1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <sound/pcm.h> 15 #include <sound/pcm_params.h> 16 #include "amdtp-stream.h" 17 18 #define TICKS_PER_CYCLE 3072 19 #define CYCLES_PER_SECOND 8000 20 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 21 22 /* Always support Linux tracing subsystem. */ 23 #define CREATE_TRACE_POINTS 24 #include "amdtp-stream-trace.h" 25 26 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 27 28 /* isochronous header parameters */ 29 #define ISO_DATA_LENGTH_SHIFT 16 30 #define TAG_NO_CIP_HEADER 0 31 #define TAG_CIP 1 32 33 /* common isochronous packet header parameters */ 34 #define CIP_EOH_SHIFT 31 35 #define CIP_EOH (1u << CIP_EOH_SHIFT) 36 #define CIP_EOH_MASK 0x80000000 37 #define CIP_SID_SHIFT 24 38 #define CIP_SID_MASK 0x3f000000 39 #define CIP_DBS_MASK 0x00ff0000 40 #define CIP_DBS_SHIFT 16 41 #define CIP_SPH_MASK 0x00000400 42 #define CIP_SPH_SHIFT 10 43 #define CIP_DBC_MASK 0x000000ff 44 #define CIP_FMT_SHIFT 24 45 #define CIP_FMT_MASK 0x3f000000 46 #define CIP_FDF_MASK 0x00ff0000 47 #define CIP_FDF_SHIFT 16 48 #define CIP_SYT_MASK 0x0000ffff 49 #define CIP_SYT_NO_INFO 0xffff 50 51 /* Audio and Music transfer protocol specific parameters */ 52 #define CIP_FMT_AM 0x10 53 #define AMDTP_FDF_NO_DATA 0xff 54 55 /* TODO: make these configurable */ 56 #define INTERRUPT_INTERVAL 16 57 #define QUEUE_LENGTH 48 58 59 // For iso header, tstamp and 2 CIP header. 60 #define IR_CTX_HEADER_SIZE_CIP 16 61 // For iso header and tstamp. 62 #define IR_CTX_HEADER_SIZE_NO_CIP 8 63 #define HEADER_TSTAMP_MASK 0x0000ffff 64 65 #define IT_PKT_HEADER_SIZE_CIP 8 // For 2 CIP header. 66 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 67 68 static void pcm_period_tasklet(unsigned long data); 69 70 /** 71 * amdtp_stream_init - initialize an AMDTP stream structure 72 * @s: the AMDTP stream to initialize 73 * @unit: the target of the stream 74 * @dir: the direction of stream 75 * @flags: the packet transmission method to use 76 * @fmt: the value of fmt field in CIP header 77 * @process_data_blocks: callback handler to process data blocks 78 * @protocol_size: the size to allocate newly for protocol 79 */ 80 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 81 enum amdtp_stream_direction dir, enum cip_flags flags, 82 unsigned int fmt, 83 amdtp_stream_process_data_blocks_t process_data_blocks, 84 unsigned int protocol_size) 85 { 86 if (process_data_blocks == NULL) 87 return -EINVAL; 88 89 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 90 if (!s->protocol) 91 return -ENOMEM; 92 93 s->unit = unit; 94 s->direction = dir; 95 s->flags = flags; 96 s->context = ERR_PTR(-1); 97 mutex_init(&s->mutex); 98 tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s); 99 s->packet_index = 0; 100 101 init_waitqueue_head(&s->callback_wait); 102 s->callbacked = false; 103 104 s->fmt = fmt; 105 s->process_data_blocks = process_data_blocks; 106 107 return 0; 108 } 109 EXPORT_SYMBOL(amdtp_stream_init); 110 111 /** 112 * amdtp_stream_destroy - free stream resources 113 * @s: the AMDTP stream to destroy 114 */ 115 void amdtp_stream_destroy(struct amdtp_stream *s) 116 { 117 /* Not initialized. */ 118 if (s->protocol == NULL) 119 return; 120 121 WARN_ON(amdtp_stream_running(s)); 122 kfree(s->protocol); 123 mutex_destroy(&s->mutex); 124 } 125 EXPORT_SYMBOL(amdtp_stream_destroy); 126 127 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 128 [CIP_SFC_32000] = 8, 129 [CIP_SFC_44100] = 8, 130 [CIP_SFC_48000] = 8, 131 [CIP_SFC_88200] = 16, 132 [CIP_SFC_96000] = 16, 133 [CIP_SFC_176400] = 32, 134 [CIP_SFC_192000] = 32, 135 }; 136 EXPORT_SYMBOL(amdtp_syt_intervals); 137 138 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 139 [CIP_SFC_32000] = 32000, 140 [CIP_SFC_44100] = 44100, 141 [CIP_SFC_48000] = 48000, 142 [CIP_SFC_88200] = 88200, 143 [CIP_SFC_96000] = 96000, 144 [CIP_SFC_176400] = 176400, 145 [CIP_SFC_192000] = 192000, 146 }; 147 EXPORT_SYMBOL(amdtp_rate_table); 148 149 