xref: /openbmc/linux/sound/firewire/amdtp-stream.c (revision 3fc41476)
1 /*
2  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3  * with Common Isochronous Packet (IEC 61883-1) headers
4  *
5  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6  * Licensed under the terms of the GNU General Public License, version 2.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <sound/pcm.h>
15 #include <sound/pcm_params.h>
16 #include "amdtp-stream.h"
17 
18 #define TICKS_PER_CYCLE		3072
19 #define CYCLES_PER_SECOND	8000
20 #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
21 
22 /* Always support Linux tracing subsystem. */
23 #define CREATE_TRACE_POINTS
24 #include "amdtp-stream-trace.h"
25 
26 #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
27 
28 /* isochronous header parameters */
29 #define ISO_DATA_LENGTH_SHIFT	16
30 #define TAG_NO_CIP_HEADER	0
31 #define TAG_CIP			1
32 
33 /* common isochronous packet header parameters */
34 #define CIP_EOH_SHIFT		31
35 #define CIP_EOH			(1u << CIP_EOH_SHIFT)
36 #define CIP_EOH_MASK		0x80000000
37 #define CIP_SID_SHIFT		24
38 #define CIP_SID_MASK		0x3f000000
39 #define CIP_DBS_MASK		0x00ff0000
40 #define CIP_DBS_SHIFT		16
41 #define CIP_SPH_MASK		0x00000400
42 #define CIP_SPH_SHIFT		10
43 #define CIP_DBC_MASK		0x000000ff
44 #define CIP_FMT_SHIFT		24
45 #define CIP_FMT_MASK		0x3f000000
46 #define CIP_FDF_MASK		0x00ff0000
47 #define CIP_FDF_SHIFT		16
48 #define CIP_SYT_MASK		0x0000ffff
49 #define CIP_SYT_NO_INFO		0xffff
50 
51 /* Audio and Music transfer protocol specific parameters */
52 #define CIP_FMT_AM		0x10
53 #define AMDTP_FDF_NO_DATA	0xff
54 
55 /* TODO: make these configurable */
56 #define INTERRUPT_INTERVAL	16
57 #define QUEUE_LENGTH		48
58 
59 // For iso header, tstamp and 2 CIP header.
60 #define IR_CTX_HEADER_SIZE_CIP		16
61 // For iso header and tstamp.
62 #define IR_CTX_HEADER_SIZE_NO_CIP	8
63 #define HEADER_TSTAMP_MASK	0x0000ffff
64 
65 #define IT_PKT_HEADER_SIZE_CIP		8 // For 2 CIP header.
66 #define IT_PKT_HEADER_SIZE_NO_CIP	0 // Nothing.
67 
68 static void pcm_period_tasklet(unsigned long data);
69 
70 /**
71  * amdtp_stream_init - initialize an AMDTP stream structure
72  * @s: the AMDTP stream to initialize
73  * @unit: the target of the stream
74  * @dir: the direction of stream
75  * @flags: the packet transmission method to use
76  * @fmt: the value of fmt field in CIP header
77  * @process_data_blocks: callback handler to process data blocks
78  * @protocol_size: the size to allocate newly for protocol
79  */
80 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
81 		      enum amdtp_stream_direction dir, enum cip_flags flags,
82 		      unsigned int fmt,
83 		      amdtp_stream_process_data_blocks_t process_data_blocks,
84 		      unsigned int protocol_size)
85 {
86 	if (process_data_blocks == NULL)
87 		return -EINVAL;
88 
89 	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
90 	if (!s->protocol)
91 		return -ENOMEM;
92 
93 	s->unit = unit;
94 	s->direction = dir;
95 	s->flags = flags;
96 	s->context = ERR_PTR(-1);
97 	mutex_init(&s->mutex);
98 	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
99 	s->packet_index = 0;
100 
101 	init_waitqueue_head(&s->callback_wait);
102 	s->callbacked = false;
103 
104 	s->fmt = fmt;
105 	s->process_data_blocks = process_data_blocks;
106 
107 	return 0;
108 }
109 EXPORT_SYMBOL(amdtp_stream_init);
110 
111 /**
112  * amdtp_stream_destroy - free stream resources
113  * @s: the AMDTP stream to destroy
114  */
115 void amdtp_stream_destroy(struct amdtp_stream *s)
116 {
117 	/* Not initialized. */
118 	if (s->protocol == NULL)
119 		return;
120 
121 	WARN_ON(amdtp_stream_running(s));
122 	kfree(s->protocol);
123 	mutex_destroy(&s->mutex);
124 }
125 EXPORT_SYMBOL(amdtp_stream_destroy);
126 
127 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
128 	[CIP_SFC_32000]  =  8,
129 	[CIP_SFC_44100]  =  8,
130 	[CIP_SFC_48000]  =  8,
131 	[CIP_SFC_88200]  = 16,
132 	[CIP_SFC_96000]  = 16,
