1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 4 * with Common Isochronous Packet (IEC 61883-1) headers 5 * 6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/firewire-constants.h> 13 #include <linux/module.h> 14 #include <linux/slab.h> 15 #include <sound/pcm.h> 16 #include <sound/pcm_params.h> 17 #include "amdtp-stream.h" 18 19 #define TICKS_PER_CYCLE 3072 20 #define CYCLES_PER_SECOND 8000 21 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 22 23 #define OHCI_SECOND_MODULUS 8 24 25 /* Always support Linux tracing subsystem. */ 26 #define CREATE_TRACE_POINTS 27 #include "amdtp-stream-trace.h" 28 29 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 30 31 /* isochronous header parameters */ 32 #define ISO_DATA_LENGTH_SHIFT 16 33 #define TAG_NO_CIP_HEADER 0 34 #define TAG_CIP 1 35 36 // Common Isochronous Packet (CIP) header parameters. Use two quadlets CIP header when supported. 37 #define CIP_HEADER_QUADLETS 2 38 #define CIP_EOH_SHIFT 31 39 #define CIP_EOH (1u << CIP_EOH_SHIFT) 40 #define CIP_EOH_MASK 0x80000000 41 #define CIP_SID_SHIFT 24 42 #define CIP_SID_MASK 0x3f000000 43 #define CIP_DBS_MASK 0x00ff0000 44 #define CIP_DBS_SHIFT 16 45 #define CIP_SPH_MASK 0x00000400 46 #define CIP_SPH_SHIFT 10 47 #define CIP_DBC_MASK 0x000000ff 48 #define CIP_FMT_SHIFT 24 49 #define CIP_FMT_MASK 0x3f000000 50 #define CIP_FDF_MASK 0x00ff0000 51 #define CIP_FDF_SHIFT 16 52 #define CIP_FDF_NO_DATA 0xff 53 #define CIP_SYT_MASK 0x0000ffff 54 #define CIP_SYT_NO_INFO 0xffff 55 #define CIP_SYT_CYCLE_MODULUS 16 56 #define CIP_NO_DATA ((CIP_FDF_NO_DATA << CIP_FDF_SHIFT) | CIP_SYT_NO_INFO) 57 58 #define CIP_HEADER_SIZE (sizeof(__be32) * CIP_HEADER_QUADLETS) 59 60 /* Audio and Music transfer protocol specific parameters */ 61 #define CIP_FMT_AM 0x10 62 #define AMDTP_FDF_NO_DATA 0xff 63 64 // For iso header and tstamp. 65 #define IR_CTX_HEADER_DEFAULT_QUADLETS 2 66 // Add nothing. 67 #define IR_CTX_HEADER_SIZE_NO_CIP (sizeof(__be32) * IR_CTX_HEADER_DEFAULT_QUADLETS) 68 // Add two quadlets CIP header. 69 #define IR_CTX_HEADER_SIZE_CIP (IR_CTX_HEADER_SIZE_NO_CIP + CIP_HEADER_SIZE) 70 #define HEADER_TSTAMP_MASK 0x0000ffff 71 72 #define IT_PKT_HEADER_SIZE_CIP CIP_HEADER_SIZE 73 #define IT_PKT_HEADER_SIZE_NO_CIP 0 // Nothing. 74 75 // The initial firmware of OXFW970 can postpone transmission of packet during finishing 76 // asynchronous transaction. This module accepts 5 cycles to skip as maximum to avoid buffer 77 // overrun. Actual device can skip more, then this module stops the packet streaming. 78 #define IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES 5 79 80 /** 81 * amdtp_stream_init - initialize an AMDTP stream structure 82 * @s: the AMDTP stream to initialize 83 * @unit: the target of the stream 84 * @dir: the direction of stream 85 * @flags: the details of the streaming protocol consist of cip_flags enumeration-constants. 86 * @fmt: the value of fmt field in CIP header 87 * @process_ctx_payloads: callback handler to process payloads of isoc context 88 * @protocol_size: the size to allocate newly for protocol 89 */ 90 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 91 enum amdtp_stream_direction dir, unsigned int flags, 92 unsigned int fmt, 93 amdtp_stream_process_ctx_payloads_t process_ctx_payloads, 94 unsigned int protocol_size) 95 { 96 if (process_ctx_payloads == NULL) 97 return -EINVAL; 98 99 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 100 if (!s->protocol) 101 return -ENOMEM; 102 103 s->unit = unit; 104 s->direction = dir; 105 s->flags = flags; 106 s->context = ERR_PTR(-1); 107 mutex_init(&s->mutex); 108 s->packet_index = 0; 109 110 init_waitqueue_head(&s->ready_wait); 111 112 s->fmt = fmt; 113 s->process_ctx_payloads = process_ctx_payloads; 114 115 return 0; 116 } 117 EXPORT_SYMBOL(amdtp_stream_init); 118 119 /** 120 * amdtp_stream_destroy - free stream resources 121 * @s: the AMDTP stream