1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_FDF_NO_DATA 0xff 53 #define CIP_SYT_MASK 0x0000ffff 54 #define CIP_SYT_NO_INFO 0xffff 55 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 56 57 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 58 59 /* Audio and Music transfer protocol specific parameters */ 60 #define CIP_FMT_AM 0x10 61 #define AMDTP_FDF_NO_DATA 0xff 62 63 // For iso header and tstamp. 64 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 65 // Add nothing. 66 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 67 // Add two quadlets CIP header. 68 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 69 #define HEADER_TSTAMP_MASK 0x0000ffff 70 71 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 72 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 73 74 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 75 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 76 // overrun. Actual device can skip more, then this module stops the packet streaming. 77 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 78 79 static void pcm_period_work(struct work_struct *work); 80 81 /** 82 * amdtp_stream_init - initialize an AMDTP stream structure 83 * @s: the AMDTP stream to initialize 84 * @unit: the target of the stream 85 * @dir: the direction of stream 86 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 87 * @fmt: the value of fmt field in CIP header 88 * @process_ctx_payloads: callback handler to process payloads of isoc context 89 * @protocol_size: the size to allocate newly for protocol 90 */ 91 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 92 enum amdtp_stream_direction dir, unsigned int flags, 93 unsigned int fmt, 94 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 95 unsigned int protocol_size) 96 { 97 if (process_ctx_payloads == NULL) 98 return -EINVAL; 99 100 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 101 if (!s->protocol) 102 return -ENOMEM; 103 104 s->unit = unit; 105 s->direction = dir; 106 s->flags = flags; 107 s->context = ERR_PTR(-1); 108 mutex_init(&s->mutex); 109 INIT_WORK(&s->period_work, pcm_period_work); 110 s->packet_index = 0; 111 112 init_waitqueue_head(&s->ready_wait); 113 114 s->fmt = fmt; 115 s->process_ctx_payloads = process_ctx_payloads; 116 117 return 0; 118 } 119 EXPORT_SYMBOL(amdtp_stream_init); 120 121 /** 122 * amdtp_stream_destroy - free stream resources 123 * @s: the AMDTP stream to destroy 124 */ 125 void amdtp_stream_destroy(struct amdtp_stream *s) 126 { 127 /* Not initialized. */ 128 if (s->protocol == NULL) 129 return; 130 131 WARN_ON(amdtp_stream_running(s)); 132 kfree(s->protocol); 133 mutex_destroy(&s->mutex); 134 } 135 EXPORT_SYMBOL(amdtp_stream_destroy); 136 137 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 138 [CIP_SFC_32000] = 8, 139 [CIP_SFC_44100] = 8, 140 [CIP_SFC_48000] = 8, 141 [CIP_SFC_88200] = 16, 142 [CIP_SFC_96000] = 16, 143 [CIP_SFC_176400] = 32, 144 [CIP_SFC_192000] = 32, 145 }; 146 EXPORT_SYMBOL(amdtp_syt_intervals); 147 148 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 149 [CIP_SFC_32000] = 32000, 150 [CIP_SFC_44100] = 44100, 151 [CIP_SFC_48000] = 48000, 152 [CIP_SFC_88200] = 88200, 153 [CIP_SFC_96000] = 96000, 154 [CIP_SFC_176400] = 176400, 155 [CIP_SFC_192000] = 192000, 156 }; 157 EXPORT_SYMBOL(amdtp_rate_table); 158 159 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 160 struct snd_pcm_hw_rule *rule) 161 { 162 struct snd_interval *s = hw_param_interval(params, rule->var); 163 const struct snd_interval *r = 164 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 165 struct snd_interval t = {0}; 166 unsigned int step = 0; 167 int i; 168 169 for (i = 0; i < CIP_SFC_COUNT; ++i) { 170 if (snd_interval_test(r, amdtp_rate_table[i])) 171 step = max(step, amdtp_syt_intervals[i]); 172 } 173 174 t.min = roundup(s->min, step); 175 t.max = rounddown(s->max, step); 176 t.integer = 1; 177 178 return snd_interval_refine(s, &t); 179 } 180 181 /** 182 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 183 * @s: the AMDTP stream, which must be initialized. 184 * @runtime: the PCM substream runtime 185 */ 186 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 187 struct snd_pcm_runtime *runtime) 188 { 189 struct snd_pcm_hardware *hw = &runtime->hw; 190 unsigned int ctx_header_size; 191 unsigned int maximum_usec_per_period; 192 int err; 193 194 hw->info = SNDRV_PCM_INFO_BATCH | 195 SNDRV_PCM_INFO_BLOCK_TRANSFER | 196 SNDRV_PCM_INFO_INTERLEAVED | 197 SNDRV_PCM_INFO_JOINT_DUPLEX | 198 SNDRV_PCM_INFO_MMAP | 199 SNDRV_PCM_INFO_MMAP_VALID; 200 201 /* SNDRV_PCM_INFO_BATCH */ 202 hw->periods_min = 2; 203 hw->periods_max = UINT_MAX; 204 205 /* bytes for a frame */ 206 hw->period_bytes_min = 4 * hw->channels_max; 207 208 /* Just to prevent from allocating much pages. */ 209 hw->period_bytes_max = hw->period_bytes_min * 2048; 210 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 211 212 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 213 // context when total size of accumulated context header reaches 214 // PAGE_SIZE. This kicks work for the isoc context and brings 215 // callback in the middle of scheduled interrupts. 216 // Although AMDTP streams in the same domain use the same events per 217 // IRQ, use the largest size of context header between IT/IR contexts. 218 // Here, use the value of context header in IR context is for both 219 // contexts. 220 if (!(s->flags & CIP_NO_HEADER)) 221 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 222 else 223 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 224 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 225 CYCLES_PER_SECOND / ctx_header_size; 226 227 // In IEC 61883-6, one isoc packet can transfer events up to the value 228 // of syt interval. This comes from the interval of isoc cycle. As 1394 229 // OHCI controller can generate hardware IRQ per isoc packet, the 230 // interval is 125 usec. 231 // However, there are two ways of transmission in IEC 61883-6; blocking 232 // and non-blocking modes. In blocking mode, the sequence of isoc packet 233 // includes 'empty' or 'NODATA' packets which include no event. In 234 // non-blocking mode, the number of events per packet is variable up to 235 // the syt interval. 236 // Due to the above protocol design, the minimum PCM frames per 237 // interrupt should be double of the value of syt interval, thus it is 238 // 250 usec. 239 err = snd_pcm_hw_constraint_minmax(runtime, 240 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 241 250, maximum_usec_per_period); 242 if (err < 0) 243 goto end; 244 245 /* Non-Blocking stream has no more constraints */ 246 if (!