133 	[CIP_SFC_176400] = 32,
134 	[CIP_SFC_192000] = 32,
135 };
136 EXPORT_SYMBOL(amdtp_syt_intervals);
137 
138 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
139 	[CIP_SFC_32000]  =  32000,
140 	[CIP_SFC_44100]  =  44100,
141 	[CIP_SFC_48000]  =  48000,
142 	[CIP_SFC_88200]  =  88200,
143 	[CIP_SFC_96000]  =  96000,
144 	[CIP_SFC_176400] = 176400,
145 	[CIP_SFC_192000] = 192000,
146 };
147 EXPORT_SYMBOL(amdtp_rate_table);
148 
149 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
150 				    struct snd_pcm_hw_rule *rule)
151 {
152 	struct snd_interval *s = hw_param_interval(params, rule->var);
153 	const struct snd_interval *r =
154 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
155 	struct snd_interval t = {0};
156 	unsigned int step = 0;
157 	int i;
158 
159 	for (i = 0; i < CIP_SFC_COUNT; ++i) {
160 		if (snd_interval_test(r, amdtp_rate_table[i]))
161 			step = max(step, amdtp_syt_intervals[i]);
162 	}
163 
164 	t.min = roundup(s->min, step);
165 	t.max = rounddown(s->max, step);
166 	t.integer = 1;
167 
168 	return snd_interval_refine(s, &t);
169 }
170 
171 /**
172  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
173  * @s:		the AMDTP stream, which must be initialized.
174  * @runtime:	the PCM substream runtime
175  */
176 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
177 					struct snd_pcm_runtime *runtime)
178 {
179 	struct snd_pcm_hardware *hw = &runtime->hw;
180 	int err;
181 
182 	hw->info = SNDRV_PCM_INFO_BATCH |
183 		   SNDRV_PCM_INFO_BLOCK_TRANSFER |
184 		   SNDRV_PCM_INFO_INTERLEAVED |
185 		   SNDRV_PCM_INFO_JOINT_DUPLEX |
186 		   SNDRV_PCM_INFO_MMAP |
187 		   SNDRV_PCM_INFO_MMAP_VALID;
188 
189 	/* SNDRV_PCM_INFO_BATCH */
190 	hw->periods_min = 2;
191 	hw->periods_max = UINT_MAX;
192 
193 	/* bytes for a frame */
194 	hw->period_bytes_min = 4 * hw->channels_max;
195 
196 	/* Just to prevent from allocating much pages. */
197 	hw->period_bytes_max = hw->period_bytes_min * 2048;
198 	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
199 
200 	/*
201 	 * Currently firewire-lib processes 16 packets in one software
202 	 * interrupt callback. This equals to 2msec but actually the
203 	 * interval of the interrupts has a jitter.
204 	 * Additionally, even if adding a constraint to fit period size to
205 	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
206 	 * depending on sampling rate.
207 	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
208 	 * Here let us use 5msec for safe period interrupt.
209 	 */
210 	err = snd_pcm_hw_constraint_minmax(runtime,
211 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
212 					   5000, UINT_MAX);
213 	if (err < 0)
214 		goto end;
215 
216 	/* Non-Blocking stream has no more constraints */
217 	if (!(s->flags & CIP_BLOCKING))
218 		goto end;
219 
220 	/*
221 	 * One AMDTP packet can include some frames. In blocking mode, the
222 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
223 	 * depending on its sampling rate. For accurate period interrupt, it's
224 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
225 	 */
226 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
227 				  apply_constraint_to_size, NULL,
228 				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
229 				  SNDRV_PCM_HW_PARAM_RATE, -1);
230 	if (err < 0)
231 		goto end;
232 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
233 				  apply_constraint_to_size, NULL,
234 				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
235 				  SNDRV_PCM_HW_PARAM_RATE, -1);
236 	if (err < 0)
237 		goto end;
238 end:
239 	return err;
240 }
241 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
242 
243 /**
244  * amdtp_stream_set_parameters - set stream parameters
245  * @s: the AMDTP stream to configure
246  * @rate: the sample rate
247  * @data_block_quadlets: the size of a data block in quadlet unit
248  *
249  * The parameters must be set before the stream is started, and must not be
250  * changed while the stream is running.