to destroy 122 */ 123 void amdtp_stream_destroy(struct amdtp_stream *s) 124 { 125 /* Not initialized. */ 126 if (s->protocol == NULL) 127 return; 128 129 WARN_ON(amdtp_stream_running(s)); 130 kfree(s->protocol); 131 mutex_destroy(&s->mutex); 132 } 133 EXPORT_SYMBOL(amdtp_stream_destroy); 134 135 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 136 [CIP_SFC_32000] = 8, 137 [CIP_SFC_44100] = 8, 138 [CIP_SFC_48000] = 8, 139 [CIP_SFC_88200] = 16, 140 [CIP_SFC_96000] = 16, 141 [CIP_SFC_176400] = 32, 142 [CIP_SFC_192000] = 32, 143 }; 144 EXPORT_SYMBOL(amdtp_syt_intervals); 145 146 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 147 [CIP_SFC_32000] = 32000, 148 [CIP_SFC_44100] = 44100, 149 [CIP_SFC_48000] = 48000, 150 [CIP_SFC_88200] = 88200, 151 [CIP_SFC_96000] = 96000, 152 [CIP_SFC_176400] = 176400, 153 [CIP_SFC_192000] = 192000, 154 }; 155 EXPORT_SYMBOL(amdtp_rate_table); 156 157 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 158 struct snd_pcm_hw_rule *rule) 159 { 160 struct snd_interval *s = hw_param_interval(params, rule->var); 161 const struct snd_interval *r = 162 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 163 struct snd_interval t = {0}; 164 unsigned int step = 0; 165 int i; 166 167 for (i = 0; i < CIP_SFC_COUNT; ++i) { 168 if (snd_interval_test(r, amdtp_rate_table[i])) 169 step = max(step, amdtp_syt_intervals[i]); 170 } 171 172 t.min = roundup(s->min, step); 173 t.max = rounddown(s->max, step); 174 t.integer = 1; 175 176 return snd_interval_refine(s, &t); 177 } 178 179 /** 180 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 181 * @s: the AMDTP stream, which must be initialized. 182 * @runtime: the PCM substream runtime 183 */ 184 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 185 struct snd_pcm_runtime *runtime) 186 { 187 struct snd_pcm_hardware *hw = &runtime->hw; 188 unsigned int ctx_header_size; 189 unsigned int maximum_usec_per_period; 190 int err; 191 192 hw->info = SNDRV_PCM_INFO_BLOCK_TRANSFER | 193 SNDRV_PCM_INFO_INTERLEAVED | 194 SNDRV_PCM_INFO_JOINT_DUPLEX | 195 SNDRV_PCM_INFO_MMAP | 196 SNDRV_PCM_INFO_MMAP_VALID | 197 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP; 198 199 hw->periods_min = 2; 200 hw->periods_max = UINT_MAX; 201 202 /* bytes for a frame */ 203 hw->period_bytes_min = 4 * hw->channels_max; 204 205 /* Just to prevent from allocating much pages. */ 206 hw->period_bytes_max = hw->period_bytes_min * 2048; 207 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 208 209 // Linux driver for 1394 OHCI controller voluntarily flushes isoc 210 // context when total size of accumulated context header reaches 211 // PAGE_SIZE. This kicks work for the isoc context and brings 212 // callback in the middle of scheduled interrupts. 213 // Although AMDTP streams in the same domain use the same events per 214 // IRQ, use the largest size of context header between IT/IR contexts. 215 // Here, use the value of context header in IR context is for both 216 // contexts. 217 if (!(s->flags & CIP_NO_HEADER)) 218 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 219 else 220 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 221 maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE / 222 CYCLES_PER_SECOND / ctx_header_size; 223 224 // In IEC 61883-6, one isoc packet can transfer events up to the value 225 // of syt interval. This comes from the interval of isoc cycle. As 1394 226 // OHCI controller can generate hardware IRQ per isoc packet, the 227 // interval is 125 usec. 228 // However, there are two ways of transmission in IEC 61883-6; blocking 229 // and non-blocking modes. In blocking mode, the sequence of isoc packet 230 // includes 'empty' or 'NODATA' packets which include no event. In 231 // non-blocking mode, the number of events per packet is variable up to 232 // the syt interval. 