1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_FDF_NO_DATA 0xff 53 #define CIP_SYT_MASK 0x0000ffff 54 #define CIP_SYT_NO_INFO 0xffff 55 #define CIP_SYT_CYCLE_MODULUS 16 56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 57 58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 59 60 /* Audio and Music transfer protocol specific parameters */ 61 #define CIP_FMT_AM 0x10 62 #define AMDTP_FDF_NO_DATA 0xff 63 64 // For iso header and tstamp. 65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 66 // Add nothing. 67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 68 // Add two quadlets CIP header. 69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 70 #define HEADER_TSTAMP_MASK 0x0000ffff 71 72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 74 75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 77 // overrun. Actual device can skip more, then this module stops the packet streaming. 78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 79 80 static void pcm_period_work(struct work_struct *work); 81 82 /** 83 * amdtp_stream_init - initialize an AMDTP stream structure 84 * @s: the AMDTP stream to initialize 85 * @unit: the target of the stream 86 * @dir: the direction of stream 87 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 88 * @fmt: the value of fmt field in CIP header 89 * @process_ctx_payloads: callback handler to process payloads of isoc context 90 * @protocol_size: the size to allocate newly for protocol 91 */ 92 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 93 enum amdtp_stream_direction dir, unsigned int flags, 94 unsigned int fmt, 95 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 96 unsigned int protocol_size) 97 { 98 if (process_ctx_payloads == NULL) 99 return -EINVAL; 100 101 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 102 if (!s->protocol) 103 return -ENOMEM; 104 105 s->unit = unit; 106 s->direction = dir; 107 s->flags = flags; 108 s->context = ERR_PTR(-1); 109 mutex_init(&s->mutex); 110 INIT_WORK(&s->period_work, pcm_period_work); 111 s->packet_index = 0; 112 113 init_waitqueue_head(&s->ready_wait); 114 115 s->fmt = fmt; 116 s->process_ctx_payloads = process_ctx_payloads; 117 118 return 0; 119 } 120 EXPORT_SYMBOL(amdtp_stream_init); 121 122 /** 123 * amdtp_stream_destroy - free stream resources 124 * @s: the AMDTP stream to destroy 125 */ 126 void amdtp_stream_destroy(struct amdtp_stream *s) 127 { 128 /* Not initialized. */ 129 if (s->protocol == NULL) 130 return; 131 132 WARN_ON(amdtp_stream_running(s)); 133 kfree(s->protocol); 134 mutex_destroy(&s->mutex); 135 } 136 EXPORT_SYMBOL(amdtp_stream_destroy); 137 138 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 139 [CIP_SFC_32000] = 8, 140 [CIP_SFC_44100] = 8, 141 [CIP_SFC_48000] = 8, 142 [CIP_SFC_88200] = 16, 143 [CIP_SFC_96000] = 16, 144 [CIP_SFC_176400] = 32, 145 [CIP_SFC_192000] = 32, 146 }; 147 EXPORT_SYMBOL(amdtp_syt_intervals); 148 149 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 150 [CIP_SFC_32000] = 32000, 151 [CIP_SFC_44100] = 44100, 152 [CIP_SFC_48000] = 48000, 153 [CIP_SFC_88200] = 88200, 154 [CIP_SFC_96000] = 96000, 155 [CIP_SFC_176400] = 176400, 156 [CIP_SFC_192000] = 192000, 157 }; 158 EXPORT_SYMBOL(amdtp_rate_table); 159 160 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 161 struct snd_pcm_hw_rule *rule) 162 { 163 struct snd_interval *s = hw_param_interval(params, rule->var); 164 const struct snd_interval *r = 165 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 166 struct snd_interval t = {0}; 167 unsigned int step = 0; 168 int i; 169 170 for (i = 0; i < CIP_SFC_COUNT; ++i) { 171 if (snd_interval_test(r, amdtp_rate_table[i])) 172 step = max(step, amdtp_syt_intervals[i]); 173 } 174 175 t.min = roundup(s->min, step); 176 t.max = rounddown(s->max, step); 177 t.integer = 1; 178 179 return snd_interval_refine(s, &t); 180 } 181 182 /** 183 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 184 * @s: the AMDTP stream, which must be initialized. 185 * @runtime: the PCM substream runtime 186 */ 187 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 188 struct snd_pcm_runtime *runtime) 189 { 190 struct snd_pcm_hardware *hw = &runtime->hw; 191 unsigned int ctx_header_size; 192 unsigned int maximum_usec_per_period; 193 int err; 194 195 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | 196 SNDRV_PCM_INFO_INTERLEAVED | 197 SNDRV_PCM_INFO_JOINT_DUPLEX | 198 SNDRV_PCM_INFO_MMAP | 199 SNDRV_PCM_INFO_MMAP_VALID | 200 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; 201 202 hw->periods_min = 2; 203 hw->periods_max = UINT_MAX; 204 205 /* bytes for a frame */ 206 hw->period_bytes_min = 4 * hw->channels_max; 207 208 /* Just to prevent from allocating much pages. */ 209 hw->period_bytes_max = hw->period_bytes_min * 2048; 210 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 211 212 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 213 // context when total size of accumulated context header reaches 214 // PAGE_SIZE. This kicks work for the isoc context and brings 215 // callback in the middle of scheduled interrupts. 216 // Although AMDTP streams in the same domain use the same events per 217 // IRQ, use the largest size of context header between IT/IR contexts. 218 // Here, use the value of context header in IR context is for both 219 // contexts. 220 if (!(s->flags & CIP_NO_HEADER)) 221 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 222 else 223 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 224 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 225 CYCLES_PER_SECOND / ctx_header_size; 226 227 // In IEC 61883-6, one isoc packet can transfer events up to the value 228 // of syt interval. This comes from the interval of isoc cycle. As 1394 229 // OHCI controller can generate hardware IRQ per isoc packet, the 230 // interval is 125 usec. 231 // However, there are two ways of transmission in IEC 61883-6; blocking 232 // and non-blocking modes. In blocking mode, the sequence of isoc packet 233 // includes 'empty' or 'NODATA' packets which include no event. In 234 // non-blocking mode, the number of events per packet is variable up to 235 // the syt interval. 236 // Due to the above protocol design, the minimum PCM frames per 237 // interrupt should be double of the value of syt interval, thus it is 238 // 250 usec. 239 err = snd_pcm_hw_constraint_minmax(runtime, 240 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 241 250, maximum_usec_per_period); 242 if (err < 0) 243 goto end; 244 245 /* Non-Blocking stream has no more constraints */ 246 if (!(s->flags & CIP_BLOCKING)) 247 goto end; 248 249 /* 250 * One AMDTP packet can include some frames. In blocking mode, the 251 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 252 * depending on its sampling rate. For accurate period interrupt, it's 253 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 254 */ 255 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 256 apply_constraint_to_size, NULL, 257 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 258 SNDRV_PCM_HW_PARAM_RATE, -1); 259 if (err < 0) 260 goto end; 261 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 262 apply_constraint_to_size, NULL, 263 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 264 SNDRV_PCM_HW_PARAM_RATE, -1); 265 if (err < 0) 266 goto end; 267 end: 268 return err; 269 } 270 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 271 272 /** 273 * amdtp_stream_set_parameters - set stream parameters 274 * @s: the AMDTP stream to configure 275 * @rate: the sample rate 276 * @data_block_quadlets: the size of a data block in quadlet unit 277 * 278 * The parameters must be set before the stream is started, and must not be 279 * changed while the stream is running. 