xref: /openbmc/linux/sound/firewire/amdtp-stream.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3  * with Common Isochronous Packet (IEC 61883-1) headers
4  *
5  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6  * Licensed under the terms of the GNU General Public License, version 2.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <sound/pcm.h>
15 #include <sound/pcm_params.h>
16 #include "amdtp-stream.h"
17 
18 #define TICKS_PER_CYCLE		3072
19 #define CYCLES_PER_SECOND	8000
20 #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
21 
22 /* Always support Linux tracing subsystem. */
23 #define CREATE_TRACE_POINTS
24 #include "amdtp-stream-trace.h"
25 
26 #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
27 
28 /* isochronous header parameters */
29 #define ISO_DATA_LENGTH_SHIFT	16
30 #define TAG_NO_CIP_HEADER	0
31 #define TAG_CIP			1
32 
33 /* common isochronous packet header parameters */
34 #define CIP_EOH_SHIFT		31
35 #define CIP_EOH			(1u << CIP_EOH_SHIFT)
36 #define CIP_EOH_MASK		0x80000000
37 #define CIP_SID_SHIFT		24
38 #define CIP_SID_MASK		0x3f000000
39 #define CIP_DBS_MASK		0x00ff0000
40 #define CIP_DBS_SHIFT		16
41 #define CIP_SPH_MASK		0x00000400
42 #define CIP_SPH_SHIFT		10
43 #define CIP_DBC_MASK		0x000000ff
44 #define CIP_FMT_SHIFT		24
45 #define CIP_FMT_MASK		0x3f000000
46 #define CIP_FDF_MASK		0x00ff0000
47 #define CIP_FDF_SHIFT		16
48 #define CIP_SYT_MASK		0x0000ffff
49 #define CIP_SYT_NO_INFO		0xffff
50 
51 /* Audio and Music transfer protocol specific parameters */
52 #define CIP_FMT_AM		0x10
53 #define AMDTP_FDF_NO_DATA	0xff
54 
55 /* TODO: make these configurable */
56 #define INTERRUPT_INTERVAL	16
57 #define QUEUE_LENGTH		48
58 
59 #define IN_PACKET_HEADER_SIZE	4
60 #define OUT_PACKET_HEADER_SIZE	0
61 
62 static void pcm_period_tasklet(unsigned long data);
63 
64 /**
65  * amdtp_stream_init - initialize an AMDTP stream structure
66  * @s: the AMDTP stream to initialize
67  * @unit: the target of the stream
68  * @dir: the direction of stream
69  * @flags: the packet transmission method to use
70  * @fmt: the value of fmt field in CIP header
71  * @process_data_blocks: callback handler to process data blocks
72  * @protocol_size: the size to allocate newly for protocol
73  */
74 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
75 		      enum amdtp_stream_direction dir, enum cip_flags flags,
76 		      unsigned int fmt,
77 		      amdtp_stream_process_data_blocks_t process_data_blocks,
78 		      unsigned int protocol_size)
79 {
80 	if (process_data_blocks == NULL)
81 		return -EINVAL;
82 
83 	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
84 	if (!s->protocol)
85 		return -ENOMEM;
86 
87 	s->unit = unit;
88 	s->direction = dir;
89 	s->flags = flags;
90 	s->context = ERR_PTR(-1);
91 	mutex_init(&s->mutex);
92 	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
93 	s->packet_index = 0;
94 
95 	init_waitqueue_head(&s->callback_wait);
96 	s->callbacked = false;
97 
98 	s->fmt = fmt;
99 	s->process_data_blocks = process_data_blocks;
100 
101 	return 0;
102 }
103 EXPORT_SYMBOL(amdtp_stream_init);
104 
105 /**
106  * amdtp_stream_destroy - free stream resources
107  * @s: the AMDTP stream to destroy
108  */
109 void amdtp_stream_destroy(struct amdtp_stream *s)
110 {
111 	/* Not initialized. */
112 	if (s->protocol == NULL)
113 		return;
114 
115 	WARN_ON(amdtp_stream_running(s));
116 	kfree(s->protocol);
117 	mutex_destroy(&s->mutex);
118 }
119 EXPORT_SYMBOL(amdtp_stream_destroy);
120 
121 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
122 	[CIP_SFC_32000]  =  8,
123 	[CIP_SFC_44100]  =  8,
124 	[CIP_SFC_48000]  =  8,
125 	[CIP_SFC_88200]  = 16,
126 	[CIP_SFC_96000]  = 16,
127 	[CIP_SFC_176400] = 32,
128 	[CIP_SFC_192000] = 32,
129 };
130 EXPORT_SYMBOL(amdtp_syt_intervals);
131 
132 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
