1 /*
2  * ff-transaction.c - a part of driver for RME Fireface series
3  *
4  * Copyright (c) 2015-2017 Takashi Sakamoto
5  *
6  * Licensed under the terms of the GNU General Public License, version 2.
7  */
8 
9 #include "ff.h"
10 
11 static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port,
12 				     int rcode)
13 {
14 	struct snd_rawmidi_substream *substream =
15 				ACCESS_ONCE(ff->rx_midi_substreams[port]);
16 
17 	if (rcode_is_permanent_error(rcode)) {
18 		ff->rx_midi_error[port] = true;
19 		return;
20 	}
21 
22 	if (rcode != RCODE_COMPLETE) {
23 		/* Transfer the message again, immediately. */
24 		ff->next_ktime[port] = 0;
25 		schedule_work(&ff->rx_midi_work[port]);
26 		return;
27 	}
28 
29 	snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]);
30 	ff->rx_bytes[port] = 0;
31 
32 	if (!snd_rawmidi_transmit_empty(substream))
33 		schedule_work(&ff->rx_midi_work[port]);
34 }
35 
36 static void finish_transmit_midi0_msg(struct fw_card *card, int rcode,
37 				      void *data, size_t length,
38 				      void *callback_data)
39 {
40 	struct snd_ff *ff =
41 		container_of(callback_data, struct snd_ff, transactions[0]);
42 	finish_transmit_midi_msg(ff, 0, rcode);
43 }
44 
45 static void finish_transmit_midi1_msg(struct fw_card *card, int rcode,
46 				      void *data, size_t length,
47 				      void *callback_data)
48 {
49 	struct snd_ff *ff =
50 		container_of(callback_data, struct snd_ff, transactions[1]);
51 	finish_transmit_midi_msg(ff, 1, rcode);
52 }
53 
54 static inline void fill_midi_buf(struct snd_ff *ff, unsigned int port,
55 				 unsigned int index, u8 byte)
56 {
57 	ff->msg_buf[port][index] = cpu_to_le32(byte);
58 }
59 
60 static void transmit_midi_msg(struct snd_ff *ff, unsigned int port)
61 {
62 	struct snd_rawmidi_substream *substream =
63 			ACCESS_ONCE(ff->rx_midi_substreams[port]);
64 	u8 *buf = (u8 *)ff->msg_buf[port];
65 	int i, len;
66 
67 	struct fw_device *fw_dev = fw_parent_device(ff->unit);
68 	unsigned long long addr;
69 	int generation;
70 	fw_transaction_callback_t callback;
71 
72 	if (substream == NULL || snd_rawmidi_transmit_empty(substream))
73 		return;
74 
75 	if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port])
76 		return;
77 
78 	/* Do it in next chance. */
79 	if (ktime_after(ff->next_ktime[port], ktime_get())) {
80 		schedule_work(&ff->rx_midi_work[port]);
81 		return;
82 	}
83 
84 	len = snd_rawmidi_transmit_peek(substream, buf,
85 					SND_FF_MAXIMIM_MIDI_QUADS);
86 	if (len <= 0)
87 		return;
88 
89 	for (i = len - 1; i >= 0; i--)
90 		fill_midi_buf(ff, port, i, buf[i]);
91 
92 	if (port == 0) {
93 		addr = ff->spec->protocol->midi_rx_port_0_reg;
94 		callback = finish_transmit_midi0_msg;
95 	} else {
96 		addr = ff->spec->protocol->midi_rx_port_1_reg;
97 		callback = finish_transmit_midi1_msg;
98 	}
99 
100 	/* Set interval to next transaction. */
101 	ff->next_ktime[port] = ktime_add_ns(ktime_get(),
102 					    len * 8 * NSEC_PER_SEC / 31250);
103 	ff->rx_bytes[port] = len;
104 
105 	/*
106 	 * In Linux FireWire core, when generation is updated with memory
107 	 * barrier, node id has already been updated. In this module, After
108 	 * this smp_rmb(), load/store instructions to memory are completed.
109 	 * Thus, both of generation and node id are available with recent
110 	 * values. This is a light-serialization solution to handle bus reset
111 	 * events on IEEE 1394 bus.
112 	 */
113 	generation = fw_dev->generation;
114 	smp_rmb();
115 	fw_send_request(fw_dev->card, &ff->transactions[port],
116 			TCODE_WRITE_BLOCK_REQUEST,
117 			fw_dev->node_id, generation, fw_dev->max_speed,
118 			addr, &ff->msg_buf[port], len * 4,
119 			callback, &ff->transactions[port]);
120 }
121 
122 static void transmit_midi0_msg(struct work_struct *work)
123 {
124 	struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]);
125 
126 	transmit_midi_msg(ff, 0);
127 }
128 
129 static void transmit_midi1_msg(struct work_struct *work)
130 {
131 	struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]);
132 
133 	transmit_midi_msg(ff, 1);
134 }
135 
136 static void handle_midi_msg(struct fw_card *card, struct fw_request *request,
137 			    int tcode, int destination, int source,
138 			    int generation, unsigned long long offset,
139 			    void *data, size_t length, void *callback_data)
140 {
141 	struct snd_ff *ff = callback_data;
142 	__le32 *buf = data;
143 	u32 quad;
144 	u8 byte;
145 	unsigned int index;
146 	struct snd_rawmidi_substream *substream;
147 	int i;
148 
149 	fw_send_response(card, request, RCODE_COMPLETE);
150 
151 	for (i = 0; i < length / 4; i++) {
152 		quad = le32_to_cpu(buf[i]);
153 
154 		/* Message in first port. */
155 		/*
156 		 * This value may represent the index of this unit when the same
157 		 * units are on the same IEEE 1394 bus. This driver doesn't use
158 		 * it.
