xref: /openbmc/linux/sound/firewire/amdtp-stream.c (revision addee42a)
1 /*
2  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3  * with Common Isochronous Packet (IEC 61883-1) headers
4  *
5  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6  * Licensed under the terms of the GNU General Public License, version 2.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <sound/pcm.h>
15 #include <sound/pcm_params.h>
16 #include "amdtp-stream.h"
17 
18 #define TICKS_PER_CYCLE		3072
19 #define CYCLES_PER_SECOND	8000
20 #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
21 
22 /* Always support Linux tracing subsystem. */
23 #define CREATE_TRACE_POINTS
24 #include "amdtp-stream-trace.h"
25 
26 #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
27 
28 /* isochronous header parameters */
29 #define ISO_DATA_LENGTH_SHIFT	16
30 #define TAG_NO_CIP_HEADER	0
31 #define TAG_CIP			1
32 
33 /* common isochronous packet header parameters */
34 #define CIP_EOH_SHIFT		31
35 #define CIP_EOH			(1u << CIP_EOH_SHIFT)
36 #define CIP_EOH_MASK		0x80000000
37 #define CIP_SID_SHIFT		24
38 #define CIP_SID_MASK		0x3f000000
39 #define CIP_DBS_MASK		0x00ff0000
40 #define CIP_DBS_SHIFT		16
41 #define CIP_SPH_MASK		0x00000400
42 #define CIP_SPH_SHIFT		10
43 #define CIP_DBC_MASK		0x000000ff
44 #define CIP_FMT_SHIFT		24
45 #define CIP_FMT_MASK		0x3f000000
46 #define CIP_FDF_MASK		0x00ff0000
47 #define CIP_FDF_SHIFT		16
48 #define CIP_SYT_MASK		0x0000ffff
49 #define CIP_SYT_NO_INFO		0xffff
50 
51 /* Audio and Music transfer protocol specific parameters */
52 #define CIP_FMT_AM		0x10
53 #define AMDTP_FDF_NO_DATA	0xff
54 
55 /* TODO: make these configurable */
56 #define INTERRUPT_INTERVAL	16
57 #define QUEUE_LENGTH		48
58 
59 #define IN_PACKET_HEADER_SIZE	4
60 #define OUT_PACKET_HEADER_SIZE	0
61 
62 static void pcm_period_tasklet(unsigned long data);
63 
64 /**
65  * amdtp_stream_init - initialize an AMDTP stream structure
66  * @s: the AMDTP stream to initialize
67  * @unit: the target of the stream
68  * @dir: the direction of stream
69  * @flags: the packet transmission method to use
70  * @fmt: the value of fmt field in CIP header
71  * @process_data_blocks: callback handler to process data blocks
72  * @protocol_size: the size to allocate newly for protocol
73  */
74 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
75 		      enum amdtp_stream_direction dir, enum cip_flags flags,
76 		      unsigned int fmt,
77 		      amdtp_stream_process_data_blocks_t process_data_blocks,
78 		      unsigned int protocol_size)
79 {
80 	if (process_data_blocks == NULL)
81 		return -EINVAL;
82 
83 	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
84 	if (!s->protocol)
85 		return -ENOMEM;
86 
87 	s->unit = unit;
88 	s->direction = dir;
89 	s->flags = flags;
90 	s->context = ERR_PTR(-1);
91 	mutex_init(&s->mutex);
92 	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
93 	s->packet_index = 0;
94 
95 	init_waitqueue_head(&s->callback_wait);
96 	s->callbacked = false;
97 
98 	s->fmt = fmt;
99 	s->process_data_blocks = process_data_blocks;
100 
101 	return 0;
102 }
103 EXPORT_SYMBOL(amdtp_stream_init);
104 
105 /**
106  * amdtp_stream_destroy - free stream resources
107  * @s: the AMDTP stream to destroy
108  */
109 void amdtp_stream_destroy(struct amdtp_stream *s)
110 {
111 	/* Not initialized. */
112 	if (s->protocol == NULL)
113 		return;
114 
115 	WARN_ON(amdtp_stream_running(s));
116 	kfree(s->protocol);
117 	mutex_destroy(&s->mutex);
118 }
119 EXPORT_SYMBOL(amdtp_stream_destroy);
120 
121 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
122 	[CIP_SFC_32000]  =  8,
123 	[CIP_SFC_44100]  =  8,
124 	[CIP_SFC_48000]  =  8,
125 	[CIP_SFC_88200]  = 16,
126 	[CIP_SFC_96000]  = 16,
127 	[CIP_SFC_176400] = 32,
128 	[CIP_SFC_192000] = 32,
129 };
130 EXPORT_SYMBOL(amdtp_syt_intervals);
131 
132 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
133 	[CIP_SFC_32000]  =  32000,
134 	[CIP_SFC_44100]  =  44100,
135 	[CIP_SFC_48000]  =  48000,
136 	[CIP_SFC_88200]  =  88200,
137 	[CIP_SFC_96000]  =  96000,
138 	[CIP_SFC_176400] = 176400,
139 	[CIP_SFC_192000] = 192000,
140 };
141 EXPORT_SYMBOL(amdtp_rate_table);
142 
143 /**
144  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
145  * @s:		the AMDTP stream, which must be initialized.
