xref: /openbmc/linux/sound/firewire/fireface/ff-transaction.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ff-transaction.c - a part of driver for RME Fireface series
4  *
5  * Copyright (c) 2015-2017 Takashi Sakamoto
6  */
7 
8 #include "ff.h"
9 
10 static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port,
11 				     int rcode)
12 {
13 	struct snd_rawmidi_substream *substream =
14 				READ_ONCE(ff->rx_midi_substreams[port]);
15 
16 	if (rcode_is_permanent_error(rcode)) {
17 		ff->rx_midi_error[port] = true;
18 		return;
19 	}
20 
21 	if (rcode != RCODE_COMPLETE) {
22 		/* Transfer the message again, immediately. */
23 		ff->next_ktime[port] = 0;
24 		schedule_work(&ff->rx_midi_work[port]);
25 		return;
26 	}
27 
28 	snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]);
29 	ff->rx_bytes[port] = 0;
30 
31 	if (!snd_rawmidi_transmit_empty(substream))
32 		schedule_work(&ff->rx_midi_work[port]);
33 }
34 
35 static void finish_transmit_midi0_msg(struct fw_card *card, int rcode,
36 				      void *data, size_t length,
37 				      void *callback_data)
38 {
39 	struct snd_ff *ff =
40 		container_of(callback_data, struct snd_ff, transactions[0]);
41 	finish_transmit_midi_msg(ff, 0, rcode);
42 }
43 
44 static void finish_transmit_midi1_msg(struct fw_card *card, int rcode,
45 				      void *data, size_t length,
46 				      void *callback_data)
47 {
48 	struct snd_ff *ff =
49 		container_of(callback_data, struct snd_ff, transactions[1]);
50 	finish_transmit_midi_msg(ff, 1, rcode);
51 }
52 
53 static void transmit_midi_msg(struct snd_ff *ff, unsigned int port)
54 {
55 	struct snd_rawmidi_substream *substream =
56 			READ_ONCE(ff->rx_midi_substreams[port]);
57 	int quad_count;
58 
59 	struct fw_device *fw_dev = fw_parent_device(ff->unit);
60 	unsigned long long addr;
61 	int generation;
62 	fw_transaction_callback_t callback;
63 	int tcode;
64 
65 	if (substream == NULL || snd_rawmidi_transmit_empty(substream))
66 		return;
67 
68 	if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port])
69 		return;
70 
71 	/* Do it in next chance. */
72 	if (ktime_after(ff->next_ktime[port], ktime_get())) {
73 		schedule_work(&ff->rx_midi_work[port]);
74 		return;
75 	}
76 
77 	quad_count = ff->spec->protocol->fill_midi_msg(ff, substream, port);
78 	if (quad_count <= 0)
79 		return;
80 
81 	if (port == 0) {
82 		addr = ff->spec->midi_rx_addrs[0];
83 		callback = finish_transmit_midi0_msg;
84 	} else {
85 		addr = ff->spec->midi_rx_addrs[1];
86 		callback = finish_transmit_midi1_msg;
87 	}
88 
89 	/* Set interval to next transaction. */
90 	ff->next_ktime[port] = ktime_add_ns(ktime_get(),
91 			ff->rx_bytes[port] * 8 * (NSEC_PER_SEC / 31250));
92 
93 	if (quad_count == 1)
94 		tcode = TCODE_WRITE_QUADLET_REQUEST;
95 	else
96 		tcode = TCODE_WRITE_BLOCK_REQUEST;
97 
98 	/*
99 	 * In Linux FireWire core, when generation is updated with memory
100 	 * barrier, node id has already been updated. In this module, After
101 	 * this smp_rmb(), load/store instructions to memory are completed.
102 	 * Thus, both of generation and node id are available with recent
103 	 * values. This is a light-serialization solution to handle bus reset
104 	 * events on IEEE 1394 bus.
