1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family 4 * 5 * Copyright (c) 2014-2015 Takashi Sakamoto 6 * Copyright (C) 2012 Robin Gareus <robin@gareus.org> 7 * Copyright (C) 2012 Damien Zammit <damien@zamaudio.com> 8 */ 9 10 #include <sound/pcm.h> 11 #include "digi00x.h" 12 13 #define CIP_FMT_AM 0x10 14 15 /* 'Clock-based rate control mode' is just supported. */ 16 #define AMDTP_FDF_AM824 0x00 17 18 /* 19 * Nominally 3125 bytes/second, but the MIDI port's clock might be 20 * 1% too slow, and the bus clock 100 ppm too fast. 21 */ 22 #define MIDI_BYTES_PER_SECOND 3093 23 24 /* 25 * Several devices look only at the first eight data blocks. 26 * In any case, this is more than enough for the MIDI data rate. 27 */ 28 #define MAX_MIDI_RX_BLOCKS 8 29 30 /* 3 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) + 1. */ 31 #define MAX_MIDI_PORTS 3 32 33 /* 34 * The double-oh-three algorithm was discovered by Robin Gareus and Damien 35 * Zammit in 2012, with reverse-engineering for Digi 003 Rack. 36 */ 37 struct dot_state { 38 u8 carry; 39 u8 idx; 40 unsigned int off; 41 }; 42 43 struct amdtp_dot { 44 unsigned int pcm_channels; 45 struct dot_state state; 46 47 struct snd_rawmidi_substream *midi[MAX_MIDI_PORTS]; 48 int midi_fifo_used[MAX_MIDI_PORTS]; 49 int midi_fifo_limit; 50 }; 51 52 /* 53 * double-oh-three look up table 54 * 55 * @param idx index byte (audio-sample data) 0x00..0xff 56 * @param off channel offset shift 57 * @return salt to XOR with given data 58 */ 59 #define BYTE_PER_SAMPLE (4) 60 #define MAGIC_DOT_BYTE (2) 61 #define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE) 62 static u8 dot_scrt(const u8 idx, const unsigned int off) 63 { 64 /* 65 * the length of the added pattern only depends on the lower nibble 66 * of the last non-zero data 67 */ 68 static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14, 69 12, 10, 8, 6, 4, 2, 0}; 70 71 /* 72 * the lower nibble of the salt. Interleaved sequence. 73 * this is walked backwards according to len[] 74 */ 75 static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4, 76 0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf}; 77 78 /* circular list for the salt's hi nibble. */ 79 static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4, 80 0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa}; 81 82 /* 83 * start offset for upper nibble mapping. 84 * note: 9 is /special/. In the case where the high nibble == 0x9, 85 * hir[] is not used and - coincidentally - the salt's hi nibble is 86 * 0x09 regardless of the offset. 87 */ 88 static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4, 89 3, 0x00, 14, 13, 8, 9, 10, 2}; 90 91 const u8 ln = idx & 0xf; 92 const u8 hn = (idx >> 4) & 0xf; 93 const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15]; 94 95 if (len[ln] < off) 96 return 0x00; 97 98 return ((nib[14 + off - len[ln]]) | (hr << 4)); 99 } 100 101 static void dot_encode_step(struct dot_state *state, __be32 *const buffer) 102 { 103 u8 * const data = (u8 *) buffer; 104 105 if (data[MAGIC_DOT_BYTE] != 0x00) { 106 state->off = 0; 107 state->idx = data[MAGIC_DOT_BYTE] ^ state->carry; 108 } 109 data[MAGIC_DOT_BYTE] ^= state->carry; 110 state->carry = dot_scrt(state->idx, ++(state->off)); 111 } 112 113 int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate, 114 unsigned int pcm_channels) 115 { 116 struct amdtp_dot *p = s->protocol; 117 int err; 118 119 if (amdtp_stream_running(s)) 120 return -EBUSY; 121 122 /* 123 * A first data channel is for MIDI messages, the rest is Multi Bit 124 * Linear Audio data channel. 