251  */
252 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
253 				unsigned int data_block_quadlets)
254 {
255 	unsigned int sfc;
256 
257 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
258 		if (amdtp_rate_table[sfc] == rate)
259 			break;
260 	}
261 	if (sfc == ARRAY_SIZE(amdtp_rate_table))
262 		return -EINVAL;
263 
264 	s->sfc = sfc;
265 	s->data_block_quadlets = data_block_quadlets;
266 	s->syt_interval = amdtp_syt_intervals[sfc];
267 
268 	// default buffering in the device.
269 	if (s->direction == AMDTP_OUT_STREAM) {
270 		s->ctx_data.rx.transfer_delay =
271 					TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
272 
273 		if (s->flags & CIP_BLOCKING) {
274 			// additional buffering needed to adjust for no-data
275 			// packets.
276 			s->ctx_data.rx.transfer_delay +=
277 				TICKS_PER_SECOND * s->syt_interval / rate;
278 		}
279 	}
280 
281 	return 0;
282 }
283 EXPORT_SYMBOL(amdtp_stream_set_parameters);
284 
285 /**
286  * amdtp_stream_get_max_payload - get the stream's packet size
287  * @s: the AMDTP stream
288  *
289  * This function must not be called before the stream has been configured
290  * with amdtp_stream_set_parameters().
291  */
292 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
293 {
294 	unsigned int multiplier = 1;
295 	unsigned int cip_header_size = 0;
296 
297 	if (s->flags & CIP_JUMBO_PAYLOAD)
298 		multiplier = 5;
299 	if (!(s->flags & CIP_NO_HEADER))
300 		cip_header_size = sizeof(__be32) * 2;
301 
302 	return cip_header_size +
303 		s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
304 }
305 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
306 
307 /**
308  * amdtp_stream_pcm_prepare - prepare PCM device for running
309  * @s: the AMDTP stream
310  *
311  * This function should be called from the PCM device's .prepare callback.
312  */
313 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
314 {
315 	tasklet_kill(&s->period_tasklet);
316 	s->pcm_buffer_pointer = 0;
317 	s->pcm_period_pointer = 0;
318 }
319 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
320 
321 static unsigned int calculate_data_blocks(struct amdtp_stream *s,
322 					  unsigned int syt)
323 {
324 	unsigned int phase, data_blocks;
325 
326 	/* Blocking mode. */
327 	if (s->flags & CIP_BLOCKING) {
328 		/* This module generate empty packet for 'no data'. */
329 		if (syt == CIP_SYT_NO_INFO)
330 			data_blocks = 0;
331 		else
332 			data_blocks = s->syt_interval;
333 	/* Non-blocking mode. */
334 	} else {
335 		if (!cip_sfc_is_base_44100(s->sfc)) {
336 			// Sample_rate / 8000 is an integer, and precomputed.
337 			data_blocks = s->ctx_data.rx.data_block_state;
338 		} else {
339 			phase = s->ctx_data.rx.data_block_state;
340 
341 		/*
342 		 * This calculates the number of data blocks per packet so that
343 		 * 1) the overall rate is correct and exactly synchronized to
344 		 *    the bus clock, and
345 		 * 2) packets with a rounded-up number of blocks occur as early
346 		 *    as possible in the sequence (to prevent underruns of the
347 		 *    device's buffer).
348 		 */
349 			if (s->sfc == CIP_SFC_44100)
350 				/* 6 6 5 6 5 6 5 ... */
351 				data_blocks = 5 + ((phase & 1) ^
352 						   (phase == 0 || phase >= 40));
353 			else
354 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
355 				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
356 			if (++phase >= (80 >> (s->sfc >> 1)))
357 				phase = 0;
358 			s->ctx_data.rx.data_block_state = phase;
359 		}
360 	}
361 
362 	return data_blocks;
363 }
364 
365 static unsigned int calculate_syt(struct amdtp_stream *s,
366 				  unsigned int cycle)
367 {
368 	unsigned int syt_offset, phase, index, syt;
369 
370 	if (s->ctx_data.rx.last_syt_offset < TICKS_PER_CYCLE) {
371 		if (!cip_sfc_is_base_44100(s->sfc))
372 			syt_offset = s->ctx_data.rx.last_syt_offset +
373 				     s->ctx_data.rx.syt_offset_state;
374 		else {
375 		/*
376 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
377 		 *   n * SYT_INTERVAL * 24576000 / sample_rate
378 		 * Modulo TICKS_PER_CYCLE, the difference between successive
379 		 * elements is about 1386.23.  Rounding the results of this
380 		 * formula to the SYT precision results in a sequence of
381 		 * differences that begins with:
382 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
383 		 * This code generates _exactly_ the same sequence.
