1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_MAX_SECOND 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 /* common isochronous packet header parameters */ 37 #define CIP_EOH_SHIFT 31 38 #define CIP_EOH (1u << CIP_EOH_SHIFT) 39 #define CIP_EOH_MASK 0x80000000 40 #define CIP_SID_SHIFT 24 41 #define CIP_SID_MASK 0x3f000000 42 #define CIP_DBS_MASK 0x00ff0000 43 #define CIP_DBS_SHIFT 16 44 #define CIP_SPH_MASK 0x00000400 45 #define CIP_SPH_SHIFT 10 46 #define CIP_DBC_MASK 0x000000ff 47 #define CIP_FMT_SHIFT 24 48 #define CIP_FMT_MASK 0x3f000000 49 #define CIP_FDF_MASK 0x00ff0000 50 #define CIP_FDF_SHIFT 16 51 #define CIP_SYT_MASK 0x0000ffff 52 #define CIP_SYT_NO_INFO 0xffff 53 54 /* Audio and Music transfer protocol specific parameters */ 55 #define CIP_FMT_AM 0x10 56 #define AMDTP_FDF_NO_DATA 0xff 57 58 // For iso header, tstamp and 2 CIP header. 59 #define IR_CTX_HEADER_SIZE_CIP 16 60 // For iso header and tstamp. 61 #define IR_CTX_HEADER_SIZE_NO_CIP 8 62 #define HEADER_TSTAMP_MASK 0x0000ffff 63 64 #define IT_PKT_HEADER_SIZE_CIP 8 // For 2 CIP header. 65 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 66 67 static void pcm_period_work(struct work_struct *work); 68 69 /** 70 * amdtp_stream_init - initialize an AMDTP stream structure 71 * @s: the AMDTP stream to initialize 72 * @unit: the target of the stream 73 * @dir: the direction of stream 74 * @flags: the packet transmission method to use 75 * @fmt: the value of fmt field in CIP header 76 * @process_ctx_payloads: callback handler to process payloads of isoc context 77 * @protocol_size: the size to allocate newly for protocol 78 */ 79 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 80 enum amdtp_stream_direction dir, enum cip_flags flags, 81 unsigned int fmt, 82 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 83 unsigned int protocol_size) 84 { 85 if (process_ctx_payloads == NULL) 86 return -EINVAL; 87 88 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 89 if (!s->protocol) 90 return -ENOMEM; 91 92 s->unit = unit; 93 s->direction = dir; 94 s->flags = flags; 95 s->context = ERR_PTR(-1); 96 mutex_init(&s->mutex); 97 INIT_WORK(&s->period_work, pcm_period_work); 98 s->packet_index = 0; 99 100 init_waitqueue_head(&s->callback_wait); 101 s->callbacked = false; 102 103 s->fmt = fmt; 104 s->process_ctx_payloads = process_ctx_payloads; 105 106 if (dir == AMDTP_OUT_STREAM) 107 s->ctx_data.rx.syt_override = -1; 108 109 return 0; 110 } 111 EXPORT_SYMBOL(amdtp_stream_init); 112 113 /** 114 * amdtp_stream_destroy - free stream resources 115 * @s: the AMDTP stream to destroy 116 */ 117 void amdtp_stream_destroy(struct amdtp_stream *s) 118 { 119 /* Not initialized. */ 120 if (s->protocol == NULL) 121 return; 122 123 WARN_ON(amdtp_stream_running(s)); 124 kfree(s->protocol); 125 mutex_destroy(&s->mutex); 126 } 127 EXPORT_SYMBOL(amdtp_stream_destroy); 128 129 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 130 [CIP_SFC_32000] = 8, 131 [CIP_SFC_44100] = 8, 132 [CIP_SFC_48000] = 8, 133 [CIP_SFC_88200] = 16, 134 [CIP_SFC_96000] = 16, 135 [CIP_SFC_176400] = 32, 136 [CIP_SFC_192000] = 32, 137 }; 138 EXPORT_SYMBOL(amdtp_syt_intervals); 139 140 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 141 [CIP_SFC_32000] = 32000, 142 [CIP_SFC_44100] = 44100, 143 [CIP_SFC_48000] = 48000, 144 [CIP_SFC_88200] = 88200, 145 [CIP_SFC_96000] = 96000, 146 [CIP_SFC_176400] = 176400, 147 [CIP_SFC_192000] = 192000, 148 }; 149 EXPORT_SYMBOL(amdtp_rate_table); 150 151 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 152 struct snd_pcm_hw_rule *rule) 153 { 154 struct snd_interval *s = hw_param_interval(params, rule->var); 155 const struct snd_interval *r = 156 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 157 struct snd_interval t = {0}; 158 unsigned int step = 0; 159 int i; 160 161 for (i = 0; i < CIP_SFC_COUNT; ++i) { 162 if (snd_interval_test(r, amdtp_rate_table[i])) 163 step = max(step, amdtp_syt_intervals[i]); 164 } 165 166 t.min = roundup(s->min, step); 167 t.max = rounddown(s->max, step); 168 t.integer = 1; 169 170 return snd_interval_refine(s, &t); 171 } 172 173 /** 174 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 175 * @s: the AMDTP stream, which must be initialized. 176 * @runtime: the PCM substream runtime 177 */ 178 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 179 struct snd_pcm_runtime *runtime) 180 { 181 struct snd_pcm_hardware *hw = &runtime->hw; 182 unsigned int ctx_header_size; 183 unsigned int maximum_usec_per_period; 184 int err; 185 186 hw->info = SNDRV_PCM_INFO_BATCH | 187 SNDRV_PCM_INFO_BLOCK_TRANSFER | 188 SNDRV_PCM_INFO_INTERLEAVED | 189 SNDRV_PCM_INFO_JOINT_DUPLEX | 190 SNDRV_PCM_INFO_MMAP | 191 SNDRV_PCM_INFO_MMAP_VALID; 192 193 /* SNDRV_PCM_INFO_BATCH */ 194 hw->periods_min = 2; 195 hw->periods_max = UINT_MAX; 196 197 /* bytes for a frame */ 198 hw->period_bytes_min = 4 * hw->channels_max; 199 200 /* Just to prevent from allocating much pages. */ 201 hw->period_bytes_max = hw->period_bytes_min * 2048; 202 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 203 204 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 205 // context when total size of accumulated context header reaches 206 // PAGE_SIZE. This kicks work for the isoc context and brings 207 // callback in the middle of scheduled interrupts. 208 // Although AMDTP streams in the same domain use the same events per 209 // IRQ, use the largest size of context header between IT/IR contexts. 210 // Here, use the value of context header in IR context is for both 211 // contexts. 212 if (!