xref: /openbmc/linux/sound/isa/sb/emu8000.c (revision 7490ca1e)
1 /*
2  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
3  *     and (c) 1999 Steve Ratcliffe <steve@parabola.demon.co.uk>
4  *  Copyright (C) 1999-2000 Takashi Iwai <tiwai@suse.de>
5  *
6  *  Routines for control of EMU8000 chip
7  *
8  *   This program is free software; you can redistribute it and/or modify
9  *   it under the terms of the GNU General Public License as published by
10  *   the Free Software Foundation; either version 2 of the License, or
11  *   (at your option) any later version.
12  *
13  *   This program is distributed in the hope that it will be useful,
14  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *   GNU General Public License for more details.
17  *
18  *   You should have received a copy of the GNU General Public License
19  *   along with this program; if not, write to the Free Software
20  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <linux/wait.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/ioport.h>
27 #include <linux/export.h>
28 #include <linux/delay.h>
29 #include <sound/core.h>
30 #include <sound/emu8000.h>
31 #include <sound/emu8000_reg.h>
32 #include <asm/io.h>
33 #include <asm/uaccess.h>
34 #include <linux/init.h>
35 #include <sound/control.h>
36 #include <sound/initval.h>
37 
38 /*
39  * emu8000 register controls
40  */
41 
42 /*
43  * The following routines read and write registers on the emu8000.  They
44  * should always be called via the EMU8000*READ/WRITE macros and never
45  * directly.  The macros handle the port number and command word.
46  */
47 /* Write a word */
48 void snd_emu8000_poke(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
49 {
50 	unsigned long flags;
51 	spin_lock_irqsave(&emu->reg_lock, flags);
52 	if (reg != emu->last_reg) {
53 		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
54 		emu->last_reg = reg;
55 	}
56 	outw((unsigned short)val, port); /* Send data */
57 	spin_unlock_irqrestore(&emu->reg_lock, flags);
58 }
59 
60 /* Read a word */
61 unsigned short snd_emu8000_peek(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
62 {
63 	unsigned short res;
64 	unsigned long flags;
65 	spin_lock_irqsave(&emu->reg_lock, flags);
66 	if (reg != emu->last_reg) {
67 		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
68 		emu->last_reg = reg;
69 	}
70 	res = inw(port);	/* Read data */
71 	spin_unlock_irqrestore(&emu->reg_lock, flags);
72 	return res;
73 }
74 
75 /* Write a double word */
76 void snd_emu8000_poke_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg, unsigned int val)
77 {
78 	unsigned long flags;
79 	spin_lock_irqsave(&emu->reg_lock, flags);
80 	if (reg != emu->last_reg) {
81 		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
82 		emu->last_reg = reg;
83 	}
84 	outw((unsigned short)val, port); /* Send low word of data */
85 	outw((unsigned short)(val>>16), port+2); /* Send high word of data */
86 	spin_unlock_irqrestore(&emu->reg_lock, flags);
87 }
88 
89 /* Read a double word */
90 unsigned int snd_emu8000_peek_dw(struct snd_emu8000 *emu, unsigned int port, unsigned int reg)
91 {
92 	unsigned short low;
93 	unsigned int res;
94 	unsigned long flags;
95 	spin_lock_irqsave(&emu->reg_lock, flags);
96 	if (reg != emu->last_reg) {
97 		outw((unsigned short)reg, EMU8000_PTR(emu)); /* Set register */
98 		emu->last_reg = reg;
99 	}
100 	low = inw(port);	/* Read low word of data */
101 	res = low + (inw(port+2) << 16);
102 	spin_unlock_irqrestore(&emu->reg_lock, flags);
103 	return res;
104 }
105 
106 /*
107  * Set up / close a channel to be used for DMA.
108  */
109 /*exported*/ void
110 snd_emu8000_dma_chan(struct snd_emu8000 *emu, int ch, int mode)
111 {
112 	unsigned right_bit = (mode & EMU8000_RAM_RIGHT) ? 0x01000000 : 0;
113 	mode &= EMU8000_RAM_MODE_MASK;
114 	if (mode == EMU8000_RAM_CLOSE) {
115 		EMU8000_CCCA_WRITE(emu, ch, 0);
116 		EMU8000_DCYSUSV_WRITE(emu, ch, 0x807F);
117 		return;
118 	}
119 	EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
120 	EMU8000_VTFT_WRITE(emu, ch, 0);
121 	EMU8000_CVCF_WRITE(emu, ch, 0);
122 	EMU8000_PTRX_WRITE(emu, ch, 0x40000000);
123 	EMU8000_CPF_WRITE(emu, ch, 0x40000000);
124 	EMU8000_PSST_WRITE(emu, ch, 0);
125 	EMU8000_CSL_WRITE(emu, ch, 0);
126 	if (mode == EMU8000_RAM_WRITE) /* DMA write */
127 		EMU8000_CCCA_WRITE(emu, ch, 0x06000000 | right_bit);
128 	else	   /* DMA read */
129 		EMU8000_CCCA_WRITE(emu, ch, 0x04000000 | right_bit);
130 }
131 
132 /*
133  */
134 static void __devinit
135 snd_emu8000_read_wait(struct snd_emu8000 *emu)
136 {
137 	while ((EMU8000_SMALR_READ(emu) & 0x80000000) != 0) {
138 		schedule_timeout_interruptible(1);
139 		if (signal_pending(current))
140 			break;
141 	}
142 }
143 
144 /*
145  */
146 static void __devinit
147 snd_emu8000_write_wait(struct snd_emu8000 *emu)
148 {
149 	while ((EMU8000_SMALW_READ(emu) & 0x80000000) != 0) {
150 		schedule_timeout_interruptible(1);
151 		if (signal_pending(current))
152 			break;