280 */ 281 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 282 unsigned int data_block_quadlets) 283 { 284 unsigned int sfc; 285 286 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 287 if (amdtp_rate_table[sfc] == rate) 288 break; 289 } 290 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 291 return -EINVAL; 292 293 s->sfc = sfc; 294 s->data_block_quadlets = data_block_quadlets; 295 s->syt_interval = amdtp_syt_intervals[sfc]; 296 297 // default buffering in the device. 298 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 299 300 // additional buffering needed to adjust for no-data packets. 301 if (s->flags & CIP_BLOCKING) 302 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 303 304 return 0; 305 } 306 EXPORT_SYMBOL(amdtp_stream_set_parameters); 307 308 // The CIP header is processed in context header apart from context payload. 309 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 310 { 311 unsigned int multiplier; 312 313 if (s->flags & CIP_JUMBO_PAYLOAD) 314 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 315 else 316 multiplier = 1; 317 318 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 319 } 320 321 /** 322 * amdtp_stream_get_max_payload - get the stream's packet size 323 * @s: the AMDTP stream 324 * 325 * This function must not be called before the stream has been configured 326 * with amdtp_stream_set_parameters(). 327 */ 328 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 329 { 330 unsigned int cip_header_size; 331 332 if (!(s->flags & CIP_NO_HEADER)) 333 cip_header_size = CIP_HEADER_SIZE; 334 else 335 cip_header_size = 0; 336 337 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 338 } 339 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 340 341 /** 342 * amdtp_stream_pcm_prepare - prepare PCM device for running 343 * @s: the AMDTP stream 344 * 345 * This function should be called from the PCM device's .prepare callback. 346 */ 347 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 348 { 349 cancel_work_sync(&s->period_work); 350 s->pcm_buffer_pointer = 0; 351 s->pcm_period_pointer = 0; 352 } 353 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 354 355 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 356 const unsigned int seq_size, unsigned int seq_tail, 357 unsigned int count) 358 { 359 const unsigned int syt_interval = s->syt_interval; 360 int i; 361 362 for (i = 0; i < count; ++i) { 363 struct seq_desc *desc = descs + seq_tail; 364 365 if (desc->syt_offset != CIP_SYT_NO_INFO) 366 desc->data_blocks = syt_interval; 367 else 368 desc->data_blocks = 0; 369 370 seq_tail = (seq_tail + 1) % seq_size; 371 } 372 } 373 374 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 375 const unsigned int seq_size, unsigned int seq_tail, 376 unsigned int count) 377 { 378 const enum cip_sfc sfc = s->sfc; 379 unsigned int state = s->ctx_data.rx.data_block_state; 380 int i; 381 382 for (i = 0; i < count; ++i) { 383 struct seq_desc *desc = descs + seq_tail; 384 385 if (!cip_sfc_is_base_44100(sfc)) { 386 // Sample_rate / 8000 is an integer, and precomputed. 387 desc->data_blocks = state; 388 } else { 389 unsigned int phase = state; 390 391 /* 392 * This calculates the number of data blocks per packet so that 393 * 1) the overall rate is correct and exactly synchronized to 394 * the bus clock, and 395 * 2) packets with a rounded-up number of blocks occur as early 396 * as possible in the sequence (to prevent underruns of the 397 * device's buffer). 398 */ 399 if (sfc == CIP_SFC_44100) 400 /* 6 6 5 6 5 6 5 ... */ 401 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 402 else 403 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 404 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 405 if (++phase >= (80 >> (sfc >> 1))) 406 phase = 0; 407 state = phase; 408 } 409 410 seq_tail = (seq_tail + 1) % seq_size; 411 } 412 413 s->ctx_data.rx.data_block_state = state; 414 } 415 416 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 417 unsigned int *syt_offset_state, enum cip_sfc sfc) 418 { 419 unsigned int syt_offset; 420 421 if (*last_syt_offset < TICKS_PER_CYCLE) { 422 if (!cip_sfc_is_base_44100(sfc)) 423 syt_offset = *last_syt_offset + *syt_offset_state; 424 else { 425 /* 426 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 427 * n * SYT_INTERVAL * 24576000 / sample_rate 428 * Modulo TICKS_PER_CYCLE, the difference between successive 429 * elements is about 1386.23. Rounding the results of this 430 * formula to the SYT precision results in a sequence of 431 * differences that begins with: 432 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 433 * This code generates _exactly_ the same sequence. 434 */ 435 unsigned int phase = *syt_offset_state; 436 unsigned int index = phase % 13; 437 438 syt_offset = *last_syt_offset; 439 syt_offset += 1386 + ((index && !(index & 3)) || 440 phase == 146); 441 if (++phase >= 147) 442 phase = 0; 443 *syt_offset_state = phase; 444 } 445 } else 446 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 447 *last_syt_offset = syt_offset; 448 449 if (syt_offset >= TICKS_PER_CYCLE) 450 syt_offset = CIP_SYT_NO_INFO; 451 452 return syt_offset; 453 } 454 455 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 456 const unsigned int seq_size, unsigned int seq_tail, 457 unsigned int count) 458 { 459 const enum cip_sfc sfc = s->sfc; 460 unsigned int last = s->ctx_data.rx.last_syt_offset; 461 unsigned int state = s->ctx_data.rx.syt_offset_state; 462 int i; 463 464 for (i = 0; i < count; ++i) { 465 struct seq_desc *desc = descs + seq_tail; 466 467 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 468 469 seq_tail = (seq_tail + 1) % seq_size; 470 } 471 472 s->ctx_data.rx.last_syt_offset = last; 473 s->ctx_data.rx.syt_offset_state = state; 474 } 475 476 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, 477 unsigned int transfer_delay) 478 { 479 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; 480 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; 481 unsigned int syt_offset; 482 483 // Round up. 484 if (syt_cycle_lo < cycle_lo) 485 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; 486 syt_cycle_lo -= cycle_lo; 487 488 // Subtract transfer delay so that the synchronization offset is not so large 489 // at transmission. 490 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); 491 if (syt_offset < transfer_delay) 492 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; 493 494 return syt_offset - transfer_delay; 495 } 496 497 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. 498 // Additionally, the sequence of tx packets is severely checked against any discontinuity 499 // before filling entries in the queue. The calculation is safe even if it looks fragile by 500 // overrun. 