146  * @runtime:	the PCM substream runtime
147  */
148 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
149 					struct snd_pcm_runtime *runtime)
150 {
151 	struct snd_pcm_hardware *hw = &runtime->hw;
152 	int err;
153 
154 	hw->info = SNDRV_PCM_INFO_BATCH |
155 		   SNDRV_PCM_INFO_BLOCK_TRANSFER |
156 		   SNDRV_PCM_INFO_INTERLEAVED |
157 		   SNDRV_PCM_INFO_JOINT_DUPLEX |
158 		   SNDRV_PCM_INFO_MMAP |
159 		   SNDRV_PCM_INFO_MMAP_VALID;
160 
161 	/* SNDRV_PCM_INFO_BATCH */
162 	hw->periods_min = 2;
163 	hw->periods_max = UINT_MAX;
164 
165 	/* bytes for a frame */
166 	hw->period_bytes_min = 4 * hw->channels_max;
167 
168 	/* Just to prevent from allocating much pages. */
169 	hw->period_bytes_max = hw->period_bytes_min * 2048;
170 	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
171 
172 	/*
173 	 * Currently firewire-lib processes 16 packets in one software
174 	 * interrupt callback. This equals to 2msec but actually the
175 	 * interval of the interrupts has a jitter.
176 	 * Additionally, even if adding a constraint to fit period size to
177 	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
178 	 * depending on sampling rate.
179 	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
180 	 * Here let us use 5msec for safe period interrupt.
181 	 */
182 	err = snd_pcm_hw_constraint_minmax(runtime,
183 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
184 					   5000, UINT_MAX);
185 	if (err < 0)
186 		goto end;
187 
188 	/* Non-Blocking stream has no more constraints */
189 	if (!(s->flags & CIP_BLOCKING))
190 		goto end;
191 
192 	/*
193 	 * One AMDTP packet can include some frames. In blocking mode, the
194 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
195 	 * depending on its sampling rate. For accurate period interrupt, it's
196 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
197 	 *
198 	 * TODO: These constraints can be improved with proper rules.
199 	 * Currently apply LCM of SYT_INTERVALs.
200 	 */
201 	err = snd_pcm_hw_constraint_step(runtime, 0,
202 					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
203 	if (err < 0)
204 		goto end;
205 	err = snd_pcm_hw_constraint_step(runtime, 0,
206 					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
207 end:
208 	return err;
209 }
210 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
211 
212 /**
213  * amdtp_stream_set_parameters - set stream parameters
214  * @s: the AMDTP stream to configure
215  * @rate: the sample rate
216  * @data_block_quadlets: the size of a data block in quadlet unit
217  *
218  * The parameters must be set before the stream is started, and must not be
219  * changed while the stream is running.
220  */
221 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
222 				unsigned int data_block_quadlets)
223 {
224 	unsigned int sfc;
225 
226 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
227 		if (amdtp_rate_table[sfc] == rate)
228 			break;
229 	}
230 	if (sfc == ARRAY_SIZE(amdtp_rate_table))
231 		return -EINVAL;
232 
233 	s->sfc = sfc;
234 	s->data_block_quadlets = data_block_quadlets;
235 	s->syt_interval = amdtp_syt_intervals[sfc];
236 
237 	/* default buffering in the device */
238 	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
239 	if (s->flags & CIP_BLOCKING)
240 		/* additional buffering needed to adjust for no-data packets */
241 		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
242 
243 	return 0;
244 }
245 EXPORT_SYMBOL(amdtp_stream_set_parameters);
246 
247 /**
248  * amdtp_stream_get_max_payload - get the stream's packet size
249  * @s: the AMDTP stream
250  *
251  * This function must not be called before the stream has been configured
252  * with amdtp_stream_set_parameters().
