1 /*
2  * fireworks_pcm.c - a part of driver for Fireworks based devices
3  *
4  * Copyright (c) 2009-2010 Clemens Ladisch
5  * Copyright (c) 2013-2014 Takashi Sakamoto
6  *
7  * Licensed under the terms of the GNU General Public License, version 2.
8  */
9 #include "./fireworks.h"
10 
11 /*
12  * NOTE:
13  * Fireworks changes its AMDTP channels for PCM data according to its sampling
14  * rate. There are three modes. Here _XX is either _rx or _tx.
15  *  0:  32.0- 48.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels applied
16  *  1:  88.2- 96.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_2x applied
17  *  2: 176.4-192.0 kHz then snd_efw_hwinfo.amdtp_XX_pcm_channels_4x applied
18  *
19  * The number of PCM channels for analog input and output are always fixed but
20  * the number of PCM channels for digital input and output are differed.
21  *
22  * Additionally, according to "AudioFire Owner's Manual Version 2.2", in some
23  * model, the number of PCM channels for digital input has more restriction
24  * depending on which digital interface is selected.
25  *  - S/PDIF coaxial and optical	: use input 1-2
26  *  - ADAT optical at 32.0-48.0 kHz	: use input 1-8
27  *  - ADAT optical at 88.2-96.0 kHz	: use input 1-4 (S/MUX format)
28  *
29  * The data in AMDTP channels for blank PCM channels are zero.
30  */
31 static const unsigned int freq_table[] = {
32 	/* multiplier mode 0 */
33 	[0] = 32000,
34 	[1] = 44100,
35 	[2] = 48000,
36 	/* multiplier mode 1 */
37 	[3] = 88200,
38 	[4] = 96000,
39 	/* multiplier mode 2 */
40 	[5] = 176400,
41 	[6] = 192000,
42 };
43 
44 static inline unsigned int
45 get_multiplier_mode_with_index(unsigned int index)
46 {
47 	return ((int)index - 1) / 2;
48 }
49 
50 int snd_efw_get_multiplier_mode(unsigned int sampling_rate, unsigned int *mode)
51 {
52 	unsigned int i;
53 
54 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
55 		if (freq_table[i] == sampling_rate) {
56 			*mode = get_multiplier_mode_with_index(i);
57 			return 0;
58 		}
59 	}
60 
61 	return -EINVAL;
62 }
63 
64 static int
65 hw_rule_rate(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
66 {
67 	unsigned int *pcm_channels = rule->private;
68 	struct snd_interval *r =
69 		hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
70 	const struct snd_interval *c =
71 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_CHANNELS);
72 	struct snd_interval t = {
73 		.min = UINT_MAX, .max = 0, .integer = 1
74 	};
75 	unsigned int i, mode;
76 
77 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
78 		mode = get_multiplier_mode_with_index(i);
79 		if (!snd_interval_test(c, pcm_channels[mode]))
80 			continue;
81 
82 		t.min = min(t.min, freq_table[i]);
83 		t.max = max(t.max, freq_table[i]);
84 	}
85 
86 	return snd_interval_refine(r, &t);
87 }
88 
89 static int
90 hw_rule_channels(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
91 {
92 	unsigned int *pcm_channels = rule->private;
93 	struct snd_interval *c =
94 		hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
95 	const struct snd_interval *r =
96 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
97 	struct snd_interval t = {
98 		.min = UINT_MAX, .max = 0, .integer = 1
99 	};
100 	unsigned int i, mode;
101 
102 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
103 		mode = get_multiplier_mode_with_index(i);
104 		if (!snd_interval_test(r, freq_table[i]))
105 			continue;
106 
107 		t.min = min(t.min, pcm_channels[mode]);
108 		t.max = max(t.max, pcm_channels[mode]);
109 	}
110 
111 	return snd_interval_refine(c, &t);
112 }
113 
114 static void
115 limit_channels(struct snd_pcm_hardware *hw, unsigned int *pcm_channels)
116 {
117 	unsigned int i, mode;
118 
119 	hw->channels_min = UINT_MAX;
120 	hw->channels_max = 0;
121 
