1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_FDF_NO_DATA 0xff 53 #define CIP_SYT_MASK 0x0000ffff 54 #define CIP_SYT_NO_INFO 0xffff 55 #define CIP_SYT_CYCLE_MODULUS 16 56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 57 58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 59 60 /* Audio and Music transfer protocol specific parameters */ 61 #define CIP_FMT_AM 0x10 62 #define AMDTP_FDF_NO_DATA 0xff 63 64 // For iso header and tstamp. 65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 66 // Add nothing. 67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 68 // Add two quadlets CIP header. 69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 70 #define HEADER_TSTAMP_MASK 0x0000ffff 71 72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 74 75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 77 // overrun. Actual device can skip more, then this module stops the packet streaming. 78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 79 80 static void pcm_period_work(struct work_struct *work); 81 82 /** 83 * amdtp_stream_init - initialize an AMDTP stream structure 84 * @s: the AMDTP stream to initialize 85 * @unit: the target of the stream 86 * @dir: the direction of stream 87 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 88 * @fmt: the value of fmt field in CIP header 89 * @process_ctx_payloads: callback handler to process payloads of isoc context 90 * @protocol_size: the size to allocate newly for protocol 91 */ 92 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 93 enum amdtp_stream_direction dir, unsigned int flags, 94 unsigned int fmt, 95 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 96 unsigned int protocol_size) 97 { 98 if (process_ctx_payloads == NULL) 99 return -EINVAL; 100 101 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 102 if (!s->protocol) 103 return -ENOMEM; 104 105 s->unit = unit; 106 s->direction = dir; 107 s->flags = flags; 108 s->context = ERR_PTR(-1); 109 mutex_init(&s->mutex); 110 INIT_WORK(&s->period_work, pcm_period_work); 111 s->packet_index = 0; 112 113 init_waitqueue_head(&s->ready_wait); 114 115 s->fmt = fmt; 116 s->process_ctx_payloads = process_ctx_payloads; 117 118 return 0; 119 } 120 EXPORT_SYMBOL(amdtp_stream_init); 121 122 /** 123 * amdtp_stream_destroy - free stream resources 124 * @s: the AMDTP stream to destroy 125 */ 126 void amdtp_stream_destroy(struct amdtp_stream *s) 127 { 128 /* Not initialized. */ 129 if (s->protocol == NULL) 130 return; 131 132 WARN_ON(amdtp_stream_running(s)); 133 kfree(s->protocol); 134 mutex_destroy(&s->mutex); 135 } 136 EXPORT_SYMBOL(amdtp_stream_destroy); 137 138 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 139 [CIP_SFC_32000] = 8, 140 [CIP_SFC_44100] = 8, 141 [CIP_SFC_48000] = 8, 142 [CIP_SFC_88200] = 16, 143 [CIP_SFC_96000] = 16, 144 [CIP_SFC_176400] = 32, 145 [CIP_SFC_192000] = 32, 146 }; 147 EXPORT_SYMBOL(amdtp_syt_intervals); 148 149 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 150 [CIP_SFC_32000] = 32000, 151 [CIP_SFC_44100] = 44100, 152 [CIP_SFC_48000] = 48000, 153 [CIP_SFC_88200] = 88200, 154 [CIP_SFC_96000] = 96000, 155 [CIP_SFC_176400] = 176400, 156 [CIP_SFC_192000] = 192000, 157 }; 158 EXPORT_SYMBOL(amdtp_rate_table); 159 160 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 161 struct snd_pcm_hw_rule *rule) 162 { 163 struct snd_interval *s = hw_param_interval(params, rule->var); 164 const struct snd_interval *r = 165 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 166 struct snd_interval t = {0}; 167 unsigned int step = 0; 168 int i; 169 170 for (i = 0; i < CIP_SFC_COUNT; ++i) { 171 if (snd_interval_test(r, amdtp_rate_table[i])) 172 step = max(step, amdtp_syt_intervals[i]); 173 } 174 175 if (step == 0) 176 return -EINVAL; 177 178 t.min = roundup(s->min, step); 179 t.max = rounddown(s->max, step); 180 t.integer = 1; 181 182 return snd_interval_refine(s, &t); 183 } 184 185 /** 186 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 187 * @s: the AMDTP stream, which must be initialized. 188 * @runtime: the PCM substream runtime 189 */ 190 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 191 struct snd_pcm_runtime *runtime) 192 { 193 struct snd_pcm_hardware *hw = &runtime->hw; 194 unsigned int ctx_header_size; 195 unsigned int maximum_usec_per_period; 196 int err; 197 198 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | 199 SNDRV_PCM_INFO_INTERLEAVED | 200 SNDRV_PCM_INFO_JOINT_DUPLEX | 201 SNDRV_PCM_INFO_MMAP | 202 SNDRV_PCM_INFO_MMAP_VALID | 203 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; 204 205 hw->periods_min = 2; 206 hw->periods_max = UINT_MAX; 207 208 /* bytes for a frame */ 209 hw->period_bytes_min = 4 * hw->channels_max; 210 211 /* Just to prevent from allocating much pages. */ 212 hw->period_bytes_max = hw->period_bytes_min * 2048; 213 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 214 215 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 216 // context when total size of accumulated context header reaches 217 // PAGE_SIZE. This kicks work for the isoc context and brings 218 // callback in the middle of scheduled interrupts. 219 // Although AMDTP streams in the same domain use the same events per 220 // IRQ, use the largest size of context header between IT/IR contexts. 221 // Here, use the value of context header in IR context is for both 222 // contexts. 223 if (!(s->flags & CIP_NO_HEADER)) 224 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 225 else 226 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 227 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 228 CYCLES_PER_SECOND / ctx_header_size; 229 230 // In IEC 61883-6, one isoc packet can transfer events up to the value 231 // of syt interval. This comes from the interval of isoc cycle. As 1394 232 // OHCI controller can generate hardware IRQ per isoc packet, the 233 // interval is 125 usec. 234 // However, there are two ways of transmission in IEC 61883-6; blocking 235 // and non-blocking modes. In blocking mode, the sequence of isoc packet 236 // includes 'empty' or 'NODATA' packets which include no event. In 237 // non-blocking mode, the number of events per packet is variable up to 238 // the syt interval. 239 // Due to the above protocol design, the minimum PCM frames per 240 // interrupt should be double of the value of syt interval, thus it is 241 // 250 usec. 242 err = snd_pcm_hw_constraint_minmax(runtime, 243 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 244 250, maximum_usec_per_period); 245 if (err < 0) 246 goto end; 247 248 /* Non-Blocking stream has no more constraints */ 249 if (!(s->flags & CIP_BLOCKING)) 250 goto end; 251 252 /* 253 * One AMDTP packet can include some frames. In blocking mode, the 254 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 255 * depending on its sampling rate. For accurate period interrupt, it's 256 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 257 */ 258 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 259 apply_constraint_to_size, NULL, 260 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 261 SNDRV_PCM_HW_PARAM_RATE, -1); 262 if (err < 0) 263 goto end; 264 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 265 apply_constraint_to_size, NULL, 266 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 267 SNDRV_PCM_HW_PARAM_RATE, -1); 268 if (err < 0) 269 goto end; 270 end: 271 return err; 272 } 273 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 274 275 /** 276 * amdtp_stream_set_parameters - set stream parameters 277 * @s: the AMDTP stream to configure 278 * @rate: the sample rate 279 * @data_block_quadlets: the size of a data block in quadlet unit 280 * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP 281 * events. 282 * 283 * The parameters must be set before the stream is started, and must not be 284 * changed while the stream is running. 