1 /* 2 * Routines for GF1 DMA control 3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz> 4 * 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 */ 21 22 #include <asm/dma.h> 23 #include <linux/slab.h> 24 #include <sound/core.h> 25 #include <sound/gus.h> 26 27 static void snd_gf1_dma_ack(struct snd_gus_card * gus) 28 { 29 unsigned long flags; 30 31 spin_lock_irqsave(&gus->reg_lock, flags); 32 snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL, 0x00); 33 snd_gf1_look8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL); 34 spin_unlock_irqrestore(&gus->reg_lock, flags); 35 } 36 37 static void snd_gf1_dma_program(struct snd_gus_card * gus, 38 unsigned int addr, 39 unsigned long buf_addr, 40 unsigned int count, 41 unsigned int cmd) 42 { 43 unsigned long flags; 44 unsigned int address; 45 unsigned char dma_cmd; 46 unsigned int address_high; 47 48 snd_printdd("dma_transfer: addr=0x%x, buf=0x%lx, count=0x%x\n", 49 addr, buf_addr, count); 50 51 if (gus->gf1.dma1 > 3) { 52 if (gus->gf1.enh_mode) { 53 address = addr >> 1; 54 } else { 55 if (addr & 0x1f) { 56 snd_printd("snd_gf1_dma_transfer: unaligned address (0x%x)?\n", addr); 57 return; 58 } 59 address = (addr & 0x000c0000) | ((addr & 0x0003ffff) >> 1); 60 } 61 } else { 62 address = addr; 63 } 64 65 dma_cmd = SNDRV_GF1_DMA_ENABLE | (unsigned short) cmd; 66 #if 0 67 dma_cmd |= 0x08; 68 #endif 69 if (dma_cmd & SNDRV_GF1_DMA_16BIT) { 70 count++; 71 count &= ~1; /* align */ 72 } 73 if (gus->gf1.dma1 > 3) { 74 dma_cmd |= SNDRV_GF1_DMA_WIDTH16; 75 count++; 76 count &= ~1; /* align */ 77 } 78 snd_gf1_dma_ack(gus); 79 snd_dma_program(gus->gf1.dma1, buf_addr, count, dma_cmd & SNDRV_GF1_DMA_READ ? DMA_MODE_READ : DMA_MODE_WRITE); 80 #if 0 81 snd_printk(KERN_DEBUG "address = 0x%x, count = 0x%x, dma_cmd = 0x%x\n", 82 address << 1, count, dma_cmd); 83 #endif 84 spin_lock_irqsave(&gus->reg_lock, flags); 85 if (gus->gf1.enh_mode) { 86 address_high = ((address >> 16) & 0x000000f0) | (address & 0x0000000f); 87 snd_gf1_write16(gus, SNDRV_GF1_GW_DRAM_DMA_LOW, (unsigned short) (address >> 4)); 88 snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_HIGH, (unsigned char) address_high); 89 } else 90 snd_gf1_write16(gus, SNDRV_GF1_GW_DRAM_DMA_LOW, (unsigned short) (address >> 4)); 91 snd_gf1_write8(gus, SNDRV_GF1_GB_DRAM_DMA_CONTROL, dma_cmd); 92 spin_unlock_irqrestore(&gus->reg_lock, flags); 93 } 94 95 static struct snd_gf1_dma_block *snd_gf1_dma_next_block(struct snd_gus_card * gus) 96 { 97 struct snd_gf1_dma_block *block; 98 99 /* PCM block have bigger priority than synthesizer one */ 100 if (gus->gf1.dma_data_pcm) { 101 block = gus->gf1.dma_data_pcm; 102 if (gus->gf1.dma_data_pcm_last == block) { 103 gus->gf1.dma_data_pcm = 104 gus->gf1.dma_data_pcm_last = NULL; 105 } else { 106 gus->gf1.dma_data_pcm = block->next; 107 } 108 } else if (gus->gf1.dma_data_synth) { 109 block = gus->gf1.dma_data_synth; 110 if (gus->gf1.dma_data_synth_last == block) { 111 gus->gf1.dma_data_synth = 112 gus->gf1.dma_data_synth_last = NULL; 113 } else { 114 gus->gf1.dma_data_synth = block->next; 115 } 116 } else { 117 block = NULL; 118 } 119 if (block) { 120 gus->gf1.dma_ack = block->ack; 121 gus->gf1.dma_private_data = block->private_data; 122 } 123 return block; 124 } 125 126 127 static void snd_gf1_dma_interrupt(struct snd_gus_card * gus) 128 { 129 struct snd_gf1_dma_block *block; 130 131 snd_gf1_dma_ack(gus); 132 if (gus->gf1.dma_ack) 133 gus->gf1.dma_ack(gus, gus->gf1.dma_private_data); 134 spin_lock(&gus->dma_lock); 135 