153 	}
154 }
155 
156 /*
157  * detect a card at the given port
158  */
159 static int __devinit
160 snd_emu8000_detect(struct snd_emu8000 *emu)
161 {
162 	/* Initialise */
163 	EMU8000_HWCF1_WRITE(emu, 0x0059);
164 	EMU8000_HWCF2_WRITE(emu, 0x0020);
165 	EMU8000_HWCF3_WRITE(emu, 0x0000);
166 	/* Check for a recognisable emu8000 */
167 	/*
168 	if ((EMU8000_U1_READ(emu) & 0x000f) != 0x000c)
169 		return -ENODEV;
170 		*/
171 	if ((EMU8000_HWCF1_READ(emu) & 0x007e) != 0x0058)
172 		return -ENODEV;
173 	if ((EMU8000_HWCF2_READ(emu) & 0x0003) != 0x0003)
174 		return -ENODEV;
175 
176 	snd_printdd("EMU8000 [0x%lx]: Synth chip found\n",
177                     emu->port1);
178 	return 0;
179 }
180 
181 
182 /*
183  * intiailize audio channels
184  */
185 static void __devinit
186 init_audio(struct snd_emu8000 *emu)
187 {
188 	int ch;
189 
190 	/* turn off envelope engines */
191 	for (ch = 0; ch < EMU8000_CHANNELS; ch++)
192 		EMU8000_DCYSUSV_WRITE(emu, ch, 0x80);
193 
194 	/* reset all other parameters to zero */
195 	for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
196 		EMU8000_ENVVOL_WRITE(emu, ch, 0);
197 		EMU8000_ENVVAL_WRITE(emu, ch, 0);
198 		EMU8000_DCYSUS_WRITE(emu, ch, 0);
199 		EMU8000_ATKHLDV_WRITE(emu, ch, 0);
200 		EMU8000_LFO1VAL_WRITE(emu, ch, 0);
201 		EMU8000_ATKHLD_WRITE(emu, ch, 0);
202 		EMU8000_LFO2VAL_WRITE(emu, ch, 0);
203 		EMU8000_IP_WRITE(emu, ch, 0);
204 		EMU8000_IFATN_WRITE(emu, ch, 0);
205 		EMU8000_PEFE_WRITE(emu, ch, 0);
206 		EMU8000_FMMOD_WRITE(emu, ch, 0);
207 		EMU8000_TREMFRQ_WRITE(emu, ch, 0);
208 		EMU8000_FM2FRQ2_WRITE(emu, ch, 0);
209 		EMU8000_PTRX_WRITE(emu, ch, 0);
210 		EMU8000_VTFT_WRITE(emu, ch, 0);
211 		EMU8000_PSST_WRITE(emu, ch, 0);
212 		EMU8000_CSL_WRITE(emu, ch, 0);
213 		EMU8000_CCCA_WRITE(emu, ch, 0);
214 	}
215 
216 	for (ch = 0; ch < EMU8000_CHANNELS; ch++) {
217 		EMU8000_CPF_WRITE(emu, ch, 0);
218 		EMU8000_CVCF_WRITE(emu, ch, 0);
219 	}
220 }
221 
222 
223 /*
224  * initialize DMA address
225  */
226 static void __devinit
227 init_dma(struct snd_emu8000 *emu)
228 {
229 	EMU8000_SMALR_WRITE(emu, 0);
230 	EMU8000_SMARR_WRITE(emu, 0);
231 	EMU8000_SMALW_WRITE(emu, 0);
232 	EMU8000_SMARW_WRITE(emu, 0);
233 }
234 
235 /*
236  * initialization arrays; from ADIP
237  */
238 static unsigned short init1[128] /*__devinitdata*/ = {
239 	0x03ff, 0x0030,  0x07ff, 0x0130, 0x0bff, 0x0230,  0x0fff, 0x0330,
240 	0x13ff, 0x0430,  0x17ff, 0x0530, 0x1bff, 0x0630,  0x1fff, 0x0730,
241 	0x23ff, 0x0830,  0x27ff, 0x0930, 0x2bff, 0x0a30,  0x2fff, 0x0b30,
242 	0x33ff, 0x0c30,  0x37ff, 0x0d30, 0x3bff, 0x0e30,  0x3fff, 0x0f30,
243 
244 	0x43ff, 0x0030,  0x47ff, 0x0130, 0x4bff, 0x0230,  0x4fff, 0x0330,
245 	0x53ff, 0x0430,  0x57ff, 0x0530, 0x5bff, 0x0630,  0x5fff, 0x0730,
246 	0x63ff, 0x0830,  0x67ff, 0x0930, 0x6bff, 0x0a30,  0x6fff, 0x0b30,
247 	0x73ff, 0x0c30,  0x77ff, 0x0d30, 0x7bff, 0x0e30,  0x7fff, 0x0f30,
248 
249 	0x83ff, 0x0030,  0x87ff, 0x0130, 0x8bff, 0x0230,  0x8fff, 0x0330,
250 	0x93ff, 0x0430,  0x97ff, 0x0530, 0x9bff, 0x0630,  0x9fff, 0x0730,
251 	0xa3ff, 0x0830,  0xa7ff, 0x0930, 0xabff, 0x0a30,  0xafff, 0x0b30,
252 	0xb3ff, 0x0c30,  0xb7ff, 0x0d30, 0xbbff, 0x0e30,  0xbfff, 0x0f30,
253 
254 	0xc3ff, 0x0030,  0xc7ff, 0x0130, 0xcbff, 0x0230,  0xcfff, 0x0330,
255 	0xd3ff, 0x0430,  0xd7ff, 0x0530, 0xdbff, 0x0630,  0xdfff, 0x0730,
256 	0xe3ff, 0x0830,  0xe7ff, 0x0930, 0xebff, 0x0a30,  0xefff, 0x0b30,
257 	0xf3ff, 0x0c30,  0xf7ff, 0x0d30, 0xfbff, 0x0e30,  0xffff, 0x0f30,
258 };
259 
260 static unsigned short init2[128] /*__devinitdata*/ = {
261 	0x03ff, 0x8030, 0x07ff, 0x8130, 0x0bff, 0x8230, 0x0fff, 0x8330,
262 	0x13ff, 0x8430, 0x17ff, 0x8530, 0x1bff, 0x8630, 0x1fff, 0x8730,
263 	0x23ff, 0x8830, 0x27ff, 0x8930, 0x2bff, 0x8a30, 0x2fff, 0x8b30,
264 	0x33ff, 0x8c30, 0x37ff, 0x8d30, 0x3bff, 0x8e30, 0x3fff, 0x8f30,
265 
266 	0x43ff, 0x8030, 0x47ff, 0x8130, 0x4bff, 0x8230, 0x4fff, 0x8330,
267 	0x53ff, 0x8430, 0x57ff, 0x8530, 0x5bff, 0x8630, 0x5fff, 0x8730,
268 	0x63ff, 0x8830, 0x67ff, 0x8930, 0x6bff, 0x8a30, 0x6fff, 0x8b30,
269 	0x73ff, 0x8c30, 0x77ff, 0x8d30, 0x7bff, 0x8e30, 0x7fff, 0x8f30,
270 
271 	0x83ff, 0x8030, 0x87ff, 0x8130, 0x8bff, 0x8230, 0x8fff, 0x8330,
272 	0x93ff, 0x8430, 0x97ff, 0x8530, 0x9bff, 0x8630, 0x9fff, 0x8730,
273 	0xa3ff, 0x8830, 0xa7ff, 0x8930, 0xabff, 0x8a30, 0xafff, 0x8b30,
274 	0xb3ff, 0x8c30, 0xb7ff, 0x8d30, 0xbbff, 0x8e30, 0xbfff, 0x8f30,
275 
276 	0xc3ff, 0x8030, 0xc7ff, 0x8130, 0xcbff, 0x8230, 0xcfff, 0x8330,
277 	0xd3ff, 0x8430, 0xd7ff, 0x8530, 0xdbff, 0x8630, 0xdfff, 0x8730,
278 	0xe3ff, 0x8830, 0xe7ff, 0x8930, 0xebff, 0x8a30, 0xefff, 0x8b30,
279 	0xf3ff, 0x8c30, 0xf7ff, 0x8d30, 0xfbff, 0x8e30, 0xffff, 0x8f30,
280 };
281 
282 static unsigned short init3[128] /*__devinitdata*/ = {
283 	0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
284 	0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x8F7C, 0x167E, 0xF254,
285 	0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x8BAA, 0x1B6D, 0xF234,