285 */ 286 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 287 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier) 288 { 289 unsigned int sfc; 290 291 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 292 if (amdtp_rate_table[sfc] == rate) 293 break; 294 } 295 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 296 return -EINVAL; 297 298 s->sfc = sfc; 299 s->data_block_quadlets = data_block_quadlets; 300 s->syt_interval = amdtp_syt_intervals[sfc]; 301 302 // default buffering in the device. 303 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 304 305 // additional buffering needed to adjust for no-data packets. 306 if (s->flags & CIP_BLOCKING) 307 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 308 309 s->pcm_frame_multiplier = pcm_frame_multiplier; 310 311 return 0; 312 } 313 EXPORT_SYMBOL(amdtp_stream_set_parameters); 314 315 // The CIP header is processed in context header apart from context payload. 316 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 317 { 318 unsigned int multiplier; 319 320 if (s->flags & CIP_JUMBO_PAYLOAD) 321 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 322 else 323 multiplier = 1; 324 325 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 326 } 327 328 /** 329 * amdtp_stream_get_max_payload - get the stream's packet size 330 * @s: the AMDTP stream 331 * 332 * This function must not be called before the stream has been configured 333 * with amdtp_stream_set_parameters(). 334 */ 335 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 336 { 337 unsigned int cip_header_size; 338 339 if (!(s->flags & CIP_NO_HEADER)) 340 cip_header_size = CIP_HEADER_SIZE; 341 else 342 cip_header_size = 0; 343 344 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 345 } 346 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 347 348 /** 349 * amdtp_stream_pcm_prepare - prepare PCM device for running 350 * @s: the AMDTP stream 351 * 352 * This function should be called from the PCM device's .prepare callback. 353 */ 354 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 355 { 356 cancel_work_sync(&s->period_work); 357 s->pcm_buffer_pointer = 0; 358 s->pcm_period_pointer = 0; 359 } 360 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 361 362 #define prev_packet_desc(s, desc) \ 363 list_prev_entry_circular(desc, &s->packet_descs_list, link) 364 365 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 366 unsigned int size, unsigned int pos, unsigned int count) 367 { 368 const unsigned int syt_interval = s->syt_interval; 369 int i; 370 371 for (i = 0; i < count; ++i) { 372 struct seq_desc *desc = descs + pos; 373 374 if (desc->syt_offset != CIP_SYT_NO_INFO) 375 desc->data_blocks = syt_interval; 376 else 377 desc->data_blocks = 0; 378 379 pos = (pos + 1) % size; 380 } 381 } 382 383 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 384 unsigned int size, unsigned int pos, 385 unsigned int count) 386 { 387 const enum cip_sfc sfc = s->sfc; 388 unsigned int state = s->ctx_data.rx.data_block_state; 389 int i; 390 391 for (i = 0; i < count; ++i) { 392 struct seq_desc *desc = descs + pos; 393 394 if (!cip_sfc_is_base_44100(sfc)) { 395 // Sample_rate / 8000 is an integer, and precomputed. 396 desc->data_blocks = state; 397 } else { 398 unsigned int phase = state; 399 400 /* 401 * This calculates the number of data blocks per packet so that 402 * 1) the overall rate is correct and exactly synchronized to 403 * the bus clock, and 404 * 2) packets with a rounded-up number of blocks occur as early 405 * as possible in the sequence (to prevent underruns of the 406 * device's buffer). 407 */ 408 if (sfc == CIP_SFC_44100) 409 /* 6 6 5 6 5 6 5 ... */ 410 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 411 else 412 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 413 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 414 if (++phase >= (80 >> (sfc >> 1))) 415 phase = 0; 416 state = phase; 417 } 418 419 pos = (pos + 1) % size; 420 } 421 422 s->ctx_data.rx.data_block_state = state; 423 } 424 425 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 426 unsigned int *syt_offset_state, enum cip_sfc sfc) 427 { 428 unsigned int syt_offset; 429 430 if (*last_syt_offset < TICKS_PER_CYCLE) { 431 if (!cip_sfc_is_base_44100(sfc)) 432 syt_offset = *last_syt_offset + *syt_offset_state; 433 else { 434 /* 435 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 436 * n * SYT_INTERVAL * 24576000 / sample_rate 437 * Modulo TICKS_PER_CYCLE, the difference between successive 438 * elements is about 1386.23. Rounding the results of this 439 * formula to the SYT precision results in a sequence of 440 * differences that begins with: 441 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 442 * This code generates _exactly_ the same sequence. 443 */ 444 unsigned int phase = *syt_offset_state; 445 unsigned int index = phase % 13; 446 447 syt_offset = *last_syt_offset; 448 syt_offset += 1386 + ((index && !(index & 3)) || 449 phase == 146); 450 if (++phase >= 147) 451 phase = 0; 452 *syt_offset_state = phase; 453 } 454 } else 455 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 456 *last_syt_offset = syt_offset; 457 458 if (syt_offset >= TICKS_PER_CYCLE) 459 syt_offset = CIP_SYT_NO_INFO; 460 461 return syt_offset; 462 } 463 464 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 465 unsigned int size, unsigned int pos, unsigned int count) 466 { 467 const enum cip_sfc sfc = s->sfc; 468 unsigned int last = s->ctx_data.rx.last_syt_offset; 469 unsigned int state = s->ctx_data.rx.syt_offset_state; 470 int i; 471 472 for (i = 0; i < count; ++i) { 473 struct seq_desc *desc = descs + pos; 474 475 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 476 477 pos = (pos + 1) % size; 478 } 479 480 s->ctx_data.rx.last_syt_offset = last; 481 s->ctx_data.rx.syt_offset_state = state; 482 } 483 484 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, 485 unsigned int transfer_delay) 486 { 487 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; 488 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; 489 unsigned int syt_offset; 490 491 // Round up. 492 if (syt_cycle_lo < cycle_lo) 493 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; 494 syt_cycle_lo -= cycle_lo; 495 496 // Subtract transfer delay so that the synchronization offset is not so large 497 // at transmission. 498 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); 499 if (syt_offset < transfer_delay) 500 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; 501 502 return syt_offset - transfer_delay; 503 } 504 505 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. 506 // Additionally, the sequence of tx packets is severely checked against any discontinuity 507 // before filling entries in the queue. The calculation is safe even if it looks fragile by 508 // overrun. 509 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) 510 { 511 const unsigned int cache_size = s->ctx_data.tx.cache.size; 512 unsigned int cycles = s->ctx_data.tx.cache.pos; 513 514 if (cycles < head) 515 cycles += cache_size; 516 cycles -= head; 517 518 return cycles; 519 } 520 521 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count) 522 { 523 const unsigned int transfer_delay = s->transfer_delay; 524 const unsigned int cache_size = s->ctx_data.tx.cache.size; 525 struct seq_desc *cache = s->ctx_data.tx.cache.descs; 526 unsigned int cache_pos = s->ctx_data.tx.cache.pos; 527 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 528 int i; 529 530 for (i = 0; i < desc_count; ++i) { 531 struct seq_desc *dst = cache + cache_pos; 532 533 if (aware_syt && src->syt != CIP_SYT_NO_INFO) 534 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); 535 else 536 dst->syt_offset = CIP_SYT_NO_INFO; 537 dst->data_blocks = src->data_blocks; 538 539 cache_pos = (cache_pos + 1) % cache_size; 540 src = amdtp_stream_next_packet_desc(s, src); 541 } 542 543 s->ctx_data.tx.cache.pos = cache_pos; 544 } 545 546 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 547 unsigned int