xref: /openbmc/linux/sound/firewire/amdtp-stream.c (revision 2ae1beb3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
4  * with Common Isochronous Packet (IEC 61883-1) headers
5  *
6  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <sound/pcm.h>
16 #include <sound/pcm_params.h>
17 #include "amdtp-stream.h"
18 
19 #define TICKS_PER_CYCLE		3072
20 #define CYCLES_PER_SECOND	8000
21 #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
22 
23 #define OHCI_SECOND_MODULUS		8
24 
25 /* Always support Linux tracing subsystem. */
26 #define CREATE_TRACE_POINTS
27 #include "amdtp-stream-trace.h"
28 
29 #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
30 
31 /* isochronous header parameters */
32 #define ISO_DATA_LENGTH_SHIFT	16
33 #define TAG_NO_CIP_HEADER	0
34 #define TAG_CIP			1
35 
36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported.
37 #define CIP_HEADER_QUADLETS	2
38 #define CIP_EOH_SHIFT		31
39 #define CIP_EOH			(1u << CIP_EOH_SHIFT)
40 #define CIP_EOH_MASK		0x80000000
41 #define CIP_SID_SHIFT		24
42 #define CIP_SID_MASK		0x3f000000
43 #define CIP_DBS_MASK		0x00ff0000
44 #define CIP_DBS_SHIFT		16
45 #define CIP_SPH_MASK		0x00000400
46 #define CIP_SPH_SHIFT		10
47 #define CIP_DBC_MASK		0x000000ff
48 #define CIP_FMT_SHIFT		24
49 #define CIP_FMT_MASK		0x3f000000
50 #define CIP_FDF_MASK		0x00ff0000
51 #define CIP_FDF_SHIFT		16
52 #define CIP_FDF_NO_DATA		0xff
53 #define CIP_SYT_MASK		0x0000ffff
54 #define CIP_SYT_NO_INFO		0xffff
55 #define CIP_SYT_CYCLE_MODULUS	16
56 #define CIP_NO_DATA		((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO)
57 
58 #define CIP_HEADER_SIZE		(sizeof(__be32) * CIP_HEADER_QUADLETS)
59 
60 /* Audio and Music transfer protocol specific parameters */
61 #define CIP_FMT_AM		0x10
62 #define AMDTP_FDF_NO_DATA	0xff
63 
64 // For iso header and tstamp.
65 #define IR_CTX_HEADER_DEFAULT_QUADLETS	2
66 // Add nothing.
67 #define IR_CTX_HEADER_SIZE_NO_CIP	(sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS)
68 // Add two quadlets CIP header.
69 #define IR_CTX_HEADER_SIZE_CIP		(IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE)
70 #define HEADER_TSTAMP_MASK	0x0000ffff
71 
72 #define IT_PKT_HEADER_SIZE_CIP		CIP_HEADER_SIZE
73 #define IT_PKT_HEADER_SIZE_NO_CIP	0 // Nothing.
74 
75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing
76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer
77 // overrun. Actual device can skip more, then this module stops the packet streaming.
78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES	5
79 
80 static void pcm_period_work(struct work_struct *work);
81 
82 /**
83  * amdtp_stream_init - initialize an AMDTP stream structure
84  * @s: the AMDTP stream to initialize
85  * @unit: the target of the stream
86  * @dir: the direction of stream
87  * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants.
88  * @fmt: the value of fmt field in CIP header
89  * @process_ctx_payloads: callback handler to process payloads of isoc context
90  * @protocol_size: the size to allocate newly for protocol
91  */
92 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
93 		      enum amdtp_stream_direction dir, unsigned int flags,
94 		      unsigned int fmt,
95 		      amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
96 		      unsigned int protocol_size)
97 {
98 	if (process_ctx_payloads == NULL)
99 		return -EINVAL;
100 
101 	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
102 	if (!s->protocol)
103 		return -ENOMEM;
104 
105 	s->unit = unit;
106 	s->direction = dir;
107 	s->flags = flags;
108 	s->context = ERR_PTR(-1);
109 	mutex_init(&s->mutex);
110 	INIT_WORK(&s->period_work, pcm_period_work);
111 	s->packet_index = 0;
112 
113 	init_waitqueue_head(&s->ready_wait);
114 
115 	s->fmt = fmt;
116 	s->process_ctx_payloads = process_ctx_payloads;
117 
118 	return 0;
119 }
120 EXPORT_SYMBOL(amdtp_stream_init);
121 
122 /**
123  * amdtp_stream_destroy - free stream resources
124  * @s: the AMDTP stream to destroy
125  */
126 void amdtp_stream_destroy(struct amdtp_stream *s)
127 {
128 	/* Not initialized. */
129 	if (s->protocol == NULL)
130 		return;
131 
132 	WARN_ON(amdtp_stream_running(s));
133 	kfree(s->protocol);
134 	mutex_destroy(&s->mutex);
135 }
136 EXPORT_SYMBOL(amdtp_stream_destroy);
137 
138 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
139 	[CIP_SFC_32000]  =  8,
140 	[CIP_SFC_44100]  =  8,
141 	[CIP_SFC_48000]  =  8,
142 	[CIP_SFC_88200]  = 16,
143 	[CIP_SFC_96000]  = 16,
144 	[CIP_SFC_176400] = 32,
145 	[CIP_SFC_192000] = 32,
146 };
147 EXPORT_SYMBOL(amdtp_syt_intervals);
148 
149 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
150 	[CIP_SFC_32000]  =  32000,
151 	[CIP_SFC_44100]  =  44100,
152 	[CIP_SFC_48000]  =  48000,
153 	[CIP_SFC_88200]  =  88200,
154 	[CIP_SFC_96000]  =  96000,
155 	[CIP_SFC_176400] = 176400,
156 	[CIP_SFC_192000] = 192000,
157 };
158 EXPORT_SYMBOL(amdtp_rate_table);
159 
160 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
161 				    struct snd_pcm_hw_rule *rule)
162 {
163 	struct snd_interval *s = hw_param_interval(params, rule->var);
164 	const struct snd_interval *r =
165 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
166 	struct snd_interval t = {0};
167 	unsigned int step = 0;
168 	int i;
169 
170 	for (i = 0; i < CIP_SFC_COUNT; ++i) {
171 		if (snd_interval_test(r, amdtp_rate_table[i]))
172 			step = max(step, amdtp_syt_intervals[i]);
173 	}
174 
175 	t.min = roundup(s->min, step);
176 	t.max = rounddown(s->max, step);
177 	t.integer = 1;
178 
179 	return snd_interval_refine(s, &t);
180 }
181 
182 /**
183  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
184  * @s:		the AMDTP stream, which must be initialized.
185  * @runtime:	the PCM substream runtime
186  */
187 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
188 					struct snd_pcm_runtime *runtime)
189 {
190 	struct snd_pcm_hardware *hw = &runtime->hw;
191 	unsigned int ctx_header_size;
192 	unsigned int maximum_usec_per_period;
193 	int err;
194 
195 	hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER |
196 		   SNDRV_PCM_INFO_INTERLEAVED |
197 		   SNDRV_PCM_INFO_JOINT_DUPLEX |
198 		   SNDRV_PCM_INFO_MMAP |
199 		   SNDRV_PCM_INFO_MMAP_VALID |
200 		   SNDRV_PCM_INFO_NO_PERIOD_WAKEUP;
201 
202 	hw->periods_min = 2;
203 	hw->periods_max = UINT_MAX;
204 
205 	/* bytes for a frame */
206 	hw->period_bytes_min = 4 * hw->channels_max;
207 
208 	/* Just to prevent from allocating much pages. */
209 	hw->period_bytes_max = hw->period_bytes_min * 2048;
210 	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
211 
212 	// Linux driver for 1394 OHCI controller voluntarily flushes isoc
213 	// context when total size of accumulated context header reaches
214 	// PAGE_SIZE. This kicks work for the isoc context and brings
215 	// callback in the middle of scheduled interrupts.
216 	// Although AMDTP streams in the same domain use the same events per
217 	// IRQ, use the largest size of context header between IT/IR contexts.
218 	// Here, use the value of context header in IR context is for both
219 	// contexts.
220 	if (!(s->flags & CIP_NO_HEADER))
221 		ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
222 	else
223 		ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
224 	maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
225 				  CYCLES_PER_SECOND / ctx_header_size;
226 
227 	// In IEC 61883-6, one isoc packet can transfer events up to the value
228 	// of syt interval. This comes from the interval of isoc cycle. As 1394
229 	// OHCI controller can generate hardware IRQ per isoc packet, the
230 	// interval is 125 usec.
231 	// However, there are two ways of transmission in IEC 61883-6; blocking
232 	// and non-blocking modes. In blocking mode, the sequence of isoc packet
233 	// includes 'empty' or 'NODATA' packets which include no event. In
234 	// non-blocking mode, the number of events per packet is variable up to
235 	// the syt interval.
236 	// Due to the above protocol design, the minimum PCM frames per
237 	// interrupt should be double of the value of syt interval, thus it is
238 	// 250 usec.