384 		 */
385 			phase = s->ctx_data.rx.syt_offset_state;
386 			index = phase % 13;
387 			syt_offset = s->ctx_data.rx.last_syt_offset;
388 			syt_offset += 1386 + ((index && !(index & 3)) ||
389 					      phase == 146);
390 			if (++phase >= 147)
391 				phase = 0;
392 			s->ctx_data.rx.syt_offset_state = phase;
393 		}
394 	} else
395 		syt_offset = s->ctx_data.rx.last_syt_offset - TICKS_PER_CYCLE;
396 	s->ctx_data.rx.last_syt_offset = syt_offset;
397 
398 	if (syt_offset < TICKS_PER_CYCLE) {
399 		syt_offset += s->ctx_data.rx.transfer_delay;
400 		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
401 		syt += syt_offset % TICKS_PER_CYCLE;
402 
403 		return syt & CIP_SYT_MASK;
404 	} else {
405 		return CIP_SYT_NO_INFO;
406 	}
407 }
408 
409 static void update_pcm_pointers(struct amdtp_stream *s,
410 				struct snd_pcm_substream *pcm,
411 				unsigned int frames)
412 {
413 	unsigned int ptr;
414 
415 	ptr = s->pcm_buffer_pointer + frames;
416 	if (ptr >= pcm->runtime->buffer_size)
417 		ptr -= pcm->runtime->buffer_size;
418 	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
419 
420 	s->pcm_period_pointer += frames;
421 	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
422 		s->pcm_period_pointer -= pcm->runtime->period_size;
423 		tasklet_hi_schedule(&s->period_tasklet);
424 	}
425 }
426 
427 static void pcm_period_tasklet(unsigned long data)
428 {
429 	struct amdtp_stream *s = (void *)data;
430 	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
431 
432 	if (pcm)
433 		snd_pcm_period_elapsed(pcm);
434 }
435 
436 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params)
437 {
438 	int err;
439 
440 	params->interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
441 	params->tag = s->tag;
442 	params->sy = 0;
443 
444 	err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
445 				   s->buffer.packets[s->packet_index].offset);
446 	if (err < 0) {
447 		dev_err(&s->unit->device, "queueing error: %d\n", err);
448 		goto end;
449 	}
450 
451 	if (++s->packet_index >= QUEUE_LENGTH)
452 		s->packet_index = 0;
453 end:
454 	return err;
455 }
456 
457 static inline int queue_out_packet(struct amdtp_stream *s,
458 				   struct fw_iso_packet *params)
459 {
460 	params->skip =
461 		!!(params->header_length == 0 && params->payload_length == 0);
462 	return queue_packet(s, params);
463 }
464 
465 static inline int queue_in_packet(struct amdtp_stream *s,
466 				  struct fw_iso_packet *params)
467 {
468 	// Queue one packet for IR context.
469 	params->header_length = s->ctx_data.tx.ctx_header_size;
470 	params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
471 	params->skip = false;
472 	return queue_packet(s, params);
473 }
474 
475 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
476 				unsigned int syt)
477 {
478 	cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
479 				(s->data_block_quadlets << CIP_DBS_SHIFT) |
480 				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
481 				s->data_block_counter);
482 	cip_header[1] = cpu_to_be32(CIP_EOH |
483 			((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
484 			((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
485 			(syt & CIP_SYT_MASK));
486 }
487 
488 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
489 				struct fw_iso_packet *params,
490 				unsigned int data_blocks, unsigned int syt,
491 				unsigned int index)
492 {
493 	__be32 *cip_header;
494 
495 	if (s->flags & CIP_DBC_IS_END_EVENT) {
496 		s->data_block_counter =
497 				(s->data_block_counter + data_blocks) & 0xff;
498 	}
499 
500 	if (!(s->flags & CIP_NO_HEADER)) {
501 		cip_header = (__be32 *)params->header;
502 		generate_cip_header(s, cip_header, syt);
503 		params->header_length = 2 * sizeof(__be32);
504 	} else {
505 		cip_header = NULL;
506 	}
507 
508 	if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
509 		s->data_block_counter =
510 				(s->data_block_counter + data_blocks) & 0xff;
511 	}
512 
513 	params->payload_length =
514 			data_blocks * sizeof(__be32) * s->data_block_quadlets;
515 
516 	trace_amdtp_packet(s, cycle, cip_header, params->payload_length,
517 			   data_blocks, index);
518 }
519 
520 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
521 			    unsigned int payload_length,
522 			    unsigned int *data_blocks, unsigned int *syt)
523 {
524 	u32 cip_header[2];
525 	unsigned int sph;
526 	unsigned int fmt;
527 	unsigned int fdf;
528 	unsigned int data_block_counter;
529 	bool lost;
530 
531 	cip_header[0] = be32_to_cpu(buf[0]);
532 	cip_header[1] = be32_to_cpu(buf[1]);
533 
534 	/*
535 	 * This module supports 'Two-quadlet CIP header with SYT field'.