(s->flags & CIP_NO_HEADER)) 213 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 214 else 215 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 216 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 217 CYCLES_PER_SECOND / ctx_header_size; 218 219 // In IEC 61883-6, one isoc packet can transfer events up to the value 220 // of syt interval. This comes from the interval of isoc cycle. As 1394 221 // OHCI controller can generate hardware IRQ per isoc packet, the 222 // interval is 125 usec. 223 // However, there are two ways of transmission in IEC 61883-6; blocking 224 // and non-blocking modes. In blocking mode, the sequence of isoc packet 225 // includes 'empty' or 'NODATA' packets which include no event. In 226 // non-blocking mode, the number of events per packet is variable up to 227 // the syt interval. 228 // Due to the above protocol design, the minimum PCM frames per 229 // interrupt should be double of the value of syt interval, thus it is 230 // 250 usec. 231 err = snd_pcm_hw_constraint_minmax(runtime, 232 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 233 250, maximum_usec_per_period); 234 if (err < 0) 235 goto end; 236 237 /* Non-Blocking stream has no more constraints */ 238 if (!(s->flags & CIP_BLOCKING)) 239 goto end; 240 241 /* 242 * One AMDTP packet can include some frames. In blocking mode, the 243 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 244 * depending on its sampling rate. For accurate period interrupt, it's 245 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 246 */ 247 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 248 apply_constraint_to_size, NULL, 249 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 250 SNDRV_PCM_HW_PARAM_RATE, -1); 251 if (err < 0) 252 goto end; 253 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 254 apply_constraint_to_size, NULL, 255 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 256 SNDRV_PCM_HW_PARAM_RATE, -1); 257 if (err < 0) 258 goto end; 259 end: 260 return err; 261 } 262 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 263 264 /** 265 * amdtp_stream_set_parameters - set stream parameters 266 * @s: the AMDTP stream to configure 267 * @rate: the sample rate 268 * @data_block_quadlets: the size of a data block in quadlet unit 269 * 270 * The parameters must be set before the stream is started, and must not be 271 * changed while the stream is running. 272 */ 273 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 274 unsigned int data_block_quadlets) 275 { 276 unsigned int sfc; 277 278 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 279 if (amdtp_rate_table[sfc] == rate) 280 break; 281 } 282 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 283 return -EINVAL; 284 285 s->sfc = sfc; 286 s->data_block_quadlets = data_block_quadlets; 287 s->syt_interval = amdtp_syt_intervals[sfc]; 288 289 // default buffering in the device. 290 if (s->direction == AMDTP_OUT_STREAM) { 291 s->ctx_data.rx.transfer_delay = 292 TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 293 294 if (s->flags & CIP_BLOCKING) { 295 // additional buffering needed to adjust for no-data 296 // packets. 297 s->ctx_data.rx.transfer_delay += 298 TICKS_PER_SECOND * s->syt_interval / rate; 299 } 300 } 301 302 return 0; 303 } 304 EXPORT_SYMBOL(amdtp_stream_set_parameters); 305 306 /** 307 * amdtp_stream_get_max_payload - get the stream's packet size 308 * @s: the AMDTP stream 309 * 310 * This function must not be called before the stream has been configured 311 * with amdtp_stream_set_parameters(). 312 */ 313 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 314 { 315 unsigned int multiplier = 1; 316 unsigned int cip_header_size = 0; 317 318 if (s->flags & CIP_JUMBO_PAYLOAD) 319 multiplier = 5; 320 if (!(s->flags & CIP_NO_HEADER)) 321 cip_header_size = sizeof(__be32) * 2; 322 323 return cip_header_size + 324 s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 325 } 326 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 327 328 /** 329 * amdtp_stream_pcm_prepare - prepare PCM device for running 330 * @s: the AMDTP stream 331 * 332 * This function should be called from the PCM device's .prepare callback. 333 */ 334 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 335 { 336 cancel_work_sync(&s->period_work); 337 s->pcm_buffer_pointer = 0; 338 s->pcm_period_pointer = 0; 339 } 340 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 341 342 static unsigned int calculate_data_blocks(unsigned int *data_block_state, 343 bool is_blocking, bool is_no_info, 344 unsigned int syt_interval, enum cip_sfc sfc) 345 { 346 unsigned int data_blocks; 347 348 /* Blocking mode. */ 349 if (is_blocking) { 350 /* This module generate empty packet for 'no data'. */ 351 if (is_no_info) 352 data_blocks = 0; 353 else 354 data_blocks = syt_interval; 355 /* Non-blocking mode. */ 356 } else { 357 if (!cip_sfc_is_base_44100(sfc)) { 358 // Sample_rate / 8000 is an integer, and precomputed. 359 data_blocks = *data_block_state; 360 } else { 361 unsigned int phase = *data_block_state; 362 363 /* 364 * This calculates the number of data blocks per packet so that 365 * 1) the overall rate is correct and exactly synchronized to 366 * the bus clock, and 367 * 2) packets with a rounded-up number of blocks occur as early 368 * as possible in the sequence (to prevent underruns of the 369 * device's buffer). 