239 	err = snd_pcm_hw_constraint_minmax(runtime,
240 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
241 					   250, maximum_usec_per_period);
242 	if (err < 0)
243 		goto end;
244 
245 	/* Non-Blocking stream has no more constraints */
246 	if (!(s->flags & CIP_BLOCKING))
247 		goto end;
248 
249 	/*
250 	 * One AMDTP packet can include some frames. In blocking mode, the
251 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
252 	 * depending on its sampling rate. For accurate period interrupt, it's
253 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
254 	 */
255 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
256 				  apply_constraint_to_size, NULL,
257 				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
258 				  SNDRV_PCM_HW_PARAM_RATE, -1);
259 	if (err < 0)
260 		goto end;
261 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
262 				  apply_constraint_to_size, NULL,
263 				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
264 				  SNDRV_PCM_HW_PARAM_RATE, -1);
265 	if (err < 0)
266 		goto end;
267 end:
268 	return err;
269 }
270 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
271 
272 /**
273  * amdtp_stream_set_parameters - set stream parameters
274  * @s: the AMDTP stream to configure
275  * @rate: the sample rate
276  * @data_block_quadlets: the size of a data block in quadlet unit
277  * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP
278  *			  events.
279  *
280  * The parameters must be set before the stream is started, and must not be
281  * changed while the stream is running.
282  */
283 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
284 				unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier)
285 {
286 	unsigned int sfc;
287 
288 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
289 		if (amdtp_rate_table[sfc] == rate)
290 			break;
291 	}
292 	if (sfc == ARRAY_SIZE(amdtp_rate_table))
293 		return -EINVAL;
294 
295 	s->sfc = sfc;
296 	s->data_block_quadlets = data_block_quadlets;
297 	s->syt_interval = amdtp_syt_intervals[sfc];
298 
299 	// default buffering in the device.
300 	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
301 
302 	// additional buffering needed to adjust for no-data packets.
303 	if (s->flags & CIP_BLOCKING)
304 		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
305 
306 	s->pcm_frame_multiplier = pcm_frame_multiplier;
307 
308 	return 0;
309 }
310 EXPORT_SYMBOL(amdtp_stream_set_parameters);
311 
312 // The CIP header is processed in context header apart from context payload.
313 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s)
314 {
315 	unsigned int multiplier;
316 
317 	if (s->flags & CIP_JUMBO_PAYLOAD)
318 		multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES;
319 	else
320 		multiplier = 1;
321 
322 	return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
323 }
324 
325 /**
326  * amdtp_stream_get_max_payload - get the stream's packet size
327  * @s: the AMDTP stream
328  *
329  * This function must not be called before the stream has been configured
330  * with amdtp_stream_set_parameters().
331  */
332 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
333 {
334 	unsigned int cip_header_size;
335 
336 	if (!(s->flags & CIP_NO_HEADER))
337 		cip_header_size = CIP_HEADER_SIZE;
338 	else
339 		cip_header_size = 0;
340 
341 	return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s);
342 }
343 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
344 
345 /**
346  * amdtp_stream_pcm_prepare - prepare PCM device for running
347  * @s: the AMDTP stream
348  *
349  * This function should be called from the PCM device's .prepare callback.
350  */
351 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
352 {
353 	cancel_work_sync(&s->period_work);
354 	s->pcm_buffer_pointer = 0;
355 	s->pcm_period_pointer = 0;
356 }
357 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
358 
359 #define prev_packet_desc(s, desc) \
360 	list_prev_entry_circular(desc, &s->packet_descs_list, link)
361 
362 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
363 				      unsigned int size, unsigned int pos, unsigned int count)
364 {
365 	const unsigned int syt_interval = s->syt_interval;
366 	int i;
367 
368 	for (i = 0; i < count; ++i) {
369 		struct seq_desc *desc = descs + pos;
370 
371 		if (desc->syt_offset != CIP_SYT_NO_INFO)
372 			desc->data_blocks = syt_interval;
373 		else
374 			desc->data_blocks = 0;
375 
376 		pos = (pos + 1) % size;
377 	}
378 }
379 
380 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs,
381 					       unsigned int size, unsigned int pos,
382 					       unsigned int count)
383 {
384 	const enum cip_sfc sfc = s->sfc;
385 	unsigned int state = s->ctx_data.rx.data_block_state;
386 	int i;
387 
388 	for (i = 0; i < count; ++i) {
389 		struct seq_desc *desc = descs + pos;
390 
391 		if (!cip_sfc_is_base_44100(sfc)) {
392 			// Sample_rate / 8000 is an integer, and precomputed.
393 			desc->data_blocks = state;
394 		} else {
395 			unsigned int phase = state;
396 
397 		/*
398 		 * This calculates the number of data blocks per packet so that
399 		 * 1) the overall rate is correct and exactly synchronized to
400 		 *    the bus clock, and
401 		 * 2) packets with a rounded-up number of blocks occur as early
402 		 *    as possible in the sequence (to prevent underruns of the
403 		 *    device's buffer).
404 		 */
405 			if (sfc == CIP_SFC_44100)
406 				/* 6 6 5 6 5 6 5 ... */
407 				desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40));
408 			else
409 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
410 				desc->data_blocks = 11 * (sfc >> 1) + (phase == 0);
411 			if (++phase >= (80 >> (sfc >> 1)))
412 				phase = 0;
413 			state = phase;
414 		}
415 
416 		pos = (pos + 1) % size;
417 	}
418 
419 	s->ctx_data.rx.data_block_state = state;
420 }
421 
422 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
423 			unsigned int *syt_offset_state, enum cip_sfc sfc)
424 {
425 	unsigned int syt_offset;
426 
427 	if (*last_syt_offset < TICKS_PER_CYCLE) {
428 		if (!cip_sfc_is_base_44100(sfc))
429 			syt_offset = *last_syt_offset + *syt_offset_state;
430 		else {
431 		/*
432 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
433 		 *   n * SYT_INTERVAL * 24576000 / sample_rate
434 		 * Modulo TICKS_PER_CYCLE, the difference between successive
435 		 * elements is about 1386.23.  Rounding the results of this
436 		 * formula to the SYT precision results in a sequence of
437 		 * differences that begins with:
438 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
439 		 * This code generates _exactly_ the same sequence.
440 		 */
441 			unsigned int phase = *syt_offset_state;
442 			unsigned int index = phase % 13;
443 
444 			syt_offset = *last_syt_offset;
445 			syt_offset += 1386 + ((index && !(index & 3)) ||
446 					      phase == 146);
447 			if (++phase >= 147)
448 				phase = 0;
449 			*syt_offset_state = phase;
450 		}
451 	} else
452 		syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
453 	*last_syt_offset = syt_offset;
454 
455 	if (syt_offset >= TICKS_PER_CYCLE)
456 		syt_offset = CIP_SYT_NO_INFO;
457 
458 	return syt_offset;
459 }
460 
461 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs,
462 				   unsigned int size, unsigned int pos, unsigned int count)
463 {
464 	const enum cip_sfc sfc = s->sfc;
465 	unsigned int last = s->ctx_data.rx.last_syt_offset;
466 	unsigned int state = s->ctx_data.rx.syt_offset_state;
467 	int i;
468 
469 	for (i = 0; i < count; ++i) {
470 		struct seq_desc *desc = descs + pos;
471 
472 		desc->syt_offset = calculate_syt_offset(&last, &state, sfc);
473 
474 		pos = (pos + 1) % size;
475 	}
476 
477 	s->ctx_data.rx.last_syt_offset = last;
478 	s->ctx_data.rx.syt_offset_state = state;
479 }
480 
481 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle,
482 				       unsigned int transfer_delay)
483 {
484 	unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f;
485 	unsigned int syt_cycle_lo = (syt & 0xf000) >> 12;
486 	unsigned int syt_offset;
487 
488 	// Round up.
489 	if (syt_cycle_lo < cycle_lo)
490 		syt_cycle_lo += CIP_SYT_CYCLE_MODULUS;
491 	syt_cycle_lo -= cycle_lo;
492 
493 	// Subtract transfer delay so that the synchronization offset is not so large
494 	// at transmission.
495 	syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff);
496 	if (syt_offset < transfer_delay)
497 		syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE;
498 
499 	return syt_offset - transfer_delay;
500 }
501 
502 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus.
503 // Additionally, the sequence of tx packets is severely checked against any discontinuity
504 // before filling entries in the queue. The calculation is safe even if it looks fragile by
505 // overrun.