286 	0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x86E7, 0x229E, 0xF224,
287 
288 	0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x87F6, 0x2C28, 0xF254,
289 	0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x8F02, 0x1341, 0xF264,
290 	0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x8FA9, 0x3EB5, 0xF294,
291 	0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0xC4C3, 0x3EBB, 0xC5C3,
292 
293 	0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x8671, 0x14FD, 0x8287,
294 	0x3EBC, 0xE610, 0x3EC8, 0x8C7B, 0x031A, 0x87E6, 0x3EC8, 0x86F7,
295 	0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x821F, 0x3ECA, 0x8386,
296 	0x3EC1, 0x8C03, 0x3EC9, 0x831E, 0x3ECA, 0x8C4C, 0x3EBF, 0x8C55,
297 
298 	0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x8EAD, 0x3EC8, 0xD308,
299 	0x3EC2, 0x8F7E, 0x3ECB, 0x8219, 0x3ECB, 0xD26E, 0x3EC5, 0x831F,
300 	0x3EC6, 0xC308, 0x3EC3, 0xB2FF, 0x3EC9, 0x8265, 0x3EC9, 0x8319,
301 	0x1342, 0xD36E, 0x3EC7, 0xB3FF, 0x0000, 0x8365, 0x1420, 0x9570,
302 };
303 
304 static unsigned short init4[128] /*__devinitdata*/ = {
305 	0x0C10, 0x8470, 0x14FE, 0xB488, 0x167F, 0xA470, 0x18E7, 0x84B5,
306 	0x1B6E, 0x842A, 0x1F1D, 0x852A, 0x0DA3, 0x0F7C, 0x167E, 0x7254,
307 	0x0000, 0x842A, 0x0001, 0x852A, 0x18E6, 0x0BAA, 0x1B6D, 0x7234,
308 	0x229F, 0x8429, 0x2746, 0x8529, 0x1F1C, 0x06E7, 0x229E, 0x7224,
309 
310 	0x0DA4, 0x8429, 0x2C29, 0x8529, 0x2745, 0x07F6, 0x2C28, 0x7254,
311 	0x383B, 0x8428, 0x320F, 0x8528, 0x320E, 0x0F02, 0x1341, 0x7264,
312 	0x3EB6, 0x8428, 0x3EB9, 0x8528, 0x383A, 0x0FA9, 0x3EB5, 0x7294,
313 	0x3EB7, 0x8474, 0x3EBA, 0x8575, 0x3EB8, 0x44C3, 0x3EBB, 0x45C3,
314 
315 	0x0000, 0xA404, 0x0001, 0xA504, 0x141F, 0x0671, 0x14FD, 0x0287,
316 	0x3EBC, 0xE610, 0x3EC8, 0x0C7B, 0x031A, 0x07E6, 0x3EC8, 0x86F7,
317 	0x3EC0, 0x821E, 0x3EBE, 0xD208, 0x3EBD, 0x021F, 0x3ECA, 0x0386,
318 	0x3EC1, 0x0C03, 0x3EC9, 0x031E, 0x3ECA, 0x8C4C, 0x3EBF, 0x0C55,
319 
320 	0x3EC9, 0xC208, 0x3EC4, 0xBC84, 0x3EC8, 0x0EAD, 0x3EC8, 0xD308,
321 	0x3EC2, 0x8F7E, 0x3ECB, 0x0219, 0x3ECB, 0xD26E, 0x3EC5, 0x031F,
322 	0x3EC6, 0xC308, 0x3EC3, 0x32FF, 0x3EC9, 0x0265, 0x3EC9, 0x8319,
323 	0x1342, 0xD36E, 0x3EC7, 0x33FF, 0x0000, 0x8365, 0x1420, 0x9570,
324 };
325 
326 /* send an initialization array
327  * Taken from the oss driver, not obvious from the doc how this
328  * is meant to work
329  */
330 static void __devinit
331 send_array(struct snd_emu8000 *emu, unsigned short *data, int size)
332 {
333 	int i;
334 	unsigned short *p;
335 
336 	p = data;
337 	for (i = 0; i < size; i++, p++)
338 		EMU8000_INIT1_WRITE(emu, i, *p);
339 	for (i = 0; i < size; i++, p++)
340 		EMU8000_INIT2_WRITE(emu, i, *p);
341 	for (i = 0; i < size; i++, p++)
342 		EMU8000_INIT3_WRITE(emu, i, *p);
343 	for (i = 0; i < size; i++, p++)
344 		EMU8000_INIT4_WRITE(emu, i, *p);
345 }
346 
347 
348 /*
349  * Send initialization arrays to start up, this just follows the
350  * initialisation sequence in the adip.
351  */
352 static void __devinit
353 init_arrays(struct snd_emu8000 *emu)
354 {
355 	send_array(emu, init1, ARRAY_SIZE(init1)/4);
356 
357 	msleep((1024 * 1000) / 44100); /* wait for 1024 clocks */
358 	send_array(emu, init2, ARRAY_SIZE(init2)/4);
359 	send_array(emu, init3, ARRAY_SIZE(init3)/4);
360 
361 	EMU8000_HWCF4_WRITE(emu, 0);
362 	EMU8000_HWCF5_WRITE(emu, 0x83);
363 	EMU8000_HWCF6_WRITE(emu, 0x8000);
364 
365 	send_array(emu, init4, ARRAY_SIZE(init4)/4);
366 }
367 
368 
369 #define UNIQUE_ID1	0xa5b9
370 #define UNIQUE_ID2	0x9d53
371 
372 /*
373  * Size the onboard memory.
374  * This is written so as not to need arbitrary delays after the write. It
375  * seems that the only way to do this is to use the one channel and keep
376  * reallocating between read and write.
377  */
378 static void __devinit
379 size_dram(struct snd_emu8000 *emu)
380 {
381 	int i, size, detected_size;
382 
383 	if (emu->dram_checked)
384 		return;
385 
386 	size = 0;
387 	detected_size = 0;
388 
389 	/* write out a magic number */
390 	snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);
391 	snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_READ);
392 	EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET);
393 	EMU8000_SMLD_WRITE(emu, UNIQUE_ID1);
394 	snd_emu8000_init_fm(emu); /* This must really be here and not 2 lines back even */
395 
396 	while (size < EMU8000_MAX_DRAM) {
397 
398 		size += 512 * 1024;  /* increment 512kbytes */
399 
400 		/* Write a unique data on the test address.
401 		 * if the address is out of range, the data is written on
402 		 * 0x200000(=EMU8000_DRAM_OFFSET).  Then the id word is
403 		 * changed by this data.
404 		 */
405 		/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_WRITE);*/
406 		EMU8000_SMALW_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
407 		EMU8000_SMLD_WRITE(emu, UNIQUE_ID2);
408 		snd_emu8000_write_wait(emu);
409 
410 		/*
411 		 * read the data on the just written DRAM address
412 		 * if not the same then we have reached the end of ram.