133 	[CIP_SFC_32000]  =  32000,
134 	[CIP_SFC_44100]  =  44100,
135 	[CIP_SFC_48000]  =  48000,
136 	[CIP_SFC_88200]  =  88200,
137 	[CIP_SFC_96000]  =  96000,
138 	[CIP_SFC_176400] = 176400,
139 	[CIP_SFC_192000] = 192000,
140 };
141 EXPORT_SYMBOL(amdtp_rate_table);
142 
143 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
144 				    struct snd_pcm_hw_rule *rule)
145 {
146 	struct snd_interval *s = hw_param_interval(params, rule->var);
147 	const struct snd_interval *r =
148 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
149 	struct snd_interval t = {0};
150 	unsigned int step = 0;
151 	int i;
152 
153 	for (i = 0; i < CIP_SFC_COUNT; ++i) {
154 		if (snd_interval_test(r, amdtp_rate_table[i]))
155 			step = max(step, amdtp_syt_intervals[i]);
156 	}
157 
158 	t.min = roundup(s->min, step);
159 	t.max = rounddown(s->max, step);
160 	t.integer = 1;
161 
162 	return snd_interval_refine(s, &t);
163 }
164 
165 /**
166  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
167  * @s:		the AMDTP stream, which must be initialized.
168  * @runtime:	the PCM substream runtime
169  */
170 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
171 					struct snd_pcm_runtime *runtime)
172 {
173 	struct snd_pcm_hardware *hw = &runtime->hw;
174 	int err;
175 
176 	hw->info = SNDRV_PCM_INFO_BATCH |
177 		   SNDRV_PCM_INFO_BLOCK_TRANSFER |
178 		   SNDRV_PCM_INFO_INTERLEAVED |
179 		   SNDRV_PCM_INFO_JOINT_DUPLEX |
180 		   SNDRV_PCM_INFO_MMAP |
181 		   SNDRV_PCM_INFO_MMAP_VALID;
182 
183 	/* SNDRV_PCM_INFO_BATCH */
184 	hw->periods_min = 2;
185 	hw->periods_max = UINT_MAX;
186 
187 	/* bytes for a frame */
188 	hw->period_bytes_min = 4 * hw->channels_max;
189 
190 	/* Just to prevent from allocating much pages. */
191 	hw->period_bytes_max = hw->period_bytes_min * 2048;
192 	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
193 
194 	/*
195 	 * Currently firewire-lib processes 16 packets in one software
196 	 * interrupt callback. This equals to 2msec but actually the
197 	 * interval of the interrupts has a jitter.
198 	 * Additionally, even if adding a constraint to fit period size to
199 	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
200 	 * depending on sampling rate.
201 	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
202 	 * Here let us use 5msec for safe period interrupt.
203 	 */
204 	err = snd_pcm_hw_constraint_minmax(runtime,
205 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
206 					   5000, UINT_MAX);
207 	if (err < 0)
208 		goto end;
209 
210 	/* Non-Blocking stream has no more constraints */
211 	if (!(s->flags & CIP_BLOCKING))
212 		goto end;
213 
214 	/*
215 	 * One AMDTP packet can include some frames. In blocking mode, the
216 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
217 	 * depending on its sampling rate. For accurate period interrupt, it's
218 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
219 	 */
220 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
221 				  apply_constraint_to_size, NULL,
222 				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
223 				  SNDRV_PCM_HW_PARAM_RATE, -1);
224 	if (err < 0)
225 		goto end;
226 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
227 				  apply_constraint_to_size, NULL,
228 				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
229 				  SNDRV_PCM_HW_PARAM_RATE, -1);
230 	if (err < 0)
231 		goto end;
232 end:
233 	return err;
234 }
235 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
236 
237 /**
238  * amdtp_stream_set_parameters - set stream parameters
239  * @s: the AMDTP stream to configure
240  * @rate: the sample rate
241  * @data_block_quadlets: the size of a data block in quadlet unit
242  *
243  * The parameters must be set before the stream is started, and must not be
244  * changed while the stream is running.