506 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head)
507 {
508 	const unsigned int cache_size = s->ctx_data.tx.cache.size;
509 	unsigned int cycles = s->ctx_data.tx.cache.pos;
510 
511 	if (cycles < head)
512 		cycles += cache_size;
513 	cycles -= head;
514 
515 	return cycles;
516 }
517 
518 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count)
519 {
520 	const unsigned int transfer_delay = s->transfer_delay;
521 	const unsigned int cache_size = s->ctx_data.tx.cache.size;
522 	struct seq_desc *cache = s->ctx_data.tx.cache.descs;
523 	unsigned int cache_pos = s->ctx_data.tx.cache.pos;
524 	bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
525 	int i;
526 
527 	for (i = 0; i < desc_count; ++i) {
528 		struct seq_desc *dst = cache + cache_pos;
529 
530 		if (aware_syt && src->syt != CIP_SYT_NO_INFO)
531 			dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay);
532 		else
533 			dst->syt_offset = CIP_SYT_NO_INFO;
534 		dst->data_blocks = src->data_blocks;
535 
536 		cache_pos = (cache_pos + 1) % cache_size;
537 		src = amdtp_stream_next_packet_desc(s, src);
538 	}
539 
540 	s->ctx_data.tx.cache.pos = cache_pos;
541 }
542 
543 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
544 				 unsigned int pos, unsigned int count)
545 {
546 	pool_ideal_syt_offsets(s, descs, size, pos, count);
547 
548 	if (s->flags & CIP_BLOCKING)
549 		pool_blocking_data_blocks(s, descs, size, pos, count);
550 	else
551 		pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count);
552 }
553 
554 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
555 			      unsigned int pos, unsigned int count)
556 {
557 	struct amdtp_stream *target = s->ctx_data.rx.replay_target;
558 	const struct seq_desc *cache = target->ctx_data.tx.cache.descs;
559 	const unsigned int cache_size = target->ctx_data.tx.cache.size;
560 	unsigned int cache_pos = s->ctx_data.rx.cache_pos;
561 	int i;
562 
563 	for (i = 0; i < count; ++i) {
564 		descs[pos] = cache[cache_pos];
565 		cache_pos = (cache_pos + 1) % cache_size;
566 		pos = (pos + 1) % size;
567 	}
568 
569 	s->ctx_data.rx.cache_pos = cache_pos;
570 }
571 
572 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
573 			   unsigned int pos, unsigned int count)
574 {
575 	struct amdtp_domain *d = s->domain;
576 	void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size,
577 			       unsigned int pos, unsigned int count);
578 
579 	if (!d->replay.enable || !s->ctx_data.rx.replay_target) {
580 		pool_seq_descs = pool_ideal_seq_descs;
581 	} else {
582 		if (!d->replay.on_the_fly) {
583 			pool_seq_descs = pool_replayed_seq;
584 		} else {
585 			struct amdtp_stream *tx = s->ctx_data.rx.replay_target;
586 			const unsigned int cache_size = tx->ctx_data.tx.cache.size;
587 			const unsigned int cache_pos = s->ctx_data.rx.cache_pos;
588 			unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos);
589 
590 			if (cached_cycles > count && cached_cycles > cache_size / 2)
591 				pool_seq_descs = pool_replayed_seq;
592 			else
593 				pool_seq_descs = pool_ideal_seq_descs;
594 		}
595 	}
596 
597 	pool_seq_descs(s, descs, size, pos, count);
598 }
599 
600 static void update_pcm_pointers(struct amdtp_stream *s,
601 				struct snd_pcm_substream *pcm,
602 				unsigned int frames)
603 {
604 	unsigned int ptr;
605 
606 	ptr = s->pcm_buffer_pointer + frames;
607 	if (ptr >= pcm->runtime->buffer_size)
608 		ptr -= pcm->runtime->buffer_size;
609 	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
610 
611 	s->pcm_period_pointer += frames;
612 	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
613 		s->pcm_period_pointer -= pcm->runtime->period_size;
614 
615 		// The program in user process should periodically check the status of intermediate
616 		// buffer associated to PCM substream to process PCM frames in the buffer, instead
617 		// of receiving notification of period elapsed by poll wait.
618 		if (!pcm->runtime->no_period_wakeup)
619 			queue_work(system_highpri_wq, &s->period_work);
620 	}
621 }
622 
623 static void pcm_period_work(struct work_struct *work)
624 {
625 	struct amdtp_stream *s = container_of(work, struct amdtp_stream,
626 					      period_work);
627 	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
628 
629 	if (pcm)
630 		snd_pcm_period_elapsed(pcm);
631 }
632 
633 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
634 			bool sched_irq)
635 {
636 	int err;
637 
638 	params->interrupt = sched_irq;
639 	params->tag = s->tag;
640 	params->sy = 0;
641 
642 	err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
643 				   s->buffer.packets[s->packet_index].offset);
644 	if (err < 0) {
645 		dev_err(&s->unit->device, "queueing error: %d\n", err);
646 		goto end;
647 	}
648 
649 	if (++s->packet_index >= s->queue_size)
650 		s->packet_index = 0;
651 end:
652 	return err;
653 }
654 
655 static inline int queue_out_packet(struct amdtp_stream *s,
656 				   struct fw_iso_packet *params, bool sched_irq)
657 {
658 	params->skip =
659 		!!(params->header_length == 0 && params->payload_length == 0);
660 	return queue_packet(s, params, sched_irq);
661 }
662 
663 static inline int queue_in_packet(struct amdtp_stream *s,
664 				  struct fw_iso_packet *params)
665 {
666 	// Queue one packet for IR context.
667 	params->header_length = s->ctx_data.tx.ctx_header_size;
668 	params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
669 	params->skip = false;
670 	return queue_packet(s, params, false);
671 }
672 
673 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
674 			unsigned int data_block_counter, unsigned int syt)
675 {
676 	cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
677 				(s->data_block_quadlets << CIP_DBS_SHIFT) |
678 				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
679 				data_block_counter);
680 	cip_header[1] = cpu_to_be32(CIP_EOH |
681 			((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
682 			((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
683 			(syt & CIP_SYT_MASK));
684 }
685 
686 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
687 				struct fw_iso_packet *params, unsigned int header_length,
688 				unsigned int data_blocks,
689 				unsigned int data_block_counter,
690 				unsigned int syt, unsigned int index, u32 curr_cycle_time)
691 {
692 	unsigned int payload_length;
693 	__be32 *cip_header;
694 
695 	payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
696 	params->payload_length = payload_length;
697 
698 	if (header_length > 0) {
699 		cip_header = (__be32 *)params->header;
700 		generate_cip_header(s, cip_header, data_block_counter, syt);
701 		params->header_length = header_length;
702 	} else {
703 		cip_header = NULL;
704 	}
705 
706 	trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks,
707 			   data_block_counter, s->packet_index, index, curr_cycle_time);
708 }
709 
710 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
711 			    unsigned int payload_length,
712 			    unsigned int *data_blocks,
713 			    unsigned int *data_block_counter, unsigned int *syt)
714 {
715 	u32 cip_header[2];
716 	unsigned int sph;
717 	unsigned int fmt;
718 	unsigned int fdf;
719 	unsigned int dbc;
720 	bool lost;
721 
722 	cip_header[0] = be32_to_cpu(buf[0]);
723 	cip_header[1] = be32_to_cpu(buf[1]);
724 
725 	/*
726 	 * This module supports 'Two-quadlet CIP header with SYT field'.
727 	 * For convenience, also check FMT field is AM824 or not.
728 	 */
729 	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
730 	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
731 	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
732 		dev_info_ratelimited(&s->unit->device,
733 				"Invalid CIP header for AMDTP: %08X:%08X\n",
734 				cip_header[0], cip_header[1]);
735 		return -EAGAIN;
736 	}
737 
738 	/* Check valid protocol or not. */
739 	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
740 	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
741 	if (sph != s->sph || fmt != s->fmt) {
742 		dev_info_ratelimited(&s->unit->device,
743 				     "Detect unexpected protocol: %08x %08x\n",
744 				     cip_header[0], cip_header[1]);
745 		return -EAGAIN;
746 	}
747 
748 	/* Calculate data blocks */
749 	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
750 	if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
751 		*data_blocks = 0;
752 	} else {
753 		unsigned int data_block_quadlets =
754 				(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
755 		/* avoid division by zero */
756 		if (data_block_quadlets == 0) {
757 			dev_err(&s->unit->device,
758 				"Detect invalid value in dbs field: %08X\n",
759 				cip_header[0]);
760 			return -EPROTO;
761 		}
762 		if (s->flags & CIP_WRONG_DBS)
763 			data_block_quadlets = s->data_block_quadlets;
764 
765 		*data_blocks = payload_length / sizeof(__be32) / data_block_quadlets;
766 	}
767 
768 	/* Check data block counter continuity */
769 	dbc = cip_header[0] & CIP_DBC_MASK;
770 	if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
771 	    *data_block_counter != UINT_MAX)
772 		dbc = *data_block_counter;
773 
774 	if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
775 	    *data_block_counter == UINT_MAX) {
776 		lost = false;
777 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
778 		lost = dbc != *data_block_counter;
779 	} else {
780 		unsigned int dbc_interval;
781 
782 		if (!(s->flags & CIP_DBC_IS_PAYLOAD_QUADLETS)) {
783 			if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
784 				dbc_interval = s->ctx_data.tx.dbc_interval;
785 			else
786 				dbc_interval = *data_blocks;
787 		} else {
788 			dbc_interval = payload_length / sizeof(__be32);
789 		}
790 
791 		lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
792 	}
793 
794 	if (lost) {
795 		dev_err(&s->unit->device,
796 			"Detect discontinuity of CIP: %02X %02X\n",
797 			*data_block_counter, dbc);
798 		return -EIO;
799 	}
800 
801 	*data_block_counter = dbc;
802 
803 	if (!(s->flags & CIP_UNAWARE_SYT))
804 		*syt = cip_header[1] & CIP_SYT_MASK;
805 
806 	return 0;
807 }
808 
809 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
810 			       const __be32 *ctx_header,
811 			       unsigned int *data_blocks,
812 			       unsigned int *data_block_counter,
813 			       unsigned int *syt, unsigned int packet_index, unsigned int index,
814 			       u32 curr_cycle_time)
815 {
816 	unsigned int payload_length;
817 	const __be32 *cip_header;
818 	unsigned int cip_header_size;
819 
820 	payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
821 
822 	if (!(s->flags & CIP_NO_HEADER))
823 		cip_header_size = CIP_HEADER_SIZE;
824 	else
825 		cip_header_size = 0;
826 
827 	if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) {
828 		dev_err(&s->unit->device,
829 			"Detect jumbo payload: %04x %04x\n",
830 			payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length);
831 		return -EIO;
832 	}
833 
834 	if (cip_header_size > 0) {
835 		if (payload_length >= cip_header_size) {
836 			int err;
837 
838 			cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
839 			err = check_cip_header(s, cip_header, payload_length - cip_header_size,
840 					       data_blocks, data_block_counter, syt);
841 			if (err < 0)
842 				return err;
843 		} else {
844 			// Handle the cycle so that empty packet arrives.