413 		 */
414 		/*snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_READ);*/
415 		EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET + (size>>1));
416 		/*snd_emu8000_read_wait(emu);*/
417 		EMU8000_SMLD_READ(emu); /* discard stale data  */
418 		if (EMU8000_SMLD_READ(emu) != UNIQUE_ID2)
419 			break; /* no memory at this address */
420 
421 		detected_size = size;
422 
423 		snd_emu8000_read_wait(emu);
424 
425 		/*
426 		 * If it is the same it could be that the address just
427 		 * wraps back to the beginning; so check to see if the
428 		 * initial value has been overwritten.
429 		 */
430 		EMU8000_SMALR_WRITE(emu, EMU8000_DRAM_OFFSET);
431 		EMU8000_SMLD_READ(emu); /* discard stale data  */
432 		if (EMU8000_SMLD_READ(emu) != UNIQUE_ID1)
433 			break; /* we must have wrapped around */
434 		snd_emu8000_read_wait(emu);
435 	}
436 
437 	/* wait until FULL bit in SMAxW register is false */
438 	for (i = 0; i < 10000; i++) {
439 		if ((EMU8000_SMALW_READ(emu) & 0x80000000) == 0)
440 			break;
441 		schedule_timeout_interruptible(1);
442 		if (signal_pending(current))
443 			break;
444 	}
445 	snd_emu8000_dma_chan(emu, 0, EMU8000_RAM_CLOSE);
446 	snd_emu8000_dma_chan(emu, 1, EMU8000_RAM_CLOSE);
447 
448 	snd_printdd("EMU8000 [0x%lx]: %d Kb on-board memory detected\n",
449 		    emu->port1, detected_size/1024);
450 
451 	emu->mem_size = detected_size;
452 	emu->dram_checked = 1;
453 }
454 
455 
456 /*
457  * Initiailise the FM section.  You have to do this to use sample RAM
458  * and therefore lose 2 voices.
459  */
460 /*exported*/ void
461 snd_emu8000_init_fm(struct snd_emu8000 *emu)
462 {
463 	unsigned long flags;
464 
465 	/* Initialize the last two channels for DRAM refresh and producing
466 	   the reverb and chorus effects for Yamaha OPL-3 synthesizer */
467 
468 	/* 31: FM left channel, 0xffffe0-0xffffe8 */
469 	EMU8000_DCYSUSV_WRITE(emu, 30, 0x80);
470 	EMU8000_PSST_WRITE(emu, 30, 0xFFFFFFE0); /* full left */
471 	EMU8000_CSL_WRITE(emu, 30, 0x00FFFFE8 | (emu->fm_chorus_depth << 24));
472 	EMU8000_PTRX_WRITE(emu, 30, (emu->fm_reverb_depth << 8));
473 	EMU8000_CPF_WRITE(emu, 30, 0);
474 	EMU8000_CCCA_WRITE(emu, 30, 0x00FFFFE3);
475 
476 	/* 32: FM right channel, 0xfffff0-0xfffff8 */
477 	EMU8000_DCYSUSV_WRITE(emu, 31, 0x80);
478 	EMU8000_PSST_WRITE(emu, 31, 0x00FFFFF0); /* full right */
479 	EMU8000_CSL_WRITE(emu, 31, 0x00FFFFF8 | (emu->fm_chorus_depth << 24));
480 	EMU8000_PTRX_WRITE(emu, 31, (emu->fm_reverb_depth << 8));
481 	EMU8000_CPF_WRITE(emu, 31, 0x8000);
482 	EMU8000_CCCA_WRITE(emu, 31, 0x00FFFFF3);
483 
484 	snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0);
485 
486 	spin_lock_irqsave(&emu->reg_lock, flags);
487 	while (!(inw(EMU8000_PTR(emu)) & 0x1000))
488 		;
489 	while ((inw(EMU8000_PTR(emu)) & 0x1000))
490 		;
491 	spin_unlock_irqrestore(&emu->reg_lock, flags);
492 	snd_emu8000_poke((emu), EMU8000_DATA0(emu), EMU8000_CMD(1, (30)), 0x4828);
493 	/* this is really odd part.. */
494 	outb(0x3C, EMU8000_PTR(emu));
495 	outb(0, EMU8000_DATA1(emu));
496 
497 	/* skew volume & cutoff */
498 	EMU8000_VTFT_WRITE(emu, 30, 0x8000FFFF);
499 	EMU8000_VTFT_WRITE(emu, 31, 0x8000FFFF);
500 }
501 
502 
503 /*
504  * The main initialization routine.
505  */
506 static void __devinit
507 snd_emu8000_init_hw(struct snd_emu8000 *emu)
508 {
509 	int i;
510 
511 	emu->last_reg = 0xffff; /* reset the last register index */
512 
513 	/* initialize hardware configuration */
514 	EMU8000_HWCF1_WRITE(emu, 0x0059);
515 	EMU8000_HWCF2_WRITE(emu, 0x0020);
516 
517 	/* disable audio; this seems to reduce a clicking noise a bit.. */
518 	EMU8000_HWCF3_WRITE(emu, 0);
519 
520 	/* initialize audio channels */
521 	init_audio(emu);
522 
523 	/* initialize DMA */
524 	init_dma(emu);
525 
526 	/* initialize init arrays */
527 	init_arrays(emu);
528 
529 	/*
530 	 * Initialize the FM section of the AWE32, this is needed
531 	 * for DRAM refresh as well
532 	 */
533 	snd_emu8000_init_fm(emu);
534 
535 	/* terminate all voices */
536 	for (i = 0; i < EMU8000_DRAM_VOICES; i++)
537 		EMU8000_DCYSUSV_WRITE(emu, 0, 0x807F);
538 
539 	/* check DRAM memory size */
540 	size_dram(emu);
541 
542 	/* enable audio */
543 	EMU8000_HWCF3_WRITE(emu, 0x4);
544 
545 	/* set equzlier, chorus and reverb modes */
546 	snd_emu8000_update_equalizer(emu);
547 	snd_emu8000_update_chorus_mode(emu);
548 	snd_emu8000_update_reverb_mode(emu);
549 }
550 
551 
552 /*----------------------------------------------------------------
553  * Bass/Treble Equalizer
554  *----------------------------------------------------------------*/
555 
556 static unsigned short bass_parm[12][3] = {
557 	{0xD26A, 0xD36A, 0x0000}, /* -12 dB */
558 	{0xD25B, 0xD35B, 0x0000}, /*  -8 */
559 	{0xD24C, 0xD34C, 0x0000}, /*  -6 */
560 	{0xD23D, 0xD33D, 0x0000}, /*  -4 */
561 	{0xD21F, 0xD31F, 0x0000}, /*  -2 */
562 	{0xC208, 0xC308, 0x0001}, /*   0 (HW default) */
563 	{0xC219, 0xC319, 0x0001}, /*  +2 */
564 	{0xC22A, 0xC32A, 0x0001}, /*  +4 */
565 	{0xC24C, 0xC34C, 0x0001}, /*  +6 */
566 	{0xC26E, 0xC36E, 0x0001}, /*  +8 */
567 	{0xC248, 0xC384, 0x0002}, /* +10 */
568 	{0xC26A, 0xC36A, 0x0002}, /* +12 dB */
569 };
570 
571 static unsigned short treble_parm[12][9] = {
572 	{0x821E, 0xC26A, 0x031E, 0xC36A, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001}, /* -12 dB */