159 		 */
160 		index = (quad >> 8) & 0xff;
161 		if (index > 0) {
162 			substream = ACCESS_ONCE(ff->tx_midi_substreams[0]);
163 			if (substream != NULL) {
164 				byte = quad & 0xff;
165 				snd_rawmidi_receive(substream, &byte, 1);
166 			}
167 		}
168 
169 		/* Message in second port. */
170 		index = (quad >> 24) & 0xff;
171 		if (index > 0) {
172 			substream = ACCESS_ONCE(ff->tx_midi_substreams[1]);
173 			if (substream != NULL) {
174 				byte = (quad >> 16) & 0xff;
175 				snd_rawmidi_receive(substream, &byte, 1);
176 			}
177 		}
178 	}
179 }
180 
181 static int allocate_own_address(struct snd_ff *ff, int i)
182 {
183 	struct fw_address_region midi_msg_region;
184 	int err;
185 
186 	ff->async_handler.length = SND_FF_MAXIMIM_MIDI_QUADS * 4;
187 	ff->async_handler.address_callback = handle_midi_msg;
188 	ff->async_handler.callback_data = ff;
189 
190 	midi_msg_region.start = 0x000100000000ull * i;
191 	midi_msg_region.end = midi_msg_region.start + ff->async_handler.length;
192 
193 	err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region);
194 	if (err >= 0) {
195 		/* Controllers are allowed to register this region. */
196 		if (ff->async_handler.offset & 0x0000ffffffff) {
197 			fw_core_remove_address_handler(&ff->async_handler);
198 			err = -EAGAIN;
199 		}
200 	}
201 
202 	return err;
203 }
204 
205 /*
206  * The configuration to start asynchronous transactions for MIDI messages is in
207  * 0x'0000'8010'051c. This register includes the other options, thus this driver
208  * doesn't touch it and leaves the decision to userspace. The userspace MUST add
209  * 0x04000000 to write transactions to the register to receive any MIDI
210  * messages.
211  *
212  * Here, I just describe MIDI-related offsets of the register, in little-endian
213  * order.
214  *
215  * Controllers are allowed to register higher 4 bytes of address to receive
216  * the transactions. The register is 0x'0000'8010'03f4. On the other hand, the
217  * controllers are not allowed to register lower 4 bytes of the address. They
218  * are forced to select from 4 options by writing corresponding bits to
219  * 0x'0000'8010'051c.
220  *
221  * The 3rd-6th bits in MSB of this register are used to indicate lower 4 bytes
222  * of address to which the device transferrs the transactions.
223  *  - 6th: 0x'....'....'0000'0180
224  *  - 5th: 0x'....'....'0000'0100
225  *  - 4th: 0x'....'....'0000'0080
226  *  - 3rd: 0x'....'....'0000'0000
227  *
228  * This driver configure 0x'....'....'0000'0000 for units to receive MIDI
229  * messages. 3rd bit of the register should be configured, however this driver
230  * deligates this task to user space applications due to a restriction that
231  * this register is write-only and the other bits have own effects.
232  *
233  * The 1st and 2nd bits in LSB of this register are used to cancel transferring
234  * asynchronous transactions. These two bits have the same effect.
235  *  - 1st/2nd: cancel transferring
236  */
237 int snd_ff_transaction_reregister(struct snd_ff *ff)
238 {
239 	struct fw_card *fw_card = fw_parent_device(ff->unit)->card;
240 	u32 addr;
241 	__le32 reg;
242 
243 	/*
244 	 * Controllers are allowed to register its node ID and upper 2 byte of
245 	 * local address to listen asynchronous transactions.
246 	 */
247 	addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32);
248 	reg = cpu_to_le32(addr);
249 	return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
250 				  ff->spec->protocol->midi_high_addr_reg,
251 				  &reg, sizeof(reg), 0);
252 }
253 
254 int snd_ff_transaction_register(struct snd_ff *ff)
255 {
256 	int i, err;
257 
258 	/*
259 	 * Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should
260 	 * be zero due to device specification.
261 	 */
262 	for (i = 0; i < 0xffff; i++) {
263 		err = allocate_own_address(ff, i);
264 		if (err != -EBUSY && err != -EAGAIN)
265 			break;
266 	}
267 	if (err < 0)
268 		return err;
269 
270 	err = snd_ff_transaction_reregister(ff);
271 	if (err < 0)
272 		return err;
273 
274 	INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg);
275 	INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg);
276 
277 	return 0;
278 }
279 
280 void snd_ff_transaction_unregister(struct snd_ff *ff)
281 {
282 	__le32 reg;
283 
284 	if (ff->async_handler.callback_data == NULL)
285 		return;
286 	ff->async_handler.callback_data = NULL;
287 
288 	/* Release higher 4 bytes of address. */
289 	reg = cpu_to_le32(0x00000000);
290 	snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST,
291 			   ff->spec->protocol->midi_high_addr_reg,
292 			   &reg, sizeof(reg), 0);
293 
294 	fw_core_remove_address_handler(&ff->async_handler);
295 }
296