845 			cip_header = NULL;
846 			*data_blocks = 0;
847 			*syt = 0;
848 		}
849 	} else {
850 		cip_header = NULL;
851 		*data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets;
852 		*syt = 0;
853 
854 		if (*data_block_counter == UINT_MAX)
855 			*data_block_counter = 0;
856 	}
857 
858 	trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks,
859 			   *data_block_counter, packet_index, index, curr_cycle_time);
860 
861 	return 0;
862 }
863 
864 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
865 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
866 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
867 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp)
868 {
869 	return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff);
870 }
871 
872 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp)
873 {
874 	u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
875 	return compute_ohci_iso_ctx_cycle_count(tstamp);
876 }
877 
878 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend)
879 {
880 	cycle += addend;
881 	if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND)
882 		cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
883 	return cycle;
884 }
885 
886 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend)
887 {
888 	if (minuend < subtrahend)
889 		minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND;
890 
891 	return minuend - subtrahend;
892 }
893 
894 static int compare_ohci_cycle_count(u32 lval, u32 rval)
895 {
896 	if (lval == rval)
897 		return 0;
898 	else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2)
899 		return -1;
900 	else
901 		return 1;
902 }
903 
904 // Align to actual cycle count for the packet which is going to be scheduled.
905 // This module queued the same number of isochronous cycle as the size of queue
906 // to kip isochronous cycle, therefore it's OK to just increment the cycle by
907 // the size of queue for scheduled cycle.
908 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp,
909 					unsigned int queue_size)
910 {
911 	u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp);
912 	return increment_ohci_cycle_count(cycle, queue_size);
913 }
914 
915 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
916 				    const __be32 *ctx_header, unsigned int packet_count,
917 				    unsigned int *desc_count)
918 {
919 	unsigned int next_cycle = s->next_cycle;
920 	unsigned int dbc = s->data_block_counter;
921 	unsigned int packet_index = s->packet_index;
922 	unsigned int queue_size = s->queue_size;
923 	u32 curr_cycle_time = 0;
924 	int i;
925 	int err;
926 
927 	if (trace_amdtp_packet_enabled())
928 		(void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
929 
930 	*desc_count = 0;
931 	for (i = 0; i < packet_count; ++i) {
932 		unsigned int cycle;
933 		bool lost;
934 		unsigned int data_blocks;
935 		unsigned int syt;
936 
937 		cycle = compute_ohci_cycle_count(ctx_header[1]);
938 		lost = (next_cycle != cycle);
939 		if (lost) {
940 			if (s->flags & CIP_NO_HEADER) {
941 				// Fireface skips transmission just for an isoc cycle corresponding
942 				// to empty packet.
943 				unsigned int prev_cycle = next_cycle;
944 
945 				next_cycle = increment_ohci_cycle_count(next_cycle, 1);
946 				lost = (next_cycle != cycle);
947 				if (!lost) {
948 					// Prepare a description for the skipped cycle for
949 					// sequence replay.
950 					desc->cycle = prev_cycle;
951 					desc->syt = 0;
952 					desc->data_blocks = 0;
953 					desc->data_block_counter = dbc;
954 					desc->ctx_payload = NULL;
955 					desc = amdtp_stream_next_packet_desc(s, desc);
956 					++(*desc_count);
957 				}
958 			} else if (s->flags & CIP_JUMBO_PAYLOAD) {
959 				// OXFW970 skips transmission for several isoc cycles during
960 				// asynchronous transaction. The sequence replay is impossible due
961 				// to the reason.
962 				unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle,
963 								IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES);
964 				lost = (compare_ohci_cycle_count(safe_cycle, cycle) < 0);
965 			}
966 			if (lost) {
967 				dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n",
968 					next_cycle, cycle);
969 				return -EIO;
970 			}
971 		}
972 
973 		err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt,
974 					  packet_index, i, curr_cycle_time);
975 		if (err < 0)
976 			return err;
977 
978 		desc->cycle = cycle;
979 		desc->syt = syt;
980 		desc->data_blocks = data_blocks;
981 		desc->data_block_counter = dbc;
982 		desc->ctx_payload = s->buffer.packets[packet_index].buffer;
983 
984 		if (!(s->flags & CIP_DBC_IS_END_EVENT))
985 			dbc = (dbc + desc->data_blocks) & 0xff;
986 
987 		next_cycle = increment_ohci_cycle_count(next_cycle, 1);
988 		desc = amdtp_stream_next_packet_desc(s, desc);
989 		++(*desc_count);
990 		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
991 		packet_index = (packet_index + 1) % queue_size;
992 	}
993 
994 	s->next_cycle = next_cycle;
995 	s->data_block_counter = dbc;
996 
997 	return 0;
998 }
999 
1000 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
1001 				unsigned int transfer_delay)
1002 {
1003 	unsigned int syt;
1004 
1005 	syt_offset += transfer_delay;
1006 	syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
1007 	      (syt_offset % TICKS_PER_CYCLE);
1008 	return syt & CIP_SYT_MASK;
1009 }
1010 
1011 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc,
1012 				     const __be32 *ctx_header, unsigned int packet_count)
1013 {
1014 	struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs;
1015 	unsigned int seq_size = s->ctx_data.rx.seq.size;
1016 	unsigned int seq_pos = s->ctx_data.rx.seq.pos;
1017 	unsigned int dbc = s->data_block_counter;
1018 	bool aware_syt = !(s->flags & CIP_UNAWARE_SYT);
1019 	int i;
1020 
1021 	pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count);
1022 
1023 	for (i = 0; i < packet_count; ++i) {
1024 		unsigned int index = (s->packet_index + i) % s->queue_size;
1025 		const struct seq_desc *seq = seq_descs + seq_pos;
1026 
1027 		desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size);
1028 
1029 		if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO)
1030 			desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay);
1031 		else
1032 			desc->syt = CIP_SYT_NO_INFO;
1033 
1034 		desc->data_blocks = seq->data_blocks;
1035 
1036 		if (s->flags & CIP_DBC_IS_END_EVENT)
1037 			dbc = (dbc + desc->data_blocks) & 0xff;
1038 
1039 		desc->data_block_counter = dbc;
1040 
1041 		if (!(s->flags & CIP_DBC_IS_END_EVENT))
1042 			dbc = (dbc + desc->data_blocks) & 0xff;
1043 
1044 		desc->ctx_payload = s->buffer.packets[index].buffer;
1045 
1046 		seq_pos = (seq_pos + 1) % seq_size;
1047 		desc = amdtp_stream_next_packet_desc(s, desc);
1048 
1049 		++ctx_header;
1050 	}
1051 
1052 	s->data_block_counter = dbc;
1053 	s->ctx_data.rx.seq.pos = seq_pos;
1054 }
1055 
1056 static inline void cancel_stream(struct amdtp_stream *s)
1057 {
1058 	s->packet_index = -1;
1059 	if (in_softirq())
1060 		amdtp_stream_pcm_abort(s);
1061 	WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
1062 }
1063 
1064 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s,
1065 						 const struct pkt_desc *desc, unsigned int count)
1066 {
1067 	unsigned int data_block_count = 0;
1068 	u32 latest_cycle;
1069 	u32 cycle_time;
1070 	u32 curr_cycle;
1071 	u32 cycle_gap;
1072 	int i, err;
1073 
1074 	if (count == 0)
1075 		goto end;
1076 
1077 	// Forward to the latest record.
1078 	for (i = 0; i < count - 1; ++i)
1079 		desc = amdtp_stream_next_packet_desc(s, desc);
1080 	latest_cycle = desc->cycle;
1081 
1082 	err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time);
1083 	if (err < 0)
1084 		goto end;
1085 
1086 	// Compute cycle count with lower 3 bits of second field and cycle field like timestamp
1087 	// format of 1394 OHCI isochronous context.