501 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) 502 { 503 const unsigned int cache_size = s->ctx_data.tx.cache.size; 504 unsigned int cycles = s->ctx_data.tx.cache.tail; 505 506 if (cycles < head) 507 cycles += cache_size; 508 cycles -= head; 509 510 return cycles; 511 } 512 513 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *descs, unsigned int desc_count) 514 { 515 const unsigned int transfer_delay = s->transfer_delay; 516 const unsigned int cache_size = s->ctx_data.tx.cache.size; 517 struct seq_desc *cache = s->ctx_data.tx.cache.descs; 518 unsigned int cache_tail = s->ctx_data.tx.cache.tail; 519 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 520 int i; 521 522 for (i = 0; i < desc_count; ++i) { 523 struct seq_desc *dst = cache + cache_tail; 524 const struct pkt_desc *src = descs + i; 525 526 if (aware_syt && src->syt != CIP_SYT_NO_INFO) 527 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); 528 else 529 dst->syt_offset = CIP_SYT_NO_INFO; 530 dst->data_blocks = src->data_blocks; 531 532 cache_tail = (cache_tail + 1) % cache_size; 533 } 534 535 s->ctx_data.tx.cache.tail = cache_tail; 536 } 537 538 static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count) 539 { 540 struct seq_desc *descs = s->ctx_data.rx.seq.descs; 541 unsigned int seq_tail = s->ctx_data.rx.seq.tail; 542 const unsigned int seq_size = s->ctx_data.rx.seq.size; 543 544 pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count); 545 546 if (s->flags & CIP_BLOCKING) 547 pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count); 548 else 549 pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count); 550 551 s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size; 552 } 553 554 static void pool_replayed_seq(struct amdtp_stream *s, unsigned int count) 555 { 556 struct amdtp_stream *target = s->ctx_data.rx.replay_target; 557 const struct seq_desc *cache = target->ctx_data.tx.cache.descs; 558 const unsigned int cache_size = target->ctx_data.tx.cache.size; 559 unsigned int cache_head = s->ctx_data.rx.cache_head; 560 struct seq_desc *descs = s->ctx_data.rx.seq.descs; 561 const unsigned int seq_size = s->ctx_data.rx.seq.size; 562 unsigned int seq_tail = s->ctx_data.rx.seq.tail; 563 int i; 564 565 for (i = 0; i < count; ++i) { 566 descs[seq_tail] = cache[cache_head]; 567 seq_tail = (seq_tail + 1) % seq_size; 568 cache_head = (cache_head + 1) % cache_size; 569 } 570 571 s->ctx_data.rx.seq.tail = seq_tail; 572 s->ctx_data.rx.cache_head = cache_head; 573 } 574 575 static void pool_seq_descs(struct amdtp_stream *s, unsigned int count) 576 { 577 struct amdtp_domain *d = s->domain; 578 579 if (!d->replay.enable || !s->ctx_data.rx.replay_target) { 580 pool_ideal_seq_descs(s, count); 581 } else { 582 if (!d->replay.on_the_fly) { 583 pool_replayed_seq(s, count); 584 } else { 585 struct amdtp_stream *tx = s->ctx_data.rx.replay_target; 586 const unsigned int cache_size = tx->ctx_data.tx.cache.size; 587 const unsigned int cache_head = s->ctx_data.rx.cache_head; 588 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_head); 589 590 if (cached_cycles > count && cached_cycles > cache_size / 2) 591 pool_replayed_seq(s, count); 592 else 593 pool_ideal_seq_descs(s, count); 594 } 595 } 596 } 597 598 static void update_pcm_pointers(struct amdtp_stream *s, 599 struct snd_pcm_substream *pcm, 600 unsigned int frames) 601 { 602 unsigned int ptr; 603 604 ptr = s->pcm_buffer_pointer + frames; 605 if (ptr >= pcm->runtime->buffer_size) 606 ptr -= pcm->runtime->buffer_size; 607 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 608 609 s->pcm_period_pointer += frames; 610 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 611 s->pcm_period_pointer -= pcm->runtime->period_size; 612 613 // The program in user process should periodically check the status of intermediate 614 // buffer associated to PCM substream to process PCM frames in the buffer, instead 615 // of receiving notification of period elapsed by poll wait. 616 if (!pcm->runtime->no_period_wakeup) 617 queue_work(system_highpri_wq, &s->period_work); 618 } 619 } 620 621 static void pcm_period_work(struct work_struct *work) 622 { 623 struct amdtp_stream *s = container_of(work, struct amdtp_stream, 624 period_work); 625 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 626 627 if (pcm) 628 snd_pcm_period_elapsed(pcm); 629 } 630 631 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 632 bool sched_irq) 633 { 634 int err; 635 636 params->interrupt = sched_irq; 637 params->tag = s->tag; 638 params->sy = 0; 639 640 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 641 s->buffer.packets[s->packet_index].offset); 642 if (err < 0) { 643 dev_err(&s->unit->device, "queueing error: %d\n", err); 644 goto end; 645 } 646 647 if (++s->packet_index >= s->queue_size) 648 s->packet_index = 0; 649 end: 650 return err; 651 } 652 653 static inline int queue_out_packet(struct amdtp_stream *s, 654 struct fw_iso_packet *params, bool sched_irq) 655 { 656 params->skip = 657 !!(params->header_length == 0 && params->payload_length == 0); 658 return queue_packet(s, params, sched_irq); 659 } 660 661 static inline int queue_in_packet(struct amdtp_stream *s, 662 struct fw_iso_packet *params) 663 { 664 // Queue one packet for IR context. 665 params->header_length = s->ctx_data.tx.ctx_header_size; 666 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 667 params->skip = false; 668 return queue_packet(s, params, false); 669 } 670 671 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 672 unsigned int data_block_counter, unsigned int syt) 673 { 674 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 675 (s->data_block_quadlets << CIP_DBS_SHIFT) | 676 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 677 data_block_counter); 678 cip_header[1] = cpu_to_be32(CIP_EOH | 679 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 680 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 681 (syt & CIP_SYT_MASK)); 682 } 683 684 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 685 struct fw_iso_packet *params, unsigned int header_length, 686 unsigned int data_blocks, 687 unsigned int data_block_counter, 688 unsigned int syt, unsigned int index) 689 { 690 unsigned int payload_length; 691 __be32 *cip_header; 692 693 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 694 params->payload_length = payload_length; 695 696 if (header_length > 0) { 697 cip_header = (__be32 *)params->header; 698 generate_cip_header(s, cip_header, data_block_counter, syt); 699 params->header_length = header_length; 700 } else { 701 cip_header = NULL; 702 } 703 704 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 705 data_block_counter, s->packet_index, index); 706 } 707 708 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 709 unsigned int payload_length, 710 unsigned int *data_blocks, 711 unsigned int *data_block_counter, unsigned int *syt) 712 { 713 u32 cip_header[2]; 714 unsigned int sph; 715 unsigned int fmt; 716 unsigned int fdf; 717 unsigned int dbc; 718 bool lost; 719 720 cip_header[0] = be32_to_cpu(buf[0]); 721 cip_header[1] = be32_to_cpu(buf[1]); 722 723 /* 724 * This module supports 'Two-quadlet CIP header with SYT field'. 