1 /* 2 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 3 * with Common Isochronous Packet (IEC 61883-1) headers 4 * 5 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 6 * Licensed under the terms of the GNU General Public License, version 2. 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <sound/pcm.h> 15 #include <sound/pcm_params.h> 16 #include "amdtp-stream.h" 17 18 #define TICKS_PER_CYCLE 3072 19 #define CYCLES_PER_SECOND 8000 20 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 21 22 /* Always support Linux tracing subsystem. */ 23 #define CREATE_TRACE_POINTS 24 #include "amdtp-stream-trace.h" 25 26 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 27 28 /* isochronous header parameters */ 29 #define ISO_DATA_LENGTH_SHIFT 16 30 #define TAG_NO_CIP_HEADER 0 31 #define TAG_CIP 1 32 33 /* common isochronous packet header parameters */ 34 #define CIP_EOH_SHIFT 31 35 #define CIP_EOH (1u << CIP_EOH_SHIFT) 36 #define CIP_EOH_MASK 0x80000000 37 #define CIP_SID_SHIFT 24 38 #define CIP_SID_MASK 0x3f000000 39 #define CIP_DBS_MASK 0x00ff0000 40 #define CIP_DBS_SHIFT 16 41 #define CIP_SPH_MASK 0x00000400 42 #define CIP_SPH_SHIFT 10 43 #define CIP_DBC_MASK 0x000000ff 44 #define CIP_FMT_SHIFT 24 45 #define CIP_FMT_MASK 0x3f000000 46 #define CIP_FDF_MASK 0x00ff0000 47 #define CIP_FDF_SHIFT 16 48 #define CIP_SYT_MASK 0x0000ffff 49 #define CIP_SYT_NO_INFO 0xffff 50 51 /* Audio and Music transfer protocol specific parameters */ 52 #define CIP_FMT_AM 0x10 53 #define AMDTP_FDF_NO_DATA 0xff 54 55 /* TODO: make these configurable */ 56 #define INTERRUPT_INTERVAL 16 57 #define QUEUE_LENGTH 48 58 59 #define IN_PACKET_HEADER_SIZE 4 60 #define OUT_PACKET_HEADER_SIZE 0 61 62 static void pcm_period_tasklet(unsigned long data); 63 64 /** 65 * amdtp_stream_init - initialize an AMDTP stream structure 66 * @s: the AMDTP stream to initialize 67 * @unit: the target of the stream 68 * @dir: the direction of stream 69 * @flags: the packet transmission method to use 70 * @fmt: the value of fmt field in CIP header 71 * @process_data_blocks: callback handler to process data blocks 72 * @protocol_size: the size to allocate newly for protocol 73 */ 74 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 75 enum amdtp_stream_direction dir, enum cip_flags flags, 76 unsigned int fmt, 77 amdtp_stream_process_data_blocks_t process_data_blocks, 78 unsigned int protocol_size) 79 { 80 if (process_data_blocks == NULL) 81 return -EINVAL; 82 83 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 84 if (!s->protocol) 85 return -ENOMEM; 86 87 s->unit = unit; 88 s->direction = dir; 89 s->flags = flags; 90 s->context = ERR_PTR(-1); 91 mutex_init(&s->mutex); 92 tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s); 93 s->packet_index = 0; 94 95 init_waitqueue_head(&s->callback_wait); 96 s->callbacked = false; 97 98 s->fmt = fmt; 99 s->process_data_blocks = process_data_blocks; 100 101 return 0; 102 } 103 EXPORT_SYMBOL(amdtp_stream_init); 104 105 /** 106 * amdtp_stream_destroy - free stream resources 107 * @s: the AMDTP stream to destroy 108 */ 109 void amdtp_stream_destroy(struct amdtp_stream *s) 110 { 111 /* Not initialized. */ 112 if (s->protocol == NULL) 113 return; 114 115 WARN_ON(amdtp_stream_running(s)); 116 kfree(s->protocol); 117 mutex_destroy(&s->mutex); 118 } 119 EXPORT_SYMBOL(amdtp_stream_destroy); 120 121 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 122 [CIP_SFC_32000] = 8, 123 [CIP_SFC_44100] = 8, 124 [CIP_SFC_48000] = 8, 125 [CIP_SFC_88200] = 16, 126 [CIP_SFC_96000] = 16, 127 [CIP_SFC_176400] = 32, 128 [CIP_SFC_192000] = 32, 129 }; 130 EXPORT_SYMBOL(amdtp_syt_intervals); 131 132 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 133 [CIP_SFC_32000] = 32000, 134 [CIP_SFC_44100] = 44100, 135 [CIP_SFC_48000] = 48000, 136 [CIP_SFC_88200] = 88200, 137 [CIP_SFC_96000] = 96000, 138 [CIP_SFC_176400] = 176400, 139 [CIP_SFC_192000] = 192000, 140 }; 141 EXPORT_SYMBOL(amdtp_rate_table); 142 143 /** 144 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 145 * @s: the AMDTP stream, which must be initialized. 