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 150 struct snd_pcm_hw_rule *rule) 151 { 152 struct snd_interval *s = hw_param_interval(params, rule->var); 153 const struct snd_interval *r = 154 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 155 struct snd_interval t = {0}; 156 unsigned int step = 0; 157 int i; 158 159 for (i = 0; i < CIP_SFC_COUNT; ++i) { 160 if (snd_interval_test(r, amdtp_rate_table[i])) 161 step = max(step, amdtp_syt_intervals[i]); 162 } 163 164 t.min = roundup(s->min, step); 165 t.max = rounddown(s->max, step); 166 t.integer = 1; 167 168 return snd_interval_refine(s, &t); 169 } 170 171 /** 172 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 173 * @s: the AMDTP stream, which must be initialized. 174 * @runtime: the PCM substream runtime 175 */ 176 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 177 struct snd_pcm_runtime *runtime) 178 { 179 struct snd_pcm_hardware *hw = &runtime->hw; 180 int err; 181 182 hw->info = SNDRV_PCM_INFO_BATCH | 183 SNDRV_PCM_INFO_BLOCK_TRANSFER | 184 SNDRV_PCM_INFO_INTERLEAVED | 185 SNDRV_PCM_INFO_JOINT_DUPLEX | 186 SNDRV_PCM_INFO_MMAP | 187 SNDRV_PCM_INFO_MMAP_VALID; 188 189 /* SNDRV_PCM_INFO_BATCH */ 190 hw->periods_min = 2; 191 hw->periods_max = UINT_MAX; 192 193 /* bytes for a frame */ 194 hw->period_bytes_min = 4 * hw->channels_max; 195 196 /* Just to prevent from allocating much pages. */ 197 hw->period_bytes_max = hw->period_bytes_min * 2048; 198 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 199 200 /* 201 * Currently firewire-lib processes 16 packets in one software 202 * interrupt callback. This equals to 2msec but actually the 203 * interval of the interrupts has a jitter. 204 * Additionally, even if adding a constraint to fit period size to 205 * 2msec, actual calculated frames per period doesn't equal to 2msec, 206 * depending on sampling rate. 207 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec. 208 * Here let us use 5msec for safe period interrupt. 209 */ 210 err = snd_pcm_hw_constraint_minmax(runtime, 211 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 212 5000, UINT_MAX); 213 if (err < 0) 214 goto end; 215 216 /* Non-Blocking stream has no more constraints */ 217 if (!(s->flags & CIP_BLOCKING)) 218 goto end; 219 220 /* 221 * One AMDTP packet can include some frames. In blocking mode, the 222 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 223 * depending on its sampling rate. For accurate period interrupt, it's 224 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 225 */ 226 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 227 apply_constraint_to_size, NULL, 228 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 229 SNDRV_PCM_HW_PARAM_RATE, -1); 230 if (err < 0) 231 goto end; 232 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 233 apply_constraint_to_size, NULL, 234 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 235 SNDRV_PCM_HW_PARAM_RATE, -1); 236 if (err < 0) 237 goto end; 238 end: 239 return err; 240 } 241 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 242 243 /** 244 * amdtp_stream_set_parameters - set stream parameters 245 * @s: the AMDTP stream to configure 246 * @rate: the sample rate 247 * @data_block_quadlets: the size of a data block in quadlet unit 248 * 249 * The parameters must be set before the stream is started, and must not be 250 * changed while the stream is running. 251 */ 252 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 253 unsigned int data_block_quadlets) 254 { 255 unsigned int sfc; 256 257 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 258 if (amdtp_rate_table[sfc] == rate) 259 break; 260 } 261 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 262 return -EINVAL; 263 264 s->sfc = sfc; 265 s->data_block_quadlets = data_block_quadlets; 266 s->syt_interval = amdtp_syt_intervals[sfc]; 267 268 // default buffering in the device. 