125 */ 126 err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1); 127 if (err < 0) 128 return err; 129 130 s->ctx_data.rx.fdf = AMDTP_FDF_AM824 | s->sfc; 131 132 p->pcm_channels = pcm_channels; 133 134 /* 135 * We do not know the actual MIDI FIFO size of most devices. Just 136 * assume two bytes, i.e., one byte can be received over the bus while 137 * the previous one is transmitted over MIDI. 138 * (The value here is adjusted for midi_ratelimit_per_packet().) 139 */ 140 p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1; 141 142 return 0; 143 } 144 145 static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, 146 __be32 *buffer, unsigned int frames) 147 { 148 struct amdtp_dot *p = s->protocol; 149 struct snd_pcm_runtime *runtime = pcm->runtime; 150 unsigned int channels, remaining_frames, i, c; 151 const u32 *src; 152 153 channels = p->pcm_channels; 154 src = (void *)runtime->dma_area + 155 frames_to_bytes(runtime, s->pcm_buffer_pointer); 156 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; 157 158 buffer++; 159 for (i = 0; i < frames; ++i) { 160 for (c = 0; c < channels; ++c) { 161 buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000); 162 dot_encode_step(&p->state, &buffer[c]); 163 src++; 164 } 165 buffer += s->data_block_quadlets; 166 if (--remaining_frames == 0) 167 src = (void *)runtime->dma_area; 168 } 169 } 170 171 static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm, 172 __be32 *buffer, unsigned int frames) 173 { 174 struct amdtp_dot *p = s->protocol; 175 struct snd_pcm_runtime *runtime = pcm->runtime; 176 unsigned int channels, remaining_frames, i, c; 177 u32 *dst; 178 179 channels = p->pcm_channels; 180 dst = (void *)runtime->dma_area + 181 frames_to_bytes(runtime, s->pcm_buffer_pointer); 182 remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer; 183 184 buffer++; 185 for (i = 0; i < frames; ++i) { 186 for (c = 0; c < channels; ++c) { 187 *dst = be32_to_cpu(buffer[c]) << 8; 188 dst++; 189 } 190 buffer += s->data_block_quadlets; 191 if (--remaining_frames == 0) 192 dst = (void *)runtime->dma_area; 193 } 194 } 195 196 static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer, 197 unsigned int data_blocks) 198 { 199 struct amdtp_dot *p = s->protocol; 200 unsigned int channels, i, c; 201 202 channels = p->pcm_channels; 203 204 buffer++; 205 for (i = 0; i < data_blocks; ++i) { 206 for (c = 0; c < channels; ++c) 207 buffer[c] = cpu_to_be32(0x40000000); 208 buffer += s->data_block_quadlets; 209 } 210 } 211 212 static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port) 213 { 214 struct amdtp_dot *p = s->protocol; 215 int used; 216 217 used = p->midi_fifo_used[port]; 218 if (used == 0) 219 return true; 220 221 used -= MIDI_BYTES_PER_SECOND * s->syt_interval; 222 used = max(used, 0); 223 p->midi_fifo_used[port] = used; 224 225 return used < p->midi_fifo_limit; 226 } 227 228 static inline void midi_use_bytes(struct amdtp_stream *s, 229 unsigned int port, unsigned int count) 230 { 231 struct amdtp_dot *p = s->protocol; 232 233 p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count; 234 } 235 236 static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer, 237 unsigned int data_blocks) 238 { 239 struct amdtp_dot *p = s->protocol; 240 unsigned int f, port; 241 int len; 242 u8 *b; 243 244 for (f = 0; f < data_blocks; f++) { 245 port = (s->data_block_counter + f) % 8; 246 b = (u8 *)&buffer[0]; 247 248 len = 0; 249 if (port < MAX_MIDI_PORTS && 250 midi_ratelimit_per_packet(s, port) && 251 p->midi[port] != NULL) 252 len = snd_rawmidi_transmit(p->midi[port], b + 1, 2); 253 254 if (len > 0) { 255 /* 256 * Upper 4 bits of LSB represent port number. 