT_SYMBOL(snd_emu8000_load_reverb_fx);
1169 EXPORT_SYMBOL(snd_emu8000_update_chorus_mode);
1170 EXPORT_SYMBOL(snd_emu8000_update_reverb_mode);
1171 EXPORT_SYMBOL(snd_emu8000_update_equalizer);
1172