253  */
254 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
255 {
256 	unsigned int multiplier = 1;
257 	unsigned int header_size = 0;
258 
259 	if (s->flags & CIP_JUMBO_PAYLOAD)
260 		multiplier = 5;
261 	if (!(s->flags & CIP_NO_HEADER))
262 		header_size = 8;
263 
264 	return header_size +
265 		s->syt_interval * s->data_block_quadlets * 4 * multiplier;
266 }
267 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
268 
269 /**
270  * amdtp_stream_pcm_prepare - prepare PCM device for running
271  * @s: the AMDTP stream
272  *
273  * This function should be called from the PCM device's .prepare callback.
274  */
275 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
276 {
277 	tasklet_kill(&s->period_tasklet);
278 	s->pcm_buffer_pointer = 0;
279 	s->pcm_period_pointer = 0;
280 }
281 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
282 
283 static unsigned int calculate_data_blocks(struct amdtp_stream *s,
284 					  unsigned int syt)
285 {
286 	unsigned int phase, data_blocks;
287 
288 	/* Blocking mode. */
289 	if (s->flags & CIP_BLOCKING) {
290 		/* This module generate empty packet for 'no data'. */
291 		if (syt == CIP_SYT_NO_INFO)
292 			data_blocks = 0;
293 		else
294 			data_blocks = s->syt_interval;
295 	/* Non-blocking mode. */
296 	} else {
297 		if (!cip_sfc_is_base_44100(s->sfc)) {
298 			/* Sample_rate / 8000 is an integer, and precomputed. */
299 			data_blocks = s->data_block_state;
300 		} else {
301 			phase = s->data_block_state;
302 
303 		/*
304 		 * This calculates the number of data blocks per packet so that
305 		 * 1) the overall rate is correct and exactly synchronized to
306 		 *    the bus clock, and
307 		 * 2) packets with a rounded-up number of blocks occur as early
308 		 *    as possible in the sequence (to prevent underruns of the
309 		 *    device's buffer).
310 		 */
311 			if (s->sfc == CIP_SFC_44100)
312 				/* 6 6 5 6 5 6 5 ... */
313 				data_blocks = 5 + ((phase & 1) ^
314 						   (phase == 0 || phase >= 40));
315 			else
316 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
317 				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
318 			if (++phase >= (80 >> (s->sfc >> 1)))
319 				phase = 0;
320 			s->data_block_state = phase;
321 		}
322 	}
323 
324 	return data_blocks;
325 }
326 
327 static unsigned int calculate_syt(struct amdtp_stream *s,
328 				  unsigned int cycle)
329 {
330 	unsigned int syt_offset, phase, index, syt;
331 
332 	if (s->last_syt_offset < TICKS_PER_CYCLE) {
333 		if (!cip_sfc_is_base_44100(s->sfc))
334 			syt_offset = s->last_syt_offset + s->syt_offset_state;
335 		else {
336 		/*
337 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
338 		 *   n * SYT_INTERVAL * 24576000 / sample_rate
339 		 * Modulo TICKS_PER_CYCLE, the difference between successive
340 		 * elements is about 1386.23.  Rounding the results of this
341 		 * formula to the SYT precision results in a sequence of
342 		 * differences that begins with:
343 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
344 		 * This code generates _exactly_ the same sequence.