257 * - 0000b: physical MIDI port 1. 258 * - 0010b: physical MIDI port 2. 259 * - 1110b: console MIDI port. 260 */ 261 if (port == 2) 262 b[3] = 0xe0; 263 else if (port == 1) 264 b[3] = 0x20; 265 else 266 b[3] = 0x00; 267 b[3] |= len; 268 midi_use_bytes(s, port, len); 269 } else { 270 b[1] = 0; 271 b[2] = 0; 272 b[3] = 0; 273 } 274 b[0] = 0x80; 275 276 buffer += s->data_block_quadlets; 277 } 278 } 279 280 static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer, 281 unsigned int data_blocks) 282 { 283 struct amdtp_dot *p = s->protocol; 284 unsigned int f, port, len; 285 u8 *b; 286 287 for (f = 0; f < data_blocks; f++) { 288 b = (u8 *)&buffer[0]; 289 290 len = b[3] & 0x0f; 291 if (len > 0) { 292 /* 293 * Upper 4 bits of LSB represent port number. 294 * - 0000b: physical MIDI port 1. Use port 0. 295 * - 1110b: console MIDI port. Use port 2. 296 */ 297 if (b[3] >> 4 > 0) 298 port = 2; 299 else 300 port = 0; 301 302 if (port < MAX_MIDI_PORTS && p->midi[port]) 303 snd_rawmidi_receive(p->midi[port], b + 1, len); 304 } 305 306 buffer += s->data_block_quadlets; 307 } 308 } 309 310 int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s, 311 struct snd_pcm_runtime *runtime) 312 { 313 int err; 314 315 /* This protocol delivers 24 bit data in 32bit data channel. */ 316 err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); 317 if (err < 0) 318 return err; 319 320 return amdtp_stream_add_pcm_hw_constraints(s, runtime); 321 } 322 323 void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port, 324 struct snd_rawmidi_substream *midi) 325 { 326 struct amdtp_dot *p = s->protocol; 327 328 if (port < MAX_MIDI_PORTS) 329 WRITE_ONCE(p->midi[port], midi); 330 } 331 332 static unsigned int process_tx_data_blocks(struct amdtp_stream *s, 333 __be32 *buffer, 334 unsigned int data_blocks, 335 unsigned int *syt) 336 { 337 struct snd_pcm_substream *pcm; 338 unsigned int pcm_frames; 339 340 pcm = READ_ONCE(s->pcm); 341 if (pcm) { 342 read_pcm_s32(s, pcm, buffer, data_blocks); 343 pcm_frames = data_blocks; 344 } else { 345 pcm_frames = 0; 346 } 347 348 read_midi_messages(s, buffer, data_blocks); 349 350 return pcm_frames; 351 } 352 353 static unsigned int process_rx_data_blocks(struct amdtp_stream *s, 354 __be32 *buffer, 355 unsigned int data_blocks, 356 unsigned int *syt) 357 { 358 struct snd_pcm_substream *pcm; 359 unsigned int pcm_frames; 360 361 pcm = READ_ONCE(s->pcm); 362 if (pcm) { 363 write_pcm_s32(s, pcm, buffer, data_blocks); 364 pcm_frames = data_blocks; 365 } else { 366 write_pcm_silence(s, buffer, data_blocks); 367 pcm_frames = 0; 368 } 369 370 write_midi_messages(s, buffer, data_blocks); 371 372 return pcm_frames; 373 } 374 375 int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit, 376 enum amdtp_stream_direction dir) 377 { 378 amdtp_stream_process_data_blocks_t process_data_blocks; 379 enum cip_flags flags; 380 381 /* Use different mode between incoming/outgoing. */ 382 if (dir == AMDTP_IN_STREAM) { 383 flags = CIP_NONBLOCKING; 384 process_data_blocks = process_tx_data_blocks; 385 } else { 386 flags = CIP_BLOCKING; 387 process_data_blocks = process_rx_data_blocks; 388 } 389 390 return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM, 391 process_data_blocks, sizeof(struct amdtp_dot)); 392 } 393 394 void amdtp_dot_reset(struct amdtp_stream *s) 395 { 396 struct amdtp_dot *p = s->protocol; 397 398 p->state.carry = 0x00; 399 p->state.idx = 0x00; 400 p->state.off = 0; 401 } 402