122 	for (i = 0; i < ARRAY_SIZE(freq_table); i++) {
123 		mode = get_multiplier_mode_with_index(i);
124 		if (pcm_channels[mode] == 0)
125 			continue;
126 
127 		hw->channels_min = min(hw->channels_min, pcm_channels[mode]);
128 		hw->channels_max = max(hw->channels_max, pcm_channels[mode]);
129 	}
130 }
131 
132 static int
133 pcm_init_hw_params(struct snd_efw *efw,
134 		   struct snd_pcm_substream *substream)
135 {
136 	struct snd_pcm_runtime *runtime = substream->runtime;
137 	struct amdtp_stream *s;
138 	unsigned int *pcm_channels;
139 	int err;
140 
141 	if (substream->stream == SNDRV_PCM_STREAM_CAPTURE) {
142 		runtime->hw.formats = AM824_IN_PCM_FORMAT_BITS;
143 		s = &efw->tx_stream;
144 		pcm_channels = efw->pcm_capture_channels;
145 	} else {
146 		runtime->hw.formats = AM824_OUT_PCM_FORMAT_BITS;
147 		s = &efw->rx_stream;
148 		pcm_channels = efw->pcm_playback_channels;
149 	}
150 
151 	/* limit rates */
152 	runtime->hw.rates = efw->supported_sampling_rate,
153 	snd_pcm_limit_hw_rates(runtime);
154 
155 	limit_channels(&runtime->hw, pcm_channels);
156 
157 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
158 				  hw_rule_channels, pcm_channels,
159 				  SNDRV_PCM_HW_PARAM_RATE, -1);
160 	if (err < 0)
161 		goto end;
162 
163 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
164 				  hw_rule_rate, pcm_channels,
165 				  SNDRV_PCM_HW_PARAM_CHANNELS, -1);
166 	if (err < 0)
167 		goto end;
168 
169 	err = amdtp_am824_add_pcm_hw_constraints(s, runtime);
170 end:
171 	return err;
172 }
173 
174 static int pcm_open(struct snd_pcm_substream *substream)
175 {
176 	struct snd_efw *efw = substream->private_data;
177 	unsigned int sampling_rate;
178 	enum snd_efw_clock_source clock_source;
179 	int err;
180 
181 	err = snd_efw_stream_lock_try(efw);
182 	if (err < 0)
183 		goto end;
184 
185 	err = pcm_init_hw_params(efw, substream);
186 	if (err < 0)
187 		goto err_locked;
188 
189 	err = snd_efw_command_get_clock_source(efw, &clock_source);
190 	if (err < 0)
191 		goto err_locked;
192 
193 	/*
194 	 * When source of clock is not internal or any PCM streams are running,
195 	 * available sampling rate is limited at current sampling rate.
196 	 */
197 	if ((clock_source != SND_EFW_CLOCK_SOURCE_INTERNAL) ||
198 	    amdtp_stream_pcm_running(&efw->tx_stream) ||
199 	    amdtp_stream_pcm_running(&efw->rx_stream)) {
200 		err = snd_efw_command_get_sampling_rate(efw, &sampling_rate);
201 		if (err < 0)
202 			goto err_locked;
203 		substream->runtime->hw.rate_min = sampling_rate;
204 		substream->runtime->hw.rate_max = sampling_rate;
205 	}
206 
207 	snd_pcm_set_sync(substream);
208 end:
209 	return err;
210 err_locked:
211 	snd_efw_stream_lock_release(efw);
212 	return err;
213 }
214 
215 static int pcm_close(struct snd_pcm_substream *substream)
216 {
217 	struct snd_efw *efw = substream->private_data;
218 	snd_efw_stream_lock_release(efw);
219 	return 0;
220 }
221 
222 static int pcm_hw_params(struct snd_pcm_substream *substream,
223 				 struct snd_pcm_hw_params *hw_params)
224 {
225 	struct snd_efw *efw = substream->private_data;
226 	int err;
227 
228 	err = snd_pcm_lib_alloc_vmalloc_buffer(substream,
229 					       params_buffer_bytes(hw_params));
230 	if (err < 0)
231 		return err;
232 
233 	if (substream->runtime->status->state == SNDRV_PCM_STATE_OPEN) {
234 		unsigned int rate = params_rate(hw_params);
235 
236 		mutex_lock(&efw->mutex);
237 		err = snd_efw_stream_reserve_duplex(efw, rate);
238 		if (err >= 0)
239 			++efw->substreams_counter;
240 		mutex_unlock(&efw->mutex);
241 	}
242 
243 	return err;
244 }
245 
246 static int pcm_hw_free(struct snd_pcm_substream *substream)
247 {
248 	struct snd_efw *efw = substream->private_data;
249 
250 	mutex_lock(&efw->mutex);
251 
252 	if (substream->runtime->status->state != SNDRV_PCM_STATE_OPEN)