pos, unsigned int count) 548 { 549 pool_ideal_syt_offsets(s, descs, size, pos, count); 550 551 if (s->flags & CIP_BLOCKING) 552 pool_blocking_data_blocks(s, descs, size, pos, count); 553 else 554 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count); 555 } 556 557 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 558 unsigned int pos, unsigned int count) 559 { 560 struct amdtp_stream *target = s->ctx_data.rx.replay_target; 561 const struct seq_desc *cache = target->ctx_data.tx.cache.descs; 562 const unsigned int cache_size = target->ctx_data.tx.cache.size; 563 unsigned int cache_pos = s->ctx_data.rx.cache_pos; 564 int i; 565 566 for (i = 0; i < count; ++i) { 567 descs[pos] = cache[cache_pos]; 568 cache_pos = (cache_pos + 1) % cache_size; 569 pos = (pos + 1) % size; 570 } 571 572 s->ctx_data.rx.cache_pos = cache_pos; 573 } 574 575 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 576 unsigned int pos, unsigned int count) 577 { 578 struct amdtp_domain *d = s->domain; 579 void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 580 unsigned int pos, unsigned int count); 581 582 if (!d->replay.enable || !s->ctx_data.rx.replay_target) { 583 pool_seq_descs = pool_ideal_seq_descs; 584 } else { 585 if (!d->replay.on_the_fly) { 586 pool_seq_descs = pool_replayed_seq; 587 } else { 588 struct amdtp_stream *tx = s->ctx_data.rx.replay_target; 589 const unsigned int cache_size = tx->ctx_data.tx.cache.size; 590 const unsigned int cache_pos = s->ctx_data.rx.cache_pos; 591 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos); 592 593 if (cached_cycles > count && cached_cycles > cache_size / 2) 594 pool_seq_descs = pool_replayed_seq; 595 else 596 pool_seq_descs = pool_ideal_seq_descs; 597 } 598 } 599 600 pool_seq_descs(s, descs, size, pos, count); 601 } 602 603 static void update_pcm_pointers(struct amdtp_stream *s, 604 struct snd_pcm_substream *pcm, 605 unsigned int frames) 606 { 607 unsigned int ptr; 608 609 ptr = s->pcm_buffer_pointer + frames; 610 if (ptr >= pcm->runtime->buffer_size) 611 ptr -= pcm->runtime->buffer_size; 612 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 613 614 s->pcm_period_pointer += frames; 615 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 616 s->pcm_period_pointer -= pcm->runtime->period_size; 617 618 // The program in user process should periodically check the status of intermediate 619 // buffer associated to PCM substream to process PCM frames in the buffer, instead 620 // of receiving notification of period elapsed by poll wait. 621 if (!pcm->runtime->no_period_wakeup) 622 queue_work(system_highpri_wq, &s->period_work); 623 } 624 } 625 626 static void pcm_period_work(struct work_struct *work) 627 { 628 struct amdtp_stream *s = container_of(work, struct amdtp_stream, 629 period_work); 630 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 631 632 if (pcm) 633 snd_pcm_period_elapsed(pcm); 634 } 635 636 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 637 bool sched_irq) 638 { 639 int err; 640 641 params->interrupt = sched_irq; 642 params->tag = s->tag; 643 params->sy = 0; 644 645 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 646 s->buffer.packets[s->packet_index].offset); 647 if (err < 0) { 648 dev_err(&s->unit->device, "queueing error: %d\n", err); 649 goto end; 650 } 651 652 if (++s->packet_index >= s->queue_size) 653 s->packet_index = 0; 654 end: 655 return err; 656 } 657 658 static inline int queue_out_packet(struct amdtp_stream *s, 659 struct fw_iso_packet *params, bool sched_irq) 660 { 661 params->skip = 662 !!(params->header_length == 0 && params->payload_length == 0); 663 return queue_packet(s, params, sched_irq); 664 } 665 666 static inline int queue_in_packet(struct amdtp_stream *s, 667 struct fw_iso_packet *params) 668 { 669 // Queue one packet for IR context. 670 params->header_length = s->ctx_data.tx.ctx_header_size; 671 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 672 params->skip = false; 673 return queue_packet(s, params, false); 674 } 675 676 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 677 unsigned int data_block_counter, unsigned int syt) 678 { 679 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 680 (s->data_block_quadlets << CIP_DBS_SHIFT) | 681 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 682 data_block_counter); 683 cip_header[1] = cpu_to_be32(CIP_EOH | 684 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 685 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 686 (syt & CIP_SYT_MASK)); 687 } 688 689 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 690 struct fw_iso_packet *params, unsigned int header_length, 691 unsigned int data_blocks, 692 unsigned int data_block_counter, 693 unsigned int syt, unsigned int index, u32 curr_cycle_time) 694 { 695 unsigned int payload_length; 696 __be32 *cip_header; 697 698 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 699 params->payload_length = payload_length; 700 701 if (header_length > 0) { 702 cip_header = (__be32 *)params->header; 703 generate_cip_header(s, cip_header, data_block_counter, syt); 704 params->header_length = header_length; 705 } else { 706 cip_header = NULL; 707 } 708 709 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 710 data_block_counter, s->packet_index, index, curr_cycle_time); 711 } 712 713 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 714 unsigned int payload_length, 715 unsigned int *data_blocks, 716 unsigned int *data_block_counter, unsigned int *syt) 717 { 718 u32 cip_header[2]; 719 unsigned int sph; 720 unsigned int fmt; 721 unsigned int fdf; 722 unsigned int dbc; 723 bool lost; 724 725 cip_header[0] = be32_to_cpu(buf[0]); 726 cip_header[1] = be32_to_cpu(buf[1]); 727 728 /* 729 * This module supports 'Two-quadlet CIP header with SYT field'. 730 * For convenience, also check FMT field is AM824 or not. 731 */ 732 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 733 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 734 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 735 dev_info_ratelimited(&s->unit->device, 736 "Invalid CIP header for AMDTP: %08X:%08X\n", 737 cip_header[0], cip_header[1]); 738 return -EAGAIN; 739 } 740 741 /* Check valid protocol or not. */ 742 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 743 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 744 if (sph != s->sph || fmt != s->fmt) { 745 dev_info_ratelimited(&s->unit->device, 746 "Detect unexpected protocol: %08x %08x\n", 747 cip_header[0], cip_header[1]); 748 return -EAGAIN; 749 } 750 751 /* Calculate data blocks */ 752 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 753 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 754 *data_blocks = 0; 755 } else { 756 unsigned int data_block_quadlets = 757 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 758 /* avoid division by zero */ 759 if (data_block_quadlets == 0) { 760 dev_err(&s->unit->device, 761 "Detect invalid value in dbs field: %08X\n", 762 cip_header[0]); 763 return -EPROTO; 764 } 765 if (s->flags & CIP_WRONG_DBS) 766 data_block_quadlets = s->data_block_quadlets; 767 768 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 769 } 770 771 /* Check data block counter continuity */ 772 dbc = cip_header[0] & CIP_DBC_MASK; 773 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 774 *data_block_counter != UINT_MAX) 775 dbc = *data_block_counter; 776 777 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 778 *data_block_counter == UINT_MAX) { 779 lost = false; 780 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 781 lost = dbc != *data_block_counter; 782 } else { 783 unsigned int dbc_interval; 784 785 if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) { 786 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 787 dbc_interval = s->ctx_data.tx.dbc_interval; 788 else 789 dbc_interval = *data_blocks; 790 } else { 791 dbc_interval = payload_length / sizeof(__be32); 792 } 793 794 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 795 } 796 797 if (lost) { 798 dev_err(&s->unit->device, 799 "Detect discontinuity of CIP: %02X %02X\n", 800 *data_block_counter, dbc); 801 return -EIO; 802 } 803 804 *data_block_counter = dbc; 805 806 if (!