269 if (s->direction == AMDTP_OUT_STREAM) { 270 s->ctx_data.rx.transfer_delay = 271 TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 272 273 if (s->flags & CIP_BLOCKING) { 274 // additional buffering needed to adjust for no-data 275 // packets. 276 s->ctx_data.rx.transfer_delay += 277 TICKS_PER_SECOND * s->syt_interval / rate; 278 } 279 } 280 281 return 0; 282 } 283 EXPORT_SYMBOL(amdtp_stream_set_parameters); 284 285 /** 286 * amdtp_stream_get_max_payload - get the stream's packet size 287 * @s: the AMDTP stream 288 * 289 * This function must not be called before the stream has been configured 290 * with amdtp_stream_set_parameters(). 291 */ 292 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 293 { 294 unsigned int multiplier = 1; 295 unsigned int cip_header_size = 0; 296 297 if (s->flags & CIP_JUMBO_PAYLOAD) 298 multiplier = 5; 299 if (!(s->flags & CIP_NO_HEADER)) 300 cip_header_size = sizeof(__be32) * 2; 301 302 return cip_header_size + 303 s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 304 } 305 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 306 307 /** 308 * amdtp_stream_pcm_prepare - prepare PCM device for running 309 * @s: the AMDTP stream 310 * 311 * This function should be called from the PCM device's .prepare callback. 312 */ 313 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 314 { 315 tasklet_kill(&s->period_tasklet); 316 s->pcm_buffer_pointer = 0; 317 s->pcm_period_pointer = 0; 318 } 319 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 320 321 static unsigned int calculate_data_blocks(struct amdtp_stream *s, 322 unsigned int syt) 323 { 324 unsigned int phase, data_blocks; 325 326 /* Blocking mode. */ 327 if (s->flags & CIP_BLOCKING) { 328 /* This module generate empty packet for 'no data'. */ 329 if (syt == CIP_SYT_NO_INFO) 330 data_blocks = 0; 331 else 332 data_blocks = s->syt_interval; 333 /* Non-blocking mode. */ 334 } else { 335 if (!cip_sfc_is_base_44100(s->sfc)) { 336 // Sample_rate / 8000 is an integer, and precomputed. 337 data_blocks = s->ctx_data.rx.data_block_state; 338 } else { 339 phase = s->ctx_data.rx.data_block_state; 340 341 /* 342 * This calculates the number of data blocks per packet so that 343 * 1) the overall rate is correct and exactly synchronized to 344 * the bus clock, and 345 * 2) packets with a rounded-up number of blocks occur as early 346 * as possible in the sequence (to prevent underruns of the 347 * device's buffer). 348 */ 349 if (s->sfc == CIP_SFC_44100) 350 /* 6 6 5 6 5 6 5 ... */ 351 data_blocks = 5 + ((phase & 1) ^ 352 (phase == 0 || phase >= 40)); 353 else 354 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 355 data_blocks = 11 * (s->sfc >> 1) + (phase == 0); 356 if (++phase >= (80 >> (s->sfc >> 1))) 357 phase = 0; 358 s->ctx_data.rx.data_block_state = phase; 359 } 360 } 361 362 return data_blocks; 363 } 364 365 static unsigned int calculate_syt(struct amdtp_stream *s, 366 unsigned int cycle) 367 { 368 unsigned int syt_offset, phase, index, syt; 369 370 if (s->ctx_data.rx.last_syt_offset < TICKS_PER_CYCLE) { 371 if (!cip_sfc_is_base_44100(s->sfc)) 372 syt_offset = s->ctx_data.rx.last_syt_offset + 373 s->ctx_data.rx.syt_offset_state; 374 else { 375 /* 376 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 377 * n * SYT_INTERVAL * 24576000 / sample_rate 378 * Modulo TICKS_PER_CYCLE, the difference between successive 379 * elements is about 1386.23. Rounding the results of this 380 * formula to the SYT precision results in a sequence of 381 * differences that begins with: 382 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 383 * This code generates _exactly_ the same sequence. 384 */ 385 phase = s->ctx_data.rx.syt_offset_state; 386 index = phase % 13; 387 syt_offset = s->ctx_data.rx.last_syt_offset; 388 syt_offset += 1386 + ((index && !