146 * @runtime: the PCM substream runtime 147 */ 148 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 149 struct snd_pcm_runtime *runtime) 150 { 151 int err; 152 153 /* 154 * Currently firewire-lib processes 16 packets in one software 155 * interrupt callback. This equals to 2msec but actually the 156 * interval of the interrupts has a jitter. 157 * Additionally, even if adding a constraint to fit period size to 158 * 2msec, actual calculated frames per period doesn't equal to 2msec, 159 * depending on sampling rate. 160 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec. 161 * Here let us use 5msec for safe period interrupt. 162 */ 163 err = snd_pcm_hw_constraint_minmax(runtime, 164 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 165 5000, UINT_MAX); 166 if (err < 0) 167 goto end; 168 169 /* Non-Blocking stream has no more constraints */ 170 if (!(s->flags & CIP_BLOCKING)) 171 goto end; 172 173 /* 174 * One AMDTP packet can include some frames. In blocking mode, the 175 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 176 * depending on its sampling rate. For accurate period interrupt, it's 177 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 178 * 179 * TODO: These constraints can be improved with proper rules. 180 * Currently apply LCM of SYT_INTERVALs. 181 */ 182 err = snd_pcm_hw_constraint_step(runtime, 0, 183 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32); 184 if (err < 0) 185 goto end; 186 err = snd_pcm_hw_constraint_step(runtime, 0, 187 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32); 188 end: 189 return err; 190 } 191 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 192 193 /** 194 * amdtp_stream_set_parameters - set stream parameters 195 * @s: the AMDTP stream to configure 196 * @rate: the sample rate 197 * @data_block_quadlets: the size of a data block in quadlet unit 198 * 199 * The parameters must be set before the stream is started, and must not be 200 * changed while the stream is running. 201 */ 202 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 203 unsigned int data_block_quadlets) 204 { 205 unsigned int sfc; 206 207 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 208 if (amdtp_rate_table[sfc] == rate) 209 break; 210 } 211 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 212 return -EINVAL; 213 214 s->sfc = sfc; 215 s->data_block_quadlets = data_block_quadlets; 216 s->syt_interval = amdtp_syt_intervals[sfc]; 217 218 /* default buffering in the device */ 219 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 220 if (s->flags & CIP_BLOCKING) 221 /* additional buffering needed to adjust for no-data packets */ 222 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 223 224 return 0; 225 } 226 EXPORT_SYMBOL(amdtp_stream_set_parameters); 227 228 /** 229 * amdtp_stream_get_max_payload - get the stream's packet size 230 * @s: the AMDTP stream 231 * 232 * This function must not be called before the stream has been configured 233 * with amdtp_stream_set_parameters(). 234 */ 235 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 236 { 237 unsigned int multiplier = 1; 238 unsigned int header_size = 0; 239 240 if (s->flags & CIP_JUMBO_PAYLOAD) 241 multiplier = 5; 242 if (!