1088 	curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff);
1089 
1090 	if (s->direction == AMDTP_IN_STREAM) {
1091 		// NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since
1092 		// it corresponds to arrived isochronous packet.
1093 		if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0)
1094 			goto end;
1095 		cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle);
1096 
1097 		// NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated
1098 		// value expectedly corresponds to a few packets (0-2) since the packet arrived at
1099 		// the most recent isochronous cycle has been already processed.
1100 		for (i = 0; i < cycle_gap; ++i) {
1101 			desc = amdtp_stream_next_packet_desc(s, desc);
1102 			data_block_count += desc->data_blocks;
1103 		}
1104 	} else {
1105 		// NOTE: The AMDTP packet descriptor should be for the future isochronous cycle
1106 		// since it was already scheduled.
1107 		if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0)
1108 			goto end;
1109 		cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle);
1110 
1111 		// NOTE: use history of scheduled packets.
1112 		for (i = 0; i < cycle_gap; ++i) {
1113 			data_block_count += desc->data_blocks;
1114 			desc = prev_packet_desc(s, desc);
1115 		}
1116 	}
1117 end:
1118 	return data_block_count * s->pcm_frame_multiplier;
1119 }
1120 
1121 static void process_ctx_payloads(struct amdtp_stream *s,
1122 				 const struct pkt_desc *desc,
1123 				 unsigned int count)
1124 {
1125 	struct snd_pcm_substream *pcm;
1126 	int i;
1127 
1128 	pcm = READ_ONCE(s->pcm);
1129 	s->process_ctx_payloads(s, desc, count, pcm);
1130 
1131 	if (pcm) {
1132 		unsigned int data_block_count = 0;
1133 
1134 		pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count);
1135 
1136 		for (i = 0; i < count; ++i) {
1137 			data_block_count += desc->data_blocks;
1138 			desc = amdtp_stream_next_packet_desc(s, desc);
1139 		}
1140 
1141 		update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier);
1142 	}
1143 }
1144 
1145 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1146 			       void *header, void *private_data)
1147 {
1148 	struct amdtp_stream *s = private_data;
1149 	const struct amdtp_domain *d = s->domain;
1150 	const __be32 *ctx_header = header;
1151 	const unsigned int events_per_period = d->events_per_period;
1152 	unsigned int event_count = s->ctx_data.rx.event_count;
1153 	struct pkt_desc *desc = s->packet_descs_cursor;
1154 	unsigned int pkt_header_length;
1155 	unsigned int packets;
1156 	u32 curr_cycle_time;
1157 	bool need_hw_irq;
1158 	int i;
1159 
1160 	if (s->packet_index < 0)
1161 		return;
1162 
1163 	// Calculate the number of packets in buffer and check XRUN.
1164 	packets = header_length / sizeof(*ctx_header);
1165 
1166 	generate_rx_packet_descs(s, desc, ctx_header, packets);
1167 
1168 	process_ctx_payloads(s, desc, packets);
1169 
1170 	if (!(s->flags & CIP_NO_HEADER))
1171 		pkt_header_length = IT_PKT_HEADER_SIZE_CIP;
1172 	else
1173 		pkt_header_length = 0;
1174 
1175 	if (s == d->irq_target) {
1176 		// At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by
1177 		// the tasks of user process operating ALSA PCM character device by calling ioctl(2)
1178 		// with some requests, instead of scheduled hardware IRQ of an IT context.
1179 		struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
1180 		need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup;
1181 	} else {
1182 		need_hw_irq = false;
1183 	}
1184 
1185 	if (trace_amdtp_packet_enabled())
1186 		(void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time);
1187 
1188 	for (i = 0; i < packets; ++i) {
1189 		struct {
1190 			struct fw_iso_packet params;
1191 			__be32 header[CIP_HEADER_QUADLETS];
1192 		} template = { {0}, {0} };
1193 		bool sched_irq = false;
1194 
1195 		build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length,
1196 				    desc->data_blocks, desc->data_block_counter,
1197 				    desc->syt, i, curr_cycle_time);
1198 
1199 		if (s == s->domain->irq_target) {
1200 			event_count += desc->data_blocks;
1201 			if (event_count >= events_per_period) {
1202 				event_count -= events_per_period;
1203 				sched_irq = need_hw_irq;
1204 			}
1205 		}
1206 
1207 		if (queue_out_packet(s, &template.params, sched_irq) < 0) {
1208 			cancel_stream(s);
1209 			return;
1210 		}
1211 
1212 		desc = amdtp_stream_next_packet_desc(s, desc);
1213 	}
1214 
1215 	s->ctx_data.rx.event_count = event_count;
1216 	s->packet_descs_cursor = desc;
1217 }
1218 
1219 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1220 			    void *header, void *private_data)
1221 {
1222 	struct amdtp_stream *s = private_data;
1223 	struct amdtp_domain *d = s->domain;
1224 	const __be32 *ctx_header = header;
1225 	unsigned int packets;
1226 	unsigned int cycle;
1227 	int i;
1228 
1229 	if (s->packet_index < 0)
1230 		return;
1231 
1232 	packets = header_length / sizeof(*ctx_header);
1233 
1234 	cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size);
1235 	s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1236 
1237 	for (i = 0; i < packets; ++i) {
1238 		struct fw_iso_packet params = {
1239 			.header_length = 0,
1240 			.payload_length = 0,
1241 		};
1242 		bool sched_irq = (s == d->irq_target && i == packets - 1);
1243 
1244 		if (queue_out_packet(s, &params, sched_irq) < 0) {
1245 			cancel_stream(s);
1246 			return;
1247 		}
1248 	}
1249 }
1250 
1251 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1252 				void *header, void *private_data);
1253 
1254 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1255 					size_t header_length, void *header, void *private_data)
1256 {
1257 	struct amdtp_stream *s = private_data;
1258 	struct amdtp_domain *d = s->domain;
1259 	__be32 *ctx_header = header;
1260 	const unsigned int queue_size = s->queue_size;
1261 	unsigned int packets;
1262 	unsigned int offset;
1263 
1264 	if (s->packet_index < 0)
1265 		return;
1266 
1267 	packets = header_length / sizeof(*ctx_header);
1268 
1269 	offset = 0;
1270 	while (offset < packets) {
1271 		unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size);
1272 
1273 		if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0)
1274 			break;
1275 
1276 		++offset;
1277 	}
1278 
1279 	if (offset > 0) {
1280 		unsigned int length = sizeof(*ctx_header) * offset;
1281 
1282 		skip_rx_packets(context, tstamp, length, ctx_header, private_data);
1283 		if (amdtp_streaming_error(s))
1284 			return;
1285 
1286 		ctx_header += offset;
1287 		header_length -= length;
1288 	}
1289 
1290 	if (offset < packets) {
1291 		s->ready_processing = true;
1292 		wake_up(&s->ready_wait);
1293 
1294 		if (d->replay.enable)
1295 			s->ctx_data.rx.cache_pos = 0;
1296 
1297 		process_rx_packets(context, tstamp, header_length, ctx_header, private_data);
1298 		if (amdtp_streaming_error(s))
1299 			return;
1300 
1301 		if (s == d->irq_target)
1302 			s->context->callback.sc = irq_target_callback;
1303 		else
1304 			s->context->callback.sc = process_rx_packets;
1305 	}
1306 }
1307 
1308 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1309 			       void *header, void *private_data)
1310 {
1311 	struct amdtp_stream *s = private_data;
1312 	__be32 *ctx_header = header;
1313 	struct pkt_desc *desc = s->packet_descs_cursor;
1314 	unsigned int packet_count;
1315 	unsigned int desc_count;
1316 	int i;
1317 	int err;
1318 
1319 	if (s->packet_index < 0)
1320 		return;
1321 
1322 	// Calculate the number of packets in buffer and check XRUN.