345 		 */
346 			phase = s->syt_offset_state;
347 			index = phase % 13;
348 			syt_offset = s->last_syt_offset;
349 			syt_offset += 1386 + ((index && !(index & 3)) ||
350 					      phase == 146);
351 			if (++phase >= 147)
352 				phase = 0;
353 			s->syt_offset_state = phase;
354 		}
355 	} else
356 		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
357 	s->last_syt_offset = syt_offset;
358 
359 	if (syt_offset < TICKS_PER_CYCLE) {
360 		syt_offset += s->transfer_delay;
361 		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
362 		syt += syt_offset % TICKS_PER_CYCLE;
363 
364 		return syt & CIP_SYT_MASK;
365 	} else {
366 		return CIP_SYT_NO_INFO;
367 	}
368 }
369 
370 static void update_pcm_pointers(struct amdtp_stream *s,
371 				struct snd_pcm_substream *pcm,
372 				unsigned int frames)
373 {
374 	unsigned int ptr;
375 
376 	ptr = s->pcm_buffer_pointer + frames;
377 	if (ptr >= pcm->runtime->buffer_size)
378 		ptr -= pcm->runtime->buffer_size;
379 	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
380 
381 	s->pcm_period_pointer += frames;
382 	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
383 		s->pcm_period_pointer -= pcm->runtime->period_size;
384 		tasklet_hi_schedule(&s->period_tasklet);
385 	}
386 }
387 
388 static void pcm_period_tasklet(unsigned long data)
389 {
390 	struct amdtp_stream *s = (void *)data;
391 	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
392 
393 	if (pcm)
394 		snd_pcm_period_elapsed(pcm);
395 }
396 
397 static int queue_packet(struct amdtp_stream *s, unsigned int header_length,
398 			unsigned int payload_length)
399 {
400 	struct fw_iso_packet p = {0};
401 	int err = 0;
402 
403 	if (IS_ERR(s->context))
404 		goto end;
405 
406 	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
407 	p.tag = s->tag;
408 	p.header_length = header_length;
409 	if (payload_length > 0)
410 		p.payload_length = payload_length;
411 	else
412 		p.skip = true;
413 	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
414 				   s->buffer.packets[s->packet_index].offset);
415 	if (err < 0) {
416 		dev_err(&s->unit->device, "queueing error: %d\n", err);
417 		goto end;
418 	}
419 
420 	if (++s->packet_index >= QUEUE_LENGTH)
421 		s->packet_index = 0;
422 end:
423 	return err;
424 }
425 
426 static inline int queue_out_packet(struct amdtp_stream *s,
427 				   unsigned int payload_length)
428 {
429 	return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length);
430 }
431 
432 static inline int queue_in_packet(struct amdtp_stream *s)
433 {
434 	return queue_packet(s, IN_PACKET_HEADER_SIZE, s->max_payload_length);
435 }
436 
437 static int handle_out_packet(struct amdtp_stream *s,
438 			     unsigned int payload_length, unsigned int cycle,
439 			     unsigned int index)
440 {
441 	__be32 *buffer;
442 	unsigned int syt;
443 	unsigned int data_blocks;
444 	unsigned int pcm_frames;
445 	struct snd_pcm_substream *pcm;
446 
447 	buffer = s->buffer.packets[s->packet_index].buffer;
448 	syt = calculate_syt(s, cycle);
449 	data_blocks = calculate_data_blocks(s, syt);
450 	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
451 
452 	if (s->flags & CIP_DBC_IS_END_EVENT)
453 		s->data_block_counter =
454 				(s->data_block_counter + data_blocks) & 0xff;
455 
456 	buffer[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
457 				(s->data_block_quadlets << CIP_DBS_SHIFT) |
458 				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
459 				s->data_block_counter);
460 	buffer[1] = cpu_to_be32(CIP_EOH |
461 				((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
462 				((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
463 				(syt & CIP_SYT_MASK));
464 
465 	if (!(s->flags & CIP_DBC_IS_END_EVENT))
466 		s->data_block_counter =
467 				(s->data_block_counter + data_blocks) & 0xff;
468 	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
469 
470 	trace_out_packet(s, cycle, buffer, payload_length, index);
471 
472 	if (queue_out_packet(s, payload_length) < 0)
473 		return -EIO;
474 
475 	pcm = READ_ONCE(s->pcm);
476 	if (pcm && pcm_frames > 0)
477 		update_pcm_pointers(s, pcm, pcm_frames);
478 
479 	/* No need to return the number of handled data blocks. */
480 	return 0;
481 }
482 
483 static int handle_out_packet_without_header(struct amdtp_stream *s,
484 			unsigned int payload_length, unsigned int cycle,
485 			unsigned int index)
486 {
487 	__be32 *buffer;
488 	unsigned int syt;
489 	unsigned int data_blocks;
490 	unsigned int pcm_frames;
491 	struct snd_pcm_substream *pcm;
492 
493 	buffer = s->buffer.packets[s->packet_index].buffer;
494 	syt = calculate_syt(s, cycle);
495 	data_blocks = calculate_data_blocks(s, syt);
496 	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt);
497 	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
498 
499 	payload_length = data_blocks * 4 * s->data_block_quadlets;
500 
501 	trace_out_packet_without_header(s, cycle, payload_length, data_blocks,
502 					index);
503 
504 	if (queue_out_packet(s, payload_length) < 0)
505 		return -EIO;
506 
507 	pcm = READ_ONCE(s->pcm);
508 	if (pcm && pcm_frames > 0)
509 		update_pcm_pointers(s, pcm, pcm_frames);
510 
511 	/* No need to return the number of handled data blocks. */
512 	return 0;
513 }
514 
515 static int handle_in_packet(struct amdtp_stream *s,
516 			    unsigned int payload_length, unsigned int cycle,
517 			    unsigned int index)
518 {
519 	__be32 *buffer;
520 	u32 cip_header[2];
521 	unsigned int sph, fmt, fdf, syt;
522 	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
523 	unsigned int data_blocks;
524 	struct snd_pcm_substream *pcm;
525 	unsigned int pcm_frames;
526 	bool lost;
527 
528 	buffer = s->buffer.packets[s->packet_index].buffer;
529 	cip_header[0] = be32_to_cpu(buffer[0]);
530 	cip_header[1] = be32_to_cpu(buffer[1]);
531 
532 	trace_in_packet(s, cycle, cip_header, payload_length, index);
533 
534 	/*
535 	 * This module supports 'Two-quadlet CIP header with SYT field'.