(s->flags & CIP_BLOCKING)) 247 goto end; 248 249 /* 250 * One AMDTP packet can include some frames. In blocking mode, the 251 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 252 * depending on its sampling rate. For accurate period interrupt, it's 253 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 254 */ 255 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 256 apply_constraint_to_size, NULL, 257 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 258 SNDRV_PCM_HW_PARAM_RATE, -1); 259 if (err < 0) 260 goto end; 261 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 262 apply_constraint_to_size, NULL, 263 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 264 SNDRV_PCM_HW_PARAM_RATE, -1); 265 if (err < 0) 266 goto end; 267 end: 268 return err; 269 } 270 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 271 272 /** 273 * amdtp_stream_set_parameters - set stream parameters 274 * @s: the AMDTP stream to configure 275 * @rate: the sample rate 276 * @data_block_quadlets: the size of a data block in quadlet unit 277 * 278 * The parameters must be set before the stream is started, and must not be 279 * changed while the stream is running. 280 */ 281 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 282 unsigned int data_block_quadlets) 283 { 284 unsigned int sfc; 285 286 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 287 if (amdtp_rate_table[sfc] == rate) 288 break; 289 } 290 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 291 return -EINVAL; 292 293 s->sfc = sfc; 294 s->data_block_quadlets = data_block_quadlets; 295 s->syt_interval = amdtp_syt_intervals[sfc]; 296 297 // default buffering in the device. 298 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 299 300 // additional buffering needed to adjust for no-data packets. 301 if (s->flags & CIP_BLOCKING) 302 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 303 304 return 0; 305 } 306 EXPORT_SYMBOL(amdtp_stream_set_parameters); 307 308 // The CIP header is processed in context header apart from context payload. 309 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 310 { 311 unsigned int multiplier; 312 313 if (s->flags & CIP_JUMBO_PAYLOAD) 314 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 315 else 316 multiplier = 1; 317 318 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 319 } 320 321 /** 322 * amdtp_stream_get_max_payload - get the stream's packet size 323 * @s: the AMDTP stream 324 * 325 * This function must not be called before the stream has been configured 326 * with amdtp_stream_set_parameters(). 327 */ 328 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 329 { 330 unsigned int cip_header_size; 331 332 if (!(s->flags & CIP_NO_HEADER)) 333 cip_header_size = CIP_HEADER_SIZE; 334 else 335 cip_header_size = 0; 336 337 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 338 } 339 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 340 341 /** 342 * amdtp_stream_pcm_prepare - prepare PCM device for running 343 * @s: the AMDTP stream 344 * 345 * This function should be called from the PCM device's .prepare callback. 346 */ 347 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 348 { 349 cancel_work_sync(&s->period_work); 350 s->pcm_buffer_pointer = 0; 351 s->pcm_period_pointer = 0; 352 } 353 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 354 355 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 356 const unsigned int seq_size, unsigned int seq_tail, 357 unsigned int count) 358 { 359 const unsigned int syt_interval = s->syt_interval; 360 int i; 361 362 for (i = 0; i < count; ++i) { 363 struct seq_desc *desc = descs + seq_tail; 364 365 if (desc->syt_offset != CIP_SYT_NO_INFO) 366 desc->data_blocks = syt_interval; 367 else 368 desc->data_blocks = 0; 369 370 seq_tail = (seq_tail + 1) % seq_size; 371 } 372 } 373 374 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 375 const unsigned int seq_size, unsigned int seq_tail, 376 unsigned int count) 377 { 378 const enum cip_sfc sfc = s->sfc; 379 unsigned int state = s->ctx_data.rx.data_block_state; 380 int i; 381 382 for (i = 0; i < count; ++i) { 383 struct seq_desc *desc = descs + seq_tail; 384 385 if (!cip_sfc_is_base_44100(sfc)) { 386 // Sample_rate / 8000 is an integer, and precomputed. 387 desc->data_blocks = state; 388 } else { 389 unsigned int phase = state; 390 391 /* 392 * This calculates the number of data blocks per packet so that 393 * 1) the overall rate is correct and exactly synchronized to 394 * the bus clock, and 395 * 2) packets with a rounded-up number of blocks occur as early 396 * as possible in the sequence (to prevent underruns of the 397 * device's buffer). 398 */ 399 if (sfc == CIP_SFC_44100) 400 /* 6 6 5 6 5 6 5 ... */ 401 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 402 else 403 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 404 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 405 if (++phase >= (80 >> (sfc >> 1))) 406 phase = 0; 407 state = phase; 408 } 409 410 seq_tail = (seq_tail + 1) % seq_size; 411 } 412 413 s->ctx_data.rx.data_block_state = state; 414 } 415 416 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 417 unsigned int *syt_offset_state, enum cip_sfc sfc) 418 { 419 unsigned int syt_offset; 420 421 if (*last_syt_offset < TICKS_PER_CYCLE) { 422 if (!cip_sfc_is_base_44100(sfc)) 423 syt_offset = *last_syt_offset + *syt_offset_state; 424 else { 425 /* 426 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 427 * n * SYT_INTERVAL * 24576000 / sample_rate 428 * Modulo TICKS_PER_CYCLE, the difference between successive 429 * elements is about 1386.23. Rounding the results of this 430 * formula to the SYT precision results in a sequence of 431 * differences that begins with: 432 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 433 * This code generates _exactly_ the same sequence. 434 */ 435 unsigned int phase = *syt_offset_state; 436 unsigned int index = phase % 13; 437 438 syt_offset = *last_syt_offset; 439 syt_offset += 1386 + ((index && !