536 	 * For convenience, also check FMT field is AM824 or not.
537 	 */
538 	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
539 	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
540 	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
541 		dev_info_ratelimited(&s->unit->device,
542 				"Invalid CIP header for AMDTP: %08X:%08X\n",
543 				cip_header[0], cip_header[1]);
544 		return -EAGAIN;
545 	}
546 
547 	/* Check valid protocol or not. */
548 	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
549 	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
550 	if (sph != s->sph || fmt != s->fmt) {
551 		dev_info_ratelimited(&s->unit->device,
552 				     "Detect unexpected protocol: %08x %08x\n",
553 				     cip_header[0], cip_header[1]);
554 		return -EAGAIN;
555 	}
556 
557 	/* Calculate data blocks */
558 	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
559 	if (payload_length < sizeof(__be32) * 2 ||
560 	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
561 		*data_blocks = 0;
562 	} else {
563 		unsigned int data_block_quadlets =
564 				(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
565 		/* avoid division by zero */
566 		if (data_block_quadlets == 0) {
567 			dev_err(&s->unit->device,
568 				"Detect invalid value in dbs field: %08X\n",
569 				cip_header[0]);
570 			return -EPROTO;
571 		}
572 		if (s->flags & CIP_WRONG_DBS)
573 			data_block_quadlets = s->data_block_quadlets;
574 
575 		*data_blocks = (payload_length / sizeof(__be32) - 2) /
576 							data_block_quadlets;
577 	}
578 
579 	/* Check data block counter continuity */
580 	data_block_counter = cip_header[0] & CIP_DBC_MASK;
581 	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
582 	    s->data_block_counter != UINT_MAX)
583 		data_block_counter = s->data_block_counter;
584 
585 	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
586 	     data_block_counter == s->ctx_data.tx.first_dbc) ||
587 	    s->data_block_counter == UINT_MAX) {
588 		lost = false;
589 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
590 		lost = data_block_counter != s->data_block_counter;
591 	} else {
592 		unsigned int dbc_interval;
593 
594 		if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
595 			dbc_interval = s->ctx_data.tx.dbc_interval;
596 		else
597 			dbc_interval = *data_blocks;
598 
599 		lost = data_block_counter !=
600 		       ((s->data_block_counter + dbc_interval) & 0xff);
601 	}
602 
603 	if (lost) {
604 		dev_err(&s->unit->device,
605 			"Detect discontinuity of CIP: %02X %02X\n",
606 			s->data_block_counter, data_block_counter);
607 		return -EIO;
608 	}
609 
610 	*syt = cip_header[1] & CIP_SYT_MASK;
611 
612 	if (s->flags & CIP_DBC_IS_END_EVENT) {
613 		s->data_block_counter = data_block_counter;
614 	} else {
615 		s->data_block_counter =
616 				(data_block_counter + *data_blocks) & 0xff;
617 	}
618 
619 	return 0;
620 }
621 
622 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
623 			       const __be32 *ctx_header,
624 			       unsigned int *payload_length,
625 			       unsigned int *data_blocks,
626 			       unsigned int *syt, unsigned int index)
627 {
628 	const __be32 *cip_header;
629 	int err;
630 
631 	*payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
632 	if (*payload_length > s->ctx_data.tx.ctx_header_size +
633 					s->ctx_data.tx.max_ctx_payload_length) {
634 		dev_err(&s->unit->device,
635 			"Detect jumbo payload: %04x %04x\n",
636 			*payload_length, s->ctx_data.tx.max_ctx_payload_length);
637 		return -EIO;
638 	}
639 
640 	if (!(s->flags & CIP_NO_HEADER)) {
641 		cip_header = ctx_header + 2;
642 		err = check_cip_header(s, cip_header, *payload_length,
643 				       data_blocks, syt);
644 		if (err < 0)
645 			return err;
646 	} else {
647 		cip_header = NULL;
648 		*data_blocks = *payload_length / sizeof(__be32) /
649 			       s->data_block_quadlets;
650 		*syt = 0;
651 		s->data_block_counter =
652 				(s->data_block_counter + *data_blocks) & 0xff;
653 	}
654 
655 	trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks,
656 			   index);
657 
658 	return 0;
659 }
660 
661 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
662 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
663 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
664 static inline u32 compute_cycle_count(__be32 ctx_header_tstamp)
665 {
666 	u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
667 	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
668 }
669 
670 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
671 {
672 	cycle += addend;
673 	if (cycle >= 8 * CYCLES_PER_SECOND)
674 		cycle -= 8 * CYCLES_PER_SECOND;
675 	return cycle;
676 }
677 
678 // Align to actual cycle count for the packet which is going to be scheduled.