if (gus->gf1.dma_data_pcm == NULL && 136 gus->gf1.dma_data_synth == NULL) { 137 gus->gf1.dma_ack = NULL; 138 gus->gf1.dma_flags &= ~SNDRV_GF1_DMA_TRIGGER; 139 spin_unlock(&gus->dma_lock); 140 return; 141 } 142 block = snd_gf1_dma_next_block(gus); 143 spin_unlock(&gus->dma_lock); 144 snd_gf1_dma_program(gus, block->addr, block->buf_addr, block->count, (unsigned short) block->cmd); 145 kfree(block); 146 #if 0 147 snd_printd(KERN_DEBUG "program dma (IRQ) - " 148 "addr = 0x%x, buffer = 0x%lx, count = 0x%x, cmd = 0x%x\n", 149 block->addr, block->buf_addr, block->count, block->cmd); 150 #endif 151 } 152 153 int snd_gf1_dma_init(struct snd_gus_card * gus) 154 { 155 mutex_lock(&gus->dma_mutex); 156 gus->gf1.dma_shared++; 157 if (gus->gf1.dma_shared > 1) { 158 mutex_unlock(&gus->dma_mutex); 159 return 0; 160 } 161 gus->gf1.interrupt_handler_dma_write = snd_gf1_dma_interrupt; 162 gus->gf1.dma_data_pcm = 163 gus->gf1.dma_data_pcm_last = 164 gus->gf1.dma_data_synth = 165 gus->gf1.dma_data_synth_last = NULL; 166 mutex_unlock(&gus->dma_mutex); 167 return 0; 168 } 169 170 int snd_gf1_dma_done(struct snd_gus_card * gus) 171 { 172 struct snd_gf1_dma_block *block; 173 174 mutex_lock(&gus->dma_mutex); 175 gus->gf1.dma_shared--; 176 if (!gus->gf1.dma_shared) { 177 snd_dma_disable(gus->gf1.dma1); 178 snd_gf1_set_default_handlers(gus, SNDRV_GF1_HANDLER_DMA_WRITE); 179 snd_gf1_dma_ack(gus); 180 while ((block = gus->gf1.dma_data_pcm)) { 181 gus->gf1.dma_data_pcm = block->next; 182 kfree(block); 183 } 184 while ((block = gus->gf1.dma_data_synth)) { 185 gus->gf1.dma_data_synth = block->next; 186 kfree(block); 187 } 188 gus->gf1.dma_data_pcm_last = 189 gus->gf1.dma_data_synth_last = NULL; 190 } 191 mutex_unlock(&gus->dma_mutex); 192 return 0; 193 } 194 195 int snd_gf1_dma_transfer_block(struct snd_gus_card * gus, 196 struct snd_gf1_dma_block * __block, 197 int atomic, 198 int synth) 199 { 200 unsigned long flags; 201 struct snd_gf1_dma_block *block; 202 203 block = kmalloc(sizeof(*block), atomic ? GFP_ATOMIC : GFP_KERNEL); 204 if (block == NULL) { 205 snd_printk(KERN_ERR "gf1: DMA transfer failure; not enough memory\n"); 206 return -ENOMEM; 207 } 208 *block = *__block; 209 block->next = NULL; 210 211 snd_printdd("addr = 0x%x, buffer = 0x%lx, count = 0x%x, cmd = 0x%x\n", 212 block->addr, (long) block->buffer, block->count, 213 block->cmd); 214 215 snd_printdd("gus->gf1.dma_data_pcm_last = 0x%lx\n", 216 (long)gus->gf1.dma_data_pcm_last); 217 snd_printdd("gus->gf1.dma_data_pcm = 0x%lx\n", 218 (long)gus->gf1.dma_data_pcm); 219 220 spin_lock_irqsave(&gus->dma_lock, flags); 221 if (synth) { 222 if (gus->gf1.dma_data_synth_last) { 223 gus->gf1.dma_data_synth_last->next = block; 224 gus->gf1.dma_data_synth_last = block; 225 } else { 226 gus->gf1.dma_data_synth = 227 gus->gf1.dma_data_synth_last = block; 228 } 229 } else { 230 if (gus->gf1.dma_data_pcm_last) { 231 gus->gf1.dma_data_pcm_last->next = block; 232 gus->gf1.dma_data_pcm_last = block; 233 } else { 234 gus->gf1.dma_data_pcm = 235 gus->gf1.dma_data_pcm_last = block; 236 } 237 } 238 if (!(gus->gf1.dma_flags & SNDRV_GF1_DMA_TRIGGER)) { 239 gus->gf1.dma_flags |= SNDRV_GF1_DMA_TRIGGER; 240 block = snd_gf1_dma_next_block(gus); 241 spin_unlock_irqrestore(&gus->dma_lock, flags); 242 if (block == NULL) 243 return 0; 244 snd_gf1_dma_program(gus, block->addr, block->buf_addr, block->count, (unsigned short) block->cmd); 245 kfree(block); 246 return 0; 247 } 248 spin_unlock_irqrestore(&gus->dma_lock, flags); 249 return 0; 250 } 251