(index & 3)) || 440 phase == 146); 441 if (++phase >= 147) 442 phase = 0; 443 *syt_offset_state = phase; 444 } 445 } else 446 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 447 *last_syt_offset = syt_offset; 448 449 if (syt_offset >= TICKS_PER_CYCLE) 450 syt_offset = CIP_SYT_NO_INFO; 451 452 return syt_offset; 453 } 454 455 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 456 const unsigned int seq_size, unsigned int seq_tail, 457 unsigned int count) 458 { 459 const enum cip_sfc sfc = s->sfc; 460 unsigned int last = s->ctx_data.rx.last_syt_offset; 461 unsigned int state = s->ctx_data.rx.syt_offset_state; 462 int i; 463 464 for (i = 0; i < count; ++i) { 465 struct seq_desc *desc = descs + seq_tail; 466 467 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 468 469 seq_tail = (seq_tail + 1) % seq_size; 470 } 471 472 s->ctx_data.rx.last_syt_offset = last; 473 s->ctx_data.rx.syt_offset_state = state; 474 } 475 476 static void pool_ideal_seq_descs(struct amdtp_stream *s, unsigned int count) 477 { 478 struct seq_desc *descs = s->ctx_data.rx.seq.descs; 479 unsigned int seq_tail = s->ctx_data.rx.seq.tail; 480 const unsigned int seq_size = s->ctx_data.rx.seq.size; 481 482 pool_ideal_syt_offsets(s, descs, seq_size, seq_tail, count); 483 484 if (s->flags & CIP_BLOCKING) 485 pool_blocking_data_blocks(s, descs, seq_size, seq_tail, count); 486 else 487 pool_ideal_nonblocking_data_blocks(s, descs, seq_size, seq_tail, count); 488 489 s->ctx_data.rx.seq.tail = (seq_tail + count) % seq_size; 490 } 491 492 static void update_pcm_pointers(struct amdtp_stream *s, 493 struct snd_pcm_substream *pcm, 494 unsigned int frames) 495 { 496 unsigned int ptr; 497 498 ptr = s->pcm_buffer_pointer + frames; 499 if (ptr >= pcm->runtime->buffer_size) 500 ptr -= pcm->runtime->buffer_size; 501 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 502 503 s->pcm_period_pointer += frames; 504 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 505 s->pcm_period_pointer -= pcm->runtime->period_size; 506 queue_work(system_highpri_wq, &s->period_work); 507 } 508 } 509 510 static void pcm_period_work(struct work_struct *work) 511 { 512 struct amdtp_stream *s = container_of(work, struct amdtp_stream, 513 period_work); 514 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 515 516 if (pcm) 517 snd_pcm_period_elapsed(pcm); 518 } 519 520 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 521 bool sched_irq) 522 { 523 int err; 524 525 params->interrupt = sched_irq; 526 params->tag = s->tag; 527 params->sy = 0; 528 529 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 530 s->buffer.packets[s->packet_index].offset); 531 if (err < 0) { 532 dev_err(&s->unit->device, "queueing error: %d\n", err); 533 goto end; 534 } 535 536 if (++s->packet_index >= s->queue_size) 537 s->packet_index = 0; 538 end: 539 return err; 540 } 541 542 static inline int queue_out_packet(struct amdtp_stream *s, 543 struct fw_iso_packet *params, bool sched_irq) 544 { 545 params->skip = 546 !!(params->header_length == 0 && params->payload_length == 0); 547 return queue_packet(s, params, sched_irq); 548 } 549 550 static inline int queue_in_packet(struct amdtp_stream *s, 551 struct fw_iso_packet *params) 552 { 553 // Queue one packet for IR context. 554 params->header_length = s->ctx_data.tx.ctx_header_size; 555 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 556 params->skip = false; 557 return queue_packet(s, params, false); 558 } 559 560 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 561 unsigned int data_block_counter, unsigned int syt) 562 { 563 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 564 (s->data_block_quadlets << CIP_DBS_SHIFT) | 565 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 566 data_block_counter); 567 cip_header[1] = cpu_to_be32(CIP_EOH | 568 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 569 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 570 (syt & CIP_SYT_MASK)); 571 } 572 573 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 574 struct fw_iso_packet *params, unsigned int header_length, 575 unsigned int data_blocks, 576 unsigned int data_block_counter, 577 unsigned int syt, unsigned int index) 578 { 579 unsigned int payload_length; 580 __be32 *cip_header; 581 582 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 583 params->payload_length = payload_length; 584 585 if (header_length > 0) { 586 cip_header = (__be32 *)params->header; 587 generate_cip_header(s, cip_header, data_block_counter, syt); 588 params->header_length = header_length; 589 } else { 590 cip_header = NULL; 591 } 592 593 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 594 data_block_counter, s->packet_index, index); 595 } 596 597 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 598 unsigned int payload_length, 599 unsigned int *data_blocks, 600 unsigned int *data_block_counter, unsigned int *syt) 601 { 602 u32 cip_header[2]; 603 unsigned int sph; 604 unsigned int fmt; 605 unsigned int fdf; 606 unsigned int dbc; 607 bool lost; 608 609 cip_header[0] = be32_to_cpu(buf[0]); 610 cip_header[1] = be32_to_cpu(buf[1]); 611 612 /* 613 * This module supports 'Two-quadlet CIP header with SYT field'. 614 * For convenience, also check FMT field is AM824 or not. 615 */ 616 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 617 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 618 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 619 dev_info_ratelimited(&s->unit->device, 620 "Invalid CIP header for AMDTP: %08X:%08X\n", 621 cip_header[0], cip_header[1]); 622 return -EAGAIN; 623 } 624 625 /* Check valid protocol or not. */ 626 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 627 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 628 if (sph != s->sph || fmt != s->fmt) { 629 dev_info_ratelimited(&s->unit->device, 630 "Detect unexpected protocol: %08x %08x\n", 631 cip_header[0], cip_header[1]); 632 return -EAGAIN; 633 } 634 635 /* Calculate data blocks */ 636 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 637 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 638 *data_blocks = 0; 639 } else { 640 unsigned int data_block_quadlets = 641 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 642 /* avoid division by zero */ 643 if (data_block_quadlets == 0) { 644 dev_err(&s->unit->device, 645 "Detect invalid value in dbs field: %08X\n", 646 cip_header[0]); 647 return -EPROTO; 648 } 649 if (s->flags & CIP_WRONG_DBS) 650 data_block_quadlets = s->data_block_quadlets; 651 652 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 653 } 654 655 /* Check data block counter continuity */ 656 dbc = cip_header[0] & CIP_DBC_MASK; 657 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 658 *data_block_counter != UINT_MAX) 659 dbc = *data_block_counter; 660 661 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 662 *data_block_counter == UINT_MAX) { 663 lost = false; 664 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 665 lost = dbc != *data_block_counter; 666 } else { 667 unsigned int dbc_interval; 668 669 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 670 dbc_interval = s->ctx_data.tx.dbc_interval; 671 else 672 dbc_interval = *data_blocks; 673 674 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 675 } 676 677 if (lost) { 678 dev_err(&s->unit->device, 679 "Detect discontinuity of CIP: %02X %02X\n", 680 *data_block_counter, dbc); 681 return -EIO; 682 } 683 684 *data_block_counter = dbc; 685 686 if (!