(s->flags & CIP_NO_HEADER)) 243 header_size = 8; 244 245 return header_size + 246 s->syt_interval * s->data_block_quadlets * 4 * multiplier; 247 } 248 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 249 250 /** 251 * amdtp_stream_pcm_prepare - prepare PCM device for running 252 * @s: the AMDTP stream 253 * 254 * This function should be called from the PCM device's .prepare callback. 255 */ 256 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 257 { 258 tasklet_kill(&s->period_tasklet); 259 s->pcm_buffer_pointer = 0; 260 s->pcm_period_pointer = 0; 261 } 262 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 263 264 static unsigned int calculate_data_blocks(struct amdtp_stream *s, 265 unsigned int syt) 266 { 267 unsigned int phase, data_blocks; 268 269 /* Blocking mode. */ 270 if (s->flags & CIP_BLOCKING) { 271 /* This module generate empty packet for 'no data'. */ 272 if (syt == CIP_SYT_NO_INFO) 273 data_blocks = 0; 274 else 275 data_blocks = s->syt_interval; 276 /* Non-blocking mode. */ 277 } else { 278 if (!cip_sfc_is_base_44100(s->sfc)) { 279 /* Sample_rate / 8000 is an integer, and precomputed. */ 280 data_blocks = s->data_block_state; 281 } else { 282 phase = s->data_block_state; 283 284 /* 285 * This calculates the number of data blocks per packet so that 286 * 1) the overall rate is correct and exactly synchronized to 287 * the bus clock, and 288 * 2) packets with a rounded-up number of blocks occur as early 289 * as possible in the sequence (to prevent underruns of the 290 * device's buffer). 291 */ 292 if (s->sfc == CIP_SFC_44100) 293 /* 6 6 5 6 5 6 5 ... */ 294 data_blocks = 5 + ((phase & 1) ^ 295 (phase == 0 || phase >= 40)); 296 else 297 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 298 data_blocks = 11 * (s->sfc >> 1) + (phase == 0); 299 if (++phase >= (80 >> (s->sfc >> 1))) 300 phase = 0; 301 s->data_block_state = phase; 302 } 303 } 304 305 return data_blocks; 306 } 307 308 static unsigned int calculate_syt(struct amdtp_stream *s, 309 unsigned int cycle) 310 { 311 unsigned int syt_offset, phase, index, syt; 312 313 if (s->last_syt_offset < TICKS_PER_CYCLE) { 314 if (!cip_sfc_is_base_44100(s->sfc)) 315 syt_offset = s->last_syt_offset + s->syt_offset_state; 316 else { 317 /* 318 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 319 * n * SYT_INTERVAL * 24576000 / sample_rate 320 * Modulo TICKS_PER_CYCLE, the difference between successive 321 * elements is about 1386.23. Rounding the results of this 322 * formula to the SYT precision results in a sequence of 323 * differences that begins with: 324 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 325 * This code generates _exactly_ the same sequence. 326 */ 327 phase = s->syt_offset_state; 328 index = phase % 13; 329 syt_offset = s->last_syt_offset; 330 syt_offset += 1386 + ((index && !(index & 3)) || 331 phase == 146); 332 if (++phase >= 147) 333 phase = 0; 334 s->syt_offset_state = phase; 335 } 336 } else 337 syt_offset = s->last_syt_offset - TICKS_PER_CYCLE; 338 s->last_syt_offset = syt_offset; 339 340 if (syt_offset < TICKS_PER_CYCLE) { 341 syt_offset += s->transfer_delay; 342 syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12; 343 syt += syt_offset % TICKS_PER_CYCLE; 344 345 return syt & CIP_SYT_MASK; 346 } else { 347 return CIP_SYT_NO_INFO; 348 } 349 } 350 351 static void update_pcm_pointers(struct amdtp_stream *s, 352 struct snd_pcm_substream *pcm, 353 unsigned int frames) 354 { 355 unsigned int ptr; 356 357 ptr = s->pcm_buffer_pointer + frames; 358 if (ptr >= pcm->runtime->buffer_size) 359 ptr -= pcm->runtime->buffer_size; 360 ACCESS_ONCE(s->pcm_buffer_pointer) = ptr; 361 362 s->pcm_period_pointer += frames; 363 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 