(s->flags & CIP_UNAWARE_SYT)) 807 *syt = cip_header[1] & CIP_SYT_MASK; 808 809 return 0; 810 } 811 812 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 813 const __be32 *ctx_header, 814 unsigned int *data_blocks, 815 unsigned int *data_block_counter, 816 unsigned int *syt, unsigned int packet_index, unsigned int index, 817 u32 curr_cycle_time) 818 { 819 unsigned int payload_length; 820 const __be32 *cip_header; 821 unsigned int cip_header_size; 822 823 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 824 825 if (!(s->flags & CIP_NO_HEADER)) 826 cip_header_size = CIP_HEADER_SIZE; 827 else 828 cip_header_size = 0; 829 830 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 831 dev_err(&s->unit->device, 832 "Detect jumbo payload: %04x %04x\n", 833 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 834 return -EIO; 835 } 836 837 if (cip_header_size > 0) { 838 if (payload_length >= cip_header_size) { 839 int err; 840 841 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 842 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 843 data_blocks, data_block_counter, syt); 844 if (err < 0) 845 return err; 846 } else { 847 // Handle the cycle so that empty packet arrives. 848 cip_header = NULL; 849 *data_blocks = 0; 850 *syt = 0; 851 } 852 } else { 853 cip_header = NULL; 854 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 855 *syt = 0; 856 857 if (*data_block_counter == UINT_MAX) 858 *data_block_counter = 0; 859 } 860 861 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 862 *data_block_counter, packet_index, index, curr_cycle_time); 863 864 return 0; 865 } 866 867 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 868 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 869 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 870 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp) 871 { 872 return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff); 873 } 874 875 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 876 { 877 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 878 return compute_ohci_iso_ctx_cycle_count(tstamp); 879 } 880 881 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 882 { 883 cycle += addend; 884 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 885 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 886 return cycle; 887 } 888 889 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend) 890 { 891 if (minuend < subtrahend) 892 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 893 894 return minuend - subtrahend; 895 } 896 897 static int compare_ohci_cycle_count(u32 lval, u32 rval) 898 { 899 if (lval == rval) 900 return 0; 901 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 902 return -1; 903 else 904 return 1; 905 } 906 907 // Align to actual cycle count for the packet which is going to be scheduled. 908 // This module queued the same number of isochronous cycle as the size of queue 909 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 910 // the size of queue for scheduled cycle. 911 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 912 unsigned int queue_size) 913 { 914 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 915 return increment_ohci_cycle_count(cycle, queue_size); 916 } 917 918 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 919 const __be32 *ctx_header, unsigned int packet_count, 920 unsigned int *desc_count) 921 { 922 unsigned int next_cycle = s->next_cycle; 923 unsigned int dbc = s->data_block_counter; 924 unsigned int packet_index = s->packet_index; 925 unsigned int queue_size = s->queue_size; 926 u32 curr_cycle_time = 0; 927 int i; 928 int err; 929 930 if (trace_amdtp_packet_enabled()) 931 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 932 933 *desc_count = 0; 934 for (i = 0; i < packet_count; ++i) { 935 unsigned int cycle; 936 bool lost; 937 unsigned int data_blocks; 938 unsigned int syt; 939 940 cycle = compute_ohci_cycle_count(ctx_header[1]); 941 lost = (next_cycle != cycle); 942 if (lost) { 943 if (s->flags & CIP_NO_HEADER) { 944 // Fireface skips transmission just for an isoc cycle corresponding 945 // to empty packet. 946 unsigned int prev_cycle = next_cycle; 947 948 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 949 lost = (next_cycle != cycle); 950 if (!lost) { 951 // Prepare a description for the skipped cycle for 952 // sequence replay. 953 desc->cycle = prev_cycle; 954 desc->syt = 0; 955 desc->data_blocks = 0; 956 desc->data_block_counter = dbc; 957 desc->ctx_payload = NULL; 958 desc = amdtp_stream_next_packet_desc(s, desc); 959 ++(*desc_count); 960 } 961 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 962 // OXFW970 skips transmission for several isoc cycles during 963 // asynchronous transaction. The sequence replay is impossible due 964 // to the reason. 965 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 966 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 967 lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0); 968 } 969 if (lost) { 970 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 971 next_cycle, cycle); 972 return -EIO; 973 } 974 } 975 976 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 977 packet_index, i, curr_cycle_time); 978 if (err < 0) 979 return err; 980 981 desc->cycle = cycle; 982 desc->syt = syt; 983 desc->data_blocks = data_blocks; 984 desc->data_block_counter = dbc; 985 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 986 987 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 988 dbc = (dbc + desc->data_blocks) & 0xff; 989 990 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 991 desc = amdtp_stream_next_packet_desc(s, desc); 992 ++(*desc_count); 993 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 994 packet_index = (packet_index + 1) % queue_size; 995 } 996 997 s->next_cycle = next_cycle; 998 s->data_block_counter = dbc; 999 1000 return 0; 1001 } 1002 1003 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 1004 unsigned int transfer_delay) 1005 { 1006 unsigned int syt; 1007 1008 syt_offset += transfer_delay; 1009 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 1010 (syt_offset % TICKS_PER_CYCLE); 1011 return syt & CIP_SYT_MASK; 1012 } 1013 1014 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 1015 const __be32 *ctx_header, unsigned int packet_count) 1016 { 1017 struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 1018 unsigned int seq_size = s->ctx_data.rx.seq.size; 1019 unsigned int seq_pos = s->ctx_data.rx.seq.pos; 1020 unsigned int dbc = s->data_block_counter; 1021 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 1022 int i; 1023 1024 pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count); 1025 1026 for (i = 0; i < packet_count; ++i) { 1027 unsigned int index = (s->packet_index + i) % s->queue_size; 1028 const struct seq_desc *seq = seq_descs + seq_pos; 1029 1030 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 1031 1032 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 1033 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 1034 else 1035 desc->syt = CIP_SYT_NO_INFO; 1036 1037 desc->data_blocks = seq->data_blocks; 1038 1039 if (s->flags & CIP_DBC_IS_END_EVENT) 1040 dbc = (dbc + desc->data_blocks) & 0xff; 1041 1042 desc->data_block_counter = dbc; 1043 1044 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1045 dbc = (dbc + desc->data_blocks) & 0xff; 1046 1047 desc->ctx_payload = s->buffer.packets[index].buffer; 1048 1049 seq_pos = (seq_pos + 1) % seq_size; 1050 desc = amdtp_stream_next_packet_desc(s, desc); 1051 1052 ++ctx_header; 1053 } 1054 1055 s->data_block_counter = dbc; 1056 s->ctx_data.rx.seq.pos = seq_pos; 1057 } 1058 1059 static inline void cancel_stream(struct amdtp_stream *s) 1060 { 1061 s->packet_index = -1; 1062 if (in_softirq()) 1063 amdtp_stream_pcm_abort(s); 1064 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 1065 } 1066 1067 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s, 1068 const struct pkt_desc *desc, unsigned int count) 1069 { 1070 unsigned int data_block_count = 0; 1071 u32 latest_cycle; 1072 u32 cycle_time; 1073 u32 curr_cycle; 1074 u32 cycle_gap; 1075 int i, err; 1076 1077 if (count == 0) 1078 goto end; 1079 1080 // Forward to the latest record. 