(s->flags & CIP_UNAWARE_SYT)) 687 *syt = cip_header[1] & CIP_SYT_MASK; 688 689 return 0; 690 } 691 692 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 693 const __be32 *ctx_header, 694 unsigned int *data_blocks, 695 unsigned int *data_block_counter, 696 unsigned int *syt, unsigned int packet_index, unsigned int index) 697 { 698 unsigned int payload_length; 699 const __be32 *cip_header; 700 unsigned int cip_header_size; 701 702 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 703 704 if (!(s->flags & CIP_NO_HEADER)) 705 cip_header_size = CIP_HEADER_SIZE; 706 else 707 cip_header_size = 0; 708 709 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 710 dev_err(&s->unit->device, 711 "Detect jumbo payload: %04x %04x\n", 712 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 713 return -EIO; 714 } 715 716 if (cip_header_size > 0) { 717 if (payload_length >= cip_header_size) { 718 int err; 719 720 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 721 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 722 data_blocks, data_block_counter, syt); 723 if (err < 0) 724 return err; 725 } else { 726 // Handle the cycle so that empty packet arrives. 727 cip_header = NULL; 728 *data_blocks = 0; 729 *syt = 0; 730 } 731 } else { 732 cip_header = NULL; 733 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 734 *syt = 0; 735 736 if (*data_block_counter == UINT_MAX) 737 *data_block_counter = 0; 738 } 739 740 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 741 *data_block_counter, packet_index, index); 742 743 return 0; 744 } 745 746 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 747 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 748 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 749 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 750 { 751 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 752 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); 753 } 754 755 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 756 { 757 cycle += addend; 758 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 759 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 760 return cycle; 761 } 762 763 static int compare_ohci_cycle_count(u32 lval, u32 rval) 764 { 765 if (lval == rval) 766 return 0; 767 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 768 return -1; 769 else 770 return 1; 771 } 772 773 // Align to actual cycle count for the packet which is going to be scheduled. 774 // This module queued the same number of isochronous cycle as the size of queue 775 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 776 // the size of queue for scheduled cycle. 777 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 778 unsigned int queue_size) 779 { 780 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 781 return increment_ohci_cycle_count(cycle, queue_size); 782 } 783 784 static int generate_device_pkt_descs(struct amdtp_stream *s, 785 struct pkt_desc *descs, 786 const __be32 *ctx_header, 787 unsigned int packets, 788 unsigned int *desc_count) 789 { 790 unsigned int next_cycle = s->next_cycle; 791 unsigned int dbc = s->data_block_counter; 792 unsigned int packet_index = s->packet_index; 793 unsigned int queue_size = s->queue_size; 794 int i; 795 int err; 796 797 *desc_count = 0; 798 for (i = 0; i < packets; ++i) { 799 struct pkt_desc *desc = descs + *desc_count; 800 unsigned int cycle; 801 bool lost; 802 unsigned int data_blocks; 803 unsigned int syt; 804 805 cycle = compute_ohci_cycle_count(ctx_header[1]); 806 lost = (next_cycle != cycle); 807 if (lost) { 808 if (s->flags & CIP_NO_HEADER) { 809 // Fireface skips transmission just for an isoc cycle corresponding 810 // to empty packet. 811 unsigned int prev_cycle = next_cycle; 812 813 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 814 lost = (next_cycle != cycle); 815 if (!lost) { 816 // Prepare a description for the skipped cycle for 817 // sequence replay. 818 desc->cycle = prev_cycle; 819 desc->syt = 0; 820 desc->data_blocks = 0; 821 desc->data_block_counter = dbc; 822 desc->ctx_payload = NULL; 823 ++desc; 824 ++(*desc_count); 825 } 826 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 827 // OXFW970 skips transmission for several isoc cycles during 828 // asynchronous transaction. The sequence replay is impossible due 829 // to the reason. 830 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 831 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 832 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0); 833 } 834 if (lost) { 835 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 836 next_cycle, cycle); 837 return -EIO; 838 } 839 } 840 841 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 842 packet_index, i); 843 if (err < 0) 844 return err; 845 846 desc->cycle = cycle; 847 desc->syt = syt; 848 desc->data_blocks = data_blocks; 849 desc->data_block_counter = dbc; 850 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 851 852 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 853 dbc = (dbc + desc->data_blocks) & 0xff; 854 855 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 856 ++(*desc_count); 857 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 858 packet_index = (packet_index + 1) % queue_size; 859 } 860 861 s->next_cycle = next_cycle; 862 s->data_block_counter = dbc; 863 864 return 0; 865 } 866 867 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 868 unsigned int transfer_delay) 869 { 870 unsigned int syt; 871 872 syt_offset += transfer_delay; 873 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 874 (syt_offset % TICKS_PER_CYCLE); 875 return syt & CIP_SYT_MASK; 876 } 877 878 static void generate_pkt_descs(struct amdtp_stream *s, const __be32 *ctx_header, unsigned int packets) 879 { 880 struct pkt_desc *descs = s->pkt_descs; 881 const struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 882 const unsigned int seq_size = s->ctx_data.rx.seq.size; 883 unsigned int dbc = s->data_block_counter; 884 unsigned int seq_head = s->ctx_data.rx.seq.head; 885 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 886 int i; 887 888 for (i = 0; i < packets; ++i) { 889 struct pkt_desc *desc = descs + i; 890 unsigned int index = (s->packet_index + i) % s->queue_size; 891 const struct seq_desc *seq = seq_descs + seq_head; 892 893 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 894 895 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 896 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 897 else 898 desc->syt = CIP_SYT_NO_INFO; 899 900 desc->data_blocks = seq->data_blocks; 901 902 if (s->flags & CIP_DBC_IS_END_EVENT) 903 dbc = (dbc + desc->data_blocks) & 0xff; 904 905 desc->data_block_counter = dbc; 906 907 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 908 dbc = (dbc + desc->data_blocks) & 0xff; 909 910 desc->ctx_payload = s->buffer.packets[index].buffer; 911 912 seq_head = (seq_head + 1) % seq_size; 913 914 ++ctx_header; 915 } 916 917 s->data_block_counter = dbc; 918 s->ctx_data.rx.seq.head = seq_head; 919 } 920 921 static inline void cancel_stream(struct amdtp_stream *s) 922 { 923 s->packet_index = -1; 924 if (current_work() == &s->period_work) 925 amdtp_stream_pcm_abort(s); 926 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 927 } 928 929 static void process_ctx_payloads(struct amdtp_stream *s, 930 const struct pkt_desc *descs, 931 unsigned int packets) 932 { 933 struct snd_pcm_substream *pcm; 934 unsigned int pcm_frames; 935 936 pcm = READ_ONCE(s->pcm); 937 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm); 938 if (pcm) 939 update_pcm_pointers(s, pcm, pcm_frames); 940 } 941 942 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 943 void *header, void *private_data) 944 { 945 struct amdtp_stream *s = private_data; 946 const struct amdtp_domain *d = s->domain; 947 const __be32 *ctx_header = header; 948 const unsigned int events_per_period = d->events_per_period; 949 unsigned int event_count = s->ctx_data.rx.event_count; 950 unsigned int pkt_header_length; 951 unsigned int packets; 952 int i; 953 954 if (s->packet_index < 0) 955 return; 956 957 // Calculate the number of packets in buffer and check XRUN. 958 packets = header_length / sizeof(*ctx_header); 959 960 pool_ideal_seq_descs(s, packets); 961 962 generate_pkt_descs(s, ctx_header, packets); 963 964 process_ctx_payloads(s, s->pkt_descs, packets); 965 966 if (!(s->flags & CIP_NO_HEADER)) 967 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 968 else 969 pkt_header_length = 0; 970 971 for (i = 0; i < packets; ++i) { 972 const struct pkt_desc *desc = s->pkt_descs + i; 973 struct { 974 struct fw_iso_packet params; 975 __be32 header[CIP_HEADER_QUADLETS]; 976 } template = { {0}, {0} }; 977 bool sched_irq = false; 978 979 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length, 980 desc->data_blocks, desc->data_block_counter, 981 desc->syt, i); 982 983 if (s == s->domain->irq_target) { 984 event_count += desc->data_blocks; 985 if (event_count >= events_per_period) { 986 event_count -= events_per_period; 987 sched_irq = true; 988 } 989 } 990 991 if (queue_out_packet(s, &template.params, sched_irq) < 0) { 992 cancel_stream(s); 993 return; 994 } 995 } 996 997 s->ctx_data.rx.event_count = event_count; 998 } 999 1000 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1001 void *header, void *private_data) 1002 { 1003 struct amdtp_stream *s = private_data; 1004 struct amdtp_domain *d = s->domain; 1005 const __be32 *ctx_header = header; 1006 unsigned int packets; 1007 unsigned int cycle; 1008 int i; 1009 1010 if (s->packet_index < 0) 1011 return; 1012 1013 packets = header_length / sizeof(*ctx_header); 1014 1015 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1016 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1017 1018 for (i = 0; i < packets; ++i) { 1019 struct fw_iso_packet params = { 1020 .header_length = 0, 1021 .payload_length = 0, 1022 }; 1023 bool sched_irq = (s == d->irq_target && i == packets - 1); 1024 1025 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1026 cancel_stream(s); 1027 return; 1028 } 1029 } 1030 } 1031 1032 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1033 void *header, void *private_data); 1034 1035 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1036 size_t header_length, void *header, void *private_data) 1037 { 1038 struct amdtp_stream *s = private_data; 1039 struct amdtp_domain *d = s->domain; 1040 __be32 *ctx_header = header; 1041 const unsigned int queue_size = s->queue_size; 1042 unsigned int packets; 1043 unsigned int offset; 1044 1045 if (s->packet_index < 0) 1046 return; 1047 1048 packets = header_length / sizeof(*ctx_header); 1049 1050 offset = 0; 1051 while (offset < packets) { 1052 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1053 1054 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1055 break; 1056 1057 ++offset; 1058 } 1059 1060 if (offset > 0) { 1061 unsigned int length = sizeof(*ctx_header) * offset; 1062 1063 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1064 if (amdtp_streaming_error(s)) 1065 return; 1066 1067 ctx_header += offset; 1068 header_length -= length; 1069 } 1070 1071 if (offset < packets) { 1072 s->ready_processing = true; 1073 wake_up(&s->ready_wait); 1074 1075 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1076 if (amdtp_streaming_error(s)) 1077 return; 1078 1079 if (s == d->irq_target) 1080 s->context->callback.sc = irq_target_callback; 1081 else 1082 s->context->callback.sc = process_rx_packets; 1083 } 1084 } 1085 1086 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1087 void *header, void *private_data) 1088 { 1089 struct amdtp_stream *s = private_data; 1090 __be32 *ctx_header = header; 1091 unsigned int packets; 1092 unsigned int desc_count; 1093 int i; 1094 int err; 1095 1096 if (s->packet_index < 0) 1097 return; 1098 1099 // Calculate the number of packets in buffer and check XRUN. 1100 packets = header_length / s->ctx_data.tx.ctx_header_size; 1101 1102 desc_count = 0; 1103 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets, &desc_count); 1104 if (err < 0) { 1105 if (err != -EAGAIN) { 1106 cancel_stream(s); 1107 return; 1108 } 1109 } else { 1110 process_ctx_payloads(s, s->pkt_descs, desc_count); 1111 } 1112 1113 for (i = 0; i < packets; ++i) { 1114 struct fw_iso_packet params = {0}; 1115 1116 if (queue_in_packet(s, ¶ms) < 0) { 1117 cancel_stream(s); 1118 return; 1119 } 1120 } 1121 } 1122 1123 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1124 void *header, void *private_data) 1125 { 1126 struct amdtp_stream *s = private_data; 1127 const __be32 *ctx_header = header; 1128 unsigned int packets; 1129 unsigned int cycle; 1130 int i; 1131 1132 if (s->packet_index < 0) 1133 return; 1134 1135 packets = header_length / s->ctx_data.tx.ctx_header_size; 1136 1137 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1138 cycle = compute_ohci_cycle_count(ctx_header[1]); 1139 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1140 1141 for (i = 0; i < packets; ++i) { 1142 struct fw_iso_packet params = {0}; 1143 1144 if (queue_in_packet(s, ¶ms) < 0) { 1145 cancel_stream(s); 1146 return; 1147 } 1148 } 1149 } 1150 1151 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1152 size_t header_length, void *header, void *private_data) 1153 { 1154 struct amdtp_stream *s = private_data; 1155 struct amdtp_domain *d = s->domain; 1156 __be32 *ctx_header; 1157 unsigned int packets; 1158 unsigned int offset; 1159 1160 if (s->packet_index < 0) 1161 return; 1162 1163 packets = header_length / s->ctx_data.tx.ctx_header_size; 1164 1165 offset = 0; 1166 ctx_header = header; 1167 while (offset < packets) { 1168 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1169 1170 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1171 break; 1172 1173 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1174 ++offset; 1175 } 1176 1177 ctx_header = header; 1178 1179 if (offset > 0) { 1180 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1181 1182 drop_tx_packets(context, tstamp, length, ctx_header, s); 1183 if (amdtp_streaming_error(s)) 1184 return; 1185 1186 ctx_header += length / sizeof(*ctx_header); 1187 header_length -= length; 1188 } 1189 1190 if (offset < packets) { 1191 s->ready_processing = true; 1192 wake_up(&s->ready_wait); 1193 1194 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1195 if (amdtp_streaming_error(s)) 1196 return; 1197 1198 context->callback.sc = process_tx_packets; 1199 } 1200 } 1201 1202 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1203 size_t header_length, void *header, void *private_data) 1204 { 1205 struct amdtp_stream *s = private_data; 1206 struct amdtp_domain *d = s->domain; 1207 __be32 *ctx_header; 1208 unsigned int count; 1209 unsigned int events; 1210 int i; 1211 1212 if (s->packet_index < 0) 1213 return; 1214 1215 count = header_length / s->ctx_data.tx.ctx_header_size; 1216 1217 // Attempt to detect any event in the batch of packets. 1218 events = 0; 1219 ctx_header = header; 1220 for (i = 0; i < count; ++i) { 1221 unsigned int payload_quads = 1222 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1223 unsigned int data_blocks; 1224 1225 if (s->flags & CIP_NO_HEADER) { 1226 data_blocks = payload_quads / s->data_block_quadlets; 1227 } else { 1228 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1229 1230 if (payload_quads < CIP_HEADER_QUADLETS) { 1231 data_blocks = 0; 1232 } else { 1233 payload_quads -= CIP_HEADER_QUADLETS; 1234 1235 if (s->flags & CIP_UNAWARE_SYT) { 1236 data_blocks = payload_quads / s->data_block_quadlets; 1237 } else { 1238 u32 cip1 = be32_to_cpu(cip_headers[1]); 1239 1240 // NODATA packet can includes any data blocks but they are 1241 // not available as event. 1242 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1243 data_blocks = 0; 1244 else 1245 data_blocks = payload_quads / s->data_block_quadlets; 1246 } 1247 } 1248 } 1249 1250 events += data_blocks; 1251 1252 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1253 } 1254 1255 drop_tx_packets(context, tstamp, header_length, header, s); 1256 1257 if (events > 0) 1258 s->ctx_data.tx.event_starts = true; 1259 1260 // Decide the cycle count to begin processing content of packet in IR contexts. 1261 { 1262 unsigned int stream_count = 0; 1263 unsigned int event_starts_count = 0; 1264 unsigned int cycle = UINT_MAX; 1265 1266 list_for_each_entry(s, &d->streams, list) { 1267 if (s->direction == AMDTP_IN_STREAM) { 1268 ++stream_count; 1269 if (s->ctx_data.tx.event_starts) 1270 ++event_starts_count; 1271 } 1272 } 1273 1274 if (stream_count == event_starts_count) { 1275 unsigned int next_cycle; 1276 1277 list_for_each_entry(s, &d->streams, list) { 1278 if (s->direction != AMDTP_IN_STREAM) 1279 continue; 1280 1281 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1282 d->processing_cycle.tx_init_skip); 1283 if (cycle == UINT_MAX || 1284 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1285 cycle = next_cycle; 1286 1287 s->context->callback.sc = process_tx_packets_intermediately; 1288 } 1289 1290 d->processing_cycle.tx_start = cycle; 1291 } 1292 } 1293 } 1294 1295 static void process_ctxs_in_domain(struct amdtp_domain *d) 1296 { 1297 struct amdtp_stream *s; 1298 1299 list_for_each_entry(s, &d->streams, list) { 1300 if (s != d->irq_target && amdtp_stream_running(s)) 1301 fw_iso_context_flush_completions(s->context); 1302 1303 if (amdtp_streaming_error(s)) 1304 goto error; 1305 } 1306 1307 return; 1308 error: 1309 if (amdtp_stream_running(d->irq_target)) 1310 cancel_stream(d->irq_target); 1311 1312 list_for_each_entry(s, &d->streams, list) { 1313 if (amdtp_stream_running(s)) 1314 cancel_stream(s); 1315 } 1316 } 1317 1318 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1319 void *header, void *private_data) 1320 { 1321 struct amdtp_stream *s = private_data; 1322 struct amdtp_domain *d = s->domain; 1323 1324 process_rx_packets(context, tstamp, header_length, header, private_data); 1325 process_ctxs_in_domain(d); 1326 } 1327 1328 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1329 size_t header_length, void *header, void *private_data) 1330 { 1331 struct amdtp_stream *s = private_data; 1332 struct amdtp_domain *d = s->domain; 1333 1334 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1335 process_ctxs_in_domain(d); 1336 } 1337 1338 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1339 size_t header_length, void *header, void *private_data) 1340 { 1341 struct amdtp_stream *s = private_data; 1342 struct amdtp_domain *d = s->domain; 1343 unsigned int cycle; 1344 1345 skip_rx_packets(context, tstamp, header_length, header, private_data); 1346 process_ctxs_in_domain(d); 1347 1348 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1349 // contexts are expected to start and get callback when reaching here. 1350 cycle = s->next_cycle; 1351 list_for_each_entry(s, &d->streams, list) { 1352 if (s->direction != AMDTP_OUT_STREAM) 1353 continue; 1354 1355 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1356 cycle = s->next_cycle; 1357 1358 if (s == d->irq_target) 1359 s->context->callback.sc = irq_target_callback_intermediately; 1360 else 1361 s->context->callback.sc = process_rx_packets_intermediately; 1362 } 1363 1364 d->processing_cycle.rx_start = cycle; 1365 } 1366 1367 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1368 // transmit first packet. 