370 */ 371 if (sfc == CIP_SFC_44100) 372 /* 6 6 5 6 5 6 5 ... */ 373 data_blocks = 5 + ((phase & 1) ^ 374 (phase == 0 || phase >= 40)); 375 else 376 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 377 data_blocks = 11 * (sfc >> 1) + (phase == 0); 378 if (++phase >= (80 >> (sfc >> 1))) 379 phase = 0; 380 *data_block_state = phase; 381 } 382 } 383 384 return data_blocks; 385 } 386 387 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 388 unsigned int *syt_offset_state, enum cip_sfc sfc) 389 { 390 unsigned int syt_offset; 391 392 if (*last_syt_offset < TICKS_PER_CYCLE) { 393 if (!cip_sfc_is_base_44100(sfc)) 394 syt_offset = *last_syt_offset + *syt_offset_state; 395 else { 396 /* 397 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 398 * n * SYT_INTERVAL * 24576000 / sample_rate 399 * Modulo TICKS_PER_CYCLE, the difference between successive 400 * elements is about 1386.23. Rounding the results of this 401 * formula to the SYT precision results in a sequence of 402 * differences that begins with: 403 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 404 * This code generates _exactly_ the same sequence. 405 */ 406 unsigned int phase = *syt_offset_state; 407 unsigned int index = phase % 13; 408 409 syt_offset = *last_syt_offset; 410 syt_offset += 1386 + ((index && !(index & 3)) || 411 phase == 146); 412 if (++phase >= 147) 413 phase = 0; 414 *syt_offset_state = phase; 415 } 416 } else 417 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 418 *last_syt_offset = syt_offset; 419 420 if (syt_offset >= TICKS_PER_CYCLE) 421 syt_offset = CIP_SYT_NO_INFO; 422 423 return syt_offset; 424 } 425 426 static void update_pcm_pointers(struct amdtp_stream *s, 427 struct snd_pcm_substream *pcm, 428 unsigned int frames) 429 { 430 unsigned int ptr; 431 432 ptr = s->pcm_buffer_pointer + frames; 433 if (ptr >= pcm->runtime->buffer_size) 434 ptr -= pcm->runtime->buffer_size; 435 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 436 437 s->pcm_period_pointer += frames; 438 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 439 s->pcm_period_pointer -= pcm->runtime->period_size; 440 queue_work(system_highpri_wq, &s->period_work); 441 } 442 } 443 444 static void pcm_period_work(struct work_struct *work) 445 { 446 struct amdtp_stream *s = container_of(work, struct amdtp_stream, 447 period_work); 448 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 449 450 if (pcm) 451 snd_pcm_period_elapsed(pcm); 452 } 453 454 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 455 bool sched_irq) 456 { 457 int err; 458 459 params->interrupt = sched_irq; 460 params->tag = s->tag; 461 params->sy = 0; 462 463 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 464 s->buffer.packets[s->packet_index].offset); 465 if (err < 0) { 466 dev_err(&s->unit->device, "queueing error: %d\n", err); 467 goto end; 468 } 469 470 if (++s->packet_index >= s->queue_size) 471 s->packet_index = 0; 472 end: 473 return err; 474 } 475 476 static inline int queue_out_packet(struct amdtp_stream *s, 477 struct fw_iso_packet *params, bool sched_irq) 478 { 479 params->skip = 480 !!(params->header_length == 0 && params->payload_length == 0); 481 return queue_packet(s, params, sched_irq); 482 } 483 484 static inline int queue_in_packet(struct amdtp_stream *s, 485 struct fw_iso_packet *params) 486 { 487 // Queue one packet for IR context. 488 params->header_length = s->ctx_data.tx.ctx_header_size; 489 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 490 params->skip = false; 491 return queue_packet(s, params, false); 492 } 493 494 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 495 unsigned int data_block_counter, unsigned int syt) 496 { 497 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 498 (s->data_block_quadlets << CIP_DBS_SHIFT) | 499 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 500 data_block_counter); 501 cip_header[1] = cpu_to_be32(CIP_EOH | 502 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 503 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 504 (syt & CIP_SYT_MASK)); 505 } 506 507 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 508 struct fw_iso_packet *params, 509 unsigned int data_blocks, 510 unsigned int data_block_counter, 511 unsigned int syt, unsigned int index) 512 { 513 unsigned int payload_length; 514 __be32 *cip_header; 515 516 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 517 params->payload_length = payload_length; 518 519 if (!(s->flags & CIP_NO_HEADER)) { 520 cip_header = (__be32 *)params->header; 521 generate_cip_header(s, cip_header, data_block_counter, syt); 522 params->header_length = 2 * sizeof(__be32); 523 payload_length += params->header_length; 524 } else { 525 cip_header = NULL; 526 } 527 528 trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks, 529 data_block_counter, s->packet_index, index); 530 } 531 532 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 533 unsigned int payload_length, 534 unsigned int *data_blocks, 535 unsigned int *data_block_counter, unsigned int *syt) 536 { 537 u32 cip_header[2]; 538 unsigned int sph; 539 unsigned int fmt; 540 unsigned int fdf; 541 unsigned int dbc; 542 bool lost; 543 544 cip_header[0] = be32_to_cpu(buf[0]); 545 cip_header[1] = be32_to_cpu(buf[1]); 546 547 /* 548 * This module supports 'Two-quadlet CIP header with SYT field'. 