1323 	packet_count = header_length / s->ctx_data.tx.ctx_header_size;
1324 
1325 	desc_count = 0;
1326 	err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count);
1327 	if (err < 0) {
1328 		if (err != -EAGAIN) {
1329 			cancel_stream(s);
1330 			return;
1331 		}
1332 	} else {
1333 		struct amdtp_domain *d = s->domain;
1334 
1335 		process_ctx_payloads(s, desc, desc_count);
1336 
1337 		if (d->replay.enable)
1338 			cache_seq(s, desc, desc_count);
1339 
1340 		for (i = 0; i < desc_count; ++i)
1341 			desc = amdtp_stream_next_packet_desc(s, desc);
1342 		s->packet_descs_cursor = desc;
1343 	}
1344 
1345 	for (i = 0; i < packet_count; ++i) {
1346 		struct fw_iso_packet params = {0};
1347 
1348 		if (queue_in_packet(s, &params) < 0) {
1349 			cancel_stream(s);
1350 			return;
1351 		}
1352 	}
1353 }
1354 
1355 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1356 			    void *header, void *private_data)
1357 {
1358 	struct amdtp_stream *s = private_data;
1359 	const __be32 *ctx_header = header;
1360 	unsigned int packets;
1361 	unsigned int cycle;
1362 	int i;
1363 
1364 	if (s->packet_index < 0)
1365 		return;
1366 
1367 	packets = header_length / s->ctx_data.tx.ctx_header_size;
1368 
1369 	ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
1370 	cycle = compute_ohci_cycle_count(ctx_header[1]);
1371 	s->next_cycle = increment_ohci_cycle_count(cycle, 1);
1372 
1373 	for (i = 0; i < packets; ++i) {
1374 		struct fw_iso_packet params = {0};
1375 
1376 		if (queue_in_packet(s, &params) < 0) {
1377 			cancel_stream(s);
1378 			return;
1379 		}
1380 	}
1381 }
1382 
1383 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp,
1384 					size_t header_length, void *header, void *private_data)
1385 {
1386 	struct amdtp_stream *s = private_data;
1387 	struct amdtp_domain *d = s->domain;
1388 	__be32 *ctx_header;
1389 	unsigned int packets;
1390 	unsigned int offset;
1391 
1392 	if (s->packet_index < 0)
1393 		return;
1394 
1395 	packets = header_length / s->ctx_data.tx.ctx_header_size;
1396 
1397 	offset = 0;
1398 	ctx_header = header;
1399 	while (offset < packets) {
1400 		unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]);
1401 
1402 		if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0)
1403 			break;
1404 
1405 		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1406 		++offset;
1407 	}
1408 
1409 	ctx_header = header;
1410 
1411 	if (offset > 0) {
1412 		size_t length = s->ctx_data.tx.ctx_header_size * offset;
1413 
1414 		drop_tx_packets(context, tstamp, length, ctx_header, s);
1415 		if (amdtp_streaming_error(s))
1416 			return;
1417 
1418 		ctx_header += length / sizeof(*ctx_header);
1419 		header_length -= length;
1420 	}
1421 
1422 	if (offset < packets) {
1423 		s->ready_processing = true;
1424 		wake_up(&s->ready_wait);
1425 
1426 		process_tx_packets(context, tstamp, header_length, ctx_header, s);
1427 		if (amdtp_streaming_error(s))
1428 			return;
1429 
1430 		context->callback.sc = process_tx_packets;
1431 	}
1432 }
1433 
1434 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp,
1435 				      size_t header_length, void *header, void *private_data)
1436 {
1437 	struct amdtp_stream *s = private_data;
1438 	struct amdtp_domain *d = s->domain;
1439 	__be32 *ctx_header;
1440 	unsigned int count;
1441 	unsigned int events;
1442 	int i;
1443 
1444 	if (s->packet_index < 0)
1445 		return;
1446 
1447 	count = header_length / s->ctx_data.tx.ctx_header_size;
1448 
1449 	// Attempt to detect any event in the batch of packets.
1450 	events = 0;
1451 	ctx_header = header;
1452 	for (i = 0; i < count; ++i) {
1453 		unsigned int payload_quads =
1454 			(be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32);
1455 		unsigned int data_blocks;
1456 
1457 		if (s->flags & CIP_NO_HEADER) {
1458 			data_blocks = payload_quads / s->data_block_quadlets;
1459 		} else {
1460 			__be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS;
1461 
1462 			if (payload_quads < CIP_HEADER_QUADLETS) {
1463 				data_blocks = 0;
1464 			} else {
1465 				payload_quads -= CIP_HEADER_QUADLETS;
1466 
1467 				if (s->flags & CIP_UNAWARE_SYT) {
1468 					data_blocks = payload_quads / s->data_block_quadlets;
1469 				} else {
1470 					u32 cip1 = be32_to_cpu(cip_headers[1]);
1471 
1472 					// NODATA packet can includes any data blocks but they are
1473 					// not available as event.
1474 					if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA)
1475 						data_blocks = 0;
1476 					else
1477 						data_blocks = payload_quads / s->data_block_quadlets;
1478 				}
1479 			}
1480 		}
1481 
1482 		events += data_blocks;
1483 
1484 		ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32);
1485 	}
1486 
1487 	drop_tx_packets(context, tstamp, header_length, header, s);
1488 
1489 	if (events > 0)
1490 		s->ctx_data.tx.event_starts = true;
1491 
1492 	// Decide the cycle count to begin processing content of packet in IR contexts.
1493 	{
1494 		unsigned int stream_count = 0;
1495 		unsigned int event_starts_count = 0;
1496 		unsigned int cycle = UINT_MAX;
1497 
1498 		list_for_each_entry(s, &d->streams, list) {
1499 			if (s->direction == AMDTP_IN_STREAM) {
1500 				++stream_count;
1501 				if (s->ctx_data.tx.event_starts)
1502 					++event_starts_count;
1503 			}
1504 		}
1505 
1506 		if (stream_count == event_starts_count) {
1507 			unsigned int next_cycle;
1508 
1509 			list_for_each_entry(s, &d->streams, list) {
1510 				if (s->direction != AMDTP_IN_STREAM)
1511 					continue;
1512 
1513 				next_cycle = increment_ohci_cycle_count(s->next_cycle,
1514 								d->processing_cycle.tx_init_skip);
1515 				if (cycle == UINT_MAX ||
1516 				    compare_ohci_cycle_count(next_cycle, cycle) > 0)
1517 					cycle = next_cycle;
1518 
1519 				s->context->callback.sc = process_tx_packets_intermediately;
1520 			}
1521 
1522 			d->processing_cycle.tx_start = cycle;
1523 		}
1524 	}
1525 }
1526 
1527 static void process_ctxs_in_domain(struct amdtp_domain *d)
1528 {
1529 	struct amdtp_stream *s;
1530 
1531 	list_for_each_entry(s, &d->streams, list) {
1532 		if (s != d->irq_target && amdtp_stream_running(s))
1533 			fw_iso_context_flush_completions(s->context);
1534 
1535 		if (amdtp_streaming_error(s))
1536 			goto error;
1537 	}
1538 
1539 	return;
1540 error:
1541 	if (amdtp_stream_running(d->irq_target))
1542 		cancel_stream(d->irq_target);
1543 
1544 	list_for_each_entry(s, &d->streams, list) {
1545 		if (amdtp_stream_running(s))
1546 			cancel_stream(s);
1547 	}
1548 }
1549 
1550 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length,
1551 				void *header, void *private_data)
1552 {
1553 	struct amdtp_stream *s = private_data;
1554 	struct amdtp_domain *d = s->domain;
1555 
1556 	process_rx_packets(context, tstamp, header_length, header, private_data);
1557 	process_ctxs_in_domain(d);
1558 }
1559 
1560 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp,
1561 					size_t header_length, void *header, void *private_data)
1562 {
1563 	struct amdtp_stream *s = private_data;
1564 	struct amdtp_domain *d = s->domain;
1565 
1566 	process_rx_packets_intermediately(context, tstamp, header_length, header, private_data);
1567 	process_ctxs_in_domain(d);
1568 }
1569 
1570 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp,
1571 				     size_t header_length, void *header, void *private_data)
1572 {
1573 	struct amdtp_stream *s = private_data;
1574 	struct amdtp_domain *d = s->domain;
1575 	bool ready_to_start;
1576 
1577 	skip_rx_packets(context, tstamp, header_length, header, private_data);
1578 	process_ctxs_in_domain(d);
1579 
1580 	if (d->replay.enable && !d->replay.on_the_fly) {
1581 		unsigned int rx_count = 0;
1582 		unsigned int rx_ready_count = 0;
1583 		struct amdtp_stream *rx;
1584 
1585 		list_for_each_entry(rx, &d->streams, list) {
1586 			struct amdtp_stream *tx;
1587 			unsigned int cached_cycles;
1588 
1589 			if (rx->direction != AMDTP_OUT_STREAM)
1590 				continue;
1591 			++rx_count;
1592 
1593 			tx = rx->ctx_data.rx.replay_target;
1594 			cached_cycles = calculate_cached_cycle_count(tx, 0);
1595 			if (cached_cycles > tx->ctx_data.tx.cache.size / 2)
1596 				++rx_ready_count;
1597 		}
1598 
1599 		ready_to_start = (rx_count == rx_ready_count);
1600 	} else {
1601 		ready_to_start = true;
1602 	}
1603 
1604 	// Decide the cycle count to begin processing content of packet in IT contexts. All of IT
1605 	// contexts are expected to start and get callback when reaching here.
1606 	if (ready_to_start) {
1607 		unsigned int cycle = s->next_cycle;
1608 		list_for_each_entry(s, &d->streams, list) {
1609 			if (s->direction != AMDTP_OUT_STREAM)
1610 				continue;
1611 
1612 			if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0)
1613 				cycle = s->next_cycle;
1614 
1615 			if (s == d->irq_target)
1616 				s->context->callback.sc = irq_target_callback_intermediately;
1617 			else
1618 				s->context->callback.sc = process_rx_packets_intermediately;
1619 		}
1620 
1621 		d->processing_cycle.rx_start = cycle;
1622 	}
1623 }
1624 
1625 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to
1626 // transmit first packet.