1081 for (i = 0; i < count - 1; ++i) 1082 desc = amdtp_stream_next_packet_desc(s, desc); 1083 latest_cycle = desc->cycle; 1084 1085 err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time); 1086 if (err < 0) 1087 goto end; 1088 1089 // Compute cycle count with lower 3 bits of second field and cycle field like timestamp 1090 // format of 1394 OHCI isochronous context. 1091 curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff); 1092 1093 if (s->direction == AMDTP_IN_STREAM) { 1094 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since 1095 // it corresponds to arrived isochronous packet. 1096 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0) 1097 goto end; 1098 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle); 1099 1100 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated 1101 // value expectedly corresponds to a few packets (0-2) since the packet arrived at 1102 // the most recent isochronous cycle has been already processed. 1103 for (i = 0; i < cycle_gap; ++i) { 1104 desc = amdtp_stream_next_packet_desc(s, desc); 1105 data_block_count += desc->data_blocks; 1106 } 1107 } else { 1108 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle 1109 // since it was already scheduled. 1110 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0) 1111 goto end; 1112 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle); 1113 1114 // NOTE: use history of scheduled packets. 1115 for (i = 0; i < cycle_gap; ++i) { 1116 data_block_count += desc->data_blocks; 1117 desc = prev_packet_desc(s, desc); 1118 } 1119 } 1120 end: 1121 return data_block_count * s->pcm_frame_multiplier; 1122 } 1123 1124 static void process_ctx_payloads(struct amdtp_stream *s, 1125 const struct pkt_desc *desc, 1126 unsigned int count) 1127 { 1128 struct snd_pcm_substream *pcm; 1129 int i; 1130 1131 pcm = READ_ONCE(s->pcm); 1132 s->process_ctx_payloads(s, desc, count, pcm); 1133 1134 if (pcm) { 1135 unsigned int data_block_count = 0; 1136 1137 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count); 1138 1139 for (i = 0; i < count; ++i) { 1140 data_block_count += desc->data_blocks; 1141 desc = amdtp_stream_next_packet_desc(s, desc); 1142 } 1143 1144 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier); 1145 } 1146 } 1147 1148 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1149 void *header, void *private_data) 1150 { 1151 struct amdtp_stream *s = private_data; 1152 const struct amdtp_domain *d = s->domain; 1153 const __be32 *ctx_header = header; 1154 const unsigned int events_per_period = d->events_per_period; 1155 unsigned int event_count = s->ctx_data.rx.event_count; 1156 struct pkt_desc *desc = s->packet_descs_cursor; 1157 unsigned int pkt_header_length; 1158 unsigned int packets; 1159 u32 curr_cycle_time; 1160 bool need_hw_irq; 1161 int i; 1162 1163 if (s->packet_index < 0) 1164 return; 1165 1166 // Calculate the number of packets in buffer and check XRUN. 1167 packets = header_length / sizeof(*ctx_header); 1168 1169 generate_rx_packet_descs(s, desc, ctx_header, packets); 1170 1171 process_ctx_payloads(s, desc, packets); 1172 1173 if (!(s->flags & CIP_NO_HEADER)) 1174 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 1175 else 1176 pkt_header_length = 0; 1177 1178 if (s == d->irq_target) { 1179 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by 1180 // the tasks of user process operating ALSA PCM character device by calling ioctl(2) 1181 // with some requests, instead of scheduled hardware IRQ of an IT context. 1182 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 1183 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; 1184 } else { 1185 need_hw_irq = false; 1186 } 1187 1188 if (trace_amdtp_packet_enabled()) 1189 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 1190 1191 for (i = 0; i < packets; ++i) { 1192 struct { 1193 struct fw_iso_packet params; 1194 __be32 header[CIP_HEADER_QUADLETS]; 1195 } template = { {0}, {0} }; 1196 bool sched_irq = false; 1197 1198 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length, 1199 desc->data_blocks, desc->data_block_counter, 1200 desc->syt, i, curr_cycle_time); 1201 1202 if (s == s->domain->irq_target) { 1203 event_count += desc->data_blocks; 1204 if (event_count >= events_per_period) { 1205 event_count -= events_per_period; 1206 sched_irq = need_hw_irq; 1207 } 1208 } 1209 1210 if (queue_out_packet(s, &template.params, sched_irq) < 0) { 1211 cancel_stream(s); 1212 return; 1213 } 1214 1215 desc = amdtp_stream_next_packet_desc(s, desc); 1216 } 1217 1218 s->ctx_data.rx.event_count = event_count; 1219 s->packet_descs_cursor = desc; 1220 } 1221 1222 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1223 void *header, void *private_data) 1224 { 1225 struct amdtp_stream *s = private_data; 1226 struct amdtp_domain *d = s->domain; 1227 const __be32 *ctx_header = header; 1228 unsigned int packets; 1229 unsigned int cycle; 1230 int i; 1231 1232 if (s->packet_index < 0) 1233 return; 1234 1235 packets = header_length / sizeof(*ctx_header); 1236 1237 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1238 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1239 1240 for (i = 0; i < packets; ++i) { 1241 struct fw_iso_packet params = { 1242 .header_length = 0, 1243 .payload_length = 0, 1244 }; 1245 bool sched_irq = (s == d->irq_target && i == packets - 1); 1246 1247 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1248 cancel_stream(s); 1249 return; 1250 } 1251 } 1252 } 1253 1254 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1255 void *header, void *private_data); 1256 1257 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1258 size_t header_length, void *header, void *private_data) 1259 { 1260 struct amdtp_stream *s = private_data; 1261 struct amdtp_domain *d = s->domain; 1262 __be32 *ctx_header = header; 1263 const unsigned int queue_size = s->queue_size; 1264 unsigned int packets; 1265 unsigned int offset; 1266 1267 if (s->packet_index < 0) 1268 return; 1269 1270 packets = header_length / sizeof(*ctx_header); 1271 1272 offset = 0; 1273 while (offset < packets) { 1274 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1275 1276 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1277 break; 1278 1279 ++offset; 1280 } 1281 1282 if (offset > 0) { 1283 unsigned int length = sizeof(*ctx_header) * offset; 1284 1285 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1286 if (amdtp_streaming_error(s)) 1287 return; 1288 1289 ctx_header += offset; 1290 header_length -= length; 1291 } 1292 1293 if (offset < packets) { 1294 s->ready_processing = true; 1295 wake_up(&s->ready_wait); 1296 1297 if (d->replay.enable) 1298 s->ctx_data.rx.cache_pos = 0; 1299 1300 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1301 if (amdtp_streaming_error(s)) 1302 return; 1303 1304 if (s == d->irq_target) 1305 s->context->callback.sc = irq_target_callback; 1306 else 1307 s->context->callback.sc = process_rx_packets; 1308 } 1309 } 1310 1311 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1312 void *header, void *private_data) 1313 { 1314 struct amdtp_stream *s = private_data; 1315 __be32 *ctx_header = header; 1316 struct pkt_desc *desc = s->packet_descs_cursor; 1317 unsigned int packet_count; 1318 unsigned int desc_count; 1319 int i; 1320 int err; 1321 1322 if (s->packet_index < 0) 1323 return; 1324 1325 // Calculate the number of packets in buffer and check XRUN. 1326 packet_count = header_length / s->ctx_data.tx.ctx_header_size; 1327 1328 desc_count = 0; 1329 err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count); 1330 if (err < 0) { 1331 if (err != -EAGAIN) { 1332 cancel_stream(s); 1333 return; 1334 } 1335 } else { 1336 struct amdtp_domain *d = s->domain; 1337 1338 process_ctx_payloads(s, desc, desc_count); 1339 1340 if (d->replay.enable) 1341 cache_seq(s, desc, desc_count); 1342 1343 for (i = 0; i < desc_count; ++i) 1344 desc = amdtp_stream_next_packet_desc(s, desc); 1345 s->packet_descs_cursor = desc; 1346 } 1347 1348 for (i = 0; i < packet_count; ++i) { 1349 struct fw_iso_packet params = {0}; 1350 1351 if (queue_in_packet(s, ¶ms) < 0) { 1352 cancel_stream(s); 1353 return; 1354 } 1355 } 1356 } 1357 1358 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1359 void *header, void *private_data) 1360 { 1361 struct amdtp_stream *s = private_data; 1362 const __be32 *ctx_header = header; 1363 unsigned int packets; 1364 unsigned int cycle; 1365 int i; 1366 1367 if (s->packet_index < 0) 1368 return; 1369 1370 packets = header_length / s->ctx_data.tx.ctx_header_size; 1371 1372 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1373 cycle = compute_ohci_cycle_count(ctx_header[1]); 1374 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1375 1376 for (i = 0; i < packets; ++i) { 1377 struct fw_iso_packet params = {0}; 1378 1379 if (queue_in_packet(s, ¶ms) < 0) { 1380 cancel_stream(s); 1381 return; 1382 } 1383 } 1384 } 1385 1386 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1387 size_t header_length, void *header, void *private_data) 1388 { 1389 struct amdtp_stream *s = private_data; 1390 struct amdtp_domain *d = s->domain; 1391 __be32 *ctx_header; 1392 unsigned int packets; 1393 unsigned int offset; 1394 1395 if (s->packet_index < 0) 1396 return; 1397 1398 packets = header_length / s->ctx_data.tx.ctx_header_size; 1399 1400 offset = 0; 1401 ctx_header = header; 1402 while (offset < packets) { 1403 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1404 1405 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1406 break; 1407 1408 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1409 ++offset; 1410 } 1411 1412 ctx_header = header; 1413 1414 if (offset > 0) { 1415 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1416 1417 drop_tx_packets(context, tstamp, length, ctx_header, s); 1418 if (amdtp_streaming_error(s)) 1419 return; 1420 1421 ctx_header += length / sizeof(*ctx_header); 1422 header_length -= length; 1423 } 1424 1425 if (offset < packets) { 1426 s->ready_processing = true; 1427 wake_up(&s->ready_wait); 1428 1429 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1430 if (amdtp_streaming_error(s)) 1431 return; 1432 1433 context->callback.sc = process_tx_packets; 1434 } 1435 } 1436 1437 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1438 size_t header_length, void *header, void *private_data) 1439 { 1440 struct amdtp_stream *s = private_data; 1441 struct amdtp_domain *d = s->domain; 1442 __be32 *ctx_header; 1443 unsigned int count; 1444 unsigned int events; 1445 int i; 1446 1447 if (s->packet_index < 0) 1448 return; 1449 1450 count = header_length / s->ctx_data.tx.ctx_header_size; 1451 1452 // Attempt to detect any event in the batch of packets. 1453 events = 0; 1454 ctx_header = header; 1455 for (i = 0; i < count; ++i) { 1456 unsigned int payload_quads = 1457 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1458 unsigned int data_blocks; 1459 1460 if (s->flags & CIP_NO_HEADER) { 1461 data_blocks = payload_quads / s->data_block_quadlets; 1462 } else { 1463 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1464 1465 if (payload_quads < CIP_HEADER_QUADLETS) { 1466 data_blocks = 0; 1467 } else { 1468 payload_quads -= CIP_HEADER_QUADLETS; 1469 1470 if (s->flags & CIP_UNAWARE_SYT) { 1471 data_blocks = payload_quads / s->data_block_quadlets; 1472 } else { 1473 u32 cip1 = be32_to_cpu(cip_headers[1]); 1474 1475 // NODATA packet can includes any data blocks but they are 1476 // not available as event. 1477 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1478 data_blocks = 0; 1479 else 1480 data_blocks = payload_quads / s->data_block_quadlets; 1481 } 1482 } 1483 } 1484 1485 events += data_blocks; 1486 1487 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1488 } 1489 1490 drop_tx_packets(context, tstamp, header_length, header, s); 1491 1492 if (events > 0) 1493 s->ctx_data.tx.event_starts = true; 1494 1495 // Decide the cycle count to begin processing content of packet in IR contexts. 1496 { 1497 unsigned int stream_count = 0; 1498 unsigned int event_starts_count = 0; 1499 unsigned int cycle = UINT_MAX; 1500 1501 list_for_each_entry(s, &d->streams, list) { 1502 if (s->direction == AMDTP_IN_STREAM) { 1503 ++stream_count; 1504 if (s->ctx_data.tx.event_starts) 1505 ++event_starts_count; 1506 } 1507 } 1508 1509 if (stream_count == event_starts_count) { 1510 unsigned int next_cycle; 1511 1512 list_for_each_entry(s, &d->streams, list) { 1513 if (s->direction != AMDTP_IN_STREAM) 1514 continue; 1515 1516 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1517 d->processing_cycle.tx_init_skip); 1518 if (cycle == UINT_MAX || 1519 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1520 cycle = next_cycle; 1521 1522 s->context->callback.sc = process_tx_packets_intermediately; 1523 } 1524 1525 d->processing_cycle.tx_start = cycle; 1526 } 1527 } 1528 } 1529 1530 static void process_ctxs_in_domain(struct amdtp_domain *d) 1531 { 1532 struct amdtp_stream *s; 1533 1534 list_for_each_entry(s, &d->streams, list) { 1535 if (s != d->irq_target && amdtp_stream_running(s)) 1536 fw_iso_context_flush_completions(s->context); 1537 1538 if (amdtp_streaming_error(s)) 1539 goto error; 1540 } 1541 1542 return; 1543 error: 1544 if (amdtp_stream_running(d->irq_target)) 1545 cancel_stream(d->irq_target); 1546 1547 list_for_each_entry(s, &d->streams, list) { 1548 if (amdtp_stream_running(s)) 1549 cancel_stream(s); 1550 } 1551 } 1552 1553 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1554 void *header, void *private_data) 1555 { 1556 struct amdtp_stream *s = private_data; 1557 struct amdtp_domain *d = s->domain; 1558 1559 process_rx_packets(context, tstamp, header_length, header, private_data); 1560 process_ctxs_in_domain(d); 1561 } 1562 1563 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1564 size_t header_length, void *header, void *private_data) 1565 { 1566 struct amdtp_stream *s = private_data; 1567 struct amdtp_domain *d = s->domain; 1568 1569 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1570 process_ctxs_in_domain(d); 1571 } 1572 1573 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1574 size_t header_length, void *header, void *private_data) 1575 { 1576 struct amdtp_stream *s = private_data; 1577 struct amdtp_domain *d = s->domain; 1578 bool ready_to_start; 1579 1580 skip_rx_packets(context, tstamp, header_length, header, private_data); 1581 process_ctxs_in_domain(d); 1582 1583 if (d->replay.enable && !d->replay.on_the_fly) { 1584 unsigned int rx_count = 0; 1585 unsigned int rx_ready_count = 0; 1586 struct amdtp_stream *rx; 1587 1588 list_for_each_entry(rx, &d->streams, list) { 1589 struct amdtp_stream *tx; 1590 unsigned int cached_cycles; 1591 1592 if (rx->direction != AMDTP_OUT_STREAM) 1593 continue; 1594 ++rx_count; 1595 1596 tx = rx->ctx_data.rx.replay_target; 1597 cached_cycles = calculate_cached_cycle_count(tx, 0); 1598 if (cached_cycles > tx->ctx_data.tx.cache.size / 2) 1599 ++rx_ready_count; 1600 } 1601 1602 ready_to_start = (rx_count == rx_ready_count); 1603 } else { 1604 ready_to_start = true; 1605 } 1606 1607 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1608 // contexts are expected to start and get callback when reaching here. 1609 if (ready_to_start) { 1610 unsigned int cycle = s->next_cycle; 1611 list_for_each_entry(s, &d->streams, list) { 1612 if (s->direction != AMDTP_OUT_STREAM) 1613 continue; 1614 1615 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1616 cycle = s->next_cycle; 1617 1618 if (s == d->irq_target) 1619 s->context->callback.sc = irq_target_callback_intermediately; 1620 else 1621 s->context->callback.sc = process_rx_packets_intermediately; 1622 } 1623 1624 d->processing_cycle.rx_start = cycle; 1625 } 1626 } 1627 1628 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1629 // transmit first packet. 