549 * For convenience, also check FMT field is AM824 or not. 550 */ 551 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 552 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 553 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 554 dev_info_ratelimited(&s->unit->device, 555 "Invalid CIP header for AMDTP: %08X:%08X\n", 556 cip_header[0], cip_header[1]); 557 return -EAGAIN; 558 } 559 560 /* Check valid protocol or not. */ 561 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 562 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 563 if (sph != s->sph || fmt != s->fmt) { 564 dev_info_ratelimited(&s->unit->device, 565 "Detect unexpected protocol: %08x %08x\n", 566 cip_header[0], cip_header[1]); 567 return -EAGAIN; 568 } 569 570 /* Calculate data blocks */ 571 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 572 if (payload_length < sizeof(__be32) * 2 || 573 (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 574 *data_blocks = 0; 575 } else { 576 unsigned int data_block_quadlets = 577 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 578 /* avoid division by zero */ 579 if (data_block_quadlets == 0) { 580 dev_err(&s->unit->device, 581 "Detect invalid value in dbs field: %08X\n", 582 cip_header[0]); 583 return -EPROTO; 584 } 585 if (s->flags & CIP_WRONG_DBS) 586 data_block_quadlets = s->data_block_quadlets; 587 588 *data_blocks = (payload_length / sizeof(__be32) - 2) / 589 data_block_quadlets; 590 } 591 592 /* Check data block counter continuity */ 593 dbc = cip_header[0] & CIP_DBC_MASK; 594 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 595 *data_block_counter != UINT_MAX) 596 dbc = *data_block_counter; 597 598 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 599 *data_block_counter == UINT_MAX) { 600 lost = false; 601 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 602 lost = dbc != *data_block_counter; 603 } else { 604 unsigned int dbc_interval; 605 606 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 607 dbc_interval = s->ctx_data.tx.dbc_interval; 608 else 609 dbc_interval = *data_blocks; 610 611 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 612 } 613 614 if (lost) { 615 dev_err(&s->unit->device, 616 "Detect discontinuity of CIP: %02X %02X\n", 617 *data_block_counter, dbc); 618 return -EIO; 619 } 620 621 *data_block_counter = dbc; 622 623 *syt = cip_header[1] & CIP_SYT_MASK; 624 625 return 0; 626 } 627 628 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 629 const __be32 *ctx_header, 630 unsigned int *payload_length, 631 unsigned int *data_blocks, 632 unsigned int *data_block_counter, 633 unsigned int *syt, unsigned int packet_index, unsigned int index) 634 { 635 const __be32 *cip_header; 636 unsigned int cip_header_size; 637 int err; 638 639 *payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 640 641 if (!(s->flags & CIP_NO_HEADER)) 642 cip_header_size = 8; 643 else 644 cip_header_size = 0; 645 646 if (*payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 647 dev_err(&s->unit->device, 648 "Detect jumbo payload: %04x %04x\n", 649 *payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 650 return -EIO; 651 } 652 653 if (cip_header_size > 0) { 654 cip_header = ctx_header + 2; 655 err = check_cip_header(s, cip_header, *payload_length, 656 data_blocks, data_block_counter, syt); 657 if (err < 0) 658 return err; 659 } else { 660 cip_header = NULL; 661 err = 0; 662 *data_blocks = *payload_length / sizeof(__be32) / 663 s->data_block_quadlets; 664 *syt = 0; 665 666 if (*data_block_counter == UINT_MAX) 667 *data_block_counter = 0; 668 } 669 670 trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks, 671 *data_block_counter, packet_index, index); 672 673 return err; 674 } 675 676 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 677 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 678 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 679 static inline u32 compute_cycle_count(__be32 ctx_header_tstamp) 680 { 681 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 682 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); 683 } 684 685 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend) 686 { 687 cycle += addend; 688 if (cycle >= OHCI_MAX_SECOND * CYCLES_PER_SECOND) 689 cycle -= OHCI_MAX_SECOND * CYCLES_PER_SECOND; 690 return cycle; 691 } 692 693 // Align to actual cycle count for the packet which is going to be scheduled. 694 // This module queued the same number of isochronous cycle as the size of queue 695 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 696 // the size of queue for scheduled cycle. 697 static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp, 698 unsigned int queue_size) 699 { 700 u32 cycle = compute_cycle_count(ctx_header_tstamp); 701 return increment_cycle_count(cycle, queue_size); 702 } 703 704 static int generate_device_pkt_descs(struct amdtp_stream *s, 705 struct pkt_desc *descs, 706 const __be32 *ctx_header, 707 unsigned int packets) 708 { 709 unsigned int dbc = s->data_block_counter; 710 unsigned int packet_index = s->packet_index; 711 unsigned int queue_size = s->queue_size; 712 int i; 713 int err; 714 715 for (i = 0; i < packets; ++i) { 716 struct pkt_desc *desc = descs + i; 717 unsigned int cycle; 718 unsigned int payload_length; 719 unsigned int data_blocks; 720 unsigned int syt; 721 722 cycle = compute_cycle_count(ctx_header[1]); 723 724 err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length, 725 &data_blocks, &dbc, &syt, packet_index, i); 726 if (err < 0) 727 return err; 728 729 desc->cycle = cycle; 730 desc->syt = syt; 731 desc->data_blocks = data_blocks; 732 desc->data_block_counter = dbc; 733 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 734 735 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 736 dbc = (dbc + desc->data_blocks) & 0xff; 737 738 ctx_header += 739 s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 740 741 packet_index = (packet_index + 1) % queue_size; 742 } 743 744 s->data_block_counter = dbc; 745 746 return 0; 747 } 748 749 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 750 unsigned int transfer_delay) 751 { 752 