233 // Due to the above protocol design, the minimum PCM frames per 234 // interrupt should be double of the value of syt interval, thus it is 235 // 250 usec. 236 err = snd_pcm_hw_constraint_minmax(runtime, 237 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 238 250, maximum_usec_per_period); 239 if (err < 0) 240 goto end; 241 242 /* Non-Blocking stream has no more constraints */ 243 if (!(s->flags & CIP_BLOCKING)) 244 goto end; 245 246 /* 247 * One AMDTP packet can include some frames. In blocking mode, the 248 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 249 * depending on its sampling rate. For accurate period interrupt, it's 250 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 251 */ 252 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 253 apply_constraint_to_size, NULL, 254 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 255 SNDRV_PCM_HW_PARAM_RATE, -1); 256 if (err < 0) 257 goto end; 258 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 259 apply_constraint_to_size, NULL, 260 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 261 SNDRV_PCM_HW_PARAM_RATE, -1); 262 if (err < 0) 263 goto end; 264 end: 265 return err; 266 } 267 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 268 269 /** 270 * amdtp_stream_set_parameters - set stream parameters 271 * @s: the AMDTP stream to configure 272 * @rate: the sample rate 273 * @data_block_quadlets: the size of a data block in quadlet unit 274 * @pcm_frame_multiplier: the multiplier to compute the number of PCM frames by the number of AMDTP 275 * events. 276 * 277 * The parameters must be set before the stream is started, and must not be 278 * changed while the stream is running. 279 */ 280 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 281 unsigned int data_block_quadlets, unsigned int pcm_frame_multiplier) 282 { 283 unsigned int sfc; 284 285 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 286 if (amdtp_rate_table[sfc] == rate) 287 break; 288 } 289 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 290 return -EINVAL; 291 292 s->sfc = sfc; 293 s->data_block_quadlets = data_block_quadlets; 294 s->syt_interval = amdtp_syt_intervals[sfc]; 295 296 // default buffering in the device. 297 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 298 299 // additional buffering needed to adjust for no-data packets. 300 if (s->flags & CIP_BLOCKING) 301 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 302 303 s->pcm_frame_multiplier = pcm_frame_multiplier; 304 305 return 0; 306 } 307 EXPORT_SYMBOL(amdtp_stream_set_parameters); 308 309 // The CIP header is processed in context header apart from context payload. 310 static int amdtp_stream_get_max_ctx_payload_size(struct amdtp_stream *s) 311 { 312 unsigned int multiplier; 313 314 if (s->flags & CIP_JUMBO_PAYLOAD) 315 multiplier = IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES; 316 else 317 multiplier = 1; 318 319 return s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier; 320 } 321 322 /** 323 * amdtp_stream_get_max_payload - get the stream's packet size 324 * @s: the AMDTP stream 325 * 326 * This function must not be called before the stream has been configured 327 * with amdtp_stream_set_parameters(). 328 */ 329 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 330 { 331 unsigned int cip_header_size; 332 333 if (!(s->flags & CIP_NO_HEADER)) 334 cip_header_size = CIP_HEADER_SIZE; 335 else 336 cip_header_size = 0; 337 338 return cip_header_size + amdtp_stream_get_max_ctx_payload_size(s); 339 } 340 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 341 342 /** 343 * amdtp_stream_pcm_prepare - prepare PCM device for running 344 * @s: the AMDTP stream 345 * 346 * This function should be called from the PCM device's .prepare callback. 