725 * For convenience, also check FMT field is AM824 or not. 726 */ 727 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 728 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 729 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 730 dev_info_ratelimited(&s->unit->device, 731 "Invalid CIP header for AMDTP: %08X:%08X\n", 732 cip_header[0], cip_header[1]); 733 return -EAGAIN; 734 } 735 736 /* Check valid protocol or not. */ 737 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 738 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 739 if (sph != s->sph || fmt != s->fmt) { 740 dev_info_ratelimited(&s->unit->device, 741 "Detect unexpected protocol: %08x %08x\n", 742 cip_header[0], cip_header[1]); 743 return -EAGAIN; 744 } 745 746 /* Calculate data blocks */ 747 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 748 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 749 *data_blocks = 0; 750 } else { 751 unsigned int data_block_quadlets = 752 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 753 /* avoid division by zero */ 754 if (data_block_quadlets == 0) { 755 dev_err(&s->unit->device, 756 "Detect invalid value in dbs field: %08X\n", 757 cip_header[0]); 758 return -EPROTO; 759 } 760 if (s->flags & CIP_WRONG_DBS) 761 data_block_quadlets = s->data_block_quadlets; 762 763 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 764 } 765 766 /* Check data block counter continuity */ 767 dbc = cip_header[0] & CIP_DBC_MASK; 768 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 769 *data_block_counter != UINT_MAX) 770 dbc = *data_block_counter; 771 772 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 773 *data_block_counter == UINT_MAX) { 774 lost = false; 775 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 776 lost = dbc != *data_block_counter; 777 } else { 778 unsigned int dbc_interval; 779 780 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 781 dbc_interval = s->ctx_data.tx.dbc_interval; 782 else 783 dbc_interval = *data_blocks; 784 785 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 786 } 787 788 if (lost) { 789 dev_err(&s->unit->device, 790 "Detect discontinuity of CIP: %02X %02X\n", 791 *data_block_counter, dbc); 792 return -EIO; 793 } 794 795 *data_block_counter = dbc; 796 797 if (!(s->flags & CIP_UNAWARE_SYT)) 798 *syt = cip_header[1] & CIP_SYT_MASK; 799 800 return 0; 801 } 802 803 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 804 const __be32 *ctx_header, 805 unsigned int *data_blocks, 806 unsigned int *data_block_counter, 807 unsigned int *syt, unsigned int packet_index, unsigned int index) 808 { 809 unsigned int payload_length; 810 const __be32 *cip_header; 811 unsigned int cip_header_size; 812 813 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 814 815 if (!(s->flags & CIP_NO_HEADER)) 816 cip_header_size = CIP_HEADER_SIZE; 817 else 818 cip_header_size = 0; 819 820 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 821 dev_err(&s->unit->device, 822 "Detect jumbo payload: %04x %04x\n", 823 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 824 return -EIO; 825 } 826 827 if (cip_header_size > 0) { 828 if (payload_length >= cip_header_size) { 829 int err; 830 831 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 832 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 833 data_blocks, data_block_counter, syt); 834 if (err < 0) 835 return err; 836 } else { 837 // Handle the cycle so that empty packet arrives. 838 cip_header = NULL; 839 *data_blocks = 0; 840 *syt = 0; 841 } 842 } else { 843 cip_header = NULL; 844 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 845 *syt = 0; 846 847 if (*data_block_counter == UINT_MAX) 848 *data_block_counter = 0; 849 } 850 851 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 852 *data_block_counter, packet_index, index); 853 854 return 0; 855 } 856 857 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 858 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 859 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 860 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 861 { 862 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 863 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); 864 } 865 866 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 867 { 868 cycle += addend; 869 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 870 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 871 return cycle; 872 } 873 874 static int compare_ohci_cycle_count(u32 lval, u32 rval) 875 { 876 if (lval == rval) 877 return 0; 878 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 879 return -1; 880 else 881 return 1; 882 } 883 884 // Align to actual cycle count for the packet which is going to be scheduled. 885 // This module queued the same number of isochronous cycle as the size of queue 886 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 887 // the size of queue for scheduled cycle. 888 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 889 unsigned int queue_size) 890 { 891 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 892 return increment_ohci_cycle_count(cycle, queue_size); 893 } 894 895 static int generate_device_pkt_descs(struct amdtp_stream *s, 896 struct pkt_desc *descs, 897 const __be32 *ctx_header, 898 unsigned int packets, 899 unsigned int *desc_count) 900 { 901 unsigned int next_cycle = s->next_cycle; 902 unsigned int dbc = s->data_block_counter; 903 unsigned int packet_index = s->packet_index; 904 unsigned int queue_size = s->queue_size; 905 int i; 906 int err; 907 908 *desc_count = 0; 909 for (i = 0; i < packets; ++i) { 910 struct pkt_desc *desc = descs + *desc_count; 911 unsigned int cycle; 912 bool lost; 913 unsigned int data_blocks; 914 unsigned int syt; 915 916 cycle = compute_ohci_cycle_count(ctx_header[1]); 917 lost = (next_cycle != cycle); 918 if (lost) { 919 if (s->flags & CIP_NO_HEADER) { 920 // Fireface skips transmission just for an isoc cycle corresponding 921 // to empty packet. 922 unsigned int prev_cycle = next_cycle; 923 924 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 925 lost = (next_cycle != cycle); 926 if (!lost) { 927 // Prepare a description for the skipped cycle for 928 // sequence replay. 929 desc->cycle = prev_cycle; 930 desc->syt = 0; 931 desc->data_blocks = 0; 932 desc->data_block_counter = dbc; 933 desc->ctx_payload = NULL; 934 ++desc; 935 ++(*desc_count); 936 } 937 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 938 // OXFW970 skips transmission for several isoc cycles during 939 // asynchronous transaction. The sequence replay is impossible due 940 // to the reason. 941 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 942 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 943 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0); 944 } 945 if (lost) { 946 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 947 next_cycle, cycle); 948 return -EIO; 949 } 950 } 951 952 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 953 packet_index, i); 954 if (err < 0) 955 return err; 956 957 desc->cycle = cycle; 958 desc->syt = syt; 959 desc->data_blocks = data_blocks; 960 desc->data_block_counter = dbc; 961 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 962 963 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 964 dbc = (dbc + desc->data_blocks) & 0xff; 965 966 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 967 ++(*desc_count); 968 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 969 packet_index = (packet_index + 1) % queue_size; 970 } 971 972 s->next_cycle = next_cycle; 973 s->data_block_counter = dbc; 974 975 return 0; 976 } 977 978 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 979 unsigned int transfer_delay) 980 { 981 unsigned int syt; 982 983 syt_offset += transfer_delay; 984 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 985 (syt_offset % TICKS_PER_CYCLE); 986 return syt & CIP_SYT_MASK; 987 } 988 989 static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets) 990 { 991 struct pkt_desc *descs = s->pkt_descs; 992 const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 993 const unsigned int seq_size = s->ctx_data.rx.seq.size; 994 unsigned int dbc = s->data_block_counter; 995 unsigned int seq_head = s->ctx_data.rx.seq.head; 