(index & 3)) || 389 phase == 146); 390 if (++phase >= 147) 391 phase = 0; 392 s->ctx_data.rx.syt_offset_state = phase; 393 } 394 } else 395 syt_offset = s->ctx_data.rx.last_syt_offset - TICKS_PER_CYCLE; 396 s->ctx_data.rx.last_syt_offset = syt_offset; 397 398 if (syt_offset < TICKS_PER_CYCLE) { 399 syt_offset += s->ctx_data.rx.transfer_delay; 400 syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12; 401 syt += syt_offset % TICKS_PER_CYCLE; 402 403 return syt & CIP_SYT_MASK; 404 } else { 405 return CIP_SYT_NO_INFO; 406 } 407 } 408 409 static void update_pcm_pointers(struct amdtp_stream *s, 410 struct snd_pcm_substream *pcm, 411 unsigned int frames) 412 { 413 unsigned int ptr; 414 415 ptr = s->pcm_buffer_pointer + frames; 416 if (ptr >= pcm->runtime->buffer_size) 417 ptr -= pcm->runtime->buffer_size; 418 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 419 420 s->pcm_period_pointer += frames; 421 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 422 s->pcm_period_pointer -= pcm->runtime->period_size; 423 tasklet_hi_schedule(&s->period_tasklet); 424 } 425 } 426 427 static void pcm_period_tasklet(unsigned long data) 428 { 429 struct amdtp_stream *s = (void *)data; 430 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 431 432 if (pcm) 433 snd_pcm_period_elapsed(pcm); 434 } 435 436 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params) 437 { 438 int err; 439 440 params->interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL); 441 params->tag = s->tag; 442 params->sy = 0; 443 444 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 445 s->buffer.packets[s->packet_index].offset); 446 if (err < 0) { 447 dev_err(&s->unit->device, "queueing error: %d\n", err); 448 goto end; 449 } 450 451 if (++s->packet_index >= QUEUE_LENGTH) 452 s->packet_index = 0; 453 end: 454 return err; 455 } 456 457 static inline int queue_out_packet(struct amdtp_stream *s, 458 struct fw_iso_packet *params) 459 { 460 params->skip = 461 !!(params->header_length == 0 && params->payload_length == 0); 462 return queue_packet(s, params); 463 } 464 465 static inline int queue_in_packet(struct amdtp_stream *s, 466 struct fw_iso_packet *params) 467 { 468 // Queue one packet for IR context. 469 params->header_length = s->ctx_data.tx.ctx_header_size; 470 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 471 params->skip = false; 472 return queue_packet(s, params); 473 } 474 475 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 476 unsigned int syt) 477 { 478 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 479 (s->data_block_quadlets << CIP_DBS_SHIFT) | 480 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 481 s->data_block_counter); 482 cip_header[1] = cpu_to_be32(CIP_EOH | 483 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 484 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 485 (syt & CIP_SYT_MASK)); 486 } 487 488 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 489 struct fw_iso_packet *params, 490 unsigned int data_blocks, unsigned int syt, 491 unsigned int index) 492 { 493 unsigned int payload_length; 494 __be32 *cip_header; 495 496 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 497 params->payload_length = payload_length; 498 499 if (s->flags & CIP_DBC_IS_END_EVENT) { 500 s->data_block_counter = 501 (s->data_block_counter + data_blocks) & 0xff; 502 } 503 504 if (!(s->flags & CIP_NO_HEADER)) { 505 cip_header = (__be32 *)params->header; 506 generate_cip_header(s, cip_header, syt); 507 params->header_length = 2 * sizeof(__be32); 508 payload_length += params->header_length; 509 } else { 510 cip_header = NULL; 511 } 512 513 trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks, 514 index); 515 516 if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 517 s->data_block_counter = 518 (s->data_block_counter + data_blocks) & 0xff; 519 } 520 } 521 522 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 523 unsigned int payload_length, 524 unsigned int *data_blocks, unsigned int *dbc, 525 unsigned int *syt) 526 { 527 u32 cip_header[2]; 528 unsigned int sph; 529 unsigned int fmt; 530 unsigned int fdf; 531 bool lost; 532 533 cip_header[0] = be32_to_cpu(buf[0]); 534 cip_header[1] = be32_to_cpu(buf[1]); 535 536 /* 537 * This module supports 'Two-quadlet CIP header with SYT field'. 