364 s->pcm_period_pointer -= pcm->runtime->period_size; 365 tasklet_hi_schedule(&s->period_tasklet); 366 } 367 } 368 369 static void pcm_period_tasklet(unsigned long data) 370 { 371 struct amdtp_stream *s = (void *)data; 372 struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm); 373 374 if (pcm) 375 snd_pcm_period_elapsed(pcm); 376 } 377 378 static int queue_packet(struct amdtp_stream *s, unsigned int header_length, 379 unsigned int payload_length) 380 { 381 struct fw_iso_packet p = {0}; 382 int err = 0; 383 384 if (IS_ERR(s->context)) 385 goto end; 386 387 p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL); 388 p.tag = s->tag; 389 p.header_length = header_length; 390 if (payload_length > 0) 391 p.payload_length = payload_length; 392 else 393 p.skip = true; 394 err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer, 395 s->buffer.packets[s->packet_index].offset); 396 if (err < 0) { 397 dev_err(&s->unit->device, "queueing error: %d\n", err); 398 goto end; 399 } 400 401 if (++s->packet_index >= QUEUE_LENGTH) 402 s->packet_index = 0; 403 end: 404 return err; 405 } 406 407 static inline int queue_out_packet(struct amdtp_stream *s, 408 unsigned int payload_length) 409 { 410 return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length); 411 } 412 413 static inline int queue_in_packet(struct amdtp_stream *s) 414 { 415 return queue_packet(s, IN_PACKET_HEADER_SIZE, s->max_payload_length); 416 } 417 418 static int handle_out_packet(struct amdtp_stream *s, 419 unsigned int payload_length, unsigned int cycle, 420 unsigned int index) 421 { 422 __be32 *buffer; 423 unsigned int syt; 424 unsigned int data_blocks; 425 unsigned int pcm_frames; 426 struct snd_pcm_substream *pcm; 427 428 buffer = s->buffer.packets[s->packet_index].buffer; 429 syt = calculate_syt(s, cycle); 430 data_blocks = calculate_data_blocks(s, syt); 431 pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt); 432 433 if (s->flags & CIP_DBC_IS_END_EVENT) 434 s->data_block_counter = 435 (s->data_block_counter + data_blocks) & 0xff; 436 437 buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) | 438 (s->data_block_quadlets << CIP_DBS_SHIFT) | 439 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 440 s->data_block_counter); 441 buffer[1] = cpu_to_be32(CIP_EOH | 442 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 443 ((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 444 (syt & CIP_SYT_MASK)); 445 446 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 447 s->data_block_counter = 448 (s->data_block_counter + data_blocks) & 0xff; 449 payload_length = 8 + data_blocks * 4 * s->data_block_quadlets; 450 451 trace_out_packet(s, cycle, buffer, payload_length, index); 452 453 if (queue_out_packet(s, payload_length) < 0) 454 return -EIO; 455 456 pcm = ACCESS_ONCE(s->pcm); 457 if (pcm && pcm_frames > 0) 458 update_pcm_pointers(s, pcm, pcm_frames); 459 460 /* No need to return the number of handled data blocks. */ 461 return 0; 462 } 463 464 static int handle_out_packet_without_header(struct amdtp_stream *s, 465 unsigned int payload_length, unsigned int cycle, 466 unsigned int index) 467 { 468 __be32 *buffer; 469 unsigned int syt; 470 unsigned int data_blocks; 471 unsigned int pcm_frames; 472 struct snd_pcm_substream *pcm; 473 474 buffer = s->buffer.packets[s->packet_index].buffer; 475 syt = calculate_syt(s, cycle); 476 data_blocks = calculate_data_blocks(s, syt); 477 pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt); 478 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff; 479 480 payload_length = data_blocks * 4 * s->data_block_quadlets; 481 482 trace_out_packet_without_header(s, cycle, payload_length, data_blocks, 