245  */
246 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
247 				unsigned int data_block_quadlets)
248 {
249 	unsigned int sfc;
250 
251 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
252 		if (amdtp_rate_table[sfc] == rate)
253 			break;
254 	}
255 	if (sfc == ARRAY_SIZE(amdtp_rate_table))
256 		return -EINVAL;
257 
258 	s->sfc = sfc;
259 	s->data_block_quadlets = data_block_quadlets;
260 	s->syt_interval = amdtp_syt_intervals[sfc];
261 
262 	/* default buffering in the device */
263 	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
264 	if (s->flags & CIP_BLOCKING)
265 		/* additional buffering needed to adjust for no-data packets */
266 		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
267 
268 	return 0;
269 }
270 EXPORT_SYMBOL(amdtp_stream_set_parameters);
271 
272 /**
273  * amdtp_stream_get_max_payload - get the stream's packet size
274  * @s: the AMDTP stream
275  *
276  * This function must not be called before the stream has been configured
277  * with amdtp_stream_set_parameters().
278  */
279 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
280 {
281 	unsigned int multiplier = 1;
282 	unsigned int header_size = 0;
283 
284 	if (s->flags & CIP_JUMBO_PAYLOAD)
285 		multiplier = 5;
286 	if (!(s->flags & CIP_NO_HEADER))
287 		header_size = 8;
288 
289 	return header_size +
290 		s->syt_interval * s->data_block_quadlets * 4 * multiplier;
291 }
292 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
293 
294 /**
295  * amdtp_stream_pcm_prepare - prepare PCM device for running
296  * @s: the AMDTP stream
297  *
298  * This function should be called from the PCM device's .prepare callback.
299  */
300 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
301 {
302 	tasklet_kill(&s->period_tasklet);
303 	s->pcm_buffer_pointer = 0;
304 	s->pcm_period_pointer = 0;
305 }
306 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
307 
308 static unsigned int calculate_data_blocks(struct amdtp_stream *s,
309 					  unsigned int syt)
310 {
311 	unsigned int phase, data_blocks;
312 
313 	/* Blocking mode. */
314 	if (s->flags & CIP_BLOCKING) {
315 		/* This module generate empty packet for 'no data'. */
316 		if (syt == CIP_SYT_NO_INFO)
317 			data_blocks = 0;
318 		else
319 			data_blocks = s->syt_interval;
320 	/* Non-blocking mode. */
321 	} else {
322 		if (!cip_sfc_is_base_44100(s->sfc)) {
323 			/* Sample_rate / 8000 is an integer, and precomputed. */
324 			data_blocks = s->data_block_state;
325 		} else {
326 			phase = s->data_block_state;
327 
328 		/*
329 		 * This calculates the number of data blocks per packet so that
330 		 * 1) the overall rate is correct and exactly synchronized to
331 		 *    the bus clock, and
332 		 * 2) packets with a rounded-up number of blocks occur as early
333 		 *    as possible in the sequence (to prevent underruns of the
334 		 *    device's buffer).
335 		 */
336 			if (s->sfc == CIP_SFC_44100)
337 				/* 6 6 5 6 5 6 5 ... */
338 				data_blocks = 5 + ((phase & 1) ^
339 						   (phase == 0 || phase >= 40));
340 			else
341 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
342 				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
343 			if (++phase >= (80 >> (s->sfc >> 1)))
344 				phase = 0;
345 			s->data_block_state = phase;
346 		}
347 	}
348 
349 	return data_blocks;
350 }
351 
352 static unsigned int calculate_syt(struct amdtp_stream *s,
353 				  unsigned int cycle)
354 {
355 	unsigned int syt_offset, phase, index, syt;
356 
357 	if (s->last_syt_offset < TICKS_PER_CYCLE) {
358 		if (!cip_sfc_is_base_44100(s->sfc))
359 			syt_offset = s->last_syt_offset + s->syt_offset_state;
360 		else {
361 		/*
362 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
363 		 *   n * SYT_INTERVAL * 24576000 / sample_rate
364 		 * Modulo TICKS_PER_CYCLE, the difference between successive
365 		 * elements is about 1386.23.  Rounding the results of this
366 		 * formula to the SYT precision results in a sequence of
367 		 * differences that begins with:
368 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
369 		 * This code generates _exactly_ the same sequence.