573 	{0x821E, 0xC25B, 0x031E, 0xC35B, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
574 	{0x821E, 0xC24C, 0x031E, 0xC34C, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
575 	{0x821E, 0xC23D, 0x031E, 0xC33D, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
576 	{0x821E, 0xC21F, 0x031E, 0xC31F, 0x021E, 0xD208, 0x831E, 0xD308, 0x0001},
577 	{0x821E, 0xD208, 0x031E, 0xD308, 0x021E, 0xD208, 0x831E, 0xD308, 0x0002},
578 	{0x821E, 0xD208, 0x031E, 0xD308, 0x021D, 0xD219, 0x831D, 0xD319, 0x0002},
579 	{0x821E, 0xD208, 0x031E, 0xD308, 0x021C, 0xD22A, 0x831C, 0xD32A, 0x0002},
580 	{0x821E, 0xD208, 0x031E, 0xD308, 0x021A, 0xD24C, 0x831A, 0xD34C, 0x0002},
581 	{0x821E, 0xD208, 0x031E, 0xD308, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}, /* +8 (HW default) */
582 	{0x821D, 0xD219, 0x031D, 0xD319, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002},
583 	{0x821C, 0xD22A, 0x031C, 0xD32A, 0x0219, 0xD26E, 0x8319, 0xD36E, 0x0002}  /* +12 dB */
584 };
585 
586 
587 /*
588  * set Emu8000 digital equalizer; from 0 to 11 [-12dB - 12dB]
589  */
590 /*exported*/ void
591 snd_emu8000_update_equalizer(struct snd_emu8000 *emu)
592 {
593 	unsigned short w;
594 	int bass = emu->bass_level;
595 	int treble = emu->treble_level;
596 
597 	if (bass < 0 || bass > 11 || treble < 0 || treble > 11)
598 		return;
599 	EMU8000_INIT4_WRITE(emu, 0x01, bass_parm[bass][0]);
600 	EMU8000_INIT4_WRITE(emu, 0x11, bass_parm[bass][1]);
601 	EMU8000_INIT3_WRITE(emu, 0x11, treble_parm[treble][0]);
602 	EMU8000_INIT3_WRITE(emu, 0x13, treble_parm[treble][1]);
603 	EMU8000_INIT3_WRITE(emu, 0x1b, treble_parm[treble][2]);
604 	EMU8000_INIT4_WRITE(emu, 0x07, treble_parm[treble][3]);
605 	EMU8000_INIT4_WRITE(emu, 0x0b, treble_parm[treble][4]);
606 	EMU8000_INIT4_WRITE(emu, 0x0d, treble_parm[treble][5]);
607 	EMU8000_INIT4_WRITE(emu, 0x17, treble_parm[treble][6]);
608 	EMU8000_INIT4_WRITE(emu, 0x19, treble_parm[treble][7]);
609 	w = bass_parm[bass][2] + treble_parm[treble][8];
610 	EMU8000_INIT4_WRITE(emu, 0x15, (unsigned short)(w + 0x0262));
611 	EMU8000_INIT4_WRITE(emu, 0x1d, (unsigned short)(w + 0x8362));
612 }
613 
614 
615 /*----------------------------------------------------------------
616  * Chorus mode control
617  *----------------------------------------------------------------*/
618 
619 /*
620  * chorus mode parameters
621  */
622 #define SNDRV_EMU8000_CHORUS_1		0
623 #define	SNDRV_EMU8000_CHORUS_2		1
624 #define	SNDRV_EMU8000_CHORUS_3		2
625 #define	SNDRV_EMU8000_CHORUS_4		3
626 #define	SNDRV_EMU8000_CHORUS_FEEDBACK	4
627 #define	SNDRV_EMU8000_CHORUS_FLANGER	5
628 #define	SNDRV_EMU8000_CHORUS_SHORTDELAY	6
629 #define	SNDRV_EMU8000_CHORUS_SHORTDELAY2	7
630 #define SNDRV_EMU8000_CHORUS_PREDEFINED	8
631 /* user can define chorus modes up to 32 */
632 #define SNDRV_EMU8000_CHORUS_NUMBERS	32
633 
634 struct soundfont_chorus_fx {
635 	unsigned short feedback;	/* feedback level (0xE600-0xE6FF) */
636 	unsigned short delay_offset;	/* delay (0-0x0DA3) [1/44100 sec] */
637 	unsigned short lfo_depth;	/* LFO depth (0xBC00-0xBCFF) */
638 	unsigned int delay;	/* right delay (0-0xFFFFFFFF) [1/256/44100 sec] */
639 	unsigned int lfo_freq;		/* LFO freq LFO freq (0-0xFFFFFFFF) */
640 };
641 
642 /* 5 parameters for each chorus mode; 3 x 16bit, 2 x 32bit */
643 static char chorus_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
644 static struct soundfont_chorus_fx chorus_parm[SNDRV_EMU8000_CHORUS_NUMBERS] = {
645 	{0xE600, 0x03F6, 0xBC2C ,0x00000000, 0x0000006D}, /* chorus 1 */
646 	{0xE608, 0x031A, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 2 */
647 	{0xE610, 0x031A, 0xBC84, 0x00000000, 0x00000083}, /* chorus 3 */
648 	{0xE620, 0x0269, 0xBC6E, 0x00000000, 0x0000017C}, /* chorus 4 */
649 	{0xE680, 0x04D3, 0xBCA6, 0x00000000, 0x0000005B}, /* feedback */
650 	{0xE6E0, 0x044E, 0xBC37, 0x00000000, 0x00000026}, /* flanger */
651 	{0xE600, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay */
652 	{0xE6C0, 0x0B06, 0xBC00, 0x0006E000, 0x00000083}, /* short delay + feedback */
653 };
654 
655 /*exported*/ int
656 snd_emu8000_load_chorus_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
657 {
658 	struct soundfont_chorus_fx rec;
659 	if (mode < SNDRV_EMU8000_CHORUS_PREDEFINED || mode >= SNDRV_EMU8000_CHORUS_NUMBERS) {
660 		snd_printk(KERN_WARNING "invalid chorus mode %d for uploading\n", mode);
661 		return -EINVAL;
662 	}
663 	if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
664 		return -EFAULT;
665 	chorus_parm[mode] = rec;
666 	chorus_defined[mode] = 1;
667 	return 0;
668 }
669 
670 /*exported*/ void
671 snd_emu8000_update_chorus_mode(struct snd_emu8000 *emu)
672 {
673 	int effect = emu->chorus_mode;
674 	if (effect < 0 || effect >= SNDRV_EMU8000_CHORUS_NUMBERS ||
675 	    (effect >= SNDRV_EMU8000_CHORUS_PREDEFINED && !chorus_defined[effect]))
676 		return;
677 	EMU8000_INIT3_WRITE(emu, 0x09, chorus_parm[effect].feedback);
678 	EMU8000_INIT3_WRITE(emu, 0x0c, chorus_parm[effect].delay_offset);
679 	EMU8000_INIT4_WRITE(emu, 0x03, chorus_parm[effect].lfo_depth);
680 	EMU8000_HWCF4_WRITE(emu, chorus_parm[effect].delay);
681 	EMU8000_HWCF5_WRITE(emu, chorus_parm[effect].lfo_freq);
682 	EMU8000_HWCF6_WRITE(emu, 0x8000);
683 	EMU8000_HWCF7_WRITE(emu, 0x0000);
684 }
685 