1369 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1370 u32 tstamp, size_t header_length, 1371 void *header, void *private_data) 1372 { 1373 struct amdtp_stream *s = private_data; 1374 struct amdtp_domain *d = s->domain; 1375 1376 if (s->direction == AMDTP_IN_STREAM) { 1377 context->callback.sc = drop_tx_packets_initially; 1378 } else { 1379 if (s == d->irq_target) 1380 context->callback.sc = irq_target_callback_skip; 1381 else 1382 context->callback.sc = skip_rx_packets; 1383 } 1384 1385 context->callback.sc(context, tstamp, header_length, header, s); 1386 } 1387 1388 /** 1389 * amdtp_stream_start - start transferring packets 1390 * @s: the AMDTP stream to start 1391 * @channel: the isochronous channel on the bus 1392 * @speed: firewire speed code 1393 * @queue_size: The number of packets in the queue. 1394 * @idle_irq_interval: the interval to queue packet during initial state. 1395 * 1396 * The stream cannot be started until it has been configured with 1397 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1398 * device can be started. 1399 */ 1400 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1401 unsigned int queue_size, unsigned int idle_irq_interval) 1402 { 1403 bool is_irq_target = (s == s->domain->irq_target); 1404 unsigned int ctx_header_size; 1405 unsigned int max_ctx_payload_size; 1406 enum dma_data_direction dir; 1407 int type, tag, err; 1408 1409 mutex_lock(&s->mutex); 1410 1411 if (WARN_ON(amdtp_stream_running(s) || 1412 (s->data_block_quadlets < 1))) { 1413 err = -EBADFD; 1414 goto err_unlock; 1415 } 1416 1417 if (s->direction == AMDTP_IN_STREAM) { 1418 // NOTE: IT context should be used for constant IRQ. 1419 if (is_irq_target) { 1420 err = -EINVAL; 1421 goto err_unlock; 1422 } 1423 1424 s->data_block_counter = UINT_MAX; 1425 } else { 1426 s->data_block_counter = 0; 1427 } 1428 1429 // initialize packet buffer. 1430 if (s->direction == AMDTP_IN_STREAM) { 1431 dir = DMA_FROM_DEVICE; 1432 type = FW_ISO_CONTEXT_RECEIVE; 1433 if (!(s->flags & CIP_NO_HEADER)) 1434 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1435 else 1436 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1437 } else { 1438 dir = DMA_TO_DEVICE; 1439 type = FW_ISO_CONTEXT_TRANSMIT; 1440 ctx_header_size = 0; // No effect for IT context. 1441 } 1442 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1443 1444 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1445 if (err < 0) 1446 goto err_unlock; 1447 s->queue_size = queue_size; 1448 1449 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1450 type, channel, speed, ctx_header_size, 1451 amdtp_stream_first_callback, s); 1452 if (IS_ERR(s->context)) { 1453 err = PTR_ERR(s->context); 1454 if (err == -EBUSY) 1455 dev_err(&s->unit->device, 1456 "no free stream on this controller\n"); 1457 goto err_buffer; 1458 } 1459 1460 amdtp_stream_update(s); 1461 1462 if (s->direction == AMDTP_IN_STREAM) { 1463 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1464 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1465 s->ctx_data.tx.event_starts = false; 1466 } else { 1467 static const struct { 1468 unsigned int data_block; 1469 unsigned int syt_offset; 1470 } *entry, initial_state[] = { 1471 [CIP_SFC_32000] = { 4, 3072 }, 1472 [CIP_SFC_48000] = { 6, 1024 }, 1473 [CIP_SFC_96000] = { 12, 1024 }, 1474 [CIP_SFC_192000] = { 24, 1024 }, 1475 [CIP_SFC_44100] = { 0, 67 }, 1476 [CIP_SFC_88200] = { 0, 67 }, 1477 [CIP_SFC_176400] = { 0, 67 }, 1478 }; 1479 1480 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1481 if (!s->ctx_data.rx.seq.descs) 1482 goto err_context; 1483 s->ctx_data.rx.seq.size = queue_size; 1484 s->ctx_data.rx.seq.tail = 0; 1485 s->ctx_data.rx.seq.head = 0; 1486 1487 entry = &initial_state[s->sfc]; 1488 s->ctx_data.rx.data_block_state = entry->data_block; 1489 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1490 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1491 1492 s->ctx_data.rx.event_count = 0; 1493 } 1494 1495 if (s->flags & CIP_NO_HEADER) 1496 s->tag = TAG_NO_CIP_HEADER; 1497 else 1498 s->tag = TAG_CIP; 1499 1500 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs), 1501 GFP_KERNEL); 1502 if (!s->pkt_descs) { 1503 err = -ENOMEM; 1504 goto err_context; 1505 } 1506 1507 s->packet_index = 0; 1508 do { 1509 struct fw_iso_packet params; 1510 1511 if (s->direction == AMDTP_IN_STREAM) { 1512 err = queue_in_packet(s, ¶ms); 1513 } else { 1514 bool sched_irq = false; 1515 1516 params.header_length = 0; 1517 params.payload_length = 0; 1518 1519 if (is_irq_target) { 1520 sched_irq = !((s->packet_index + 1) % 1521 idle_irq_interval); 1522 } 1523 1524 err = queue_out_packet(s, ¶ms, sched_irq); 1525 } 1526 if (err < 0) 1527 goto err_pkt_descs; 1528 } while (s->packet_index > 0); 1529 1530 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1531 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1532 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1533 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1534 1535 s->ready_processing = false; 1536 err = fw_iso_context_start(s->context, -1, 0, tag); 1537 if (err < 0) 1538 goto err_pkt_descs; 1539 1540 mutex_unlock(&s->mutex); 1541 1542 return 0; 1543 err_pkt_descs: 1544 kfree(s->pkt_descs); 1545 err_context: 1546 if (s->direction == AMDTP_OUT_STREAM) 1547 kfree(s->ctx_data.rx.seq.descs); 1548 fw_iso_context_destroy(s->context); 1549 s->context = ERR_PTR(-1); 1550 err_buffer: 1551 iso_packets_buffer_destroy(&s->buffer, s->unit); 1552 err_unlock: 1553 mutex_unlock(&s->mutex); 1554 1555 return err; 1556 } 1557 1558 /** 1559 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1560 * @d: the AMDTP domain. 1561 * @s: the AMDTP stream that transports the PCM data 1562 * 1563 * Returns the current buffer position, in frames. 1564 */ 1565 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1566 struct amdtp_stream *s) 1567 { 1568 struct amdtp_stream *irq_target = d->irq_target; 1569 1570 if (irq_target && amdtp_stream_running(irq_target)) { 1571 // This function is called in software IRQ context of 1572 // period_work or process context. 1573 // 1574 // When the software IRQ context was scheduled by software IRQ 1575 // context of IT contexts, queued packets were already handled. 1576 // Therefore, no need to flush the queue in buffer furthermore. 1577 // 1578 // When the process context reach here, some packets will be 1579 // already queued in the buffer. These packets should be handled 1580 // immediately to keep better granularity of PCM pointer. 1581 // 1582 // Later, the process context will sometimes schedules software 1583 // IRQ context of the period_work. Then, no need to flush the 1584 // queue by the same reason as described in the above 1585 if (current_work() != &s->period_work) { 1586 // Queued packet should be processed without any kernel 1587 // preemption to keep latency against bus cycle. 