370 		 */
371 			phase = s->syt_offset_state;
372 			index = phase % 13;
373 			syt_offset = s->last_syt_offset;
374 			syt_offset += 1386 + ((index && !(index & 3)) ||
375 					      phase == 146);
376 			if (++phase >= 147)
377 				phase = 0;
378 			s->syt_offset_state = phase;
379 		}
380 	} else
381 		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
382 	s->last_syt_offset = syt_offset;
383 
384 	if (syt_offset < TICKS_PER_CYCLE) {
385 		syt_offset += s->transfer_delay;
386 		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
387 		syt += syt_offset % TICKS_PER_CYCLE;
388 
389 		return syt & CIP_SYT_MASK;
390 	} else {
391 		return CIP_SYT_NO_INFO;
392 	}
393 }
394 
395 static void update_pcm_pointers(struct amdtp_stream *s,
396 				struct snd_pcm_substream *pcm,
397 				unsigned int frames)
398 {
399 	unsigned int ptr;
400 
401 	ptr = s->pcm_buffer_pointer + frames;
402 	if (ptr >= pcm->runtime->buffer_size)
403 		ptr -= pcm->runtime->buffer_size;
404 	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
405 
406 	s->pcm_period_pointer += frames;
407 	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
408 		s->pcm_period_pointer -= pcm->runtime->period_size;
409 		tasklet_hi_schedule(&s->period_tasklet);
410 	}
411 }
412 
413 static void pcm_period_tasklet(unsigned long data)
414 {
415 	struct amdtp_stream *s = (void *)data;
416 	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
417 
418 	if (pcm)
419 		snd_pcm_period_elapsed(pcm);
420 }
421 
422 static int queue_packet(struct amdtp_stream *s, unsigned int header_length,
423 			unsigned int payload_length)
424 {
425 	struct fw_iso_packet p = {0};
426 	int err = 0;
427 
428 	if (IS_ERR(s->context))
429 		goto end;
430 
431 	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
432 	p.tag = s->tag;
433 	p.header_length = header_length;
434 	if (payload_length > 0)
435 		p.payload_length = payload_length;
436 	else
437 		p.skip = true;
438 	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
439 				   s->buffer.packets[s->packet_index].offset);
440 	if (err < 0) {
441 		dev_err(&s->unit->device, "queueing error: %d\n", err);
442 		goto end;
443 	}
444 
445 	if (++s->packet_index >= QUEUE_LENGTH)
446 		s->packet_index = 0;
447 end:
448 	return err;
449 }
450 
451 static inline int queue_out_packet(struct amdtp_stream *s,
452 				   unsigned int payload_length)
453 {
454 	return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length);
455 }
456 
457 static inline int queue_in_packet(struct amdtp_stream *s)
458 {
459 	return queue_packet(s, IN_PACKET_HEADER_SIZE, s->max_payload_length);
460 }
461 
462 static int handle_out_packet(struct amdtp_stream *s,
463 			     unsigned int payload_length, unsigned int cycle,
464 			     unsigned int index)
465 {
466 	__be32 *buffer;
467 	unsigned int syt;
468 	unsigned int data_blocks;
469 	unsigned int pcm_frames;
470 	struct snd_pcm_substream *pcm;
471 
472 	buffer = s->buffer.packets[s->packet_index].buffer;
473 	syt = calculate_syt(s, cycle);
474 	data_blocks = calculate_data_blocks(s, syt);
475 	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
476 
477 	if (s->flags & CIP_DBC_IS_END_EVENT)
478 		s->data_block_counter =
479 				(s->data_block_counter + data_blocks) & 0xff;
480 
481 	buffer[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
482 				(s->data_block_quadlets << CIP_DBS_SHIFT) |
483 				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
484 				s->data_block_counter);
485 	buffer[1] = cpu_to_be32(CIP_EOH |
486 				((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
487 				((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
488 				(syt & CIP_SYT_MASK));
489 
490 	if (!(s->flags & CIP_DBC_IS_END_EVENT))
491 		s->data_block_counter =
492 				(s->data_block_counter + data_blocks) & 0xff;
493 	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
494 
495 	trace_out_packet(s, cycle, buffer, payload_length, index);
496 
497 	if (queue_out_packet(s, payload_length) < 0)
498 		return -EIO;
499 
500 	pcm = READ_ONCE(s->pcm);
501 	if (pcm && pcm_frames > 0)
502 		update_pcm_pointers(s, pcm, pcm_frames);
503 
504 	/* No need to return the number of handled data blocks. */
505 	return 0;
506 }
507 
508 static int handle_out_packet_without_header(struct amdtp_stream *s,
509 			unsigned int payload_length, unsigned int cycle,
510 			unsigned int index)
511 {
512 	__be32 *buffer;
513 	unsigned int syt;
514 	unsigned int data_blocks;
515 	unsigned int pcm_frames;