536 	 * For convenience, also check FMT field is AM824 or not.
537 	 */
538 	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
539 	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
540 	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
541 		dev_info_ratelimited(&s->unit->device,
542 				"Invalid CIP header for AMDTP: %08X:%08X\n",
543 				cip_header[0], cip_header[1]);
544 		data_blocks = 0;
545 		pcm_frames = 0;
546 		goto end;
547 	}
548 
549 	/* Check valid protocol or not. */
550 	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
551 	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
552 	if (sph != s->sph || fmt != s->fmt) {
553 		dev_info_ratelimited(&s->unit->device,
554 				     "Detect unexpected protocol: %08x %08x\n",
555 				     cip_header[0], cip_header[1]);
556 		data_blocks = 0;
557 		pcm_frames = 0;
558 		goto end;
559 	}
560 
561 	/* Calculate data blocks */
562 	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
563 	if (payload_length < 12 ||
564 	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
565 		data_blocks = 0;
566 	} else {
567 		data_block_quadlets =
568 			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
569 		/* avoid division by zero */
570 		if (data_block_quadlets == 0) {
571 			dev_err(&s->unit->device,
572 				"Detect invalid value in dbs field: %08X\n",
573 				cip_header[0]);
574 			return -EPROTO;
575 		}
576 		if (s->flags & CIP_WRONG_DBS)
577 			data_block_quadlets = s->data_block_quadlets;
578 
579 		data_blocks = (payload_length / 4 - 2) /
580 							data_block_quadlets;
581 	}
582 
583 	/* Check data block counter continuity */
584 	data_block_counter = cip_header[0] & CIP_DBC_MASK;
585 	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
586 	    s->data_block_counter != UINT_MAX)
587 		data_block_counter = s->data_block_counter;
588 
589 	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
590 	     data_block_counter == s->tx_first_dbc) ||
591 	    s->data_block_counter == UINT_MAX) {
592 		lost = false;
593 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
594 		lost = data_block_counter != s->data_block_counter;
595 	} else {
596 		if (data_blocks > 0 && s->tx_dbc_interval > 0)
597 			dbc_interval = s->tx_dbc_interval;
598 		else
599 			dbc_interval = data_blocks;
600 
601 		lost = data_block_counter !=
602 		       ((s->data_block_counter + dbc_interval) & 0xff);
603 	}
604 
605 	if (lost) {
606 		dev_err(&s->unit->device,
607 			"Detect discontinuity of CIP: %02X %02X\n",
608 			s->data_block_counter, data_block_counter);
609 		return -EIO;
610 	}
611 
612 	syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
613 	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
614 
615 	if (s->flags & CIP_DBC_IS_END_EVENT)
616 		s->data_block_counter = data_block_counter;
617 	else
618 		s->data_block_counter =
619 				(data_block_counter + data_blocks) & 0xff;
620 end:
621 	if (queue_in_packet(s) < 0)
622 		return -EIO;
623 
624 	pcm = READ_ONCE(s->pcm);
625 	if (pcm && pcm_frames > 0)
626 		update_pcm_pointers(s, pcm, pcm_frames);
627 
628 	return 0;
629 }
630 
631 static int handle_in_packet_without_header(struct amdtp_stream *s,
632 			unsigned int payload_quadlets, unsigned int cycle,
633 			unsigned int index)
634 {
635 	__be32 *buffer;
636 	unsigned int data_blocks;
637 	struct snd_pcm_substream *pcm;
638 	unsigned int pcm_frames;
639 
640 	buffer = s->buffer.packets[s->packet_index].buffer;
641 	data_blocks = payload_quadlets / s->data_block_quadlets;
642 
643 	trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks,
644 				       index);
645 
646 	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL);
647 	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