unsigned int syt; 753 754 syt_offset += transfer_delay; 755 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 756 (syt_offset % TICKS_PER_CYCLE); 757 return syt & CIP_SYT_MASK; 758 } 759 760 static void generate_pkt_descs(struct amdtp_stream *s, struct pkt_desc *descs, 761 const __be32 *ctx_header, unsigned int packets, 762 const struct seq_desc *seq_descs, 763 unsigned int seq_size) 764 { 765 unsigned int dbc = s->data_block_counter; 766 unsigned int seq_index = s->ctx_data.rx.seq_index; 767 int i; 768 769 for (i = 0; i < packets; ++i) { 770 struct pkt_desc *desc = descs + i; 771 unsigned int index = (s->packet_index + i) % s->queue_size; 772 const struct seq_desc *seq = seq_descs + seq_index; 773 unsigned int syt; 774 775 desc->cycle = compute_it_cycle(*ctx_header, s->queue_size); 776 777 syt = seq->syt_offset; 778 if (syt != CIP_SYT_NO_INFO) { 779 syt = compute_syt(syt, desc->cycle, 780 s->ctx_data.rx.transfer_delay); 781 } 782 desc->syt = syt; 783 desc->data_blocks = seq->data_blocks; 784 785 if (s->flags & CIP_DBC_IS_END_EVENT) 786 dbc = (dbc + desc->data_blocks) & 0xff; 787 788 desc->data_block_counter = dbc; 789 790 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 791 dbc = (dbc + desc->data_blocks) & 0xff; 792 793 desc->ctx_payload = s->buffer.packets[index].buffer; 794 795 seq_index = (seq_index + 1) % seq_size; 796 797 ++ctx_header; 798 } 799 800 s->data_block_counter = dbc; 801 s->ctx_data.rx.seq_index = seq_index; 802 } 803 804 static inline void cancel_stream(struct amdtp_stream *s) 805 { 806 s->packet_index = -1; 807 if (current_work() == &s->period_work) 808 amdtp_stream_pcm_abort(s); 809 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 810 } 811 812 static void process_ctx_payloads(struct amdtp_stream *s, 813 const struct pkt_desc *descs, 814 unsigned int packets) 815 { 816 struct snd_pcm_substream *pcm; 817 unsigned int pcm_frames; 818 819 pcm = READ_ONCE(s->pcm); 820 pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm); 821 if (pcm) 822 update_pcm_pointers(s, pcm, pcm_frames); 823 } 824 825 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp, 826 size_t header_length, void *header, 827 void *private_data) 828 { 829 struct amdtp_stream *s = private_data; 830 const struct amdtp_domain *d = s->domain; 831 const __be32 *ctx_header = header; 832 unsigned int events_per_period = s->ctx_data.rx.events_per_period; 833 unsigned int event_count = s->ctx_data.rx.event_count; 834 unsigned int packets; 835 int i; 836 837 if (s->packet_index < 0) 838 return; 839 840 // Calculate the number of packets in buffer and check XRUN. 841 packets = header_length / sizeof(*ctx_header); 842 843 generate_pkt_descs(s, s->pkt_descs, ctx_header, packets, d->seq_descs, 844 d->seq_size); 845 846 process_ctx_payloads(s, s->pkt_descs, packets); 847 848 for (i = 0; i < packets; ++i) { 849 const struct pkt_desc *desc = s->pkt_descs + i; 850 unsigned int syt; 851 struct { 852 struct fw_iso_packet params; 853 __be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)]; 854 } template = { {0}, {0} }; 855 bool sched_irq = false; 856 857 if (s->ctx_data.rx.syt_override < 0) 858 syt = desc->syt; 859 else 860 syt = s->ctx_data.rx.syt_override; 861 862 build_it_pkt_header(s, desc->cycle, &template.params, 863 desc->data_blocks, desc->data_block_counter, 864 syt, i); 865 866 if (s == s->domain->irq_target) { 867 event_count += desc->data_blocks; 868 if (event_count >= events_per_period) { 869 event_count -= events_per_period; 870 sched_irq = true; 871 } 872 } 873 874 if (queue_out_packet(s, &template.params, sched_irq) < 0) { 875 cancel_stream(s); 876 return; 877 } 878 } 879 880 s->ctx_data.rx.event_count = event_count; 881 } 882 883 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp, 884 size_t header_length, void *header, 885 void *private_data) 886 { 887 struct amdtp_stream *s = private_data; 888 __be32 *ctx_header = header; 889 unsigned int packets; 890 int i; 891 int err; 892 893 if (s->packet_index < 0) 894 return; 895 896 // Calculate the number of packets in buffer and check XRUN. 897 packets = header_length / s->ctx_data.tx.ctx_header_size; 898 899 err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets); 900 if (err < 0) { 901 if (err != -EAGAIN) { 902 cancel_stream(s); 903 return; 904 } 905 } else { 906 process_ctx_payloads(s, s->pkt_descs, packets); 907 } 908 909 for (i = 0; i < packets; ++i) { 910 struct fw_iso_packet params = {0}; 911 912 if (queue_in_packet(s, ¶ms) < 0) { 913 cancel_stream(s); 914 return; 915 } 916 } 917 } 918 919 static void pool_ideal_seq_descs(struct amdtp_domain *d, unsigned int packets) 920 { 921 struct amdtp_stream *irq_target = d->irq_target; 922 unsigned int seq_tail = d->seq_tail; 923 unsigned int seq_size = d->seq_size; 924 unsigned int min_avail; 925 struct amdtp_stream *s; 926 927 min_avail = d->seq_size; 928 list_for_each_entry(s, &d->streams, list) { 929 unsigned int seq_index; 930 unsigned int avail; 931 932 if (s->direction == AMDTP_IN_STREAM) 933 continue; 934 935 seq_index = s->ctx_data.rx.seq_index; 936 avail = d->seq_tail; 937 if (seq_index > avail) 938 avail += d->seq_size; 939 avail -= seq_index; 940 941 if (avail < min_avail) 942 min_avail = avail; 943 } 944 945 while (min_avail < packets) { 946 struct seq_desc *desc = d->seq_descs + seq_tail; 947 948 desc->syt_offset = calculate_syt_offset(&d->last_syt_offset, 949 &d->syt_offset_state, irq_target->sfc); 950 desc->data_blocks = calculate_data_blocks(&d->data_block_state, 951 !!