516 	struct snd_pcm_substream *pcm;
517 
518 	buffer = s->buffer.packets[s->packet_index].buffer;
519 	syt = calculate_syt(s, cycle);
520 	data_blocks = calculate_data_blocks(s, syt);
521 	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt);
522 	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
523 
524 	payload_length = data_blocks * 4 * s->data_block_quadlets;
525 
526 	trace_out_packet_without_header(s, cycle, payload_length, data_blocks,
527 					index);
528 
529 	if (queue_out_packet(s, payload_length) < 0)
530 		return -EIO;
531 
532 	pcm = READ_ONCE(s->pcm);
533 	if (pcm && pcm_frames > 0)
534 		update_pcm_pointers(s, pcm, pcm_frames);
535 
536 	/* No need to return the number of handled data blocks. */
537 	return 0;
538 }
539 
540 static int handle_in_packet(struct amdtp_stream *s,
541 			    unsigned int payload_length, unsigned int cycle,
542 			    unsigned int index)
543 {
544 	__be32 *buffer;
545 	u32 cip_header[2];
546 	unsigned int sph, fmt, fdf, syt;
547 	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
548 	unsigned int data_blocks;
549 	struct snd_pcm_substream *pcm;
550 	unsigned int pcm_frames;
551 	bool lost;
552 
553 	buffer = s->buffer.packets[s->packet_index].buffer;
554 	cip_header[0] = be32_to_cpu(buffer[0]);
555 	cip_header[1] = be32_to_cpu(buffer[1]);
556 
557 	trace_in_packet(s, cycle, cip_header, payload_length, index);
558 
559 	/*
560 	 * This module supports 'Two-quadlet CIP header with SYT field'.
561 	 * For convenience, also check FMT field is AM824 or not.
562 	 */
563 	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
564 	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
565 	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
566 		dev_info_ratelimited(&s->unit->device,
567 				"Invalid CIP header for AMDTP: %08X:%08X\n",
568 				cip_header[0], cip_header[1]);
569 		data_blocks = 0;
570 		pcm_frames = 0;
571 		goto end;
572 	}
573 
574 	/* Check valid protocol or not. */
575 	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
576 	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
577 	if (sph != s->sph || fmt != s->fmt) {
578 		dev_info_ratelimited(&s->unit->device,
579 				     "Detect unexpected protocol: %08x %08x\n",
580 				     cip_header[0], cip_header[1]);
581 		data_blocks = 0;
582 		pcm_frames = 0;
583 		goto end;
584 	}
585 
586 	/* Calculate data blocks */
587 	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
588 	if (payload_length < 12 ||
589 	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
590 		data_blocks = 0;
591 	} else {
592 		data_block_quadlets =
593 			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
594 		/* avoid division by zero */
595 		if (data_block_quadlets == 0) {
596 			dev_err(&s->unit->device,
597 				"Detect invalid value in dbs field: %08X\n",
598 				cip_header[0]);
599 			return -EPROTO;
600 		}
601 		if (s->flags & CIP_WRONG_DBS)
602 			data_block_quadlets = s->data_block_quadlets;
603 
604 		data_blocks = (payload_length / 4 - 2) /
605 							data_block_quadlets;
606 	}
607 
608 	/* Check data block counter continuity */
609 	data_block_counter = cip_header[0] & CIP_DBC_MASK;
610 	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
611 	    s->data_block_counter != UINT_MAX)
612 		data_block_counter = s->data_block_counter;
613 
614 	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
615 	     data_block_counter == s->tx_first_dbc) ||
616 	    s->data_block_counter == UINT_MAX) {
617 		lost = false;
618 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
619 		lost = data_block_counter != s->data_block_counter;
620 	} else {
621 		if (data_blocks > 0 && s->tx_dbc_interval > 0)
622 			dbc_interval = s->tx_dbc_interval;
623 		else
624 			dbc_interval = data_blocks;
625 
626 		lost = data_block_counter !=
627 		       ((s->data_block_counter + dbc_interval) & 0xff);
628 	}
629 
630 	if (lost) {
631 		dev_err(&s->unit->device,
632 			"Detect discontinuity of CIP: %02X %02X\n",
633 			s->data_block_counter, data_block_counter);
634 		return -EIO;
635 	}
636 
637 	syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
638 	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
639 
640 	if (s->flags & CIP_DBC_IS_END_EVENT)
641 		s->data_block_counter = data_block_counter;
642 	else
643 		s->data_block_counter =
644 				(data_block_counter + data_blocks) & 0xff;
645 end:
646 	if (queue_in_packet(s) < 0)
647 		return -EIO;
648 
649 	pcm = READ_ONCE(s->pcm);