686 /*----------------------------------------------------------------
687  * Reverb mode control
688  *----------------------------------------------------------------*/
689 
690 /*
691  * reverb mode parameters
692  */
693 #define	SNDRV_EMU8000_REVERB_ROOM1	0
694 #define SNDRV_EMU8000_REVERB_ROOM2	1
695 #define	SNDRV_EMU8000_REVERB_ROOM3	2
696 #define	SNDRV_EMU8000_REVERB_HALL1	3
697 #define	SNDRV_EMU8000_REVERB_HALL2	4
698 #define	SNDRV_EMU8000_REVERB_PLATE	5
699 #define	SNDRV_EMU8000_REVERB_DELAY	6
700 #define	SNDRV_EMU8000_REVERB_PANNINGDELAY 7
701 #define SNDRV_EMU8000_REVERB_PREDEFINED	8
702 /* user can define reverb modes up to 32 */
703 #define SNDRV_EMU8000_REVERB_NUMBERS	32
704 
705 struct soundfont_reverb_fx {
706 	unsigned short parms[28];
707 };
708 
709 /* reverb mode settings; write the following 28 data of 16 bit length
710  *   on the corresponding ports in the reverb_cmds array
711  */
712 static char reverb_defined[SNDRV_EMU8000_CHORUS_NUMBERS];
713 static struct soundfont_reverb_fx reverb_parm[SNDRV_EMU8000_REVERB_NUMBERS] = {
714 {{  /* room 1 */
715 	0xB488, 0xA450, 0x9550, 0x84B5, 0x383A, 0x3EB5, 0x72F4,
716 	0x72A4, 0x7254, 0x7204, 0x7204, 0x7204, 0x4416, 0x4516,
717 	0xA490, 0xA590, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
718 	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
719 }},
720 {{  /* room 2 */
721 	0xB488, 0xA458, 0x9558, 0x84B5, 0x383A, 0x3EB5, 0x7284,
722 	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
723 	0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
724 	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
725 }},
726 {{  /* room 3 */
727 	0xB488, 0xA460, 0x9560, 0x84B5, 0x383A, 0x3EB5, 0x7284,
728 	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4416, 0x4516,
729 	0xA490, 0xA590, 0x842C, 0x852C, 0x842C, 0x852C, 0x842B,
730 	0x852B, 0x842B, 0x852B, 0x842A, 0x852A, 0x842A, 0x852A,
731 }},
732 {{  /* hall 1 */
733 	0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7284,
734 	0x7254, 0x7224, 0x7224, 0x7254, 0x7284, 0x4448, 0x4548,
735 	0xA440, 0xA540, 0x842B, 0x852B, 0x842B, 0x852B, 0x842A,
736 	0x852A, 0x842A, 0x852A, 0x8429, 0x8529, 0x8429, 0x8529,
737 }},
738 {{  /* hall 2 */
739 	0xB488, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7254,
740 	0x7234, 0x7224, 0x7254, 0x7264, 0x7294, 0x44C3, 0x45C3,
741 	0xA404, 0xA504, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
742 	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
743 }},
744 {{  /* plate */
745 	0xB4FF, 0xA470, 0x9570, 0x84B5, 0x383A, 0x3EB5, 0x7234,
746 	0x7234, 0x7234, 0x7234, 0x7234, 0x7234, 0x4448, 0x4548,
747 	0xA440, 0xA540, 0x842A, 0x852A, 0x842A, 0x852A, 0x8429,
748 	0x8529, 0x8429, 0x8529, 0x8428, 0x8528, 0x8428, 0x8528,
749 }},
750 {{  /* delay */
751 	0xB4FF, 0xA470, 0x9500, 0x84B5, 0x333A, 0x39B5, 0x7204,
752 	0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
753 	0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
754 	0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
755 }},
756 {{  /* panning delay */
757 	0xB4FF, 0xA490, 0x9590, 0x8474, 0x333A, 0x39B5, 0x7204,
758 	0x7204, 0x7204, 0x7204, 0x7204, 0x72F4, 0x4400, 0x4500,
759 	0xA4FF, 0xA5FF, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420,
760 	0x8520, 0x8420, 0x8520, 0x8420, 0x8520, 0x8420, 0x8520,
761 }},
762 };
763 
764 enum { DATA1, DATA2 };
765 #define AWE_INIT1(c)	EMU8000_CMD(2,c), DATA1
766 #define AWE_INIT2(c)	EMU8000_CMD(2,c), DATA2
767 #define AWE_INIT3(c)	EMU8000_CMD(3,c), DATA1
768 #define AWE_INIT4(c)	EMU8000_CMD(3,c), DATA2
769 
770 static struct reverb_cmd_pair {
771 	unsigned short cmd, port;
772 } reverb_cmds[28] = {
773   {AWE_INIT1(0x03)}, {AWE_INIT1(0x05)}, {AWE_INIT4(0x1F)}, {AWE_INIT1(0x07)},
774   {AWE_INIT2(0x14)}, {AWE_INIT2(0x16)}, {AWE_INIT1(0x0F)}, {AWE_INIT1(0x17)},
775   {AWE_INIT1(0x1F)}, {AWE_INIT2(0x07)}, {AWE_INIT2(0x0F)}, {AWE_INIT2(0x17)},
776   {AWE_INIT2(0x1D)}, {AWE_INIT2(0x1F)}, {AWE_INIT3(0x01)}, {AWE_INIT3(0x03)},
777   {AWE_INIT1(0x09)}, {AWE_INIT1(0x0B)}, {AWE_INIT1(0x11)}, {AWE_INIT1(0x13)},
778   {AWE_INIT1(0x19)}, {AWE_INIT1(0x1B)}, {AWE_INIT2(0x01)}, {AWE_INIT2(0x03)},
779   {AWE_INIT2(0x09)}, {AWE_INIT2(0x0B)}, {AWE_INIT2(0x11)}, {AWE_INIT2(0x13)},
780 };
781 
782 /*exported*/ int
783 snd_emu8000_load_reverb_fx(struct snd_emu8000 *emu, int mode, const void __user *buf, long len)
784 {
785 	struct soundfont_reverb_fx rec;
786 
787 	if (mode < SNDRV_EMU8000_REVERB_PREDEFINED || mode >= SNDRV_EMU8000_REVERB_NUMBERS) {
788 		snd_printk(KERN_WARNING "invalid reverb mode %d for uploading\n", mode);
789 		return -EINVAL;
790 	}
791 	if (len < (long)sizeof(rec) || copy_from_user(&rec, buf, sizeof(rec)))
792 		return -EFAULT;
793 	reverb_parm[mode] = rec;
794 	reverb_defined[mode] = 1;
795 	return 0;
796 }
797 
798 /*exported*/ void
799 snd_emu8000_update_reverb_mode(struct snd_emu8000 *emu)
800 {
801 	int effect = emu->reverb_mode;
802 	int i;
803 
804 	if (effect < 0 || effect >= SNDRV_EMU8000_REVERB_NUMBERS ||
805 	    (effect >= SNDRV_EMU8000_REVERB_PREDEFINED && !reverb_defined[effect]))
806 		return;
807 	for (i = 0; i < 28; i++) {
808 		int port;
809 		if (reverb_cmds[i].port == DATA1)
810 			port = EMU8000_DATA1(emu);
811 		else
812 			port = EMU8000_DATA2(emu);
813 		snd_emu8000_poke(emu, port, reverb_cmds[i].cmd, reverb_parm[effect].parms[i]);