(irq_target->flags & CIP_BLOCKING), 952 desc->syt_offset == CIP_SYT_NO_INFO, 953 irq_target->syt_interval, irq_target->sfc); 954 955 ++seq_tail; 956 seq_tail %= seq_size; 957 958 ++min_avail; 959 } 960 961 d->seq_tail = seq_tail; 962 } 963 964 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, 965 size_t header_length, void *header, 966 void *private_data) 967 { 968 struct amdtp_stream *irq_target = private_data; 969 struct amdtp_domain *d = irq_target->domain; 970 unsigned int packets = header_length / sizeof(__be32); 971 struct amdtp_stream *s; 972 973 // Record enough entries with extra 3 cycles at least. 974 pool_ideal_seq_descs(d, packets + 3); 975 976 out_stream_callback(context, tstamp, header_length, header, irq_target); 977 if (amdtp_streaming_error(irq_target)) 978 goto error; 979 980 list_for_each_entry(s, &d->streams, list) { 981 if (s != irq_target && amdtp_stream_running(s)) { 982 fw_iso_context_flush_completions(s->context); 983 if (amdtp_streaming_error(s)) 984 goto error; 985 } 986 } 987 988 return; 989 error: 990 if (amdtp_stream_running(irq_target)) 991 cancel_stream(irq_target); 992 993 list_for_each_entry(s, &d->streams, list) { 994 if (amdtp_stream_running(s)) 995 cancel_stream(s); 996 } 997 } 998 999 // this is executed one time. 1000 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1001 u32 tstamp, size_t header_length, 1002 void *header, void *private_data) 1003 { 1004 struct amdtp_stream *s = private_data; 1005 const __be32 *ctx_header = header; 1006 u32 cycle; 1007 1008 /* 1009 * For in-stream, first packet has come. 1010 * For out-stream, prepared to transmit first packet 1011 */ 1012 s->callbacked = true; 1013 wake_up(&s->callback_wait); 1014 1015 if (s->direction == AMDTP_IN_STREAM) { 1016 cycle = compute_cycle_count(ctx_header[1]); 1017 1018 context->callback.sc = in_stream_callback; 1019 } else { 1020 cycle = compute_it_cycle(*ctx_header, s->queue_size); 1021 1022 if (s == s->domain->irq_target) 1023 context->callback.sc = irq_target_callback; 1024 else 1025 context->callback.sc = out_stream_callback; 1026 } 1027 1028 s->start_cycle = cycle; 1029 1030 context->callback.sc(context, tstamp, header_length, header, s); 1031 } 1032 1033 /** 1034 * amdtp_stream_start - start transferring packets 1035 * @s: the AMDTP stream to start 1036 * @channel: the isochronous channel on the bus 1037 * @speed: firewire speed code 1038 * @start_cycle: the isochronous cycle to start the context. Start immediately 1039 * if negative value is given. 1040 * @queue_size: The number of packets in the queue. 1041 * @idle_irq_interval: the interval to queue packet during initial state. 1042 * 1043 * The stream cannot be started until it has been configured with 1044 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1045 * device can be started. 1046 */ 1047 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1048 int start_cycle, unsigned int queue_size, 1049 unsigned int idle_irq_interval) 1050 { 1051 bool is_irq_target = (s == s->domain->irq_target); 1052 unsigned int ctx_header_size; 1053 unsigned int max_ctx_payload_size; 1054 enum dma_data_direction dir; 1055 int type, tag, err; 1056 1057 mutex_lock(&s->mutex); 1058 1059 if (WARN_ON(amdtp_stream_running(s) || 1060 (s->data_block_quadlets < 1))) { 1061 err = -EBADFD; 1062 goto err_unlock; 1063 } 1064 1065 if (s->direction == AMDTP_IN_STREAM) { 1066 // NOTE: IT context should be used for constant IRQ. 1067 if (is_irq_target) { 1068 err = -EINVAL; 1069 goto err_unlock; 1070 } 1071 1072 s->data_block_counter = UINT_MAX; 1073 } else { 1074 s->data_block_counter = 0; 1075 } 1076 1077 // initialize packet buffer. 1078 max_ctx_payload_size = amdtp_stream_get_max_payload(s); 1079 if (s->direction == AMDTP_IN_STREAM) { 1080 dir = DMA_FROM_DEVICE; 1081 type = FW_ISO_CONTEXT_RECEIVE; 1082 if (!(s->flags & CIP_NO_HEADER)) { 1083 max_ctx_payload_size -= 8; 1084 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1085 } else { 1086 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1087 } 1088 } else { 1089 dir = DMA_TO_DEVICE; 1090 type = FW_ISO_CONTEXT_TRANSMIT; 1091 ctx_header_size = 0; // No effect for IT context. 1092 1093 if (!(s->flags & CIP_NO_HEADER)) 1094 max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP; 1095 } 1096 1097 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, 1098 max_ctx_payload_size, dir); 1099 if (err < 0) 1100 goto err_unlock; 1101 s->queue_size = queue_size; 1102 1103 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1104 type, channel, speed, ctx_header_size, 1105 amdtp_stream_first_callback, s); 1106 if (IS_ERR(s->context)) { 1107 err = PTR_ERR(s->context); 1108 if (err == -EBUSY) 1109 dev_err(&s->unit->device, 1110 "no free stream on this controller\n"); 1111 goto err_buffer; 1112 } 1113 1114 amdtp_stream_update(s); 1115 1116 if (s->direction == AMDTP_IN_STREAM) { 1117 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1118 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1119 } 1120 1121 if (s->flags & CIP_NO_HEADER) 1122 s->tag = TAG_NO_CIP_HEADER; 1123 else 1124 s->tag = TAG_CIP; 1125 1126 s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs), 1127 GFP_KERNEL); 1128 if (!s->pkt_descs) { 1129 err = -ENOMEM; 1130 goto err_context; 1131 } 1132 1133 s->packet_index = 0; 1134 do { 1135 struct fw_iso_packet params; 1136 1137 if (s->direction == AMDTP_IN_STREAM) { 1138 err = queue_in_packet(s, ¶ms); 1139 } else { 1140 bool sched_irq = false; 1141 1142 params.header_length = 0; 1143 params.payload_length = 0; 1144 1145 if (is_irq_target) { 1146 sched_irq = !