483 index); 484 485 if (queue_out_packet(s, payload_length) < 0) 486 return -EIO; 487 488 pcm = ACCESS_ONCE(s->pcm); 489 if (pcm && pcm_frames > 0) 490 update_pcm_pointers(s, pcm, pcm_frames); 491 492 /* No need to return the number of handled data blocks. */ 493 return 0; 494 } 495 496 static int handle_in_packet(struct amdtp_stream *s, 497 unsigned int payload_length, unsigned int cycle, 498 unsigned int index) 499 { 500 __be32 *buffer; 501 u32 cip_header[2]; 502 unsigned int sph, fmt, fdf, syt; 503 unsigned int data_block_quadlets, data_block_counter, dbc_interval; 504 unsigned int data_blocks; 505 struct snd_pcm_substream *pcm; 506 unsigned int pcm_frames; 507 bool lost; 508 509 buffer = s->buffer.packets[s->packet_index].buffer; 510 cip_header[0] = be32_to_cpu(buffer[0]); 511 cip_header[1] = be32_to_cpu(buffer[1]); 512 513 trace_in_packet(s, cycle, cip_header, payload_length, index); 514 515 /* 516 * This module supports 'Two-quadlet CIP header with SYT field'. 517 * For convenience, also check FMT field is AM824 or not. 518 */ 519 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 520 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 521 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 522 dev_info_ratelimited(&s->unit->device, 523 "Invalid CIP header for AMDTP: %08X:%08X\n", 524 cip_header[0], cip_header[1]); 525 data_blocks = 0; 526 pcm_frames = 0; 527 goto end; 528 } 529 530 /* Check valid protocol or not. */ 531 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 532 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 533 if (sph != s->sph || fmt != s->fmt) { 534 dev_info_ratelimited(&s->unit->device, 535 "Detect unexpected protocol: %08x %08x\n", 536 cip_header[0], cip_header[1]); 537 data_blocks = 0; 538 pcm_frames = 0; 539 goto end; 540 } 541 542 /* Calculate data blocks */ 543 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 544 if (payload_length < 12 || 545 (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 546 data_blocks = 0; 547 } else { 548 data_block_quadlets = 549 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 550 /* avoid division by zero */ 551 if (data_block_quadlets == 0) { 552 dev_err(&s->unit->device, 553 "Detect invalid value in dbs field: %08X\n", 554 cip_header[0]); 555 return -EPROTO; 556 } 557 if (s->flags & CIP_WRONG_DBS) 558 data_block_quadlets = s->data_block_quadlets; 559 560 data_blocks = (payload_length / 4 - 2) / 561 data_block_quadlets; 562 } 563 564 /* Check data block counter continuity */ 565 data_block_counter = cip_header[0] & CIP_DBC_MASK; 566 if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 567 s->data_block_counter != UINT_MAX) 568 data_block_counter = s->data_block_counter; 569 570 if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && 571 data_block_counter == s->tx_first_dbc) || 572 s->data_block_counter == UINT_MAX) { 573 lost = false; 574 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 575 lost = data_block_counter != s->data_block_counter; 576 } else { 577 if (data_blocks > 0 && s->tx_dbc_interval > 0) 578 dbc_interval = s->tx_dbc_interval; 579 else 580 dbc_interval = data_blocks; 581 582 lost = data_block_counter != 583 ((s->data_block_counter + dbc_interval) & 0xff); 584 } 585 586 if (lost) { 587 dev_err(&s->unit->device, 588 "Detect discontinuity of CIP: %02X %02X\n", 589 s->data_block_counter, data_block_counter); 590 return -EIO; 591 } 592 593 syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK; 594 pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt); 595 596 if (s->flags & CIP_DBC_IS_END_EVENT) 597 s->data_block_counter = data_block_counter; 598 else 599 s->data_block_counter = 600 (data_block_counter + data_blocks) & 0xff; 601 end: 602 if (queue_in_packet(s) < 0) 603 return -EIO; 604 605 pcm = ACCESS_ONCE(s->pcm); 606 if (pcm && pcm_frames > 0) 607 update_pcm_pointers(s, pcm, pcm_frames); 608 609 return 0; 610 } 611 612 static int handle_in_packet_without_header(struct amdtp_stream *s, 613 unsigned int payload_quadlets, unsigned int cycle, 614 unsigned int index) 615 { 616 __be32 *buffer; 617 unsigned int data_blocks; 618 struct snd_pcm_substream *pcm; 619 unsigned int pcm_frames; 620 621 buffer = s->buffer.packets[s->packet_index].buffer; 622 data_blocks = payload_quadlets / s->data_block_quadlets; 623 624 trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks, 625 index); 626 627 pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL); 628 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff; 629 630 if (queue_in_packet(s) < 0) 631 return -EIO; 632 633 pcm = ACCESS_ONCE(s->pcm); 634 if (pcm && pcm_frames > 0) 635 update_pcm_pointers(s, pcm, pcm_frames); 636 637 return 0; 638 } 639 640 /* 641 * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 642 * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 643 * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 644 */ 645 static inline u32 compute_cycle_count(u32 tstamp) 646 { 647 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); 648 } 649 650 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend) 651 { 652 cycle += addend; 653 if (cycle >= 8 * CYCLES_PER_SECOND) 654 cycle -= 8 * CYCLES_PER_SECOND; 655 return cycle; 656 } 657 658 static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend) 659 { 660 if (cycle < subtrahend) 661 cycle += 8 * CYCLES_PER_SECOND; 662 return cycle - subtrahend; 663 } 664 665 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp, 666 size_t header_length, void *header, 667 void *private_data) 668 { 669 struct amdtp_stream *s = private_data; 670 unsigned int i, packets = header_length / 4; 671 u32 cycle; 672 673 if (s->packet_index < 0) 674 return; 675 676 cycle = compute_cycle_count(tstamp); 677 678 /* Align to actual cycle count for the last packet. */ 679 cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets); 680 681 for (i = 0; i < packets; ++i) { 682 cycle = increment_cycle_count(cycle, 1); 683 if (s->handle_packet(s, 0, cycle, i) < 0) { 684 s->packet_index = -1; 685 amdtp_stream_pcm_abort(s); 686 return; 687 } 688 } 689 690 fw_iso_context_queue_flush(s->context); 691 } 692 693 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp, 694 size_t header_length, void *header, 695 void *private_data) 696 { 697 struct amdtp_stream *s = private_data; 698 unsigned int i, packets; 699 unsigned int payload_length, max_payload_length; 700 __be32 *headers = header; 701 u32 cycle; 702 703 if (s->packet_index < 0) 704 return; 705 706 /* The number of packets in buffer */ 707 packets = header_length / IN_PACKET_HEADER_SIZE; 708 709 cycle = compute_cycle_count(tstamp); 710 711 /* Align to actual cycle count for the last packet. */ 712 cycle = decrement_cycle_count(cycle, packets); 713 714 /* For buffer-over-run prevention. */ 715 max_payload_length = s->max_payload_length; 716 717 for (i = 0; i < packets; i++) { 718 cycle = increment_cycle_count(cycle, 1); 719 720 /* The number of bytes in this packet */ 721 payload_length = 722 (be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT); 723 if (payload_length > max_payload_length) { 724 dev_err(&s->unit->device, 725 "Detect jumbo payload: %04x %04x\n", 726 payload_length, max_payload_length); 727 break; 728 } 729 730 if (s->handle_packet(s, payload_length, cycle, i) < 0) 731 break; 732 } 733 734 /* Queueing error or detecting