105 	 */
106 	generation = fw_dev->generation;
107 	smp_rmb();
108 	fw_send_request(fw_dev->card, &ff->transactions[port], tcode,
109 			fw_dev->node_id, generation, fw_dev->max_speed,
110 			addr, &ff->msg_buf[port], quad_count * 4,
111 			callback, &ff->transactions[port]);
112 }
113 
114 static void transmit_midi0_msg(struct work_struct *work)
115 {
116 	struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]);
117 
118 	transmit_midi_msg(ff, 0);
119 }
120 
121 static void transmit_midi1_msg(struct work_struct *work)
122 {
123 	struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]);
124 
125 	transmit_midi_msg(ff, 1);
126 }
127 
128 static void handle_midi_msg(struct fw_card *card, struct fw_request *request,
129 			    int tcode, int destination, int source,
130 			    int generation, unsigned long long offset,
131 			    void *data, size_t length, void *callback_data)
132 {
133 	struct snd_ff *ff = callback_data;
134 	__le32 *buf = data;
135 
136 	fw_send_response(card, request, RCODE_COMPLETE);
137 
138 	offset -= ff->async_handler.offset;
139 	ff->spec->protocol->handle_midi_msg(ff, (unsigned int)offset, buf,
140 					    length);
141 }
142 
143 static int allocate_own_address(struct snd_ff *ff, int i)
144 {
145 	struct fw_address_region midi_msg_region;
146 	int err;
147 
148 	ff->async_handler.length = ff->spec->midi_addr_range;
149 	ff->async_handler.address_callback = handle_midi_msg;
150 	ff->async_handler.callback_data = ff;
151 
152 	midi_msg_region.start = 0x000100000000ull * i;
153 	midi_msg_region.end = midi_msg_region.start + ff->async_handler.length;
154 
155 	err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region);
156 	if (err >= 0) {
157 		/* Controllers are allowed to register this region. */
158 		if (ff->async_handler.offset & 0x0000ffffffff) {
159 			fw_core_remove_address_handler(&ff->async_handler);
160 			err = -EAGAIN;
161 		}
162 	}
163 
164 	return err;
165 }
166 
167 // Controllers are allowed to register higher 4 bytes of destination address to
168 // receive asynchronous transactions for MIDI messages, while the way to
169 // register lower 4 bytes of address is different depending on protocols. For
170 // details, please refer to comments in protocol implementations.
171 //
172 // This driver expects userspace applications to configure registers for the
173 // lower address because in most cases such registers has the other settings.
174 int snd_ff_transaction_reregister(struct snd_ff *ff)
175 {
176 	struct fw_card *fw_card = fw_parent_device(ff->unit)->card;
177 	u32 addr;
178 	__le32 reg;
179 
180 	/*
181 	 * Controllers are allowed to register its node ID and upper 2 byte of
182 	 * local address to listen asynchronous transactions.
183 	 */
184 	addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32);
185 	reg = cpu_to_le32(addr);
186 	return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
187 				  ff->spec->midi_high_addr,
188 				  &reg, sizeof(reg), 0);
189 }
190 
191 int snd_ff_transaction_register(struct snd_ff *ff)
192 {
193 	int i, err;
194 
195 	/*
196 	 * Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should
197 	 * be zero due to device specification.
198 	 */
199 	for (i = 0; i < 0xffff; i++) {
200 		err = allocate_own_address(ff, i);
201 		if (err != -EBUSY && err != -EAGAIN)
202 			break;
203 	}
204 	if (err < 0)
205 		return err;
206 
207 	err = snd_ff_transaction_reregister(ff);
208 	if (err < 0)
209 		return err;
210 
211 	INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg);
212 	INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg);
213 
214 	return 0;
215 }
216 
217 void snd_ff_transaction_unregister(struct snd_ff *ff)
218 {
219 	__le32 reg;
220 
221 	if (ff->async_handler.callback_data == NULL)
222 		return;
223 	ff->async_handler.callback_data = NULL;
224 
225 	/* Release higher 4 bytes of address. */
226 	reg = cpu_to_le32(0x00000000);
227 	snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
228 			   ff->spec->midi_high_addr,
229 			   &reg, sizeof(reg), 0);
230 
231 	fw_core_remove_address_handler(&ff->async_handler);
232 }
233