((s->packet_index + 1) % 1147 idle_irq_interval); 1148 } 1149 1150 err = queue_out_packet(s, ¶ms, sched_irq); 1151 } 1152 if (err < 0) 1153 goto err_pkt_descs; 1154 } while (s->packet_index > 0); 1155 1156 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1157 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1158 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1159 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1160 1161 s->callbacked = false; 1162 err = fw_iso_context_start(s->context, start_cycle, 0, tag); 1163 if (err < 0) 1164 goto err_pkt_descs; 1165 1166 mutex_unlock(&s->mutex); 1167 1168 return 0; 1169 err_pkt_descs: 1170 kfree(s->pkt_descs); 1171 err_context: 1172 fw_iso_context_destroy(s->context); 1173 s->context = ERR_PTR(-1); 1174 err_buffer: 1175 iso_packets_buffer_destroy(&s->buffer, s->unit); 1176 err_unlock: 1177 mutex_unlock(&s->mutex); 1178 1179 return err; 1180 } 1181 1182 /** 1183 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1184 * @d: the AMDTP domain. 1185 * @s: the AMDTP stream that transports the PCM data 1186 * 1187 * Returns the current buffer position, in frames. 1188 */ 1189 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1190 struct amdtp_stream *s) 1191 { 1192 struct amdtp_stream *irq_target = d->irq_target; 1193 1194 if (irq_target && amdtp_stream_running(irq_target)) { 1195 // This function is called in software IRQ context of 1196 // period_work or process context. 1197 // 1198 // When the software IRQ context was scheduled by software IRQ 1199 // context of IT contexts, queued packets were already handled. 1200 // Therefore, no need to flush the queue in buffer furthermore. 1201 // 1202 // When the process context reach here, some packets will be 1203 // already queued in the buffer. These packets should be handled 1204 // immediately to keep better granularity of PCM pointer. 1205 // 1206 // Later, the process context will sometimes schedules software 1207 // IRQ context of the period_work. Then, no need to flush the 1208 // queue by the same reason as described in the above 1209 if (current_work() != &s->period_work) { 1210 // Queued packet should be processed without any kernel 1211 // preemption to keep latency against bus cycle. 1212 preempt_disable(); 1213 fw_iso_context_flush_completions(irq_target->context); 1214 preempt_enable(); 1215 } 1216 } 1217 1218 return READ_ONCE(s->pcm_buffer_pointer); 1219 } 1220 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1221 1222 /** 1223 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1224 * @d: the AMDTP domain. 1225 * @s: the AMDTP stream that transfers the PCM frames 1226 * 1227 * Returns zero always. 1228 */ 1229 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1230 { 1231 struct amdtp_stream *irq_target = d->irq_target; 1232 1233 // Process isochronous packets for recent isochronous cycle to handle 1234 // queued PCM frames. 1235 if (irq_target && amdtp_stream_running(irq_target)) { 1236 // Queued packet should be processed without any kernel 1237 // preemption to keep latency against bus cycle. 1238 preempt_disable(); 1239 fw_iso_context_flush_completions(irq_target->context); 1240 preempt_enable(); 1241 } 1242 1243 return 0; 1244 } 1245 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1246 1247 /** 1248 * amdtp_stream_update - update the stream after a bus reset 1249 * @s: the AMDTP stream 1250 */ 1251 void amdtp_stream_update(struct amdtp_stream *s) 1252 { 1253 /* Precomputing. */ 1254 WRITE_ONCE(s->source_node_id_field, 1255 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1256 } 1257 EXPORT_SYMBOL(amdtp_stream_update); 1258 1259 /** 1260 * amdtp_stream_stop - stop sending packets 1261 * @s: the AMDTP stream to stop 1262 * 1263 * All PCM and MIDI devices of the stream must be stopped before the stream 1264 * itself can be stopped. 1265 */ 1266 static void amdtp_stream_stop(struct amdtp_stream *s) 1267 { 1268 mutex_lock(&s->mutex); 1269 1270 if (!amdtp_stream_running(s)) { 1271 mutex_unlock(&s->mutex); 1272 return; 1273 } 1274 1275 cancel_work_sync(&s->period_work); 1276 fw_iso_context_stop(s->context); 1277 fw_iso_context_destroy(s->context); 1278 s->context = ERR_PTR(-1); 1279 iso_packets_buffer_destroy(&s->buffer, s->unit); 1280 kfree(s->pkt_descs); 1281 1282 s->callbacked = false; 1283 1284 mutex_unlock(&s->mutex); 1285 } 1286 1287 /** 1288 * amdtp_stream_pcm_abort - abort the running PCM device 1289 * @s: the AMDTP stream about to be stopped 1290 * 1291 * If the isochronous stream needs to be stopped asynchronously, call this 1292 * function first to stop the PCM device. 1293 */ 1294 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1295 { 1296 struct snd_pcm_substream *pcm; 1297 1298 pcm = READ_ONCE(s->pcm); 1299 if (pcm) 1300 snd_pcm_stop_xrun(pcm); 1301 } 1302 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1303 1304 /** 1305 * amdtp_domain_init - initialize an AMDTP domain structure 1306 * @d: the AMDTP domain to initialize. 1307 */ 1308 int amdtp_domain_init(struct amdtp_domain *d) 1309 { 1310 INIT_LIST_HEAD(&d->streams); 1311 1312 d->events_per_period = 0; 1313 1314 d->seq_descs = NULL; 1315 1316 return 0; 1317 } 1318 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1319 1320 /** 1321 * amdtp_domain_destroy - destroy an AMDTP domain structure 1322 * @d: the AMDTP domain to destroy. 1323 */ 1324 void amdtp_domain_destroy(struct amdtp_domain *d) 1325 { 1326 // At present nothing to do. 1327 return; 1328 } 1329 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1330 1331 /** 1332 * amdtp_domain_add_stream - register isoc context into the domain. 1333 * @d: the AMDTP domain. 1334 * @s: the AMDTP stream. 