996 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 997 int i; 998 999 for (i = 0; i < packets; ++i) { 1000 struct pkt_desc *desc = descs + i; 1001 unsigned int index = (s->packet_index + i) % s->queue_size; 1002 const struct seq_desc *seq = seq_descs + seq_head; 1003 1004 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 1005 1006 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 1007 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 1008 else 1009 desc->syt = CIP_SYT_NO_INFO; 1010 1011 desc->data_blocks = seq->data_blocks; 1012 1013 if (s->flags & CIP_DBC_IS_END_EVENT) 1014 dbc = (dbc + desc->data_blocks) & 0xff; 1015 1016 desc->data_block_counter = dbc; 1017 1018 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1019 dbc = (dbc + desc->data_blocks) & 0xff; 1020 1021 desc->ctx_payload = s->buffer.packets[index].buffer; 1022 1023 seq_head = (seq_head + 1) % seq_size; 1024 1025 ++ctx_header; 1026 } 1027 1028 s->data_block_counter = dbc; 1029 s->ctx_data.rx.seq.head = seq_head; 1030 } 1031 1032 static inline void cancel_stream(struct amdtp_stream *s) 1033 { 1034 s->packet_index = -1; 1035 if (in_interrupt()) 1036 amdtp_stream_pcm_abort(s); 1037 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 1038 } 1039 1040 static void process_ctx_payloads(struct amdtp_stream *s, 1041 const struct pkt_desc *descs, 1042 unsigned int packets) 1043 { 1044 struct snd_pcm_substream *pcm; 1045 unsigned int pcm_frames; 1046 1047 pcm = READ_ONCE(s->pcm); 1048 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm); 1049 if (pcm) 1050 update_pcm_pointers(s, pcm, pcm_frames); 1051 } 1052 1053 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1054 void *header, void *private_data) 1055 { 1056 struct amdtp_stream *s = private_data; 1057 const struct amdtp_domain *d = s->domain; 1058 const __be32 *ctx_header = header; 1059 const unsigned int events_per_period = d->events_per_period; 1060 unsigned int event_count = s->ctx_data.rx.event_count; 1061 unsigned int pkt_header_length; 1062 unsigned int packets; 1063 bool need_hw_irq; 1064 int i; 1065 1066 if (s->packet_index < 0) 1067 return; 1068 1069 // Calculate the number of packets in buffer and check XRUN. 1070 packets = header_length / sizeof(*ctx_header); 1071 1072 pool_seq_descs(s, packets); 1073 1074 generate_pkt_descs(s, ctx_header, packets); 1075 1076 process_ctx_payloads(s, s->pkt_descs, packets); 1077 1078 if (!(s->flags & CIP_NO_HEADER)) 1079 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 1080 else 1081 pkt_header_length = 0; 1082 1083 if (s == d->irq_target) { 1084 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by 1085 // the tasks of user process operating ALSA PCM character device by calling ioctl(2) 1086 // with some requests, instead of scheduled hardware IRQ of an IT context. 1087 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 1088 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; 1089 } else { 1090 need_hw_irq = false; 1091 } 1092 1093 for (i = 0; i < packets; ++i) { 1094 const struct pkt_desc *desc = s->pkt_descs + i; 1095 struct { 1096 struct fw_iso_packet params; 1097 __be32 header[CIP_HEADER_QUADLETS]; 1098 } template = { {0}, {0} }; 1099 bool sched_irq = false; 1100 1101 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length, 1102 desc->data_blocks, desc->data_block_counter, 1103 desc->syt, i); 1104 1105 if (s == s->domain->irq_target) { 1106 event_count += desc->data_blocks; 1107 if (event_count >= events_per_period) { 1108 event_count -= events_per_period; 1109 sched_irq = need_hw_irq; 1110 } 1111 } 1112 1113 if (queue_out_packet(s, &template.params, sched_irq) < 0) { 1114 cancel_stream(s); 1115 return; 1116 } 1117 } 1118 1119 s->ctx_data.rx.event_count = event_count; 1120 } 1121 1122 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1123 void *header, void *private_data) 1124 { 1125 struct amdtp_stream *s = private_data; 1126 struct amdtp_domain *d = s->domain; 1127 const __be32 *ctx_header = header; 1128 unsigned int packets; 1129 unsigned int cycle; 1130 int i; 1131 1132 if (s->packet_index < 0) 1133 return; 1134 1135 packets = header_length / sizeof(*ctx_header); 1136 1137 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1138 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1139 1140 for (i = 0; i < packets; ++i) { 1141 struct fw_iso_packet params = { 1142 .header_length = 0, 1143 .payload_length = 0, 1144 }; 1145 bool sched_irq = (s == d->irq_target && i == packets - 1); 1146 1147 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1148 cancel_stream(s); 1149 return; 1150 } 1151 } 1152 } 1153 1154 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1155 void *header, void *private_data); 1156 1157 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1158 size_t header_length, void *header, void *private_data) 1159 { 1160 struct amdtp_stream *s = private_data; 1161 struct amdtp_domain *d = s->domain; 1162 __be32 *ctx_header = header; 1163 const unsigned int queue_size = s->queue_size; 1164 unsigned int packets; 1165 unsigned int offset; 1166 1167 if (s->packet_index < 0) 1168 return; 1169 1170 packets = header_length / sizeof(*ctx_header); 1171 1172 offset = 0; 1173 while (offset < packets) { 1174 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1175 1176 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1177 break; 1178 1179 ++offset; 1180 } 1181 1182 if (offset > 0) { 1183 unsigned int length = sizeof(*ctx_header) * offset; 1184 1185 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1186 if (amdtp_streaming_error(s)) 1187 return; 1188 1189 ctx_header += offset; 1190 header_length -= length; 1191 } 1192 1193 if (offset < packets) { 1194 s->ready_processing = true; 1195 wake_up(&s->ready_wait); 1196 1197 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1198 if (amdtp_streaming_error(s)) 1199 return; 1200 1201 if (s == d->irq_target) 1202 s->context->callback.sc = irq_target_callback; 1203 else 1204 s->context->callback.sc = process_rx_packets; 1205 } 1206 } 1207 1208 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1209 void *header, void *private_data) 1210 { 1211 struct amdtp_stream *s = private_data; 1212 __be32 *ctx_header = header; 1213 unsigned int packets; 1214 unsigned int desc_count; 1215 int i; 1216 int err; 1217 1218 if (s->packet_index < 0) 1219 return; 1220 1221 // Calculate the number of packets in buffer and check XRUN. 1222 packets = header_length / s->ctx_data.tx.ctx_header_size; 1223 1224 desc_count = 0; 1225 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count); 1226 if (err < 0) { 1227 if (err != -EAGAIN) { 1228 cancel_stream(s); 1229 return; 1230 } 1231 } else { 1232 struct amdtp_domain *d = s->domain; 1233 1234 process_ctx_payloads(s, s->pkt_descs, desc_count); 1235 1236 if (d->replay.enable) 1237 cache_seq(s, s->pkt_descs, desc_count); 1238 } 1239 1240 for (i = 0; i < packets; ++i) { 1241 struct fw_iso_packet params = {0}; 1242 1243 if (queue_in_packet(s, ¶ms) < 0) { 1244 cancel_stream(s); 1245 return; 1246 } 1247 } 1248 } 1249 1250 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1251 void *header, void *private_data) 1252 { 1253 struct amdtp_stream *s = private_data; 1254 const __be32 *ctx_header = header; 1255 unsigned int packets; 1256 unsigned int cycle; 1257 int i; 1258 1259 if (s->packet_index < 0) 1260 return; 1261 1262 packets = header_length / s->ctx_data.tx.ctx_header_size; 1263 1264 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1265 