650 	if (pcm && pcm_frames > 0)
651 		update_pcm_pointers(s, pcm, pcm_frames);
652 
653 	return 0;
654 }
655 
656 static int handle_in_packet_without_header(struct amdtp_stream *s,
657 			unsigned int payload_length, unsigned int cycle,
658 			unsigned int index)
659 {
660 	__be32 *buffer;
661 	unsigned int payload_quadlets;
662 	unsigned int data_blocks;
663 	struct snd_pcm_substream *pcm;
664 	unsigned int pcm_frames;
665 
666 	buffer = s->buffer.packets[s->packet_index].buffer;
667 	payload_quadlets = payload_length / 4;
668 	data_blocks = payload_quadlets / s->data_block_quadlets;
669 
670 	trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks,
671 				       index);
672 
673 	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL);
674 	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
675 
676 	if (queue_in_packet(s) < 0)
677 		return -EIO;
678 
679 	pcm = READ_ONCE(s->pcm);
680 	if (pcm && pcm_frames > 0)
681 		update_pcm_pointers(s, pcm, pcm_frames);
682 
683 	return 0;
684 }
685 
686 /*
687  * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
688  * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
689  * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
690  */
691 static inline u32 compute_cycle_count(u32 tstamp)
692 {
693 	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
694 }
695 
696 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
697 {
698 	cycle += addend;
699 	if (cycle >= 8 * CYCLES_PER_SECOND)
700 		cycle -= 8 * CYCLES_PER_SECOND;
701 	return cycle;
702 }
703 
704 static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend)
705 {
706 	if (cycle < subtrahend)
707 		cycle += 8 * CYCLES_PER_SECOND;
708 	return cycle - subtrahend;
709 }
710 
711 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
712 				size_t header_length, void *header,
713 				void *private_data)
714 {
715 	struct amdtp_stream *s = private_data;
716 	unsigned int i, packets = header_length / 4;
717 	u32 cycle;
718 
719 	if (s->packet_index < 0)
720 		return;
721 
722 	cycle = compute_cycle_count(tstamp);
723 
724 	/* Align to actual cycle count for the last packet. */
725 	cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
726 
727 	for (i = 0; i < packets; ++i) {
728 		cycle = increment_cycle_count(cycle, 1);
729 		if (s->handle_packet(s, 0, cycle, i) < 0) {
730 			s->packet_index = -1;
731 			if (in_interrupt())
732 				amdtp_stream_pcm_abort(s);
733 			WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
734 			return;
735 		}
736 	}
737 
738 	fw_iso_context_queue_flush(s->context);
739 }
740 
741 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
742 			       size_t header_length, void *header,
743 			       void *private_data)
744 {
745 	struct amdtp_stream *s = private_data;
746 	unsigned int i, packets;
747 	unsigned int payload_length, max_payload_length;
748 	__be32 *headers = header;
749 	u32 cycle;
750 
751 	if (s->packet_index < 0)
752 		return;
753 
754 	/* The number of packets in buffer */
755 	packets = header_length / IN_PACKET_HEADER_SIZE;
756 
757 	cycle = compute_cycle_count(tstamp);
758 
759 	/* Align to actual cycle count for the last packet. */
760 	cycle = decrement_cycle_count(cycle, packets);
761 
762 	/* For buffer-over-run prevention. */
763 	max_payload_length = s->max_payload_length;
764 
765 	for (i = 0; i < packets; i++) {
766 		cycle = increment_cycle_count(cycle, 1);
767 
768 		/* The number of bytes in this packet */
769 		payload_length =
770 			(be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT);
771 		if (payload_length > max_payload_length) {
772 			dev_err(&s->unit->device,
773 				"Detect jumbo payload: %04x %04x\n",
774 				payload_length, max_payload_length);
775 			break;
776 		}
777 
778 		if (s->handle_packet(s, payload_length, cycle, i) < 0)
779 			break;
780 	}
781 
782 	/* Queueing error or detecting invalid payload. */
783 	if (i < packets) {
784 		s->packet_index = -1;
785 		if (in_interrupt())
786 			amdtp_stream_pcm_abort(s);
787 		WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
788 		return;
789 	}
790 
791 	fw_iso_context_queue_flush(s->context);
792 }
793 
794 /* this is executed one time */
795 static void amdtp_stream_first_callback(struct fw_iso_context *context,
796 					u32 tstamp, size_t header_length,
797 					void *header, void *private_data)
798 {
799 	struct amdtp_stream *s = private_data;
800 	u32 cycle;
801 	unsigned int packets;
802 
803 	/*
804 	 * For in-stream, first packet has come.