1588 preempt_disable(); 1589 fw_iso_context_flush_completions(irq_target->context); 1590 preempt_enable(); 1591 } 1592 } 1593 1594 return READ_ONCE(s->pcm_buffer_pointer); 1595 } 1596 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1597 1598 /** 1599 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1600 * @d: the AMDTP domain. 1601 * @s: the AMDTP stream that transfers the PCM frames 1602 * 1603 * Returns zero always. 1604 */ 1605 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1606 { 1607 struct amdtp_stream *irq_target = d->irq_target; 1608 1609 // Process isochronous packets for recent isochronous cycle to handle 1610 // queued PCM frames. 1611 if (irq_target && amdtp_stream_running(irq_target)) { 1612 // Queued packet should be processed without any kernel 1613 // preemption to keep latency against bus cycle. 1614 preempt_disable(); 1615 fw_iso_context_flush_completions(irq_target->context); 1616 preempt_enable(); 1617 } 1618 1619 return 0; 1620 } 1621 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1622 1623 /** 1624 * amdtp_stream_update - update the stream after a bus reset 1625 * @s: the AMDTP stream 1626 */ 1627 void amdtp_stream_update(struct amdtp_stream *s) 1628 { 1629 /* Precomputing. */ 1630 WRITE_ONCE(s->source_node_id_field, 1631 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1632 } 1633 EXPORT_SYMBOL(amdtp_stream_update); 1634 1635 /** 1636 * amdtp_stream_stop - stop sending packets 1637 * @s: the AMDTP stream to stop 1638 * 1639 * All PCM and MIDI devices of the stream must be stopped before the stream 1640 * itself can be stopped. 1641 */ 1642 static void amdtp_stream_stop(struct amdtp_stream *s) 1643 { 1644 mutex_lock(&s->mutex); 1645 1646 if (!amdtp_stream_running(s)) { 1647 mutex_unlock(&s->mutex); 1648 return; 1649 } 1650 1651 cancel_work_sync(&s->period_work); 1652 fw_iso_context_stop(s->context); 1653 fw_iso_context_destroy(s->context); 1654 s->context = ERR_PTR(-1); 1655 iso_packets_buffer_destroy(&s->buffer, s->unit); 1656 kfree(s->pkt_descs); 1657 1658 if (s->direction == AMDTP_OUT_STREAM) 1659 kfree(s->ctx_data.rx.seq.descs); 1660 1661 mutex_unlock(&s->mutex); 1662 } 1663 1664 /** 1665 * amdtp_stream_pcm_abort - abort the running PCM device 1666 * @s: the AMDTP stream about to be stopped 1667 * 1668 * If the isochronous stream needs to be stopped asynchronously, call this 1669 * function first to stop the PCM device. 1670 */ 1671 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1672 { 1673 struct snd_pcm_substream *pcm; 1674 1675 pcm = READ_ONCE(s->pcm); 1676 if (pcm) 1677 snd_pcm_stop_xrun(pcm); 1678 } 1679 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1680 1681 /** 1682 * amdtp_domain_init - initialize an AMDTP domain structure 1683 * @d: the AMDTP domain to initialize. 1684 */ 1685 int amdtp_domain_init(struct amdtp_domain *d) 1686 { 1687 INIT_LIST_HEAD(&d->streams); 1688 1689 d->events_per_period = 0; 1690 1691 return 0; 1692 } 1693 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1694 1695 /** 1696 * amdtp_domain_destroy - destroy an AMDTP domain structure 1697 * @d: the AMDTP domain to destroy. 1698 */ 1699 void amdtp_domain_destroy(struct amdtp_domain *d) 1700 { 1701 // At present nothing to do. 1702 return; 1703 } 1704 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1705 1706 /** 1707 * amdtp_domain_add_stream - register isoc context into the domain. 1708 * @d: the AMDTP domain. 1709 * @s: the AMDTP stream. 1710 * @channel: the isochronous channel on the bus. 1711 * @speed: firewire speed code. 1712 */ 1713 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1714 int channel, int speed) 1715 { 1716 struct amdtp_stream *tmp; 1717 1718 list_for_each_entry(tmp, &d->streams, list) { 1719 if (s == tmp) 1720 return -EBUSY; 1721 } 1722 1723 list_add(&s->list, &d->streams); 1724 1725 s->channel = channel; 1726 s->speed = speed; 1727 s->domain = d; 1728 1729 return 0; 1730 } 1731 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 1732 1733 /** 1734 * amdtp_domain_start - start sending packets for isoc context in the domain. 1735 * @d: the AMDTP domain. 1736 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 1737 * contexts. 1738 */ 1739 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles) 1740 { 1741 unsigned int events_per_buffer = d->events_per_buffer; 1742 unsigned int events_per_period = d->events_per_period; 1743 unsigned int queue_size; 1744 struct amdtp_stream *s; 1745 int err; 1746 1747 // Select an IT context as IRQ target. 1748 list_for_each_entry(s, &d->streams, list) { 1749 if (s->direction == AMDTP_OUT_STREAM) 1750 break; 1751 } 1752 if (!s) 1753 return -ENXIO; 1754 d->irq_target = s; 1755 1756 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 1757 1758 // This is a case that AMDTP streams in domain run just for MIDI 1759 // substream. Use the number of events equivalent to 10 msec as 1760 // interval of hardware IRQ. 1761 if (events_per_period == 0) 1762 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 1763 if (events_per_buffer == 0) 1764 events_per_buffer = events_per_period * 3; 1765 1766 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 1767 amdtp_rate_table[d->irq_target->sfc]); 1768 1769 list_for_each_entry(s, &d->streams, list) { 1770 unsigned int idle_irq_interval = 0; 1771 1772 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 1773 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 1774 amdtp_rate_table[d->irq_target->sfc]); 1775 } 1776 1777 // Starts immediately but actually DMA context starts several hundred cycles later. 1778 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 1779 if (err < 0) 1780 goto error; 1781 } 1782 1783 return 0; 1784 error: 1785 list_for_each_entry(s, &d->streams, list) 1786 amdtp_stream_stop(s); 1787 return err; 1788 } 1789 EXPORT_SYMBOL_GPL(amdtp_domain_start); 1790 1791 /** 1792 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 1793 * @d: the AMDTP domain to which the isoc contexts belong. 1794 */ 1795 void amdtp_domain_stop(struct amdtp_domain *d) 1796 { 1797 struct amdtp_stream *s, *next; 1798 1799 if (d->irq_target) 1800 amdtp_stream_stop(d->irq_target); 1801 1802 list_for_each_entry_safe(s, next, &d->streams, list) { 1803 list_del(&s->list); 1804 1805 if (s != d->irq_target) 1806 amdtp_stream_stop(s); 1807 } 1808 1809 d->events_per_period = 0; 1810 d->irq_target = NULL; 1811 } 1812 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 1813