cycle = compute_ohci_cycle_count(ctx_header[1]); 1266 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1267 1268 for (i = 0; i < packets; ++i) { 1269 struct fw_iso_packet params = {0}; 1270 1271 if (queue_in_packet(s, ¶ms) < 0) { 1272 cancel_stream(s); 1273 return; 1274 } 1275 } 1276 } 1277 1278 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1279 size_t header_length, void *header, void *private_data) 1280 { 1281 struct amdtp_stream *s = private_data; 1282 struct amdtp_domain *d = s->domain; 1283 __be32 *ctx_header; 1284 unsigned int packets; 1285 unsigned int offset; 1286 1287 if (s->packet_index < 0) 1288 return; 1289 1290 packets = header_length / s->ctx_data.tx.ctx_header_size; 1291 1292 offset = 0; 1293 ctx_header = header; 1294 while (offset < packets) { 1295 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1296 1297 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1298 break; 1299 1300 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1301 ++offset; 1302 } 1303 1304 ctx_header = header; 1305 1306 if (offset > 0) { 1307 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1308 1309 drop_tx_packets(context, tstamp, length, ctx_header, s); 1310 if (amdtp_streaming_error(s)) 1311 return; 1312 1313 ctx_header += length / sizeof(*ctx_header); 1314 header_length -= length; 1315 } 1316 1317 if (offset < packets) { 1318 s->ready_processing = true; 1319 wake_up(&s->ready_wait); 1320 1321 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1322 if (amdtp_streaming_error(s)) 1323 return; 1324 1325 context->callback.sc = process_tx_packets; 1326 } 1327 } 1328 1329 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1330 size_t header_length, void *header, void *private_data) 1331 { 1332 struct amdtp_stream *s = private_data; 1333 struct amdtp_domain *d = s->domain; 1334 __be32 *ctx_header; 1335 unsigned int count; 1336 unsigned int events; 1337 int i; 1338 1339 if (s->packet_index < 0) 1340 return; 1341 1342 count = header_length / s->ctx_data.tx.ctx_header_size; 1343 1344 // Attempt to detect any event in the batch of packets. 1345 events = 0; 1346 ctx_header = header; 1347 for (i = 0; i < count; ++i) { 1348 unsigned int payload_quads = 1349 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1350 unsigned int data_blocks; 1351 1352 if (s->flags & CIP_NO_HEADER) { 1353 data_blocks = payload_quads / s->data_block_quadlets; 1354 } else { 1355 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1356 1357 if (payload_quads < CIP_HEADER_QUADLETS) { 1358 data_blocks = 0; 1359 } else { 1360 payload_quads -= CIP_HEADER_QUADLETS; 1361 1362 if (s->flags & CIP_UNAWARE_SYT) { 1363 data_blocks = payload_quads / s->data_block_quadlets; 1364 } else { 1365 u32 cip1 = be32_to_cpu(cip_headers[1]); 1366 1367 // NODATA packet can includes any data blocks but they are 1368 // not available as event. 1369 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1370 data_blocks = 0; 1371 else 1372 data_blocks = payload_quads / s->data_block_quadlets; 1373 } 1374 } 1375 } 1376 1377 events += data_blocks; 1378 1379 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1380 } 1381 1382 drop_tx_packets(context, tstamp, header_length, header, s); 1383 1384 if (events > 0) 1385 s->ctx_data.tx.event_starts = true; 1386 1387 // Decide the cycle count to begin processing content of packet in IR contexts. 1388 { 1389 unsigned int stream_count = 0; 1390 unsigned int event_starts_count = 0; 1391 unsigned int cycle = UINT_MAX; 1392 1393 list_for_each_entry(s, &d->streams, list) { 1394 if (s->direction == AMDTP_IN_STREAM) { 1395 ++stream_count; 1396 if (s->ctx_data.tx.event_starts) 1397 ++event_starts_count; 1398 } 1399 } 1400 1401 if (stream_count == event_starts_count) { 1402 unsigned int next_cycle; 1403 1404 list_for_each_entry(s, &d->streams, list) { 1405 if (s->direction != AMDTP_IN_STREAM) 1406 continue; 1407 1408 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1409 d->processing_cycle.tx_init_skip); 1410 if (cycle == UINT_MAX || 1411 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1412 cycle = next_cycle; 1413 1414 s->context->callback.sc = process_tx_packets_intermediately; 1415 } 1416 1417 d->processing_cycle.tx_start = cycle; 1418 } 1419 } 1420 } 1421 1422 static void process_ctxs_in_domain(struct amdtp_domain *d) 1423 { 1424 struct amdtp_stream *s; 1425 1426 list_for_each_entry(s, &d->streams, list) { 1427 if (s != d->irq_target && amdtp_stream_running(s)) 1428 fw_iso_context_flush_completions(s->context); 1429 1430 if (amdtp_streaming_error(s)) 1431 goto error; 1432 } 1433 1434 return; 1435 error: 1436 if (amdtp_stream_running(d->irq_target)) 1437 cancel_stream(d->irq_target); 1438 1439 list_for_each_entry(s, &d->streams, list) { 1440 if (amdtp_stream_running(s)) 1441 cancel_stream(s); 1442 } 1443 } 1444 1445 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1446 void *header, void *private_data) 1447 { 1448 struct amdtp_stream *s = private_data; 1449 struct amdtp_domain *d = s->domain; 1450 1451 process_rx_packets(context, tstamp, header_length, header, private_data); 1452 process_ctxs_in_domain(d); 1453 } 1454 1455 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1456 size_t header_length, void *header, void *private_data) 1457 { 1458 struct amdtp_stream *s = private_data; 1459 struct amdtp_domain *d = s->domain; 1460 1461 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1462 process_ctxs_in_domain(d); 1463 } 1464 1465 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1466 size_t header_length, void *header, void *private_data) 1467 { 1468 struct amdtp_stream *s = private_data; 1469 struct amdtp_domain *d = s->domain; 1470 bool ready_to_start; 1471 1472 skip_rx_packets(context, tstamp, header_length, header, private_data); 1473 process_ctxs_in_domain(d); 1474 1475 if (d->replay.enable && !d->replay.on_the_fly) { 1476 unsigned int rx_count = 0; 1477 unsigned int rx_ready_count = 0; 1478 struct amdtp_stream *rx; 1479 1480 list_for_each_entry(rx, &d->streams, list) { 1481 struct amdtp_stream *tx; 1482 unsigned int cached_cycles; 1483 1484 if (rx->direction != AMDTP_OUT_STREAM) 1485 continue; 1486 ++rx_count; 1487 1488 tx = rx->ctx_data.rx.replay_target; 1489 cached_cycles = calculate_cached_cycle_count(tx, 0); 1490 if (cached_cycles > tx->ctx_data.tx.cache.size / 2) 1491 ++rx_ready_count; 1492 } 1493 1494 ready_to_start = (rx_count == rx_ready_count); 1495 } else { 1496 ready_to_start = true; 1497 } 1498 1499 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1500 // contexts are expected to start and get callback when reaching here. 1501 if (ready_to_start) { 1502 unsigned int cycle = s->next_cycle; 1503 list_for_each_entry(s, &d->streams, list) { 1504 if (s->direction != AMDTP_OUT_STREAM) 1505 continue; 1506 1507 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1508 cycle = s->next_cycle; 1509 1510 if (s == d->irq_target) 1511 s->context->callback.sc = irq_target_callback_intermediately; 1512 else 1513 s->context->callback.sc = process_rx_packets_intermediately; 1514 } 1515 1516 d->processing_cycle.rx_start = cycle; 1517 } 1518 } 1519 1520 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1521 // transmit first packet. 