1335 * @channel: the isochronous channel on the bus. 1336 * @speed: firewire speed code. 1337 */ 1338 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1339 int channel, int speed) 1340 { 1341 struct amdtp_stream *tmp; 1342 1343 list_for_each_entry(tmp, &d->streams, list) { 1344 if (s == tmp) 1345 return -EBUSY; 1346 } 1347 1348 list_add(&s->list, &d->streams); 1349 1350 s->channel = channel; 1351 s->speed = speed; 1352 s->domain = d; 1353 1354 return 0; 1355 } 1356 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 1357 1358 static int get_current_cycle_time(struct fw_card *fw_card, int *cur_cycle) 1359 { 1360 int generation; 1361 int rcode; 1362 __be32 reg; 1363 u32 data; 1364 1365 // This is a request to local 1394 OHCI controller and expected to 1366 // complete without any event waiting. 1367 generation = fw_card->generation; 1368 smp_rmb(); // node_id vs. generation. 1369 rcode = fw_run_transaction(fw_card, TCODE_READ_QUADLET_REQUEST, 1370 fw_card->node_id, generation, SCODE_100, 1371 CSR_REGISTER_BASE + CSR_CYCLE_TIME, 1372 ®, sizeof(reg)); 1373 if (rcode != RCODE_COMPLETE) 1374 return -EIO; 1375 1376 data = be32_to_cpu(reg); 1377 *cur_cycle = data >> 12; 1378 1379 return 0; 1380 } 1381 1382 /** 1383 * amdtp_domain_start - start sending packets for isoc context in the domain. 1384 * @d: the AMDTP domain. 1385 * @ir_delay_cycle: the cycle delay to start all IR contexts. 1386 */ 1387 int amdtp_domain_start(struct amdtp_domain *d, unsigned int ir_delay_cycle) 1388 { 1389 static const struct { 1390 unsigned int data_block; 1391 unsigned int syt_offset; 1392 } *entry, initial_state[] = { 1393 [CIP_SFC_32000] = { 4, 3072 }, 1394 [CIP_SFC_48000] = { 6, 1024 }, 1395 [CIP_SFC_96000] = { 12, 1024 }, 1396 [CIP_SFC_192000] = { 24, 1024 }, 1397 [CIP_SFC_44100] = { 0, 67 }, 1398 [CIP_SFC_88200] = { 0, 67 }, 1399 [CIP_SFC_176400] = { 0, 67 }, 1400 }; 1401 unsigned int events_per_buffer = d->events_per_buffer; 1402 unsigned int events_per_period = d->events_per_period; 1403 unsigned int idle_irq_interval; 1404 unsigned int queue_size; 1405 struct amdtp_stream *s; 1406 int cycle; 1407 int err; 1408 1409 // Select an IT context as IRQ target. 1410 list_for_each_entry(s, &d->streams, list) { 1411 if (s->direction == AMDTP_OUT_STREAM) 1412 break; 1413 } 1414 if (!s) 1415 return -ENXIO; 1416 d->irq_target = s; 1417 1418 // This is a case that AMDTP streams in domain run just for MIDI 1419 // substream. Use the number of events equivalent to 10 msec as 1420 // interval of hardware IRQ. 1421 if (events_per_period == 0) 1422 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 1423 if (events_per_buffer == 0) 1424 events_per_buffer = events_per_period * 3; 1425 1426 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 1427 amdtp_rate_table[d->irq_target->sfc]); 1428 1429 d->seq_descs = kcalloc(queue_size, sizeof(*d->seq_descs), GFP_KERNEL); 1430 if (!d->seq_descs) 1431 return -ENOMEM; 1432 d->seq_size = queue_size; 1433 d->seq_tail = 0; 1434 1435 entry = &initial_state[s->sfc]; 1436 d->data_block_state = entry->data_block; 1437 d->syt_offset_state = entry->syt_offset; 1438 d->last_syt_offset = TICKS_PER_CYCLE; 1439 1440 if (ir_delay_cycle > 0) { 1441 struct fw_card *fw_card = fw_parent_device(s->unit)->card; 1442 1443 err = get_current_cycle_time(fw_card, &cycle); 1444 if (err < 0) 1445 goto error; 1446 1447 // No need to care overflow in cycle field because of enough 1448 // width. 1449 cycle += ir_delay_cycle; 1450 1451 // Round up to sec field. 1452 if ((cycle & 0x00001fff) >= CYCLES_PER_SECOND) { 1453 unsigned int sec; 1454 1455 // The sec field can overflow. 1456 sec = (cycle & 0xffffe000) >> 13; 1457 cycle = (++sec << 13) | 1458 ((cycle & 0x00001fff) / CYCLES_PER_SECOND); 1459 } 1460 1461 // In OHCI 1394 specification, lower 2 bits are available for 1462 // sec field. 1463 cycle &= 0x00007fff; 1464 } else { 1465 cycle = -1; 1466 } 1467 1468 list_for_each_entry(s, &d->streams, list) { 1469 int cycle_match; 1470 1471 if (s->direction == AMDTP_IN_STREAM) { 1472 cycle_match = cycle; 1473 } else { 1474 // IT context starts immediately. 1475 cycle_match = -1; 1476 s->ctx_data.rx.seq_index = 0; 1477 } 1478 1479 if (s != d->irq_target) { 1480 err = amdtp_stream_start(s, s->channel, s->speed, 1481 cycle_match, queue_size, 0); 1482 if (err < 0) 1483 goto error; 1484 } 1485 } 1486 1487 s = d->irq_target; 1488 s->ctx_data.rx.events_per_period = events_per_period; 1489 s->ctx_data.rx.event_count = 0; 1490 s->ctx_data.rx.seq_index = 0; 1491 1492 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 1493 amdtp_rate_table[d->irq_target->sfc]); 1494 err = amdtp_stream_start(s, s->channel, s->speed, -1, queue_size, 1495 idle_irq_interval); 1496 if (err < 0) 1497 goto error; 1498 1499 return 0; 1500 error: 1501 list_for_each_entry(s, &d->streams, list) 1502 amdtp_stream_stop(s); 1503 kfree(d->seq_descs); 1504 d->seq_descs = NULL; 1505 return err; 1506 } 1507 EXPORT_SYMBOL_GPL(amdtp_domain_start); 1508 1509 /** 1510 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 1511 * @d: the AMDTP domain to which the isoc contexts belong. 1512 */ 1513 void amdtp_domain_stop(struct amdtp_domain *d) 1514 { 1515 struct amdtp_stream *s, *next; 1516 1517 if (d->irq_target) 1518 amdtp_stream_stop(d->irq_target); 1519 1520 list_for_each_entry_safe(s, next, &d->streams, list) { 1521 list_del(&s->list); 1522 1523 if (s != d->irq_target) 1524 amdtp_stream_stop(s); 1525 } 1526 1527 d->events_per_period = 0; 1528 d->irq_target = NULL; 1529 1530 kfree(d->seq_descs); 1531 d->seq_descs = NULL; 1532 } 1533 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 1534