538 * For convenience, also check FMT field is AM824 or not. 539 */ 540 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 541 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 542 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 543 dev_info_ratelimited(&s->unit->device, 544 "Invalid CIP header for AMDTP: %08X:%08X\n", 545 cip_header[0], cip_header[1]); 546 return -EAGAIN; 547 } 548 549 /* Check valid protocol or not. */ 550 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 551 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 552 if (sph != s->sph || fmt != s->fmt) { 553 dev_info_ratelimited(&s->unit->device, 554 "Detect unexpected protocol: %08x %08x\n", 555 cip_header[0], cip_header[1]); 556 return -EAGAIN; 557 } 558 559 /* Calculate data blocks */ 560 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 561 if (payload_length < sizeof(__be32) * 2 || 562 (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 563 *data_blocks = 0; 564 } else { 565 unsigned int data_block_quadlets = 566 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 567 /* avoid division by zero */ 568 if (data_block_quadlets == 0) { 569 dev_err(&s->unit->device, 570 "Detect invalid value in dbs field: %08X\n", 571 cip_header[0]); 572 return -EPROTO; 573 } 574 if (s->flags & CIP_WRONG_DBS) 575 data_block_quadlets = s->data_block_quadlets; 576 577 *data_blocks = (payload_length / sizeof(__be32) - 2) / 578 data_block_quadlets; 579 } 580 581 /* Check data block counter continuity */ 582 *dbc = cip_header[0] & CIP_DBC_MASK; 583 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 584 s->data_block_counter != UINT_MAX) 585 *dbc = s->data_block_counter; 586 587 if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && 588 *dbc == s->ctx_data.tx.first_dbc) || 589 s->data_block_counter == UINT_MAX) { 590 lost = false; 591 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 592 lost = *dbc != s->data_block_counter; 593 } else { 594 unsigned int dbc_interval; 595 596 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 597 dbc_interval = s->ctx_data.tx.dbc_interval; 598 else 599 dbc_interval = *data_blocks; 600 601 lost = *dbc != ((s->data_block_counter + dbc_interval) & 0xff); 602 } 603 604 if (lost) { 605 dev_err(&s->unit->device, 606 "Detect discontinuity of CIP: %02X %02X\n", 607 s->data_block_counter, *dbc); 608 return -EIO; 609 } 610 611 *syt = cip_header[1] & CIP_SYT_MASK; 612 613 return 0; 614 } 615 616 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 617 const __be32 *ctx_header, 618 unsigned int *payload_length, 619 unsigned int *data_blocks, unsigned int *syt, 620 unsigned int index) 621 { 622 unsigned int dbc; 623 const __be32 *cip_header; 624 int err; 625 626 *payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 627 if (*payload_length > s->ctx_data.tx.ctx_header_size + 628 s->ctx_data.tx.max_ctx_payload_length) { 629 dev_err(&s->unit->device, 630 "Detect jumbo payload: %04x %04x\n", 631 *payload_length, s->ctx_data.tx.max_ctx_payload_length); 632 return -EIO; 633 } 634 635 if (!(s->flags & CIP_NO_HEADER)) { 636 cip_header = ctx_header + 2; 637 err = check_cip_header(s, cip_header, *payload_length, 638 data_blocks, &dbc, syt); 639 if (err < 0) 640 return err; 641 } else { 642 cip_header = NULL; 643 err = 0; 644 *data_blocks = *payload_length / sizeof(__be32) / 645 s->data_block_quadlets; 646 *syt = 0; 647 648 if (s->data_block_counter != UINT_MAX) 649 dbc = s->data_block_counter; 650 else 651 dbc = 0; 652 } 653 654 s->data_block_counter = dbc; 655 656 trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks, 657 index); 658 659 return err; 660 } 661 662 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 663 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 664 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 665 static inline u32 compute_cycle_count(__be32 ctx_header_tstamp) 666 { 667 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 668 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); 669 } 670 671 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend) 672 { 673 cycle += addend; 674 if (cycle >= 8 * CYCLES_PER_SECOND) 675 cycle -= 8 * CYCLES_PER_SECOND; 676 return cycle; 677 } 678 679 // Align to actual cycle count for the packet which is going to be scheduled. 