814 	}
815 }
816 
817 
818 /*----------------------------------------------------------------
819  * mixer interface
820  *----------------------------------------------------------------*/
821 
822 /*
823  * bass/treble
824  */
825 static int mixer_bass_treble_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
826 {
827 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
828 	uinfo->count = 1;
829 	uinfo->value.integer.min = 0;
830 	uinfo->value.integer.max = 11;
831 	return 0;
832 }
833 
834 static int mixer_bass_treble_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
835 {
836 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
837 
838 	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->treble_level : emu->bass_level;
839 	return 0;
840 }
841 
842 static int mixer_bass_treble_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
843 {
844 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
845 	unsigned long flags;
846 	int change;
847 	unsigned short val1;
848 
849 	val1 = ucontrol->value.integer.value[0] % 12;
850 	spin_lock_irqsave(&emu->control_lock, flags);
851 	if (kcontrol->private_value) {
852 		change = val1 != emu->treble_level;
853 		emu->treble_level = val1;
854 	} else {
855 		change = val1 != emu->bass_level;
856 		emu->bass_level = val1;
857 	}
858 	spin_unlock_irqrestore(&emu->control_lock, flags);
859 	snd_emu8000_update_equalizer(emu);
860 	return change;
861 }
862 
863 static struct snd_kcontrol_new mixer_bass_control =
864 {
865 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
866 	.name = "Synth Tone Control - Bass",
867 	.info = mixer_bass_treble_info,
868 	.get = mixer_bass_treble_get,
869 	.put = mixer_bass_treble_put,
870 	.private_value = 0,
871 };
872 
873 static struct snd_kcontrol_new mixer_treble_control =
874 {
875 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
876 	.name = "Synth Tone Control - Treble",
877 	.info = mixer_bass_treble_info,
878 	.get = mixer_bass_treble_get,
879 	.put = mixer_bass_treble_put,
880 	.private_value = 1,
881 };
882 
883 /*
884  * chorus/reverb mode
885  */
886 static int mixer_chorus_reverb_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
887 {
888 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
889 	uinfo->count = 1;
890 	uinfo->value.integer.min = 0;
891 	uinfo->value.integer.max = kcontrol->private_value ? (SNDRV_EMU8000_CHORUS_NUMBERS-1) : (SNDRV_EMU8000_REVERB_NUMBERS-1);
892 	return 0;
893 }
894 
895 static int mixer_chorus_reverb_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
896 {
897 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
898 
899 	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->chorus_mode : emu->reverb_mode;
900 	return 0;
901 }
902 
903 static int mixer_chorus_reverb_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
904 {
905 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
906 	unsigned long flags;
907 	int change;
908 	unsigned short val1;
909 
910 	spin_lock_irqsave(&emu->control_lock, flags);
911 	if (kcontrol->private_value) {
912 		val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_CHORUS_NUMBERS;
913 		change = val1 != emu->chorus_mode;
914 		emu->chorus_mode = val1;
915 	} else {
916 		val1 = ucontrol->value.integer.value[0] % SNDRV_EMU8000_REVERB_NUMBERS;
917 		change = val1 != emu->reverb_mode;
918 		emu->reverb_mode = val1;
919 	}
920 	spin_unlock_irqrestore(&emu->control_lock, flags);
921 	if (change) {
922 		if (kcontrol->private_value)
923 			snd_emu8000_update_chorus_mode(emu);
924 		else
925 			snd_emu8000_update_reverb_mode(emu);
926 	}
927 	return change;
928 }
929 
930 static struct snd_kcontrol_new mixer_chorus_mode_control =
931 {
932 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
933 	.name = "Chorus Mode",
934 	.info = mixer_chorus_reverb_info,
935 	.get = mixer_chorus_reverb_get,
936 	.put = mixer_chorus_reverb_put,
937 	.private_value = 1,
938 };
939 
940 static struct snd_kcontrol_new mixer_reverb_mode_control =
941 {
942 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
943 	.name = "Reverb Mode",
944 	.info = mixer_chorus_reverb_info,
945 	.get = mixer_chorus_reverb_get,
946 	.put = mixer_chorus_reverb_put,
947 	.private_value = 0,
948 };
949 
950 /*
951  * FM OPL3 chorus/reverb depth
952  */
953 static int mixer_fm_depth_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
954 {
955 	uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
956 	uinfo->count = 1;
957 	uinfo->value.integer.min = 0;
958 	uinfo->value.integer.max = 255;
959 	return 0;
960 }
961 
962 static int mixer_fm_depth_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
963 {
964 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
965 
966 	ucontrol->value.integer.value[0] = kcontrol->private_value ? emu->fm_chorus_depth : emu->fm_reverb_depth;
967 	return 0;
968 }
969 
970 static int mixer_fm_depth_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
971 {
972 	struct snd_emu8000 *emu = snd_kcontrol_chip(kcontrol);
973 	unsigned long flags;
974 	int change;
975 	unsigned short val1;
976 
977 	val1 = ucontrol->value.integer.value[0] % 256;
978 	spin_lock_irqsave(&emu->control_lock, flags);
979 	if (kcontrol->private_value) {
980 		change = val1 != emu->fm_chorus_depth;