648 
649 	if (queue_in_packet(s) < 0)
650 		return -EIO;
651 
652 	pcm = READ_ONCE(s->pcm);
653 	if (pcm && pcm_frames > 0)
654 		update_pcm_pointers(s, pcm, pcm_frames);
655 
656 	return 0;
657 }
658 
659 /*
660  * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
661  * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
662  * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
663  */
664 static inline u32 compute_cycle_count(u32 tstamp)
665 {
666 	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
667 }
668 
669 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
670 {
671 	cycle += addend;
672 	if (cycle >= 8 * CYCLES_PER_SECOND)
673 		cycle -= 8 * CYCLES_PER_SECOND;
674 	return cycle;
675 }
676 
677 static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend)
678 {
679 	if (cycle < subtrahend)
680 		cycle += 8 * CYCLES_PER_SECOND;
681 	return cycle - subtrahend;
682 }
683 
684 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
685 				size_t header_length, void *header,
686 				void *private_data)
687 {
688 	struct amdtp_stream *s = private_data;
689 	unsigned int i, packets = header_length / 4;
690 	u32 cycle;
691 
692 	if (s->packet_index < 0)
693 		return;
694 
695 	cycle = compute_cycle_count(tstamp);
696 
697 	/* Align to actual cycle count for the last packet. */
698 	cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
699 
700 	for (i = 0; i < packets; ++i) {
701 		cycle = increment_cycle_count(cycle, 1);
702 		if (s->handle_packet(s, 0, cycle, i) < 0) {
703 			s->packet_index = -1;
704 			if (in_interrupt())
705 				amdtp_stream_pcm_abort(s);
706 			WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
707 			return;
708 		}
709 	}
710 
711 	fw_iso_context_queue_flush(s->context);
712 }
713 
714 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
715 			       size_t header_length, void *header,
716 			       void *private_data)
717 {
718 	struct amdtp_stream *s = private_data;
719 	unsigned int i, packets;
720 	unsigned int payload_length, max_payload_length;
721 	__be32 *headers = header;
722 	u32 cycle;
723 
724 	if (s->packet_index < 0)
725 		return;
726 
727 	/* The number of packets in buffer */
728 	packets = header_length / IN_PACKET_HEADER_SIZE;
729 
730 	cycle = compute_cycle_count(tstamp);
731 
732 	/* Align to actual cycle count for the last packet. */
733 	cycle = decrement_cycle_count(cycle, packets);
734 
735 	/* For buffer-over-run prevention. */
736 	max_payload_length = s->max_payload_length;
737 
738 	for (i = 0; i < packets; i++) {
739 		cycle = increment_cycle_count(cycle, 1);
740 
741 		/* The number of bytes in this packet */
742 		payload_length =
743 			(be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT);
744 		if (payload_length > max_payload_length) {
745 			dev_err(&s->unit->device,
746 				"Detect jumbo payload: %04x %04x\n",
747 				payload_length, max_payload_length);
748 			break;
749 		}
750 
751 		if (s->handle_packet(s, payload_length, cycle, i) < 0)
752 			break;
753 	}
754 
755 	/* Queueing error or detecting invalid payload. */
756 	if (i < packets) {
757 		s->packet_index = -1;
758 		if (in_interrupt())
759 			amdtp_stream_pcm_abort(s);
760 		WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
761 		return;
762 	}
763 
764 	fw_iso_context_queue_flush(s->context);
765 }
766 
767 /* this is executed one time */
768 static void amdtp_stream_first_callback(struct fw_iso_context *context,
769 					u32 tstamp, size_t header_length,
770 					void *header, void *private_data)
771 {
772 	struct amdtp_stream *s = private_data;
773 	u32 cycle;
774 	unsigned int packets;
775 
776 	/*
777 	 * For in-stream, first packet has come.
