1 /* 2 * ff-transaction.c - a part of driver for RME Fireface series 3 * 4 * Copyright (c) 2015-2017 Takashi Sakamoto 5 * 6 * Licensed under the terms of the GNU General Public License, version 2. 7 */ 8 9 #include "ff.h" 10 11 static void finish_transmit_midi_msg(struct snd_ff *ff, unsigned int port, 12 int rcode) 13 { 14 struct snd_rawmidi_substream *substream = 15 READ_ONCE(ff->rx_midi_substreams[port]); 16 17 if (rcode_is_permanent_error(rcode)) { 18 ff->rx_midi_error[port] = true; 19 return; 20 } 21 22 if (rcode != RCODE_COMPLETE) { 23 /* Transfer the message again, immediately. */ 24 ff->next_ktime[port] = 0; 25 schedule_work(&ff->rx_midi_work[port]); 26 return; 27 } 28 29 snd_rawmidi_transmit_ack(substream, ff->rx_bytes[port]); 30 ff->rx_bytes[port] = 0; 31 32 if (!snd_rawmidi_transmit_empty(substream)) 33 schedule_work(&ff->rx_midi_work[port]); 34 } 35 36 static void finish_transmit_midi0_msg(struct fw_card *card, int rcode, 37 void *data, size_t length, 38 void *callback_data) 39 { 40 struct snd_ff *ff = 41 container_of(callback_data, struct snd_ff, transactions[0]); 42 finish_transmit_midi_msg(ff, 0, rcode); 43 } 44 45 static void finish_transmit_midi1_msg(struct fw_card *card, int rcode, 46 void *data, size_t length, 47 void *callback_data) 48 { 49 struct snd_ff *ff = 50 container_of(callback_data, struct snd_ff, transactions[1]); 51 finish_transmit_midi_msg(ff, 1, rcode); 52 } 53 54 static inline void fill_midi_buf(struct snd_ff *ff, unsigned int port, 55 unsigned int index, u8 byte) 56 { 57 ff->msg_buf[port][index] = cpu_to_le32(byte); 58 } 59 60 static void transmit_midi_msg(struct snd_ff *ff, unsigned int port) 61 { 62 struct snd_rawmidi_substream *substream = 63 READ_ONCE(ff->rx_midi_substreams[port]); 64 u8 *buf = (u8 *)ff->msg_buf[port]; 65 int i, len; 66 67 struct fw_device *fw_dev = fw_parent_device(ff->unit); 68 unsigned long long addr; 69 int generation; 70 fw_transaction_callback_t callback; 71 72 if (substream == NULL || snd_rawmidi_transmit_empty(substream)) 73 return; 74 75 if (ff->rx_bytes[port] > 0 || ff->rx_midi_error[port]) 76 return; 77 78 /* Do it in next chance. */ 79 if (ktime_after(ff->next_ktime[port], ktime_get())) { 80 schedule_work(&ff->rx_midi_work[port]); 81 return; 82 } 83 84 len = snd_rawmidi_transmit_peek(substream, buf, 85 SND_FF_MAXIMIM_MIDI_QUADS); 86 if (len <= 0) 87 return; 88 89 for (i = len - 1; i >= 0; i--) 90 fill_midi_buf(ff, port, i, buf[i]); 91 92 if (port == 0) { 93 addr = ff->spec->protocol->midi_rx_port_0_reg; 94 callback = finish_transmit_midi0_msg; 95 } else { 96 addr = ff->spec->protocol->midi_rx_port_1_reg; 97 callback = finish_transmit_midi1_msg; 98 } 99 100 /* Set interval to next transaction. */ 101 ff->next_ktime[port] = ktime_add_ns(ktime_get(), 102 len * 8 * NSEC_PER_SEC / 31250); 103 ff->rx_bytes[port] = len; 104 105 /* 106 * In Linux FireWire core, when generation is updated with memory 107 * barrier, node id has already been updated. In this module, After 108 * this smp_rmb(), load/store instructions to memory are completed. 109 * Thus, both of generation and node id are available with recent 110 * values. This is a light-serialization solution to handle bus reset 111 * events on IEEE 1394 bus. 112 */ 113 generation = fw_dev->generation; 114 smp_rmb(); 115 fw_send_request(fw_dev->card, &ff->transactions[port], 116 TCODE_WRITE_BLOCK_REQUEST, 117 fw_dev->node_id, generation, fw_dev->max_speed, 118 addr, &ff->msg_buf[port], len * 4, 119 callback, &ff->transactions[port]); 120 } 121 122 static void transmit_midi0_msg(struct work_struct *work) 123 { 124 struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[0]); 125 126 transmit_midi_msg(ff, 0); 127 } 128 129 static void transmit_midi1_msg(struct work_struct *work) 130 { 131 struct snd_ff *ff = container_of(work, struct snd_ff, rx_midi_work[1]); 132 133 transmit_midi_msg(ff, 1); 134 } 135 136 static void handle_midi_msg(struct fw_card *card, struct fw_request *request, 137 int tcode, int destination, int source, 138 int generation, unsigned long long offset, 139 void *data, size_t length, void *callback_data) 140 { 141 struct snd_ff *ff = callback_data; 142 __le32 *buf = data; 143 u32 quad; 144 u8 byte; 145 unsigned int index; 146 struct snd_rawmidi_substream *substream; 147 int i; 148 149 fw_send_response(card, request, RCODE_COMPLETE); 150 151 for (i = 0; i < length / 4; i++) { 152 quad = le32_to_cpu(buf[i]); 153 154 /* Message in first port. */ 155 /* 156 * This value may represent the index of this unit when the same 157 * units are on the same