1627 static void amdtp_stream_first_callback(struct fw_iso_context *context,
1628 					u32 tstamp, size_t header_length,
1629 					void *header, void *private_data)
1630 {
1631 	struct amdtp_stream *s = private_data;
1632 	struct amdtp_domain *d = s->domain;
1633 
1634 	if (s->direction == AMDTP_IN_STREAM) {
1635 		context->callback.sc = drop_tx_packets_initially;
1636 	} else {
1637 		if (s == d->irq_target)
1638 			context->callback.sc = irq_target_callback_skip;
1639 		else
1640 			context->callback.sc = skip_rx_packets;
1641 	}
1642 
1643 	context->callback.sc(context, tstamp, header_length, header, s);
1644 }
1645 
1646 /**
1647  * amdtp_stream_start - start transferring packets
1648  * @s: the AMDTP stream to start
1649  * @channel: the isochronous channel on the bus
1650  * @speed: firewire speed code
1651  * @queue_size: The number of packets in the queue.
1652  * @idle_irq_interval: the interval to queue packet during initial state.
1653  *
1654  * The stream cannot be started until it has been configured with
1655  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1656  * device can be started.
1657  */
1658 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1659 			      unsigned int queue_size, unsigned int idle_irq_interval)
1660 {
1661 	bool is_irq_target = (s == s->domain->irq_target);
1662 	unsigned int ctx_header_size;
1663 	unsigned int max_ctx_payload_size;
1664 	enum dma_data_direction dir;
1665 	struct pkt_desc *descs;
1666 	int i, type, tag, err;
1667 
1668 	mutex_lock(&s->mutex);
1669 
1670 	if (WARN_ON(amdtp_stream_running(s) ||
1671 		    (s->data_block_quadlets < 1))) {
1672 		err = -EBADFD;
1673 		goto err_unlock;
1674 	}
1675 
1676 	if (s->direction == AMDTP_IN_STREAM) {
1677 		// NOTE: IT context should be used for constant IRQ.
1678 		if (is_irq_target) {
1679 			err = -EINVAL;
1680 			goto err_unlock;
1681 		}
1682 
1683 		s->data_block_counter = UINT_MAX;
1684 	} else {
1685 		s->data_block_counter = 0;
1686 	}
1687 
1688 	// initialize packet buffer.
1689 	if (s->direction == AMDTP_IN_STREAM) {
1690 		dir = DMA_FROM_DEVICE;
1691 		type = FW_ISO_CONTEXT_RECEIVE;
1692 		if (!(s->flags & CIP_NO_HEADER))
1693 			ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1694 		else
1695 			ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1696 	} else {
1697 		dir = DMA_TO_DEVICE;
1698 		type = FW_ISO_CONTEXT_TRANSMIT;
1699 		ctx_header_size = 0;	// No effect for IT context.
1700 	}
1701 	max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s);
1702 
1703 	err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir);
1704 	if (err < 0)
1705 		goto err_unlock;
1706 	s->queue_size = queue_size;
1707 
1708 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1709 					  type, channel, speed, ctx_header_size,
1710 					  amdtp_stream_first_callback, s);
1711 	if (IS_ERR(s->context)) {
1712 		err = PTR_ERR(s->context);
1713 		if (err == -EBUSY)
1714 			dev_err(&s->unit->device,
1715 				"no free stream on this controller\n");
1716 		goto err_buffer;
1717 	}
1718 
1719 	amdtp_stream_update(s);
1720 
1721 	if (s->direction == AMDTP_IN_STREAM) {
1722 		s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1723 		s->ctx_data.tx.ctx_header_size = ctx_header_size;
1724 		s->ctx_data.tx.event_starts = false;
1725 
1726 		if (s->domain->replay.enable) {
1727 			// struct fw_iso_context.drop_overflow_headers is false therefore it's
1728 			// possible to cache much unexpectedly.
1729 			s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2,
1730 							  queue_size * 3 / 2);
1731 			s->ctx_data.tx.cache.pos = 0;
1732 			s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size,
1733 						sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL);
1734 			if (!s->ctx_data.tx.cache.descs) {
1735 				err = -ENOMEM;
1736 				goto err_context;
1737 			}
1738 		}
1739 	} else {
1740 		static const struct {
1741 			unsigned int data_block;
1742 			unsigned int syt_offset;
1743 		} *entry, initial_state[] = {
1744 			[CIP_SFC_32000]  = {  4, 3072 },
1745 			[CIP_SFC_48000]  = {  6, 1024 },
1746 			[CIP_SFC_96000]  = { 12, 1024 },
1747 			[CIP_SFC_192000] = { 24, 1024 },
1748 			[CIP_SFC_44100]  = {  0,   67 },
1749 			[CIP_SFC_88200]  = {  0,   67 },
1750 			[CIP_SFC_176400] = {  0,   67 },
1751 		};
1752 
1753 		s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL);
1754 		if (!s->ctx_data.rx.seq.descs) {
1755 			err = -ENOMEM;
1756 			goto err_context;
1757 		}
1758 		s->ctx_data.rx.seq.size = queue_size;
1759 		s->ctx_data.rx.seq.pos = 0;
1760 
1761 		entry = &initial_state[s->sfc];
1762 		s->ctx_data.rx.data_block_state = entry->data_block;
1763 		s->ctx_data.rx.syt_offset_state = entry->syt_offset;
1764 		s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE;
1765 
1766 		s->ctx_data.rx.event_count = 0;
1767 	}
1768 
1769 	if (s->flags & CIP_NO_HEADER)
1770 		s->tag = TAG_NO_CIP_HEADER;
1771 	else
1772 		s->tag = TAG_CIP;
1773 
1774 	// NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request
1775 	// for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It
1776 	// could take a round over queue of AMDTP packet descriptors and small loss of history. For
1777 	// safe, keep more 8 elements for the queue, equivalent to 1 ms.
1778 	descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL);
1779 	if (!descs) {
1780 		err = -ENOMEM;
1781 		goto err_context;
1782 	}
1783 	s->packet_descs = descs;
1784 
1785 	INIT_LIST_HEAD(&s->packet_descs_list);
1786 	for (i = 0; i < s->queue_size; ++i) {
1787 		INIT_LIST_HEAD(&descs->link);
1788 		list_add_tail(&descs->link, &s->packet_descs_list);
1789 		++descs;
1790 	}
1791 	s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link);
1792 
1793 	s->packet_index = 0;
1794 	do {
1795 		struct fw_iso_packet params;
1796 
1797 		if (s->direction == AMDTP_IN_STREAM) {
1798 			err = queue_in_packet(s, &params);
1799 		} else {
1800 			bool sched_irq = false;
1801 
1802 			params.header_length = 0;
1803 			params.payload_length = 0;
1804 
1805 			if (is_irq_target) {
1806 				sched_irq = !((s->packet_index + 1) %
1807 					      idle_irq_interval);
1808 			}
1809 
1810 			err = queue_out_packet(s, &params, sched_irq);
1811 		}
1812 		if (err < 0)
1813 			goto err_pkt_descs;
1814 	} while (s->packet_index > 0);
1815 
1816 	/* NOTE: TAG1 matches CIP. This just affects in stream. */
1817 	tag = FW_ISO_CONTEXT_MATCH_TAG1;
1818 	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1819 		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1820 
1821 	s->ready_processing = false;
1822 	err = fw_iso_context_start(s->context, -1, 0, tag);
1823 	if (err < 0)
1824 		goto err_pkt_descs;
1825 
1826 	mutex_unlock(&s->mutex);
1827 
1828 	return 0;
1829 err_pkt_descs:
1830 	kfree(s->packet_descs);
1831 	s->packet_descs = NULL;
1832 err_context:
1833 	if (s->direction == AMDTP_OUT_STREAM) {
1834 		kfree(s->ctx_data.rx.seq.descs);
1835 	} else {
1836 		if (s->domain->replay.enable)
1837 			kfree(s->ctx_data.tx.cache.descs);
1838 	}
1839 	fw_iso_context_destroy(s->context);
1840 	s->context = ERR_PTR(-1);
1841 err_buffer:
1842 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1843 err_unlock:
1844 	mutex_unlock(&s->mutex);
1845 
1846 	return err;
1847 }
1848 
1849 /**
1850  * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1851  * @d: the AMDTP domain.
1852  * @s: the AMDTP stream that transports the PCM data
1853  *
1854  * Returns the current buffer position, in frames.
1855  */
1856 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1857 					      struct amdtp_stream *s)
1858 {
1859 	struct amdtp_stream *irq_target = d->irq_target;
1860 
1861 	if (irq_target && amdtp_stream_running(irq_target)) {
1862 		// use wq to prevent AB/BA deadlock competition for
1863 		// substream lock:
1864 		// fw_iso_context_flush_completions() acquires
1865 		// lock by ohci_flush_iso_completions(),
1866 		// amdtp-stream process_rx_packets() attempts to
1867 		// acquire same lock by snd_pcm_elapsed()
1868 		if (current_work() != &s->period_work)
1869 			fw_iso_context_flush_completions(irq_target->context);
1870 	}
1871 
1872 	return READ_ONCE(s->pcm_buffer_pointer);
1873 }
1874 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1875 
1876 /**
1877  * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1878  * @d: the AMDTP domain.