1630 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1631 u32 tstamp, size_t header_length, 1632 void *header, void *private_data) 1633 { 1634 struct amdtp_stream *s = private_data; 1635 struct amdtp_domain *d = s->domain; 1636 1637 if (s->direction == AMDTP_IN_STREAM) { 1638 context->callback.sc = drop_tx_packets_initially; 1639 } else { 1640 if (s == d->irq_target) 1641 context->callback.sc = irq_target_callback_skip; 1642 else 1643 context->callback.sc = skip_rx_packets; 1644 } 1645 1646 context->callback.sc(context, tstamp, header_length, header, s); 1647 } 1648 1649 /** 1650 * amdtp_stream_start - start transferring packets 1651 * @s: the AMDTP stream to start 1652 * @channel: the isochronous channel on the bus 1653 * @speed: firewire speed code 1654 * @queue_size: The number of packets in the queue. 1655 * @idle_irq_interval: the interval to queue packet during initial state. 1656 * 1657 * The stream cannot be started until it has been configured with 1658 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1659 * device can be started. 1660 */ 1661 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1662 unsigned int queue_size, unsigned int idle_irq_interval) 1663 { 1664 bool is_irq_target = (s == s->domain->irq_target); 1665 unsigned int ctx_header_size; 1666 unsigned int max_ctx_payload_size; 1667 enum dma_data_direction dir; 1668 struct pkt_desc *descs; 1669 int i, type, tag, err; 1670 1671 mutex_lock(&s->mutex); 1672 1673 if (WARN_ON(amdtp_stream_running(s) || 1674 (s->data_block_quadlets < 1))) { 1675 err = -EBADFD; 1676 goto err_unlock; 1677 } 1678 1679 if (s->direction == AMDTP_IN_STREAM) { 1680 // NOTE: IT context should be used for constant IRQ. 1681 if (is_irq_target) { 1682 err = -EINVAL; 1683 goto err_unlock; 1684 } 1685 1686 s->data_block_counter = UINT_MAX; 1687 } else { 1688 s->data_block_counter = 0; 1689 } 1690 1691 // initialize packet buffer. 1692 if (s->direction == AMDTP_IN_STREAM) { 1693 dir = DMA_FROM_DEVICE; 1694 type = FW_ISO_CONTEXT_RECEIVE; 1695 if (!(s->flags & CIP_NO_HEADER)) 1696 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1697 else 1698 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1699 } else { 1700 dir = DMA_TO_DEVICE; 1701 type = FW_ISO_CONTEXT_TRANSMIT; 1702 ctx_header_size = 0; // No effect for IT context. 1703 } 1704 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1705 1706 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1707 if (err < 0) 1708 goto err_unlock; 1709 s->queue_size = queue_size; 1710 1711 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1712 type, channel, speed, ctx_header_size, 1713 amdtp_stream_first_callback, s); 1714 if (IS_ERR(s->context)) { 1715 err = PTR_ERR(s->context); 1716 if (err == -EBUSY) 1717 dev_err(&s->unit->device, 1718 "no free stream on this controller\n"); 1719 goto err_buffer; 1720 } 1721 1722 amdtp_stream_update(s); 1723 1724 if (s->direction == AMDTP_IN_STREAM) { 1725 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1726 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1727 s->ctx_data.tx.event_starts = false; 1728 1729 if (s->domain->replay.enable) { 1730 // struct fw_iso_context.drop_overflow_headers is false therefore it's 1731 // possible to cache much unexpectedly. 1732 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, 1733 queue_size * 3 / 2); 1734 s->ctx_data.tx.cache.pos = 0; 1735 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, 1736 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); 1737 if (!s->ctx_data.tx.cache.descs) { 1738 err = -ENOMEM; 1739 goto err_context; 1740 } 1741 } 1742 } else { 1743 static const struct { 1744 unsigned int data_block; 1745 unsigned int syt_offset; 1746 } *entry, initial_state[] = { 1747 [CIP_SFC_32000] = { 4, 3072 }, 1748 [CIP_SFC_48000] = { 6, 1024 }, 1749 [CIP_SFC_96000] = { 12, 1024 }, 1750 [CIP_SFC_192000] = { 24, 1024 }, 1751 [CIP_SFC_44100] = { 0, 67 }, 1752 [CIP_SFC_88200] = { 0, 67 }, 1753 [CIP_SFC_176400] = { 0, 67 }, 1754 }; 1755 1756 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1757 if (!s->ctx_data.rx.seq.descs) { 1758 err = -ENOMEM; 1759 goto err_context; 1760 } 1761 s->ctx_data.rx.seq.size = queue_size; 1762 s->ctx_data.rx.seq.pos = 0; 1763 1764 entry = &initial_state[s->sfc]; 1765 s->ctx_data.rx.data_block_state = entry->data_block; 1766 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1767 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1768 1769 s->ctx_data.rx.event_count = 0; 1770 } 1771 1772 if (s->flags & CIP_NO_HEADER) 1773 s->tag = TAG_NO_CIP_HEADER; 1774 else 1775 s->tag = TAG_CIP; 1776 1777 // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request 1778 // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It 1779 // could take a round over queue of AMDTP packet descriptors and small loss of history. For 1780 // safe, keep more 8 elements for the queue, equivalent to 1 ms. 1781 descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL); 1782 if (!descs) { 1783 err = -ENOMEM; 1784 goto err_context; 1785 } 1786 s->packet_descs = descs; 1787 1788 INIT_LIST_HEAD(&s->packet_descs_list); 1789 for (i = 0; i < s->queue_size; ++i) { 1790 INIT_LIST_HEAD(&descs->link); 1791 list_add_tail(&descs->link, &s->packet_descs_list); 1792 ++descs; 1793 } 1794 s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link); 1795 1796 s->packet_index = 0; 1797 do { 1798 struct fw_iso_packet params; 1799 1800 if (s->direction == AMDTP_IN_STREAM) { 1801 err = queue_in_packet(s, ¶ms); 1802 } else { 1803 bool sched_irq = false; 1804 1805 params.header_length = 0; 1806 params.payload_length = 0; 1807 1808 if (is_irq_target) { 1809 sched_irq = !((s->packet_index + 1) % 1810 idle_irq_interval); 1811 } 1812 1813 err = queue_out_packet(s, ¶ms, sched_irq); 1814 } 1815 if (err < 0) 1816 goto err_pkt_descs; 1817 } while (s->packet_index > 0); 1818 1819 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1820 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1821 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1822 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1823 1824 s->ready_processing = false; 1825 err = fw_iso_context_start(s->context, -1, 0, tag); 1826 if (err < 0) 1827 goto err_pkt_descs; 1828 1829 mutex_unlock(&s->mutex); 1830 1831 return 0; 1832 err_pkt_descs: 1833 kfree(s->packet_descs); 1834 s->packet_descs = NULL; 1835 err_context: 1836 if (s->direction == AMDTP_OUT_STREAM) { 1837 kfree(s->ctx_data.rx.seq.descs); 1838 } else { 1839 if (s->domain->replay.enable) 1840 kfree(s->ctx_data.tx.cache.descs); 1841 } 1842 fw_iso_context_destroy(s->context); 1843 s->context = ERR_PTR(-1); 1844 err_buffer: 1845 iso_packets_buffer_destroy(&s->buffer, s->unit); 1846 err_unlock: 1847 mutex_unlock(&s->mutex); 1848 1849 return err; 1850 } 1851 1852 /** 1853 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1854 * @d: the AMDTP domain. 1855 * @s: the AMDTP stream that transports the PCM data 1856 * 1857 * Returns the current buffer position, in frames. 1858 */ 1859 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1860 struct amdtp_stream *s) 1861 { 1862 struct amdtp_stream *irq_target = d->irq_target; 1863 1864 if (irq_target && amdtp_stream_running(irq_target)) { 1865 // use wq to prevent AB/BA deadlock competition for 1866 // substream lock: 1867 // fw_iso_context_flush_completions() acquires 1868 // lock by ohci_flush_iso_completions(), 1869 // amdtp-stream process_rx_packets() attempts to 1870 // acquire same lock by snd_pcm_elapsed() 1871 if (current_work() != &s->period_work) 1872 fw_iso_context_flush_completions(irq_target->context); 1873 } 1874 1875 return READ_ONCE(s->pcm_buffer_pointer); 1876 } 1877 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1878 1879 /** 1880 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1881 * @d: the AMDTP domain. 