invalid payload. */ 735 if (i < packets) { 736 s->packet_index = -1; 737 amdtp_stream_pcm_abort(s); 738 return; 739 } 740 741 fw_iso_context_queue_flush(s->context); 742 } 743 744 /* this is executed one time */ 745 static void amdtp_stream_first_callback(struct fw_iso_context *context, 746 u32 tstamp, size_t header_length, 747 void *header, void *private_data) 748 { 749 struct amdtp_stream *s = private_data; 750 u32 cycle; 751 unsigned int packets; 752 753 s->max_payload_length = amdtp_stream_get_max_payload(s); 754 755 /* 756 * For in-stream, first packet has come. 757 * For out-stream, prepared to transmit first packet 758 */ 759 s->callbacked = true; 760 wake_up(&s->callback_wait); 761 762 cycle = compute_cycle_count(tstamp); 763 764 if (s->direction == AMDTP_IN_STREAM) { 765 packets = header_length / IN_PACKET_HEADER_SIZE; 766 cycle = decrement_cycle_count(cycle, packets); 767 context->callback.sc = in_stream_callback; 768 if (s->flags & CIP_NO_HEADER) 769 s->handle_packet = handle_in_packet_without_header; 770 else 771 s->handle_packet = handle_in_packet; 772 } else { 773 packets = header_length / 4; 774 cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets); 775 context->callback.sc = out_stream_callback; 776 if (s->flags & CIP_NO_HEADER) 777 s->handle_packet = handle_out_packet_without_header; 778 else 779 s->handle_packet = handle_out_packet; 780 } 781 782 s->start_cycle = cycle; 783 784 context->callback.sc(context, tstamp, header_length, header, s); 785 } 786 787 /** 788 * amdtp_stream_start - start transferring packets 789 * @s: the AMDTP stream to start 790 * @channel: the isochronous channel on the bus 791 * @speed: firewire speed code 792 * 793 * The stream cannot be started until it has been configured with 794 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 795 * device can be started. 796 */ 797 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed) 798 { 799 static const struct { 800 unsigned int data_block; 801 unsigned int syt_offset; 802 } initial_state[] = { 803 [CIP_SFC_32000] = { 4, 3072 }, 804 [CIP_SFC_48000] = { 6, 1024 }, 805 [CIP_SFC_96000] = { 12, 1024 }, 806 [CIP_SFC_192000] = { 24, 1024 }, 807 [CIP_SFC_44100] = { 0, 67 }, 808 [CIP_SFC_88200] = { 0, 67 }, 809 [CIP_SFC_176400] = { 0, 67 }, 810 }; 811 unsigned int header_size; 812 enum dma_data_direction dir; 813 int type, tag, err; 814 815 mutex_lock(&s->mutex); 816 817 if (WARN_ON(amdtp_stream_running(s) || 818 (s->data_block_quadlets < 1))) { 819 err = -EBADFD; 820 goto err_unlock; 821 } 822 823 if (s->direction == AMDTP_IN_STREAM) 824 s->data_block_counter = UINT_MAX; 825 else 826 s->data_block_counter = 0; 827 s->data_block_state = initial_state[s->sfc].data_block; 828 s->syt_offset_state = initial_state[s->sfc].syt_offset; 829 s->last_syt_offset = TICKS_PER_CYCLE; 830 831 /* initialize packet buffer */ 832 if (s->direction == AMDTP_IN_STREAM) { 833 dir = DMA_FROM_DEVICE; 834 type = FW_ISO_CONTEXT_RECEIVE; 835 header_size = IN_PACKET_HEADER_SIZE; 836 } else { 837 dir = DMA_TO_DEVICE; 838 type = FW_ISO_CONTEXT_TRANSMIT; 839 header_size = OUT_PACKET_HEADER_SIZE; 840 } 841 err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH, 842 amdtp_stream_get_max_payload(s), dir); 843 if (err < 0) 844 goto err_unlock; 845 846 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 847 type, channel, speed, header_size, 848 amdtp_stream_first_callback, s); 849 if (IS_ERR(s->context)) { 850 err = PTR_ERR(s->context); 851 if (err == -EBUSY) 852 dev_err(&s->unit->device, 853 "no free stream on this controller\n"); 854 goto err_buffer; 855 } 856 857 amdtp_stream_update(s); 858 859 if (s->flags & CIP_NO_HEADER) 860 s->tag = TAG_NO_CIP_HEADER; 861 else 862 s->tag = TAG_CIP; 863 864 s->packet_index = 0; 865 do { 866 if (s->direction == AMDTP_IN_STREAM) 867 err = queue_in_packet(s); 868 else 869 err = queue_out_packet(s, 0); 870 if (err < 0) 871 goto err_context; 872 } while (s->packet_index > 0); 873 874 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 875 tag = FW_ISO_CONTEXT_MATCH_TAG1; 876 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 877 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 878 879 s->callbacked = false; 880 err = fw_iso_context_start(s->context, -1, 0, tag); 881 if (err < 0) 882 goto err_context; 883 884 mutex_unlock(&s->mutex); 885 886 return 0; 887 888 err_context: 889 fw_iso_context_destroy(s->context); 890 s->context = ERR_PTR(-1); 891 err_buffer: 892 iso_packets_buffer_destroy(&s->buffer, s->unit); 893 err_unlock: 894 mutex_unlock(&s->mutex); 895 896 return err; 897 } 898 EXPORT_SYMBOL(amdtp_stream_start); 899 900 /** 901 * amdtp_stream_pcm_pointer - get the PCM buffer position 902 * @s: the AMDTP stream that transports the PCM data 903 * 904 * Returns the current buffer position, in frames. 905 */ 906 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s) 907 { 908 /* 909 * This function is called in software IRQ context of period_tasklet or 910 * process context. 911 * 912 * When the software IRQ context was scheduled by software IRQ context 913 * of IR/IT contexts, queued packets were already handled. Therefore, 914 * no need to flush the queue in buffer anymore. 915 * 916 * When the process context reach here, some packets will be already 917 * queued in the buffer. These packets should be handled immediately 918 * to keep better granularity of PCM pointer. 919 * 920 * Later, the process context will sometimes schedules software IRQ 921 * context of the period_tasklet. Then, no need to flush the queue by 922 * the same reason as described for IR/IT contexts. 923 */ 924 if (!in_interrupt() && amdtp_stream_running(s)) 925 fw_iso_context_flush_completions(s->context); 926 927 return ACCESS_ONCE(s->pcm_buffer_pointer); 928 } 929 EXPORT_SYMBOL(amdtp_stream_pcm_pointer); 930 931 /** 932 * amdtp_stream_update - update the stream after a bus reset 933 * @s: the AMDTP stream 934 */ 935 void amdtp_stream_update(struct amdtp_stream *s) 936 { 937 /* Precomputing. */ 938 ACCESS_ONCE(s->source_node_id_field) = 939 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & 940 CIP_SID_MASK; 941 } 942 EXPORT_SYMBOL(amdtp_stream_update); 943 944 /** 945 * amdtp_stream_stop - stop sending packets 946 * @s: the AMDTP stream to stop 947 * 948 * All PCM and MIDI devices of the stream must be stopped before the stream 949 * itself can be stopped. 950 */ 951 void amdtp_stream_stop(struct amdtp_stream *s) 952 { 953 mutex_lock(&s->mutex); 954 955 if (!amdtp_stream_running(s)) { 956 mutex_unlock(&s->mutex); 957 return; 958 } 959 960 tasklet_kill(&s->period_tasklet); 961 fw_iso_context_stop(s->context); 962 fw_iso_context_destroy(s->context); 963 s->context = ERR_PTR(-1); 964 iso_packets_buffer_destroy(&s->buffer, s->unit); 965 966 s->callbacked = false; 967 968 mutex_unlock(&s->mutex); 969 } 970 EXPORT_SYMBOL(amdtp_stream_stop); 971 972 /** 973 * amdtp_stream_pcm_abort - abort the running PCM device 974 * @s: the AMDTP stream about to be stopped 975 * 976 * If the isochronous stream needs to be stopped asynchronously, call this 977 * function first to stop the PCM device. 978 */ 979 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 980 { 981 struct snd_pcm_substream *pcm; 982 983 pcm = ACCESS_ONCE(s->pcm); 984 if (pcm) 985 snd_pcm_stop_xrun(pcm); 986 } 987 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 988