1522 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1523 u32 tstamp, size_t header_length, 1524 void *header, void *private_data) 1525 { 1526 struct amdtp_stream *s = private_data; 1527 struct amdtp_domain *d = s->domain; 1528 1529 if (s->direction == AMDTP_IN_STREAM) { 1530 context->callback.sc = drop_tx_packets_initially; 1531 } else { 1532 if (s == d->irq_target) 1533 context->callback.sc = irq_target_callback_skip; 1534 else 1535 context->callback.sc = skip_rx_packets; 1536 } 1537 1538 context->callback.sc(context, tstamp, header_length, header, s); 1539 } 1540 1541 /** 1542 * amdtp_stream_start - start transferring packets 1543 * @s: the AMDTP stream to start 1544 * @channel: the isochronous channel on the bus 1545 * @speed: firewire speed code 1546 * @queue_size: The number of packets in the queue. 1547 * @idle_irq_interval: the interval to queue packet during initial state. 1548 * 1549 * The stream cannot be started until it has been configured with 1550 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1551 * device can be started. 1552 */ 1553 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1554 unsigned int queue_size, unsigned int idle_irq_interval) 1555 { 1556 bool is_irq_target = (s == s->domain->irq_target); 1557 unsigned int ctx_header_size; 1558 unsigned int max_ctx_payload_size; 1559 enum dma_data_direction dir; 1560 int type, tag, err; 1561 1562 mutex_lock(&s->mutex); 1563 1564 if (WARN_ON(amdtp_stream_running(s) || 1565 (s->data_block_quadlets < 1))) { 1566 err = -EBADFD; 1567 goto err_unlock; 1568 } 1569 1570 if (s->direction == AMDTP_IN_STREAM) { 1571 // NOTE: IT context should be used for constant IRQ. 1572 if (is_irq_target) { 1573 err = -EINVAL; 1574 goto err_unlock; 1575 } 1576 1577 s->data_block_counter = UINT_MAX; 1578 } else { 1579 s->data_block_counter = 0; 1580 } 1581 1582 // initialize packet buffer. 1583 if (s->direction == AMDTP_IN_STREAM) { 1584 dir = DMA_FROM_DEVICE; 1585 type = FW_ISO_CONTEXT_RECEIVE; 1586 if (!(s->flags & CIP_NO_HEADER)) 1587 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1588 else 1589 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1590 } else { 1591 dir = DMA_TO_DEVICE; 1592 type = FW_ISO_CONTEXT_TRANSMIT; 1593 ctx_header_size = 0; // No effect for IT context. 1594 } 1595 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1596 1597 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1598 if (err < 0) 1599 goto err_unlock; 1600 s->queue_size = queue_size; 1601 1602 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1603 type, channel, speed, ctx_header_size, 1604 amdtp_stream_first_callback, s); 1605 if (IS_ERR(s->context)) { 1606 err = PTR_ERR(s->context); 1607 if (err == -EBUSY) 1608 dev_err(&s->unit->device, 1609 "no free stream on this controller\n"); 1610 goto err_buffer; 1611 } 1612 1613 amdtp_stream_update(s); 1614 1615 if (s->direction == AMDTP_IN_STREAM) { 1616 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1617 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1618 s->ctx_data.tx.event_starts = false; 1619 1620 if (s->domain->replay.enable) { 1621 // struct fw_iso_context.drop_overflow_headers is false therefore it's 1622 // possible to cache much unexpectedly. 1623 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, 1624 queue_size * 3 / 2); 1625 s->ctx_data.tx.cache.tail = 0; 1626 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, 1627 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); 1628 if (!s->ctx_data.tx.cache.descs) { 1629 err = -ENOMEM; 1630 goto err_context; 1631 } 1632 } 1633 } else { 1634 static const struct { 1635 unsigned int data_block; 1636 unsigned int syt_offset; 1637 } *entry, initial_state[] = { 1638 [CIP_SFC_32000] = { 4, 3072 }, 1639 [CIP_SFC_48000] = { 6, 1024 }, 1640 [CIP_SFC_96000] = { 12, 1024 }, 1641 [CIP_SFC_192000] = { 24, 1024 }, 1642 [CIP_SFC_44100] = { 0, 67 }, 1643 [CIP_SFC_88200] = { 0, 67 }, 1644 [CIP_SFC_176400] = { 0, 67 }, 1645 }; 1646 1647 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1648 if (!s->ctx_data.rx.seq.descs) { 1649 err = -ENOMEM; 1650 goto err_context; 1651 } 1652 s->ctx_data.rx.seq.size = queue_size; 1653 s->ctx_data.rx.seq.tail = 0; 1654 s->ctx_data.rx.seq.head = 0; 1655 1656 entry = &initial_state[s->sfc]; 1657 s->ctx_data.rx.data_block_state = entry->data_block; 1658 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1659 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1660 1661 s->ctx_data.rx.event_count = 0; 1662 } 1663 1664 if (s->flags & CIP_NO_HEADER) 1665 s->tag = TAG_NO_CIP_HEADER; 1666 else 1667 s->tag = TAG_CIP; 1668 1669 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs), 1670 GFP_KERNEL); 1671 if (!s->pkt_descs) { 1672 err = -ENOMEM; 1673 goto err_context; 1674 } 1675 1676 s->packet_index = 0; 1677 do { 1678 struct fw_iso_packet params; 1679 1680 if (s->direction == AMDTP_IN_STREAM) { 1681 err = queue_in_packet(s, ¶ms); 1682 } else { 1683 bool sched_irq = false; 1684 1685 params.header_length = 0; 1686 params.payload_length = 0; 1687 1688 if (is_irq_target) { 1689 sched_irq = !((s->packet_index + 1) % 1690 idle_irq_interval); 1691 } 1692 1693 err = queue_out_packet(s, ¶ms, sched_irq); 1694 } 1695 if (err < 0) 1696 goto err_pkt_descs; 1697 } while (s->packet_index > 0); 1698 1699 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1700 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1701 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1702 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1703 1704 s->ready_processing = false; 1705 err = fw_iso_context_start(s->context, -1, 0, tag); 1706 if (err < 0) 1707 goto err_pkt_descs; 1708 1709 mutex_unlock(&s->mutex); 1710 1711 return 0; 1712 err_pkt_descs: 1713 kfree(s->pkt_descs); 1714 err_context: 1715 if (s->direction == AMDTP_OUT_STREAM) { 1716 kfree(s->ctx_data.rx.seq.descs); 1717 } else { 1718 if (s->domain->replay.enable) 1719 kfree(s->ctx_data.tx.cache.descs); 1720 } 1721 fw_iso_context_destroy(s->context); 1722 s->context = ERR_PTR(-1); 1723 err_buffer: 1724 iso_packets_buffer_destroy(&s->buffer, s->unit); 1725 err_unlock: 1726 mutex_unlock(&s->mutex); 1727 1728 return err; 1729 } 1730 1731 /** 1732 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1733 * @d: the AMDTP domain. 1734 * @s: the AMDTP stream that transports the PCM data 1735 * 1736 * Returns the current buffer position, in frames. 1737 */ 1738 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1739 struct amdtp_stream *s) 1740 { 1741 struct amdtp_stream *irq_target = d->irq_target; 1742 1743 if (irq_target && amdtp_stream_running(irq_target)) { 1744 // This function is called in software IRQ context of 1745 // period_work or process context. 1746 // 1747 // When the software IRQ context was scheduled by software IRQ 1748 // context of IT contexts, queued packets were already handled. 1749 // Therefore, no need to flush the queue in buffer furthermore. 1750 // 1751 // When the process context reach here, some packets will be 1752 // already queued in the buffer. These packets should be handled 1753 // immediately to keep better granularity of PCM pointer. 1754 // 1755 // Later, the process context will sometimes schedules software 1756 // IRQ context of the period_work. Then, no need to flush the 1757 // queue by the same reason as described in the above 1758 if (current_work() != &s->period_work) 1759 fw_iso_context_flush_completions(irq_target->context); 1760 } 1761 1762 return READ_ONCE(s->pcm_buffer_pointer); 1763 } 1764 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1765 1766 /** 1767 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1768 * @d: the AMDTP domain. 1769 * @s: the AMDTP stream that transfers the PCM frames 1770 * 1771 * Returns zero always. 