680 // This module queued the same number of isochronous cycle as QUEUE_LENGTH to 681 // skip isochronous cycle, therefore it's OK to just increment the cycle by 682 // QUEUE_LENGTH for scheduled cycle. 683 static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp) 684 { 685 u32 cycle = compute_cycle_count(ctx_header_tstamp); 686 return increment_cycle_count(cycle, QUEUE_LENGTH); 687 } 688 689 static inline void cancel_stream(struct amdtp_stream *s) 690 { 691 s->packet_index = -1; 692 if (in_interrupt()) 693 amdtp_stream_pcm_abort(s); 694 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 695 } 696 697 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp, 698 size_t header_length, void *header, 699 void *private_data) 700 { 701 struct amdtp_stream *s = private_data; 702 const __be32 *ctx_header = header; 703 unsigned int packets = header_length / sizeof(*ctx_header); 704 int i; 705 706 if (s->packet_index < 0) 707 return; 708 709 for (i = 0; i < packets; ++i) { 710 u32 cycle; 711 unsigned int syt; 712 unsigned int data_blocks; 713 __be32 *buffer; 714 unsigned int pcm_frames; 715 struct { 716 struct fw_iso_packet params; 717 __be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)]; 718 } template = { {0}, {0} }; 719 struct snd_pcm_substream *pcm; 720 721 cycle = compute_it_cycle(*ctx_header); 722 syt = calculate_syt(s, cycle); 723 data_blocks = calculate_data_blocks(s, syt); 724 buffer = s->buffer.packets[s->packet_index].buffer; 725 pcm_frames = s->process_data_blocks(s, buffer, data_blocks, 726 &syt); 727 728 build_it_pkt_header(s, cycle, &template.params, data_blocks, 729 syt, i); 730 731 if (queue_out_packet(s, &template.params) < 0) { 732 cancel_stream(s); 733 return; 734 } 735 736 pcm = READ_ONCE(s->pcm); 737 if (pcm && pcm_frames > 0) 738 update_pcm_pointers(s, pcm, pcm_frames); 739 740 ++ctx_header; 741 } 742 743 fw_iso_context_queue_flush(s->context); 744 } 745 746 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp, 747 size_t header_length, void *header, 748 void *private_data) 749 { 750 struct amdtp_stream *s = private_data; 751 unsigned int i, packets; 752 __be32 *ctx_header = header; 753 754 if (s->packet_index < 0) 755 return; 756 757 // The number of packets in buffer. 758 packets = header_length / s->ctx_data.tx.ctx_header_size; 759 760 for (i = 0; i < packets; i++) { 761 u32 cycle; 762 unsigned int payload_length; 763 unsigned int data_blocks; 764 unsigned int syt; 765 __be32 *buffer; 766 unsigned int pcm_frames = 0; 767 struct fw_iso_packet params = {0}; 768 struct snd_pcm_substream *pcm; 769 int err; 770 771 cycle = compute_cycle_count(ctx_header[1]); 772 err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length, 773 &data_blocks, &syt, i); 774 if (err < 0 && err != -EAGAIN) 775 break; 776 777 if (err >= 0) { 778 buffer = s->buffer.packets[s->packet_index].buffer; 779 pcm_frames = s->process_data_blocks(s, buffer, 780 data_blocks, &syt); 781 782 if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 783 s->data_block_counter += data_blocks; 784 s->data_block_counter &= 0xff; 785 } 786 } 787 788 if (queue_in_packet(s, ¶ms) < 0) 789 break; 790 791 pcm = READ_ONCE(s->pcm); 792 if (pcm && pcm_frames > 0) 793 update_pcm_pointers(s, pcm, pcm_frames); 794 795 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 796 } 797 798 /* Queueing error or detecting invalid payload. */ 799 if (i < packets) { 800 cancel_stream(s); 801 return; 802 } 803 804 fw_iso_context_queue_flush(s->context); 805 } 806 807 /* this is executed one time */ 808 static void amdtp_stream_first_callback(struct