IEEE 1394 bus. This driver doesn't use 158 * it. 159 */ 160 index = (quad >> 8) & 0xff; 161 if (index > 0) { 162 substream = READ_ONCE(ff->tx_midi_substreams[0]); 163 if (substream != NULL) { 164 byte = quad & 0xff; 165 snd_rawmidi_receive(substream, &byte, 1); 166 } 167 } 168 169 /* Message in second port. */ 170 index = (quad >> 24) & 0xff; 171 if (index > 0) { 172 substream = READ_ONCE(ff->tx_midi_substreams[1]); 173 if (substream != NULL) { 174 byte = (quad >> 16) & 0xff; 175 snd_rawmidi_receive(substream, &byte, 1); 176 } 177 } 178 } 179 } 180 181 static int allocate_own_address(struct snd_ff *ff, int i) 182 { 183 struct fw_address_region midi_msg_region; 184 int err; 185 186 ff->async_handler.length = SND_FF_MAXIMIM_MIDI_QUADS * 4; 187 ff->async_handler.address_callback = handle_midi_msg; 188 ff->async_handler.callback_data = ff; 189 190 midi_msg_region.start = 0x000100000000ull * i; 191 midi_msg_region.end = midi_msg_region.start + ff->async_handler.length; 192 193 err = fw_core_add_address_handler(&ff->async_handler, &midi_msg_region); 194 if (err >= 0) { 195 /* Controllers are allowed to register this region. */ 196 if (ff->async_handler.offset & 0x0000ffffffff) { 197 fw_core_remove_address_handler(&ff->async_handler); 198 err = -EAGAIN; 199 } 200 } 201 202 return err; 203 } 204 205 /* 206 * The configuration to start asynchronous transactions for MIDI messages is in 207 * 0x'0000'8010'051c. This register includes the other options, thus this driver 208 * doesn't touch it and leaves the decision to userspace. The userspace MUST add 209 * 0x04000000 to write transactions to the register to receive any MIDI 210 * messages. 211 * 212 * Here, I just describe MIDI-related offsets of the register, in little-endian 213 * order. 214 * 215 * Controllers are allowed to register higher 4 bytes of address to receive 216 * the transactions. The register is 0x'0000'8010'03f4. On the other hand, the 217 * controllers are not allowed to register lower 4 bytes of the address. They 218 * are forced to select from 4 options by writing corresponding bits to 219 * 0x'0000'8010'051c. 220 * 221 * The 3rd-6th bits in MSB of this register are used to indicate lower 4 bytes 222 * of address to which the device transferrs the transactions. 223 * - 6th: 0x'....'....'0000'0180 224 * - 5th: 0x'....'....'0000'0100 225 * - 4th: 0x'....'....'0000'0080 226 * - 3rd: 0x'....'....'0000'0000 227 * 228 * This driver configure 0x'....'....'0000'0000 for units to receive MIDI 229 * messages. 3rd bit of the register should be configured, however this driver 230 * deligates this task to user space applications due to a restriction that 231 * this register is write-only and the other bits have own effects. 232 * 233 * The 1st and 2nd bits in LSB of this register are used to cancel transferring 234 * asynchronous transactions. These two bits have the same effect. 235 * - 1st/2nd: cancel transferring 236 */ 237 int snd_ff_transaction_reregister(struct snd_ff *ff) 238 { 239 struct fw_card *fw_card = fw_parent_device(ff->unit)->card; 240 u32 addr; 241 __le32 reg; 242 243 /* 244 * Controllers are allowed to register its node ID and upper 2 byte of 245 * local address to listen asynchronous transactions. 246 */ 247 addr = (fw_card->node_id << 16) | (ff->async_handler.offset >> 32); 248 reg = cpu_to_le32(addr); 249 return snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, 250 ff->spec->protocol->midi_high_addr_reg, 251 ®, sizeof(reg), 0); 252 } 253 254 int snd_ff_transaction_register(struct snd_ff *ff) 255 { 256 int i, err; 257 258 /* 259 * Allocate in Memory Space of IEC 13213, but lower 4 byte in LSB should 260 * be zero due to device specification. 261 */ 262 for (i = 0; i < 0xffff; i++) { 263 err = allocate_own_address(ff, i); 264 if (err != -EBUSY && err != -EAGAIN) 265 break; 266 } 267 if (err < 0) 268 return err; 269 270 err = snd_ff_transaction_reregister(ff); 271 if (err < 0) 272 return err; 273 274 INIT_WORK(&ff->rx_midi_work[0], transmit_midi0_msg); 275 INIT_WORK(&ff->rx_midi_work[1], transmit_midi1_msg); 276 277 return 0; 278 } 279 280 void snd_ff_transaction_unregister(struct snd_ff *ff) 281 { 282 __le32 reg; 283 284 if (ff->async_handler.callback_data == NULL) 285 return; 286 ff->async_handler.callback_data = NULL; 287 288 /* Release higher 4 bytes of address. */ 289 reg = cpu_to_le32(0x00000000); 290 snd_fw_transaction(ff->unit, TCODE_WRITE_QUADLET_REQUEST, 291 ff->spec->protocol->midi_high_addr_reg, 292 ®, sizeof(reg), 0); 293 294 fw_core_remove_address_handler(&ff->async_handler); 295 } 296