1772 */ 1773 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1774 { 1775 struct amdtp_stream *irq_target = d->irq_target; 1776 1777 // Process isochronous packets for recent isochronous cycle to handle 1778 // queued PCM frames. 1779 if (irq_target && amdtp_stream_running(irq_target)) 1780 fw_iso_context_flush_completions(irq_target->context); 1781 1782 return 0; 1783 } 1784 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1785 1786 /** 1787 * amdtp_stream_update - update the stream after a bus reset 1788 * @s: the AMDTP stream 1789 */ 1790 void amdtp_stream_update(struct amdtp_stream *s) 1791 { 1792 /* Precomputing. */ 1793 WRITE_ONCE(s->source_node_id_field, 1794 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1795 } 1796 EXPORT_SYMBOL(amdtp_stream_update); 1797 1798 /** 1799 * amdtp_stream_stop - stop sending packets 1800 * @s: the AMDTP stream to stop 1801 * 1802 * All PCM and MIDI devices of the stream must be stopped before the stream 1803 * itself can be stopped. 1804 */ 1805 static void amdtp_stream_stop(struct amdtp_stream *s) 1806 { 1807 mutex_lock(&s->mutex); 1808 1809 if (!amdtp_stream_running(s)) { 1810 mutex_unlock(&s->mutex); 1811 return; 1812 } 1813 1814 cancel_work_sync(&s->period_work); 1815 fw_iso_context_stop(s->context); 1816 fw_iso_context_destroy(s->context); 1817 s->context = ERR_PTR(-1); 1818 iso_packets_buffer_destroy(&s->buffer, s->unit); 1819 kfree(s->pkt_descs); 1820 1821 if (s->direction == AMDTP_OUT_STREAM) { 1822 kfree(s->ctx_data.rx.seq.descs); 1823 } else { 1824 if (s->domain->replay.enable) 1825 kfree(s->ctx_data.tx.cache.descs); 1826 } 1827 1828 mutex_unlock(&s->mutex); 1829 } 1830 1831 /** 1832 * amdtp_stream_pcm_abort - abort the running PCM device 1833 * @s: the AMDTP stream about to be stopped 1834 * 1835 * If the isochronous stream needs to be stopped asynchronously, call this 1836 * function first to stop the PCM device. 1837 */ 1838 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1839 { 1840 struct snd_pcm_substream *pcm; 1841 1842 pcm = READ_ONCE(s->pcm); 1843 if (pcm) 1844 snd_pcm_stop_xrun(pcm); 1845 } 1846 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1847 1848 /** 1849 * amdtp_domain_init - initialize an AMDTP domain structure 1850 * @d: the AMDTP domain to initialize. 1851 */ 1852 int amdtp_domain_init(struct amdtp_domain *d) 1853 { 1854 INIT_LIST_HEAD(&d->streams); 1855 1856 d->events_per_period = 0; 1857 1858 return 0; 1859 } 1860 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1861 1862 /** 1863 * amdtp_domain_destroy - destroy an AMDTP domain structure 1864 * @d: the AMDTP domain to destroy. 1865 */ 1866 void amdtp_domain_destroy(struct amdtp_domain *d) 1867 { 1868 // At present nothing to do. 1869 return; 1870 } 1871 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1872 1873 /** 1874 * amdtp_domain_add_stream - register isoc context into the domain. 1875 * @d: the AMDTP domain. 1876 * @s: the AMDTP stream. 1877 * @channel: the isochronous channel on the bus. 1878 * @speed: firewire speed code. 1879 */ 1880 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1881 int channel, int speed) 1882 { 1883 struct amdtp_stream *tmp; 1884 1885 list_for_each_entry(tmp, &d->streams, list) { 1886 if (s == tmp) 1887 return -EBUSY; 1888 } 1889 1890 list_add(&s->list, &d->streams); 1891 1892 s->channel = channel; 1893 s->speed = speed; 1894 s->domain = d; 1895 1896 return 0; 1897 } 1898 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 1899 1900 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams 1901 // is less than the number of rx streams, the first tx stream is selected. 1902 static int make_association(struct amdtp_domain *d) 1903 { 1904 unsigned int dst_index = 0; 1905 struct amdtp_stream *rx; 1906 1907 // Make association to replay target. 1908 list_for_each_entry(rx, &d->streams, list) { 1909 if (rx->direction == AMDTP_OUT_STREAM) { 1910 unsigned int src_index = 0; 1911 struct amdtp_stream *tx = NULL; 1912 struct amdtp_stream *s; 1913 1914 list_for_each_entry(s, &d->streams, list) { 1915 if (s->direction == AMDTP_IN_STREAM) { 1916 if (dst_index == src_index) { 1917 tx = s; 1918 break; 1919 } 1920 1921 ++src_index; 1922 } 1923 } 1924 if (!tx) { 1925 // Select the first entry. 1926 list_for_each_entry(s, &d->streams, list) { 1927 if (s->direction == AMDTP_IN_STREAM) { 1928 tx = s; 1929 break; 1930 } 1931 } 1932 // No target is available to replay sequence. 1933 if (!tx) 1934 return -EINVAL; 1935 } 1936 1937 rx->ctx_data.rx.replay_target = tx; 1938 rx->ctx_data.rx.cache_head = 0; 1939 1940 ++dst_index; 1941 } 1942 } 1943 1944 return 0; 1945 } 1946 1947 /** 1948 * amdtp_domain_start - start sending packets for isoc context in the domain. 1949 * @d: the AMDTP domain. 1950 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 1951 * contexts. 1952 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in 1953 * IT context. 1954 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay 1955 * according to arrival of events in tx packets. 1956 */ 1957 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, 1958 bool replay_on_the_fly) 1959 { 1960 unsigned int events_per_buffer = d->events_per_buffer; 1961 unsigned int events_per_period = d->events_per_period; 1962 unsigned int queue_size; 1963 struct amdtp_stream *s; 1964 int err; 1965 1966 if (replay_seq) { 1967 err = make_association(d); 1968 if (err < 0) 1969 return err; 1970 } 1971 d->replay.enable = replay_seq; 1972 d->replay.on_the_fly = replay_on_the_fly; 1973 1974 // Select an IT context as IRQ target. 1975 list_for_each_entry(s, &d->streams, list) { 1976 if (s->direction == AMDTP_OUT_STREAM) 1977 break; 1978 } 1979 if (!s) 1980 return -ENXIO; 1981 d->irq_target = s; 1982 1983 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 1984 1985 // This is a case that AMDTP streams in domain run just for MIDI 1986 // substream. Use the number of events equivalent to 10 msec as 1987 // interval of hardware IRQ. 1988 if (events_per_period == 0) 1989 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 1990 if (events_per_buffer == 0) 1991 events_per_buffer = events_per_period * 3; 1992 1993 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 1994 amdtp_rate_table[d->irq_target->sfc]); 1995 1996 list_for_each_entry(s, &d->streams, list) { 1997 unsigned int idle_irq_interval = 0; 1998 1999 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 2000 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 2001 amdtp_rate_table[d->irq_target->sfc]); 2002 } 2003 2004 // Starts immediately but actually DMA context starts several hundred cycles later. 2005 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 2006 if (err < 0) 2007 goto error; 2008 } 2009 2010 return 0; 2011 error: 2012 list_for_each_entry(s, &d->streams, list) 2013 amdtp_stream_stop(s); 2014 return err; 2015 } 2016 EXPORT_SYMBOL_GPL(amdtp_domain_start); 2017 2018 /** 2019 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 2020 * @d: the AMDTP domain to which the isoc contexts belong. 2021 */ 2022 void amdtp_domain_stop(struct amdtp_domain *d) 2023 { 2024 struct amdtp_stream *s, *next; 2025 2026 if (d->irq_target) 2027 amdtp_stream_stop(d->irq_target); 2028 2029 list_for_each_entry_safe(s, next, &d->streams, list) { 2030 list_del(&s->list); 2031 2032 if (s != d->irq_target) 2033 amdtp_stream_stop(s); 2034 } 2035 2036 d->events_per_period = 0; 2037 d->irq_target = NULL; 2038 } 2039 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 2040