253 		--efw->substreams_counter;
254 
255 	snd_efw_stream_stop_duplex(efw);
256 
257 	mutex_unlock(&efw->mutex);
258 
259 	return snd_pcm_lib_free_vmalloc_buffer(substream);
260 }
261 
262 static int pcm_capture_prepare(struct snd_pcm_substream *substream)
263 {
264 	struct snd_efw *efw = substream->private_data;
265 	int err;
266 
267 	err = snd_efw_stream_start_duplex(efw);
268 	if (err >= 0)
269 		amdtp_stream_pcm_prepare(&efw->tx_stream);
270 
271 	return err;
272 }
273 static int pcm_playback_prepare(struct snd_pcm_substream *substream)
274 {
275 	struct snd_efw *efw = substream->private_data;
276 	int err;
277 
278 	err = snd_efw_stream_start_duplex(efw);
279 	if (err >= 0)
280 		amdtp_stream_pcm_prepare(&efw->rx_stream);
281 
282 	return err;
283 }
284 
285 static int pcm_capture_trigger(struct snd_pcm_substream *substream, int cmd)
286 {
287 	struct snd_efw *efw = substream->private_data;
288 
289 	switch (cmd) {
290 	case SNDRV_PCM_TRIGGER_START:
291 		amdtp_stream_pcm_trigger(&efw->tx_stream, substream);
292 		break;
293 	case SNDRV_PCM_TRIGGER_STOP:
294 		amdtp_stream_pcm_trigger(&efw->tx_stream, NULL);
295 		break;
296 	default:
297 		return -EINVAL;
298 	}
299 
300 	return 0;
301 }
302 static int pcm_playback_trigger(struct snd_pcm_substream *substream, int cmd)
303 {
304 	struct snd_efw *efw = substream->private_data;
305 
306 	switch (cmd) {
307 	case SNDRV_PCM_TRIGGER_START:
308 		amdtp_stream_pcm_trigger(&efw->rx_stream, substream);
309 		break;
310 	case SNDRV_PCM_TRIGGER_STOP:
311 		amdtp_stream_pcm_trigger(&efw->rx_stream, NULL);
312 		break;
313 	default:
314 		return -EINVAL;
315 	}
316 
317 	return 0;
318 }
319 
320 static snd_pcm_uframes_t pcm_capture_pointer(struct snd_pcm_substream *sbstrm)
321 {
322 	struct snd_efw *efw = sbstrm->private_data;
323 	return amdtp_stream_pcm_pointer(&efw->tx_stream);
324 }
325 static snd_pcm_uframes_t pcm_playback_pointer(struct snd_pcm_substream *sbstrm)
326 {
327 	struct snd_efw *efw = sbstrm->private_data;
328 	return amdtp_stream_pcm_pointer(&efw->rx_stream);
329 }
330 
331 static int pcm_capture_ack(struct snd_pcm_substream *substream)
332 {
333 	struct snd_efw *efw = substream->private_data;
334 
335 	return amdtp_stream_pcm_ack(&efw->tx_stream);
336 }
337 
338 static int pcm_playback_ack(struct snd_pcm_substream *substream)
339 {
340 	struct snd_efw *efw = substream->private_data;
341 
342 	return amdtp_stream_pcm_ack(&efw->rx_stream);
343 }
344 
345 int snd_efw_create_pcm_devices(struct snd_efw *efw)
346 {
347 	static const struct snd_pcm_ops capture_ops = {
348 		.open		= pcm_open,
349 		.close		= pcm_close,
350 		.ioctl		= snd_pcm_lib_ioctl,
351 		.hw_params	= pcm_hw_params,
352 		.hw_free	= pcm_hw_free,
353 		.prepare	= pcm_capture_prepare,
354 		.trigger	= pcm_capture_trigger,
355 		.pointer	= pcm_capture_pointer,
356 		.ack		= pcm_capture_ack,
357 		.page		= snd_pcm_lib_get_vmalloc_page,
358 	};
359 	static const struct snd_pcm_ops playback_ops = {
360 		.open		= pcm_open,
361 		.close		= pcm_close,
362 		.ioctl		= snd_pcm_lib_ioctl,
363 		.hw_params	= pcm_hw_params,
364 		.hw_free	= pcm_hw_free,
365 		.prepare	= pcm_playback_prepare,
366 		.trigger	= pcm_playback_trigger,
367 		.pointer	= pcm_playback_pointer,
368 		.ack		= pcm_playback_ack,
369 		.page		= snd_pcm_lib_get_vmalloc_page,
370 	};
371 	struct snd_pcm *pcm;
372 	int err;
373 
374 	err = snd_pcm_new(efw->card, efw->card->driver, 0, 1, 1, &pcm);
375 	if (err < 0)
376 		goto end;
377 
378 	pcm->private_data = efw;
379 	snprintf(pcm->name, sizeof(pcm->name), "%s PCM", efw->card->shortname);
380 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &playback_ops);
381 	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &capture_ops);
382 end:
383 	return err;
384 }
385 
386