981 		emu->fm_chorus_depth = val1;
982 	} else {
983 		change = val1 != emu->fm_reverb_depth;
984 		emu->fm_reverb_depth = val1;
985 	}
986 	spin_unlock_irqrestore(&emu->control_lock, flags);
987 	if (change)
988 		snd_emu8000_init_fm(emu);
989 	return change;
990 }
991 
992 static struct snd_kcontrol_new mixer_fm_chorus_depth_control =
993 {
994 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
995 	.name = "FM Chorus Depth",
996 	.info = mixer_fm_depth_info,
997 	.get = mixer_fm_depth_get,
998 	.put = mixer_fm_depth_put,
999 	.private_value = 1,
1000 };
1001 
1002 static struct snd_kcontrol_new mixer_fm_reverb_depth_control =
1003 {
1004 	.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
1005 	.name = "FM Reverb Depth",
1006 	.info = mixer_fm_depth_info,
1007 	.get = mixer_fm_depth_get,
1008 	.put = mixer_fm_depth_put,
1009 	.private_value = 0,
1010 };
1011 
1012 
1013 static struct snd_kcontrol_new *mixer_defs[EMU8000_NUM_CONTROLS] = {
1014 	&mixer_bass_control,
1015 	&mixer_treble_control,
1016 	&mixer_chorus_mode_control,
1017 	&mixer_reverb_mode_control,
1018 	&mixer_fm_chorus_depth_control,
1019 	&mixer_fm_reverb_depth_control,
1020 };
1021 
1022 /*
1023  * create and attach mixer elements for WaveTable treble/bass controls
1024  */
1025 static int __devinit
1026 snd_emu8000_create_mixer(struct snd_card *card, struct snd_emu8000 *emu)
1027 {
1028 	int i, err = 0;
1029 
1030 	if (snd_BUG_ON(!emu || !card))
1031 		return -EINVAL;
1032 
1033 	spin_lock_init(&emu->control_lock);
1034 
1035 	memset(emu->controls, 0, sizeof(emu->controls));
1036 	for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1037 		if ((err = snd_ctl_add(card, emu->controls[i] = snd_ctl_new1(mixer_defs[i], emu))) < 0)
1038 			goto __error;
1039 	}
1040 	return 0;
1041 
1042 __error:
1043 	for (i = 0; i < EMU8000_NUM_CONTROLS; i++) {
1044 		down_write(&card->controls_rwsem);
1045 		if (emu->controls[i])
1046 			snd_ctl_remove(card, emu->controls[i]);
1047 		up_write(&card->controls_rwsem);
1048 	}
1049 	return err;
1050 }
1051 
1052 
1053 /*
1054  * free resources
1055  */
1056 static int snd_emu8000_free(struct snd_emu8000 *hw)
1057 {
1058 	release_and_free_resource(hw->res_port1);
1059 	release_and_free_resource(hw->res_port2);
1060 	release_and_free_resource(hw->res_port3);
1061 	kfree(hw);
1062 	return 0;
1063 }
1064 
1065 /*
1066  */
1067 static int snd_emu8000_dev_free(struct snd_device *device)
1068 {
1069 	struct snd_emu8000 *hw = device->device_data;
1070 	return snd_emu8000_free(hw);
1071 }
1072 
1073 /*
1074  * initialize and register emu8000 synth device.
1075  */
1076 int __devinit
1077 snd_emu8000_new(struct snd_card *card, int index, long port, int seq_ports,
1078 		struct snd_seq_device **awe_ret)
1079 {
1080 	struct snd_seq_device *awe;
1081 	struct snd_emu8000 *hw;
1082 	int err;
1083 	static struct snd_device_ops ops = {
1084 		.dev_free = snd_emu8000_dev_free,
1085 	};
1086 
1087 	if (awe_ret)
1088 		*awe_ret = NULL;
1089 
1090 	if (seq_ports <= 0)
1091 		return 0;
1092 
1093 	hw = kzalloc(sizeof(*hw), GFP_KERNEL);
1094 	if (hw == NULL)
1095 		return -ENOMEM;
1096 	spin_lock_init(&hw->reg_lock);
1097 	hw->index = index;
1098 	hw->port1 = port;
1099 	hw->port2 = port + 0x400;
1100 	hw->port3 = port + 0x800;
1101 	if (!(hw->res_port1 = request_region(hw->port1, 4, "Emu8000-1")) ||
1102 	    !(hw->res_port2 = request_region(hw->port2, 4, "Emu8000-2")) ||
1103 	    !(hw->res_port3 = request_region(hw->port3, 4, "Emu8000-3"))) {
1104 		snd_printk(KERN_ERR "sbawe: can't grab ports 0x%lx, 0x%lx, 0x%lx\n", hw->port1, hw->port2, hw->port3);
1105 		snd_emu8000_free(hw);
1106 		return -EBUSY;
1107 	}
1108 	hw->mem_size = 0;
1109 	hw->card = card;
1110 	hw->seq_ports = seq_ports;
1111 	hw->bass_level = 5;
1112 	hw->treble_level = 9;
1113 	hw->chorus_mode = 2;
1114 	hw->reverb_mode = 4;
1115 	hw->fm_chorus_depth = 0;
1116 	hw->fm_reverb_depth = 0;
1117 
1118 	if (snd_emu8000_detect(hw) < 0) {
1119 		snd_emu8000_free(hw);
1120 		return -ENODEV;
1121 	}
1122 
1123 	snd_emu8000_init_hw(hw);
1124 	if ((err = snd_emu8000_create_mixer(card, hw)) < 0) {
1125 		snd_emu8000_free(hw);
1126 		return err;
1127 	}
1128 
1129 	if ((err = snd_device_new(card, SNDRV_DEV_CODEC, hw, &ops)) < 0) {
1130 		snd_emu8000_free(hw);
1131 		return err;
1132 	}
1133 #if defined(CONFIG_SND_SEQUENCER) || (defined(MODULE) && defined(CONFIG_SND_SEQUENCER_MODULE))
1134 	if (snd_seq_device_new(card, index, SNDRV_SEQ_DEV_ID_EMU8000,
1135 			       sizeof(struct snd_emu8000*), &awe) >= 0) {
1136 		strcpy(awe->name, "EMU-8000");
1137 		*(struct snd_emu8000 **)SNDRV_SEQ_DEVICE_ARGPTR(awe) = hw;
1138 	}
1139 #else
1140 	awe = NULL;
1141 #endif
1142 	if (awe_ret)
1143 		*awe_ret = awe;
1144 
1145 	return 0;
1146 }
1147 
1148 
1149 /*
1150  * exported stuff
1151  */
1152 
1153 EXPORT_SYMBOL(snd_emu8000_poke);
1154 EXPORT_SYMBOL(snd_emu8000_peek);
1155 EXPORT_SYMBOL(snd_emu8000_poke_dw);
1156 EXPORT_SYMBOL(snd_emu8000_peek_dw);
1157 EXPORT_SYMBOL(snd_emu8000_dma_chan);
1158 EXPORT_SYMBOL(snd_emu8000_init_fm);
1159 EXPORT_SYMBOL(snd_emu8000_load_chorus_fx);
1160 EXPORT_SYMBOL(snd_emu8000_load_reverb_fx);
1161 EXPORT_SYMBOL(snd_emu8000_update_chorus_mode);
1162 EXPORT_SYMBOL(snd_emu8000_update_reverb_mode);
1163 EXPORT_SYMBOL(snd_emu8000_update_equalizer);
1164