805 	 * For out-stream, prepared to transmit first packet
806 	 */
807 	s->callbacked = true;
808 	wake_up(&s->callback_wait);
809 
810 	cycle = compute_cycle_count(tstamp);
811 
812 	if (s->direction == AMDTP_IN_STREAM) {
813 		packets = header_length / IN_PACKET_HEADER_SIZE;
814 		cycle = decrement_cycle_count(cycle, packets);
815 		context->callback.sc = in_stream_callback;
816 		if (s->flags & CIP_NO_HEADER)
817 			s->handle_packet = handle_in_packet_without_header;
818 		else
819 			s->handle_packet = handle_in_packet;
820 	} else {
821 		packets = header_length / 4;
822 		cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
823 		context->callback.sc = out_stream_callback;
824 		if (s->flags & CIP_NO_HEADER)
825 			s->handle_packet = handle_out_packet_without_header;
826 		else
827 			s->handle_packet = handle_out_packet;
828 	}
829 
830 	s->start_cycle = cycle;
831 
832 	context->callback.sc(context, tstamp, header_length, header, s);
833 }
834 
835 /**
836  * amdtp_stream_start - start transferring packets
837  * @s: the AMDTP stream to start
838  * @channel: the isochronous channel on the bus
839  * @speed: firewire speed code
840  *
841  * The stream cannot be started until it has been configured with
842  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
843  * device can be started.
844  */
845 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
846 {
847 	static const struct {
848 		unsigned int data_block;
849 		unsigned int syt_offset;
850 	} initial_state[] = {
851 		[CIP_SFC_32000]  = {  4, 3072 },
852 		[CIP_SFC_48000]  = {  6, 1024 },
853 		[CIP_SFC_96000]  = { 12, 1024 },
854 		[CIP_SFC_192000] = { 24, 1024 },
855 		[CIP_SFC_44100]  = {  0,   67 },
856 		[CIP_SFC_88200]  = {  0,   67 },
857 		[CIP_SFC_176400] = {  0,   67 },
858 	};
859 	unsigned int header_size;
860 	enum dma_data_direction dir;
861 	int type, tag, err;
862 
863 	mutex_lock(&s->mutex);
864 
865 	if (WARN_ON(amdtp_stream_running(s) ||
866 		    (s->data_block_quadlets < 1))) {
867 		err = -EBADFD;
868 		goto err_unlock;
869 	}
870 
871 	if (s->direction == AMDTP_IN_STREAM)
872 		s->data_block_counter = UINT_MAX;
873 	else
874 		s->data_block_counter = 0;
875 	s->data_block_state = initial_state[s->sfc].data_block;
876 	s->syt_offset_state = initial_state[s->sfc].syt_offset;
877 	s->last_syt_offset = TICKS_PER_CYCLE;
878 
879 	/* initialize packet buffer */
880 	if (s->direction == AMDTP_IN_STREAM) {
881 		dir = DMA_FROM_DEVICE;
882 		type = FW_ISO_CONTEXT_RECEIVE;
883 		header_size = IN_PACKET_HEADER_SIZE;
884 	} else {
885 		dir = DMA_TO_DEVICE;
886 		type = FW_ISO_CONTEXT_TRANSMIT;
887 		header_size = OUT_PACKET_HEADER_SIZE;
888 	}
889 	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
890 				      amdtp_stream_get_max_payload(s), dir);
891 	if (err < 0)
892 		goto err_unlock;
893 
894 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
895 					   type, channel, speed, header_size,
896 					   amdtp_stream_first_callback, s);
897 	if (IS_ERR(s->context)) {
898 		err = PTR_ERR(s->context);
899 		if (err == -EBUSY)
900 			dev_err(&s->unit->device,
901 				"no free stream on this controller\n");
902 		goto err_buffer;
903 	}
904 
905 	amdtp_stream_update(s);
906 
907 	if (s->direction == AMDTP_IN_STREAM)
908 		s->max_payload_length = amdtp_stream_get_max_payload(s);
909 
910 	if (s->flags & CIP_NO_HEADER)
911 		s->tag = TAG_NO_CIP_HEADER;
912 	else
913 		s->tag = TAG_CIP;
914 
915 	s->packet_index = 0;
916 	do {
917 		if (s->direction == AMDTP_IN_STREAM)
918 			err = queue_in_packet(s);
919 		else
920 			err = queue_out_packet(s, 0);
921 		if (err < 0)
922 			goto err_context;
923 	} while (s->packet_index > 0);
924 
925 	/* NOTE: TAG1 matches CIP. This just affects in stream. */
926 	tag = FW_ISO_CONTEXT_MATCH_TAG1;
927 	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
928 		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
929 
930 	s->callbacked = false;
931 	err = fw_iso_context_start(s->context, -1, 0, tag);
932 	if (err < 0)
933 		goto err_context;
934 
935 	mutex_unlock(&s->mutex);
936 
937 	return 0;
938 
939 err_context:
940 	fw_iso_context_destroy(s->context);
941 	s->context = ERR_PTR(-1);
942 err_buffer:
943 	iso_packets_buffer_destroy(&s->buffer, s->unit);
944 err_unlock:
945 	mutex_unlock(&s->mutex);
946 
947 	return err;
948 }
949 EXPORT_SYMBOL(amdtp_stream_start);
950 
951 /**
952  * amdtp_stream_pcm_pointer - get the PCM buffer position
953  * @s: the AMDTP stream that transports the PCM data
954  *
955  * Returns the current buffer position, in frames.