679 // This module queued the same number of isochronous cycle as QUEUE_LENGTH to
680 // skip isochronous cycle, therefore it's OK to just increment the cycle by
681 // QUEUE_LENGTH for scheduled cycle.
682 static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp)
683 {
684 	u32 cycle = compute_cycle_count(ctx_header_tstamp);
685 	return increment_cycle_count(cycle, QUEUE_LENGTH);
686 }
687 
688 static inline void cancel_stream(struct amdtp_stream *s)
689 {
690 	s->packet_index = -1;
691 	if (in_interrupt())
692 		amdtp_stream_pcm_abort(s);
693 	WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
694 }
695 
696 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
697 				size_t header_length, void *header,
698 				void *private_data)
699 {
700 	struct amdtp_stream *s = private_data;
701 	const __be32 *ctx_header = header;
702 	unsigned int i, packets = header_length / sizeof(*ctx_header);
703 
704 	if (s->packet_index < 0)
705 		return;
706 
707 	for (i = 0; i < packets; ++i) {
708 		u32 cycle;
709 		unsigned int syt;
710 		unsigned int data_block;
711 		__be32 *buffer;
712 		unsigned int pcm_frames;
713 		struct {
714 			struct fw_iso_packet params;
715 			__be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)];
716 		} template = { {0}, {0} };
717 		struct snd_pcm_substream *pcm;
718 
719 		cycle = compute_it_cycle(*ctx_header);
720 		syt = calculate_syt(s, cycle);
721 		data_block = calculate_data_blocks(s, syt);
722 		buffer = s->buffer.packets[s->packet_index].buffer;
723 		pcm_frames = s->process_data_blocks(s, buffer, data_block, &syt);
724 
725 		build_it_pkt_header(s, cycle, &template.params, data_block, syt,
726 				    i);
727 
728 		if (queue_out_packet(s, &template.params) < 0) {
729 			cancel_stream(s);
730 			return;
731 		}
732 
733 		pcm = READ_ONCE(s->pcm);
734 		if (pcm && pcm_frames > 0)
735 			update_pcm_pointers(s, pcm, pcm_frames);
736 
737 		++ctx_header;
738 	}
739 
740 	fw_iso_context_queue_flush(s->context);
741 }
742 
743 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
744 			       size_t header_length, void *header,
745 			       void *private_data)
746 {
747 	struct amdtp_stream *s = private_data;
748 	unsigned int i, packets;
749 	__be32 *ctx_header = header;
750 
751 	if (s->packet_index < 0)
752 		return;
753 
754 	// The number of packets in buffer.
755 	packets = header_length / s->ctx_data.tx.ctx_header_size;
756 
757 	for (i = 0; i < packets; i++) {
758 		u32 cycle;
759 		unsigned int payload_length;
760 		unsigned int data_block;
761 		unsigned int syt;
762 		__be32 *buffer;
763 		unsigned int pcm_frames = 0;
764 		struct fw_iso_packet params = {0};
765 		struct snd_pcm_substream *pcm;
766 		int err;
767 
768 		cycle = compute_cycle_count(ctx_header[1]);
769 		err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length,
770 					  &data_block, &syt, i);
771 		if (err < 0 && err != -EAGAIN)
772 			break;
773 		if (err >= 0) {
774 			buffer = s->buffer.packets[s->packet_index].buffer;
775 			pcm_frames = s->process_data_blocks(s, buffer,
776 							    data_block, &syt);
777 		}
778 
779 		if (queue_in_packet(s, &params) < 0)
780 			break;
781 
782 		pcm = READ_ONCE(s->pcm);
783 		if (pcm && pcm_frames > 0)
784 			update_pcm_pointers(s, pcm, pcm_frames);
785 
786 		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
787 	}
788 
789 	/* Queueing error or detecting invalid payload. */
790 	if (i < packets) {
791 		cancel_stream(s);
792 		return;
793 	}
794 
795 	fw_iso_context_queue_flush(s->context);
796 }
797 
798 /* this is executed one time */
799 static void amdtp_stream_first_callback(struct fw_iso_context *context,
800 					u32 tstamp, size_t header_length,
801 					void *header, void *private_data)
802 {
803 	struct amdtp_stream *s = private_data;
804 	const __be32 *ctx_header = header;
805 	u32 cycle;
806 
807 	/*
808 	 * For in-stream, first packet has come.