1882 * @s: the AMDTP stream that transfers the PCM frames 1883 * 1884 * Returns zero always. 1885 */ 1886 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1887 { 1888 struct amdtp_stream *irq_target = d->irq_target; 1889 1890 // Process isochronous packets for recent isochronous cycle to handle 1891 // queued PCM frames. 1892 if (irq_target && amdtp_stream_running(irq_target)) 1893 fw_iso_context_flush_completions(irq_target->context); 1894 1895 return 0; 1896 } 1897 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1898 1899 /** 1900 * amdtp_stream_update - update the stream after a bus reset 1901 * @s: the AMDTP stream 1902 */ 1903 void amdtp_stream_update(struct amdtp_stream *s) 1904 { 1905 /* Precomputing. */ 1906 WRITE_ONCE(s->source_node_id_field, 1907 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1908 } 1909 EXPORT_SYMBOL(amdtp_stream_update); 1910 1911 /** 1912 * amdtp_stream_stop - stop sending packets 1913 * @s: the AMDTP stream to stop 1914 * 1915 * All PCM and MIDI devices of the stream must be stopped before the stream 1916 * itself can be stopped. 1917 */ 1918 static void amdtp_stream_stop(struct amdtp_stream *s) 1919 { 1920 mutex_lock(&s->mutex); 1921 1922 if (!amdtp_stream_running(s)) { 1923 mutex_unlock(&s->mutex); 1924 return; 1925 } 1926 1927 cancel_work_sync(&s->period_work); 1928 fw_iso_context_stop(s->context); 1929 fw_iso_context_destroy(s->context); 1930 s->context = ERR_PTR(-1); 1931 iso_packets_buffer_destroy(&s->buffer, s->unit); 1932 kfree(s->packet_descs); 1933 s->packet_descs = NULL; 1934 1935 if (s->direction == AMDTP_OUT_STREAM) { 1936 kfree(s->ctx_data.rx.seq.descs); 1937 } else { 1938 if (s->domain->replay.enable) 1939 kfree(s->ctx_data.tx.cache.descs); 1940 } 1941 1942 mutex_unlock(&s->mutex); 1943 } 1944 1945 /** 1946 * amdtp_stream_pcm_abort - abort the running PCM device 1947 * @s: the AMDTP stream about to be stopped 1948 * 1949 * If the isochronous stream needs to be stopped asynchronously, call this 1950 * function first to stop the PCM device. 1951 */ 1952 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1953 { 1954 struct snd_pcm_substream *pcm; 1955 1956 pcm = READ_ONCE(s->pcm); 1957 if (pcm) 1958 snd_pcm_stop_xrun(pcm); 1959 } 1960 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1961 1962 /** 1963 * amdtp_domain_init - initialize an AMDTP domain structure 1964 * @d: the AMDTP domain to initialize. 1965 */ 1966 int amdtp_domain_init(struct amdtp_domain *d) 1967 { 1968 INIT_LIST_HEAD(&d->streams); 1969 1970 d->events_per_period = 0; 1971 1972 return 0; 1973 } 1974 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1975 1976 /** 1977 * amdtp_domain_destroy - destroy an AMDTP domain structure 1978 * @d: the AMDTP domain to destroy. 1979 */ 1980 void amdtp_domain_destroy(struct amdtp_domain *d) 1981 { 1982 // At present nothing to do. 1983 return; 1984 } 1985 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1986 1987 /** 1988 * amdtp_domain_add_stream - register isoc context into the domain. 1989 * @d: the AMDTP domain. 1990 * @s: the AMDTP stream. 1991 * @channel: the isochronous channel on the bus. 1992 * @speed: firewire speed code. 1993 */ 1994 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1995 int channel, int speed) 1996 { 1997 struct amdtp_stream *tmp; 1998 1999 list_for_each_entry(tmp, &d->streams, list) { 2000 if (s == tmp) 2001 return -EBUSY; 2002 } 2003 2004 list_add(&s->list, &d->streams); 2005 2006 s->channel = channel; 2007 s->speed = speed; 2008 s->domain = d; 2009 2010 return 0; 2011 } 2012 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 2013 2014 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams 2015 // is less than the number of rx streams, the first tx stream is selected. 2016 static int make_association(struct amdtp_domain *d) 2017 { 2018 unsigned int dst_index = 0; 2019 struct amdtp_stream *rx; 2020 2021 // Make association to replay target. 2022 list_for_each_entry(rx, &d->streams, list) { 2023 if (rx->direction == AMDTP_OUT_STREAM) { 2024 unsigned int src_index = 0; 2025 struct amdtp_stream *tx = NULL; 2026 struct amdtp_stream *s; 2027 2028 list_for_each_entry(s, &d->streams, list) { 2029 if (s->direction == AMDTP_IN_STREAM) { 2030 if (dst_index == src_index) { 2031 tx = s; 2032 break; 2033 } 2034 2035 ++src_index; 2036 } 2037 } 2038 if (!tx) { 2039 // Select the first entry. 2040 list_for_each_entry(s, &d->streams, list) { 2041 if (s->direction == AMDTP_IN_STREAM) { 2042 tx = s; 2043 break; 2044 } 2045 } 2046 // No target is available to replay sequence. 2047 if (!tx) 2048 return -EINVAL; 2049 } 2050 2051 rx->ctx_data.rx.replay_target = tx; 2052 2053 ++dst_index; 2054 } 2055 } 2056 2057 return 0; 2058 } 2059 2060 /** 2061 * amdtp_domain_start - start sending packets for isoc context in the domain. 2062 * @d: the AMDTP domain. 2063 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 2064 * contexts. 2065 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in 2066 * IT context. 2067 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay 2068 * according to arrival of events in tx packets. 2069 */ 2070 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, 2071 bool replay_on_the_fly) 2072 { 2073 unsigned int events_per_buffer = d->events_per_buffer; 2074 unsigned int events_per_period = d->events_per_period; 2075 unsigned int queue_size; 2076 struct amdtp_stream *s; 2077 bool found = false; 2078 int err; 2079 2080 if (replay_seq) { 2081 err = make_association(d); 2082 if (err < 0) 2083 return err; 2084 } 2085 d->replay.enable = replay_seq; 2086 d->replay.on_the_fly = replay_on_the_fly; 2087 2088 // Select an IT context as IRQ target. 2089 list_for_each_entry(s, &d->streams, list) { 2090 if (s->direction == AMDTP_OUT_STREAM) { 2091 found = true; 2092 break; 2093 } 2094 } 2095 if (!found) 2096 return -ENXIO; 2097 d->irq_target = s; 2098 2099 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 2100 2101 // This is a case that AMDTP streams in domain run just for MIDI 2102 // substream. Use the number of events equivalent to 10 msec as 2103 // interval of hardware IRQ. 2104 if (events_per_period == 0) 2105 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 2106 if (events_per_buffer == 0) 2107 events_per_buffer = events_per_period * 3; 2108 2109 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 2110 amdtp_rate_table[d->irq_target->sfc]); 2111 2112 list_for_each_entry(s, &d->streams, list) { 2113 unsigned int idle_irq_interval = 0; 2114 2115 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 2116 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 2117 amdtp_rate_table[d->irq_target->sfc]); 2118 } 2119 2120 // Starts immediately but actually DMA context starts several hundred cycles later. 2121 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 2122 if (err < 0) 2123 goto error; 2124 } 2125 2126 return 0; 2127 error: 2128 list_for_each_entry(s, &d->streams, list) 2129 amdtp_stream_stop(s); 2130 return err; 2131 } 2132 EXPORT_SYMBOL_GPL(amdtp_domain_start); 2133 2134 /** 2135 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 2136 * @d: the AMDTP domain to which the isoc contexts belong. 2137 */ 2138 void amdtp_domain_stop(struct amdtp_domain *d) 2139 { 2140 struct amdtp_stream *s, *next; 2141 2142 if (d->irq_target) 2143 amdtp_stream_stop(d->irq_target); 2144 2145 list_for_each_entry_safe(s, next, &d->streams, list) { 2146 list_del(&s->list); 2147 2148 if (s != d->irq_target) 2149 amdtp_stream_stop(s); 2150 } 2151 2152 d->events_per_period = 0; 2153 d->irq_target = NULL; 2154 } 2155 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 2156