1879  * @s: the AMDTP stream that transfers the PCM frames
1880  *
1881  * Returns zero always.
1882  */
1883 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1884 {
1885 	struct amdtp_stream *irq_target = d->irq_target;
1886 
1887 	// Process isochronous packets for recent isochronous cycle to handle
1888 	// queued PCM frames.
1889 	if (irq_target && amdtp_stream_running(irq_target))
1890 		fw_iso_context_flush_completions(irq_target->context);
1891 
1892 	return 0;
1893 }
1894 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1895 
1896 /**
1897  * amdtp_stream_update - update the stream after a bus reset
1898  * @s: the AMDTP stream
1899  */
1900 void amdtp_stream_update(struct amdtp_stream *s)
1901 {
1902 	/* Precomputing. */
1903 	WRITE_ONCE(s->source_node_id_field,
1904                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1905 }
1906 EXPORT_SYMBOL(amdtp_stream_update);
1907 
1908 /**
1909  * amdtp_stream_stop - stop sending packets
1910  * @s: the AMDTP stream to stop
1911  *
1912  * All PCM and MIDI devices of the stream must be stopped before the stream
1913  * itself can be stopped.
1914  */
1915 static void amdtp_stream_stop(struct amdtp_stream *s)
1916 {
1917 	mutex_lock(&s->mutex);
1918 
1919 	if (!amdtp_stream_running(s)) {
1920 		mutex_unlock(&s->mutex);
1921 		return;
1922 	}
1923 
1924 	cancel_work_sync(&s->period_work);
1925 	fw_iso_context_stop(s->context);
1926 	fw_iso_context_destroy(s->context);
1927 	s->context = ERR_PTR(-1);
1928 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1929 	kfree(s->packet_descs);
1930 	s->packet_descs = NULL;
1931 
1932 	if (s->direction == AMDTP_OUT_STREAM) {
1933 		kfree(s->ctx_data.rx.seq.descs);
1934 	} else {
1935 		if (s->domain->replay.enable)
1936 			kfree(s->ctx_data.tx.cache.descs);
1937 	}
1938 
1939 	mutex_unlock(&s->mutex);
1940 }
1941 
1942 /**
1943  * amdtp_stream_pcm_abort - abort the running PCM device
1944  * @s: the AMDTP stream about to be stopped
1945  *
1946  * If the isochronous stream needs to be stopped asynchronously, call this
1947  * function first to stop the PCM device.
1948  */
1949 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1950 {
1951 	struct snd_pcm_substream *pcm;
1952 
1953 	pcm = READ_ONCE(s->pcm);
1954 	if (pcm)
1955 		snd_pcm_stop_xrun(pcm);
1956 }
1957 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1958 
1959 /**
1960  * amdtp_domain_init - initialize an AMDTP domain structure
1961  * @d: the AMDTP domain to initialize.
1962  */
1963 int amdtp_domain_init(struct amdtp_domain *d)
1964 {
1965 	INIT_LIST_HEAD(&d->streams);
1966 
1967 	d->events_per_period = 0;
1968 
1969 	return 0;
1970 }
1971 EXPORT_SYMBOL_GPL(amdtp_domain_init);
1972 
1973 /**
1974  * amdtp_domain_destroy - destroy an AMDTP domain structure
1975  * @d: the AMDTP domain to destroy.
1976  */
1977 void amdtp_domain_destroy(struct amdtp_domain *d)
1978 {
1979 	// At present nothing to do.
1980 	return;
1981 }
1982 EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1983 
1984 /**
1985  * amdtp_domain_add_stream - register isoc context into the domain.
1986  * @d: the AMDTP domain.
1987  * @s: the AMDTP stream.
1988  * @channel: the isochronous channel on the bus.
1989  * @speed: firewire speed code.
1990  */
1991 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1992 			    int channel, int speed)
1993 {
1994 	struct amdtp_stream *tmp;
1995 
1996 	list_for_each_entry(tmp, &d->streams, list) {
1997 		if (s == tmp)
1998 			return -EBUSY;
1999 	}
2000 
2001 	list_add(&s->list, &d->streams);
2002 
2003 	s->channel = channel;
2004 	s->speed = speed;
2005 	s->domain = d;
2006 
2007 	return 0;
2008 }
2009 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
2010 
2011 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams
2012 // is less than the number of rx streams, the first tx stream is selected.
2013 static int make_association(struct amdtp_domain *d)
2014 {
2015 	unsigned int dst_index = 0;
2016 	struct amdtp_stream *rx;
2017 
2018 	// Make association to replay target.
2019 	list_for_each_entry(rx, &d->streams, list) {
2020 		if (rx->direction == AMDTP_OUT_STREAM) {
2021 			unsigned int src_index = 0;
2022 			struct amdtp_stream *tx = NULL;
2023 			struct amdtp_stream *s;
2024 
2025 			list_for_each_entry(s, &d->streams, list) {
2026 				if (s->direction == AMDTP_IN_STREAM) {
2027 					if (dst_index == src_index) {
2028 						tx = s;
2029 						break;
2030 					}
2031 
2032 					++src_index;
2033 				}
2034 			}
2035 			if (!tx) {
2036 				// Select the first entry.
2037 				list_for_each_entry(s, &d->streams, list) {
2038 					if (s->direction == AMDTP_IN_STREAM) {
2039 						tx = s;
2040 						break;
2041 					}
2042 				}
2043 				// No target is available to replay sequence.
2044 				if (!tx)
2045 					return -EINVAL;
2046 			}
2047 
2048 			rx->ctx_data.rx.replay_target = tx;
2049 
2050 			++dst_index;
2051 		}
2052 	}
2053 
2054 	return 0;
2055 }
2056 
2057 /**
2058  * amdtp_domain_start - start sending packets for isoc context in the domain.
2059  * @d: the AMDTP domain.
2060  * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR
2061  *			 contexts.
2062  * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in
2063  *		IT context.
2064  * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay
2065  *		       according to arrival of events in tx packets.
2066  */
2067 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq,
2068 		       bool replay_on_the_fly)
2069 {
2070 	unsigned int events_per_buffer = d->events_per_buffer;
2071 	unsigned int events_per_period = d->events_per_period;
2072 	unsigned int queue_size;
2073 	struct amdtp_stream *s;
2074 	bool found = false;
2075 	int err;
2076 
2077 	if (replay_seq) {
2078 		err = make_association(d);
2079 		if (err < 0)
2080 			return err;
2081 	}
2082 	d->replay.enable = replay_seq;
2083 	d->replay.on_the_fly = replay_on_the_fly;
2084 
2085 	// Select an IT context as IRQ target.
2086 	list_for_each_entry(s, &d->streams, list) {
2087 		if (s->direction == AMDTP_OUT_STREAM) {
2088 			found = true;
2089 			break;
2090 		}
2091 	}
2092 	if (!found)
2093 		return -ENXIO;
2094 	d->irq_target = s;
2095 
2096 	d->processing_cycle.tx_init_skip = tx_init_skip_cycles;
2097 
2098 	// This is a case that AMDTP streams in domain run just for MIDI
2099 	// substream. Use the number of events equivalent to 10 msec as
2100 	// interval of hardware IRQ.
2101 	if (events_per_period == 0)
2102 		events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
2103 	if (events_per_buffer == 0)
2104 		events_per_buffer = events_per_period * 3;
2105 
2106 	queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
2107 				  amdtp_rate_table[d->irq_target->sfc]);
2108 
2109 	list_for_each_entry(s, &d->streams, list) {
2110 		unsigned int idle_irq_interval = 0;
2111 
2112 		if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) {
2113 			idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
2114 							 amdtp_rate_table[d->irq_target->sfc]);
2115 		}
2116 
2117 		// Starts immediately but actually DMA context starts several hundred cycles later.
2118 		err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval);
2119 		if (err < 0)
2120 			goto error;
2121 	}
2122 
2123 	return 0;
2124 error:
2125 	list_for_each_entry(s, &d->streams, list)
2126 		amdtp_stream_stop(s);
2127 	return err;
2128 }
2129 EXPORT_SYMBOL_GPL(amdtp_domain_start);
2130 
2131 /**
2132  * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
2133  * @d: the AMDTP domain to which the isoc contexts belong.
2134  */
2135 void amdtp_domain_stop(struct amdtp_domain *d)
2136 {
2137 	struct amdtp_stream *s, *next;
2138 
2139 	if (d->irq_target)
2140 		amdtp_stream_stop(d->irq_target);
2141 
2142 	list_for_each_entry_safe(s, next, &d->streams, list) {
2143 		list_del(&s->list);
2144 
2145 		if (s != d->irq_target)
2146 			amdtp_stream_stop(s);
2147 	}
2148 
2149 	d->events_per_period = 0;
2150 	d->irq_target = NULL;
2151 }
2152 EXPORT_SYMBOL_GPL(amdtp_domain_stop);
2153