809 	 * For out-stream, prepared to transmit first packet
810 	 */
811 	s->callbacked = true;
812 	wake_up(&s->callback_wait);
813 
814 	if (s->direction == AMDTP_IN_STREAM) {
815 		cycle = compute_cycle_count(ctx_header[1]);
816 
817 		context->callback.sc = in_stream_callback;
818 	} else {
819 		cycle = compute_it_cycle(*ctx_header);
820 
821 		context->callback.sc = out_stream_callback;
822 	}
823 
824 	s->start_cycle = cycle;
825 
826 	context->callback.sc(context, tstamp, header_length, header, s);
827 }
828 
829 /**
830  * amdtp_stream_start - start transferring packets
831  * @s: the AMDTP stream to start
832  * @channel: the isochronous channel on the bus
833  * @speed: firewire speed code
834  *
835  * The stream cannot be started until it has been configured with
836  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
837  * device can be started.
838  */
839 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
840 {
841 	static const struct {
842 		unsigned int data_block;
843 		unsigned int syt_offset;
844 	} *entry, initial_state[] = {
845 		[CIP_SFC_32000]  = {  4, 3072 },
846 		[CIP_SFC_48000]  = {  6, 1024 },
847 		[CIP_SFC_96000]  = { 12, 1024 },
848 		[CIP_SFC_192000] = { 24, 1024 },
849 		[CIP_SFC_44100]  = {  0,   67 },
850 		[CIP_SFC_88200]  = {  0,   67 },
851 		[CIP_SFC_176400] = {  0,   67 },
852 	};
853 	unsigned int ctx_header_size;
854 	unsigned int max_ctx_payload_size;
855 	enum dma_data_direction dir;
856 	int type, tag, err;
857 
858 	mutex_lock(&s->mutex);
859 
860 	if (WARN_ON(amdtp_stream_running(s) ||
861 		    (s->data_block_quadlets < 1))) {
862 		err = -EBADFD;
863 		goto err_unlock;
864 	}
865 
866 	if (s->direction == AMDTP_IN_STREAM) {
867 		s->data_block_counter = UINT_MAX;
868 	} else {
869 		entry = &initial_state[s->sfc];
870 
871 		s->data_block_counter = 0;
872 		s->ctx_data.rx.data_block_state = entry->data_block;
873 		s->ctx_data.rx.syt_offset_state = entry->syt_offset;
874 		s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
875 	}
876 
877 	/* initialize packet buffer */
878 	if (s->direction == AMDTP_IN_STREAM) {
879 		dir = DMA_FROM_DEVICE;
880 		type = FW_ISO_CONTEXT_RECEIVE;
881 		if (!(s->flags & CIP_NO_HEADER))
882 			ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
883 		else
884 			ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
885 
886 		max_ctx_payload_size = amdtp_stream_get_max_payload(s) -
887 				       ctx_header_size;
888 	} else {
889 		dir = DMA_TO_DEVICE;
890 		type = FW_ISO_CONTEXT_TRANSMIT;
891 		ctx_header_size = 0;	// No effect for IT context.
892 
893 		max_ctx_payload_size = amdtp_stream_get_max_payload(s);
894 		if (!(s->flags & CIP_NO_HEADER))
895 			max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP;
896 	}
897 
898 	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
899 				      max_ctx_payload_size, dir);
900 	if (err < 0)
901 		goto err_unlock;
902 
903 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
904 					  type, channel, speed, ctx_header_size,
905 					  amdtp_stream_first_callback, s);
906 	if (IS_ERR(s->context)) {
907 		err = PTR_ERR(s->context);
908 		if (err == -EBUSY)
909 			dev_err(&s->unit->device,
910 				"no free stream on this controller\n");
911 		goto err_buffer;
912 	}
913 
914 	amdtp_stream_update(s);
915 
916 	if (s->direction == AMDTP_IN_STREAM) {
917 		s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
918 		s->ctx_data.tx.ctx_header_size = ctx_header_size;
919 	}
920 
921 	if (s->flags & CIP_NO_HEADER)
922 		s->tag = TAG_NO_CIP_HEADER;
923 	else
924 		s->tag = TAG_CIP;
925 
926 	s->packet_index = 0;
927 	do {
928 		struct fw_iso_packet params;
929 		if (s->direction == AMDTP_IN_STREAM) {
930 			err = queue_in_packet(s, &params);
931 		} else {
932 			params.header_length = 0;
933 			params.payload_length = 0;
934 			err = queue_out_packet(s, &params);
935 		}
936 		if (err < 0)
937 			goto err_context;
938 	} while (s->packet_index > 0);
939 
940 	/* NOTE: TAG1 matches CIP. This just affects in stream. */
941 	tag = FW_ISO_CONTEXT_MATCH_TAG1;
942 	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
943 		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
944 
945 	s->callbacked = false;
946 	err = fw_iso_context_start(s->context, -1, 0, tag);
947 	if (err < 0)
948 		goto err_context;
949 
950 	mutex_unlock(&s->mutex);
951 
952 	return 0;
953 
954 err_context:
955 	fw_iso_context_destroy(s->context);
956 	s->context = ERR_PTR(-1);
957 err_buffer:
958 	iso_packets_buffer_destroy(&s->buffer, s->unit);
959 err_unlock:
960 	mutex_unlock(&s->mutex);
961 
962 	return err;
963 }
964 EXPORT_SYMBOL(amdtp_stream_start);
965 
966 /**
967  * amdtp_stream_pcm_pointer - get the PCM buffer position
968  * @s: the AMDTP stream that transports the PCM data
969  *
970  * Returns the current buffer position, in frames.