778 	 * For out-stream, prepared to transmit first packet
779 	 */
780 	s->callbacked = true;
781 	wake_up(&s->callback_wait);
782 
783 	cycle = compute_cycle_count(tstamp);
784 
785 	if (s->direction == AMDTP_IN_STREAM) {
786 		packets = header_length / IN_PACKET_HEADER_SIZE;
787 		cycle = decrement_cycle_count(cycle, packets);
788 		context->callback.sc = in_stream_callback;
789 		if (s->flags & CIP_NO_HEADER)
790 			s->handle_packet = handle_in_packet_without_header;
791 		else
792 			s->handle_packet = handle_in_packet;
793 	} else {
794 		packets = header_length / 4;
795 		cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
796 		context->callback.sc = out_stream_callback;
797 		if (s->flags & CIP_NO_HEADER)
798 			s->handle_packet = handle_out_packet_without_header;
799 		else
800 			s->handle_packet = handle_out_packet;
801 	}
802 
803 	s->start_cycle = cycle;
804 
805 	context->callback.sc(context, tstamp, header_length, header, s);
806 }
807 
808 /**
809  * amdtp_stream_start - start transferring packets
810  * @s: the AMDTP stream to start
811  * @channel: the isochronous channel on the bus
812  * @speed: firewire speed code
813  *
814  * The stream cannot be started until it has been configured with
815  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
816  * device can be started.
817  */
818 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
819 {
820 	static const struct {
821 		unsigned int data_block;
822 		unsigned int syt_offset;
823 	} initial_state[] = {
824 		[CIP_SFC_32000]  = {  4, 3072 },
825 		[CIP_SFC_48000]  = {  6, 1024 },
826 		[CIP_SFC_96000]  = { 12, 1024 },
827 		[CIP_SFC_192000] = { 24, 1024 },
828 		[CIP_SFC_44100]  = {  0,   67 },
829 		[CIP_SFC_88200]  = {  0,   67 },
830 		[CIP_SFC_176400] = {  0,   67 },
831 	};
832 	unsigned int header_size;
833 	enum dma_data_direction dir;
834 	int type, tag, err;
835 
836 	mutex_lock(&s->mutex);
837 
838 	if (WARN_ON(amdtp_stream_running(s) ||
839 		    (s->data_block_quadlets < 1))) {
840 		err = -EBADFD;
841 		goto err_unlock;
842 	}
843 
844 	if (s->direction == AMDTP_IN_STREAM)
845 		s->data_block_counter = UINT_MAX;
846 	else
847 		s->data_block_counter = 0;
848 	s->data_block_state = initial_state[s->sfc].data_block;
849 	s->syt_offset_state = initial_state[s->sfc].syt_offset;
850 	s->last_syt_offset = TICKS_PER_CYCLE;
851 
852 	/* initialize packet buffer */
853 	if (s->direction == AMDTP_IN_STREAM) {
854 		dir = DMA_FROM_DEVICE;
855 		type = FW_ISO_CONTEXT_RECEIVE;
856 		header_size = IN_PACKET_HEADER_SIZE;
857 	} else {
858 		dir = DMA_TO_DEVICE;
859 		type = FW_ISO_CONTEXT_TRANSMIT;
860 		header_size = OUT_PACKET_HEADER_SIZE;
861 	}
862 	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
863 				      amdtp_stream_get_max_payload(s), dir);
864 	if (err < 0)
865 		goto err_unlock;
866 
867 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
868 					   type, channel, speed, header_size,
869 					   amdtp_stream_first_callback, s);
870 	if (IS_ERR(s->context)) {
871 		err = PTR_ERR(s->context);
872 		if (err == -EBUSY)
873 			dev_err(&s->unit->device,
874 				"no free stream on this controller\n");
875 		goto err_buffer;
876 	}
877 
878 	amdtp_stream_update(s);
879 
880 	if (s->direction == AMDTP_IN_STREAM)
881 		s->max_payload_length = amdtp_stream_get_max_payload(s);
882 
883 	if (s->flags & CIP_NO_HEADER)
884 		s->tag = TAG_NO_CIP_HEADER;
885 	else
886 		s->tag = TAG_CIP;
887 
888 	s->packet_index = 0;
889 	do {
890 		if (s->direction == AMDTP_IN_STREAM)
891 			err = queue_in_packet(s);
892 		else
893 			err = queue_out_packet(s, 0);
894 		if (err < 0)
895 			goto err_context;
896 	} while (s->packet_index > 0);
897 
898 	/* NOTE: TAG1 matches CIP. This just affects in stream. */
899 	tag = FW_ISO_CONTEXT_MATCH_TAG1;
900 	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
901 		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
902 
903 	s->callbacked = false;
904 	err = fw_iso_context_start(s->context, -1, 0, tag);
905 	if (err < 0)
906 		goto err_context;
907 
908 	mutex_unlock(&s->mutex);
909 
910 	return 0;
911 
912 err_context:
913 	fw_iso_context_destroy(s->context);
914 	s->context = ERR_PTR(-1);
915 err_buffer:
916 	iso_packets_buffer_destroy(&s->buffer, s->unit);
917 err_unlock:
918 	mutex_unlock(&s->mutex);
919 
920 	return err;
921 }
922 EXPORT_SYMBOL(amdtp_stream_start);
923 
924 /**
925  * amdtp_stream_pcm_pointer - get the PCM buffer position
926  * @s: the AMDTP stream that transports the PCM data
927  *
928  * Returns the current buffer position, in frames.