956  */
957 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
958 {
959 	/*
960 	 * This function is called in software IRQ context of period_tasklet or
961 	 * process context.
962 	 *
963 	 * When the software IRQ context was scheduled by software IRQ context
964 	 * of IR/IT contexts, queued packets were already handled. Therefore,
965 	 * no need to flush the queue in buffer anymore.
966 	 *
967 	 * When the process context reach here, some packets will be already
968 	 * queued in the buffer. These packets should be handled immediately
969 	 * to keep better granularity of PCM pointer.
970 	 *
971 	 * Later, the process context will sometimes schedules software IRQ
972 	 * context of the period_tasklet. Then, no need to flush the queue by
973 	 * the same reason as described for IR/IT contexts.
974 	 */
975 	if (!in_interrupt() && amdtp_stream_running(s))
976 		fw_iso_context_flush_completions(s->context);
977 
978 	return READ_ONCE(s->pcm_buffer_pointer);
979 }
980 EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
981 
982 /**
983  * amdtp_stream_pcm_ack - acknowledge queued PCM frames
984  * @s: the AMDTP stream that transfers the PCM frames
985  *
986  * Returns zero always.
987  */
988 int amdtp_stream_pcm_ack(struct amdtp_stream *s)
989 {
990 	/*
991 	 * Process isochronous packets for recent isochronous cycle to handle
992 	 * queued PCM frames.
993 	 */
994 	if (amdtp_stream_running(s))
995 		fw_iso_context_flush_completions(s->context);
996 
997 	return 0;
998 }
999 EXPORT_SYMBOL(amdtp_stream_pcm_ack);
1000 
1001 /**
1002  * amdtp_stream_update - update the stream after a bus reset
1003  * @s: the AMDTP stream
1004  */
1005 void amdtp_stream_update(struct amdtp_stream *s)
1006 {
1007 	/* Precomputing. */
1008 	WRITE_ONCE(s->source_node_id_field,
1009                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1010 }
1011 EXPORT_SYMBOL(amdtp_stream_update);
1012 
1013 /**
1014  * amdtp_stream_stop - stop sending packets
1015  * @s: the AMDTP stream to stop
1016  *
1017  * All PCM and MIDI devices of the stream must be stopped before the stream
1018  * itself can be stopped.
1019  */
1020 void amdtp_stream_stop(struct amdtp_stream *s)
1021 {
1022 	mutex_lock(&s->mutex);
1023 
1024 	if (!amdtp_stream_running(s)) {
1025 		mutex_unlock(&s->mutex);
1026 		return;
1027 	}
1028 
1029 	tasklet_kill(&s->period_tasklet);
1030 	fw_iso_context_stop(s->context);
1031 	fw_iso_context_destroy(s->context);
1032 	s->context = ERR_PTR(-1);
1033 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1034 
1035 	s->callbacked = false;
1036 
1037 	mutex_unlock(&s->mutex);
1038 }
1039 EXPORT_SYMBOL(amdtp_stream_stop);
1040 
1041 /**
1042  * amdtp_stream_pcm_abort - abort the running PCM device
1043  * @s: the AMDTP stream about to be stopped
1044  *
1045  * If the isochronous stream needs to be stopped asynchronously, call this
1046  * function first to stop the PCM device.
1047  */
1048 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1049 {
1050 	struct snd_pcm_substream *pcm;
1051 
1052 	pcm = READ_ONCE(s->pcm);
1053 	if (pcm)
1054 		snd_pcm_stop_xrun(pcm);
1055 }
1056 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1057