971  */
972 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
973 {
974 	/*
975 	 * This function is called in software IRQ context of period_tasklet or
976 	 * process context.
977 	 *
978 	 * When the software IRQ context was scheduled by software IRQ context
979 	 * of IR/IT contexts, queued packets were already handled. Therefore,
980 	 * no need to flush the queue in buffer anymore.
981 	 *
982 	 * When the process context reach here, some packets will be already
983 	 * queued in the buffer. These packets should be handled immediately
984 	 * to keep better granularity of PCM pointer.
985 	 *
986 	 * Later, the process context will sometimes schedules software IRQ
987 	 * context of the period_tasklet. Then, no need to flush the queue by
988 	 * the same reason as described for IR/IT contexts.
989 	 */
990 	if (!in_interrupt() && amdtp_stream_running(s))
991 		fw_iso_context_flush_completions(s->context);
992 
993 	return READ_ONCE(s->pcm_buffer_pointer);
994 }
995 EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
996 
997 /**
998  * amdtp_stream_pcm_ack - acknowledge queued PCM frames
999  * @s: the AMDTP stream that transfers the PCM frames
1000  *
1001  * Returns zero always.
1002  */
1003 int amdtp_stream_pcm_ack(struct amdtp_stream *s)
1004 {
1005 	/*
1006 	 * Process isochronous packets for recent isochronous cycle to handle
1007 	 * queued PCM frames.
1008 	 */
1009 	if (amdtp_stream_running(s))
1010 		fw_iso_context_flush_completions(s->context);
1011 
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL(amdtp_stream_pcm_ack);
1015 
1016 /**
1017  * amdtp_stream_update - update the stream after a bus reset
1018  * @s: the AMDTP stream
1019  */
1020 void amdtp_stream_update(struct amdtp_stream *s)
1021 {
1022 	/* Precomputing. */
1023 	WRITE_ONCE(s->source_node_id_field,
1024                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1025 }
1026 EXPORT_SYMBOL(amdtp_stream_update);
1027 
1028 /**
1029  * amdtp_stream_stop - stop sending packets
1030  * @s: the AMDTP stream to stop
1031  *
1032  * All PCM and MIDI devices of the stream must be stopped before the stream
1033  * itself can be stopped.
1034  */
1035 void amdtp_stream_stop(struct amdtp_stream *s)
1036 {
1037 	mutex_lock(&s->mutex);
1038 
1039 	if (!amdtp_stream_running(s)) {
1040 		mutex_unlock(&s->mutex);
1041 		return;
1042 	}
1043 
1044 	tasklet_kill(&s->period_tasklet);
1045 	fw_iso_context_stop(s->context);
1046 	fw_iso_context_destroy(s->context);
1047 	s->context = ERR_PTR(-1);
1048 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1049 
1050 	s->callbacked = false;
1051 
1052 	mutex_unlock(&s->mutex);
1053 }
1054 EXPORT_SYMBOL(amdtp_stream_stop);
1055 
1056 /**
1057  * amdtp_stream_pcm_abort - abort the running PCM device
1058  * @s: the AMDTP stream about to be stopped
1059  *
1060  * If the isochronous stream needs to be stopped asynchronously, call this
1061  * function first to stop the PCM device.
1062  */
1063 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1064 {
1065 	struct snd_pcm_substream *pcm;
1066 
1067 	pcm = READ_ONCE(s->pcm);
1068 	if (pcm)
1069 		snd_pcm_stop_xrun(pcm);
1070 }
1071 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1072