929  */
930 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
931 {
932 	/*
933 	 * This function is called in software IRQ context of period_tasklet or
934 	 * process context.
935 	 *
936 	 * When the software IRQ context was scheduled by software IRQ context
937 	 * of IR/IT contexts, queued packets were already handled. Therefore,
938 	 * no need to flush the queue in buffer anymore.
939 	 *
940 	 * When the process context reach here, some packets will be already
941 	 * queued in the buffer. These packets should be handled immediately
942 	 * to keep better granularity of PCM pointer.
943 	 *
944 	 * Later, the process context will sometimes schedules software IRQ
945 	 * context of the period_tasklet. Then, no need to flush the queue by
946 	 * the same reason as described for IR/IT contexts.
947 	 */
948 	if (!in_interrupt() && amdtp_stream_running(s))
949 		fw_iso_context_flush_completions(s->context);
950 
951 	return READ_ONCE(s->pcm_buffer_pointer);
952 }
953 EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
954 
955 /**
956  * amdtp_stream_pcm_ack - acknowledge queued PCM frames
957  * @s: the AMDTP stream that transfers the PCM frames
958  *
959  * Returns zero always.
960  */
961 int amdtp_stream_pcm_ack(struct amdtp_stream *s)
962 {
963 	/*
964 	 * Process isochronous packets for recent isochronous cycle to handle
965 	 * queued PCM frames.
966 	 */
967 	if (amdtp_stream_running(s))
968 		fw_iso_context_flush_completions(s->context);
969 
970 	return 0;
971 }
972 EXPORT_SYMBOL(amdtp_stream_pcm_ack);
973 
974 /**
975  * amdtp_stream_update - update the stream after a bus reset
976  * @s: the AMDTP stream
977  */
978 void amdtp_stream_update(struct amdtp_stream *s)
979 {
980 	/* Precomputing. */
981 	WRITE_ONCE(s->source_node_id_field,
982                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
983 }
984 EXPORT_SYMBOL(amdtp_stream_update);
985 
986 /**
987  * amdtp_stream_stop - stop sending packets
988  * @s: the AMDTP stream to stop
989  *
990  * All PCM and MIDI devices of the stream must be stopped before the stream
991  * itself can be stopped.
992  */
993 void amdtp_stream_stop(struct amdtp_stream *s)
994 {
995 	mutex_lock(&s->mutex);
996 
997 	if (!amdtp_stream_running(s)) {
998 		mutex_unlock(&s->mutex);
999 		return;
1000 	}
1001 
1002 	tasklet_kill(&s->period_tasklet);
1003 	fw_iso_context_stop(s->context);
1004 	fw_iso_context_destroy(s->context);
1005 	s->context = ERR_PTR(-1);
1006 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1007 
1008 	s->callbacked = false;
1009 
1010 	mutex_unlock(&s->mutex);
1011 }
1012 EXPORT_SYMBOL(amdtp_stream_stop);
1013 
1014 /**
1015  * amdtp_stream_pcm_abort - abort the running PCM device
1016  * @s: the AMDTP stream about to be stopped
1017  *
1018  * If the isochronous stream needs to be stopped asynchronously, call this
1019  * function first to stop the PCM device.
1020  */
1021 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1022 {
1023 	struct snd_pcm_substream *pcm;
1024 
1025 	pcm = READ_ONCE(s->pcm);
1026 	if (pcm)
1027 		snd_pcm_stop_xrun(pcm);
1028 }
1029 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1030