fw_iso_context *context, 809 u32 tstamp, size_t header_length, 810 void *header, void *private_data) 811 { 812 struct amdtp_stream *s = private_data; 813 const __be32 *ctx_header = header; 814 u32 cycle; 815 816 /* 817 * For in-stream, first packet has come. 818 * For out-stream, prepared to transmit first packet 819 */ 820 s->callbacked = true; 821 wake_up(&s->callback_wait); 822 823 if (s->direction == AMDTP_IN_STREAM) { 824 cycle = compute_cycle_count(ctx_header[1]); 825 826 context->callback.sc = in_stream_callback; 827 } else { 828 cycle = compute_it_cycle(*ctx_header); 829 830 context->callback.sc = out_stream_callback; 831 } 832 833 s->start_cycle = cycle; 834 835 context->callback.sc(context, tstamp, header_length, header, s); 836 } 837 838 /** 839 * amdtp_stream_start - start transferring packets 840 * @s: the AMDTP stream to start 841 * @channel: the isochronous channel on the bus 842 * @speed: firewire speed code 843 * 844 * The stream cannot be started until it has been configured with 845 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 846 * device can be started. 847 */ 848 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed) 849 { 850 static const struct { 851 unsigned int data_block; 852 unsigned int syt_offset; 853 } *entry, initial_state[] = { 854 [CIP_SFC_32000] = { 4, 3072 }, 855 [CIP_SFC_48000] = { 6, 1024 }, 856 [CIP_SFC_96000] = { 12, 1024 }, 857 [CIP_SFC_192000] = { 24, 1024 }, 858 [CIP_SFC_44100] = { 0, 67 }, 859 [CIP_SFC_88200] = { 0, 67 }, 860 [CIP_SFC_176400] = { 0, 67 }, 861 }; 862 unsigned int ctx_header_size; 863 unsigned int max_ctx_payload_size; 864 enum dma_data_direction dir; 865 int type, tag, err; 866 867 mutex_lock(&s->mutex); 868 869 if (WARN_ON(amdtp_stream_running(s) || 870 (s->data_block_quadlets < 1))) { 871 err = -EBADFD; 872 goto err_unlock; 873 } 874 875 if (s->direction == AMDTP_IN_STREAM) { 876 s->data_block_counter = UINT_MAX; 877 } else { 878 entry = &initial_state[s->sfc]; 879 880 s->data_block_counter = 0; 881 s->ctx_data.rx.data_block_state = entry->data_block; 882 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 883 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 884 } 885 886 /* initialize packet buffer */ 887 if (s->direction == AMDTP_IN_STREAM) { 888 dir = DMA_FROM_DEVICE; 889 type = FW_ISO_CONTEXT_RECEIVE; 890 if (!(s->flags & CIP_NO_HEADER)) 891 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 892 else 893 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 894 895 max_ctx_payload_size = amdtp_stream_get_max_payload(s) - 896 ctx_header_size; 897 } else { 898 dir = DMA_TO_DEVICE; 899 type = FW_ISO_CONTEXT_TRANSMIT; 900 ctx_header_size = 0; // No effect for IT context. 901 902 max_ctx_payload_size = amdtp_stream_get_max_payload(s); 903 if (!(s->flags & CIP_NO_HEADER)) 904 max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP; 905 } 906 907 err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH, 908 max_ctx_payload_size, dir); 909 if (err < 0) 910 goto err_unlock; 911 912 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 913 type, channel, speed, ctx_header_size, 914 amdtp_stream_first_callback, s); 915 if (IS_ERR(s->context)) { 916 err = PTR_ERR(s->context); 917 if (err == -EBUSY) 918 dev_err(&s->unit->device, 919 "no free stream on this controller\n"); 920 goto err_buffer; 921 } 922 923 amdtp_stream_update(s); 924 925 if (s->direction == AMDTP_IN_STREAM) { 926 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 927 s->ctx_data.tx.ctx_header_size = ctx_header_size; 928 } 929 930 if (s->flags & CIP_NO_HEADER) 931 s->tag = TAG_NO_CIP_HEADER; 932 else 933 s->tag = TAG_CIP; 934 935 s->packet_index = 0; 936 do { 937 struct fw_iso_packet params; 938 if (s->direction == AMDTP_IN_STREAM) { 939 err = queue_in_packet(s, ¶ms); 940 } else { 941 params.header_length = 0; 942 params.payload_length = 0; 943 err = queue_out_packet(s, ¶ms); 944 } 945 if (err < 0) 946 goto err_context; 947 } while (s->packet_index > 0); 948 949 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 950 tag = FW_ISO_CONTEXT_MATCH_TAG1; 951 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 952 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 953 954 s->callbacked = false; 955 err = fw_iso_context_start(s->context, -1, 0, tag); 956 if (err < 0) 957 goto err_context; 958 959 mutex_unlock(&s->mutex); 960 961 return 0; 962 963 err_context: 964 fw_iso_context_destroy(s->context); 965 s->context = ERR_PTR(-1); 966 err_buffer: 967 iso_packets_buffer_destroy(&s->buffer, s->unit); 968 err_unlock: 969 mutex_unlock(&s->mutex); 970 971 return err; 972 } 973 EXPORT_SYMBOL(amdtp_stream_start); 974 975 /** 976 * amdtp_stream_pcm_pointer - get the PCM buffer position 977 * @s: the AMDTP stream that transports the PCM data 978 * 979 * Returns the current buffer position, in frames. 980 */ 981 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s) 982 { 983 /* 984 * This function is called in software IRQ context of period_tasklet or 985 * process context. 986 * 987 * When the software IRQ context was scheduled by software IRQ context 988 * of IR/IT contexts, queued packets were already handled. Therefore, 989 * no need to flush the queue in buffer anymore. 990 * 991 * When the process context reach here, some packets will be already 992 * queued in the buffer. These packets should be handled immediately 993 * to keep better granularity of PCM pointer. 994 * 995 * Later, the process context will sometimes schedules software IRQ 996 * context of the period_tasklet. Then, no need to flush the queue by 997 * the same reason as described for IR/IT contexts. 998 */ 999 if (!in_interrupt() && amdtp_stream_running(s)) 1000 fw_iso_context_flush_completions(s->context); 1001 1002 return READ_ONCE(s->pcm_buffer_pointer); 1003 } 1004 EXPORT_SYMBOL(amdtp_stream_pcm_pointer); 1005 1006 /** 1007 * amdtp_stream_pcm_ack - acknowledge queued PCM frames 1008 * @s: the AMDTP stream that transfers the PCM frames 1009 * 1010 * Returns zero always. 1011 */ 1012 int amdtp_stream_pcm_ack(struct amdtp_stream *s) 1013 { 1014 /* 1015 * Process isochronous packets for recent isochronous cycle to handle 1016 * queued PCM frames. 1017 */ 1018 if (amdtp_stream_running(s)) 1019 fw_iso_context_flush_completions(s->context); 1020 1021 return 0; 1022 } 1023 EXPORT_SYMBOL(amdtp_stream_pcm_ack); 1024 1025 /** 1026 * amdtp_stream_update - update the stream after a bus reset 1027 * @s: the AMDTP stream 1028 */ 1029 void amdtp_stream_update(struct amdtp_stream *s) 1030 { 1031 /* Precomputing. */ 1032 WRITE_ONCE(s->source_node_id_field, 1033 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1034 } 1035 EXPORT_SYMBOL(amdtp_stream_update); 1036 1037 /** 1038 * amdtp_stream_stop - stop sending packets 1039 * @s: the AMDTP stream to stop 1040 * 1041 * All PCM and MIDI devices of the stream must be stopped before the stream 1042 * itself can be stopped. 1043 */ 1044 void amdtp_stream_stop(struct amdtp_stream *s) 1045 { 1046 mutex_lock(&s->mutex); 1047 1048 if (!amdtp_stream_running(s)) { 1049 mutex_unlock(&s->mutex); 1050 return; 1051 } 1052 1053 tasklet_kill(&s->period_tasklet); 1054 fw_iso_context_stop(s->context); 1055 fw_iso_context_destroy(s->context); 1056 s->context = ERR_PTR(-1); 1057 iso_packets_buffer_destroy(&s->buffer, s->unit); 1058 1059 s->callbacked = false; 1060 1061 mutex_unlock(&s->mutex); 1062 } 1063 EXPORT_SYMBOL(amdtp_stream_stop); 1064 1065 /** 1066 * amdtp_stream_pcm_abort - abort the running PCM device 1067 * @s: the AMDTP stream about to be stopped 1068 * 1069 * If the isochronous stream needs to be stopped asynchronously, call this 1070 * function first to stop the PCM device. 1071 */ 1072 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1073 { 1074 struct snd_pcm_substream *pcm; 1075 1076 pcm = READ_ONCE(s->pcm); 1077 if (pcm) 1078 snd_pcm_stop_xrun(pcm); 1079 } 1080 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1081