347 */ 348 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 349 { 350 s->pcm_buffer_pointer = 0; 351 s->pcm_period_pointer = 0; 352 } 353 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 354 355 #define prev_packet_desc(s, desc) \ 356 list_prev_entry_circular(desc, &s->packet_descs_list, link) 357 358 static void pool_blocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 359 unsigned int size, unsigned int pos, unsigned int count) 360 { 361 const unsigned int syt_interval = s->syt_interval; 362 int i; 363 364 for (i = 0; i < count; ++i) { 365 struct seq_desc *desc = descs + pos; 366 367 if (desc->syt_offset != CIP_SYT_NO_INFO) 368 desc->data_blocks = syt_interval; 369 else 370 desc->data_blocks = 0; 371 372 pos = (pos + 1) % size; 373 } 374 } 375 376 static void pool_ideal_nonblocking_data_blocks(struct amdtp_stream *s, struct seq_desc *descs, 377 unsigned int size, unsigned int pos, 378 unsigned int count) 379 { 380 const enum cip_sfc sfc = s->sfc; 381 unsigned int state = s->ctx_data.rx.data_block_state; 382 int i; 383 384 for (i = 0; i < count; ++i) { 385 struct seq_desc *desc = descs + pos; 386 387 if (!cip_sfc_is_base_44100(sfc)) { 388 // Sample_rate / 8000 is an integer, and precomputed. 389 desc->data_blocks = state; 390 } else { 391 unsigned int phase = state; 392 393 /* 394 * This calculates the number of data blocks per packet so that 395 * 1) the overall rate is correct and exactly synchronized to 396 * the bus clock, and 397 * 2) packets with a rounded-up number of blocks occur as early 398 * as possible in the sequence (to prevent underruns of the 399 * device's buffer). 400 */ 401 if (sfc == CIP_SFC_44100) 402 /* 6 6 5 6 5 6 5 ... */ 403 desc->data_blocks = 5 + ((phase & 1) ^ (phase == 0 || phase >= 40)); 404 else 405 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 406 desc->data_blocks = 11 * (sfc >> 1) + (phase == 0); 407 if (++phase >= (80 >> (sfc >> 1))) 408 phase = 0; 409 state = phase; 410 } 411 412 pos = (pos + 1) % size; 413 } 414 415 s->ctx_data.rx.data_block_state = state; 416 } 417 418 static unsigned int calculate_syt_offset(unsigned int *last_syt_offset, 419 unsigned int *syt_offset_state, enum cip_sfc sfc) 420 { 421 unsigned int syt_offset; 422 423 if (*last_syt_offset < TICKS_PER_CYCLE) { 424 if (!cip_sfc_is_base_44100(sfc)) 425 syt_offset = *last_syt_offset + *syt_offset_state; 426 else { 427 /* 428 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 429 * n * SYT_INTERVAL * 24576000 / sample_rate 430 * Modulo TICKS_PER_CYCLE, the difference between successive 431 * elements is about 1386.23. Rounding the results of this 432 * formula to the SYT precision results in a sequence of 433 * differences that begins with: 434 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 435 * This code generates _exactly_ the same sequence. 436 */ 437 unsigned int phase = *syt_offset_state; 438 unsigned int index = phase % 13; 439 440 syt_offset = *last_syt_offset; 441 syt_offset += 1386 + ((index && !(index & 3)) || 442 phase == 146); 443 if (++phase >= 147) 444 phase = 0; 445 *syt_offset_state = phase; 446 } 447 } else 448 syt_offset = *last_syt_offset - TICKS_PER_CYCLE; 449 *last_syt_offset = syt_offset; 450 451 if (syt_offset >= TICKS_PER_CYCLE) 452 syt_offset = CIP_SYT_NO_INFO; 453 454 return syt_offset; 455 } 456 457 static void pool_ideal_syt_offsets(struct amdtp_stream *s, struct seq_desc *descs, 458 unsigned int size, unsigned int pos, unsigned int count) 459 { 460 const enum cip_sfc sfc = s->sfc; 461 unsigned int last = s->ctx_data.rx.last_syt_offset; 462 unsigned int state = s->ctx_data.rx.syt_offset_state; 463 int i; 464 465 for (i = 0; i < count; ++i) { 466 struct seq_desc *desc = descs + pos; 467 468 desc->syt_offset = calculate_syt_offset(&last, &state, sfc); 469 470 pos = (pos + 1) % size; 471 } 472 473 s->ctx_data.rx.last_syt_offset = last; 474 s->ctx_data.rx.syt_offset_state = state; 475 } 476 477 static unsigned int compute_syt_offset(unsigned int syt, unsigned int cycle, 478 unsigned int transfer_delay) 479 { 480 unsigned int cycle_lo = (cycle % CYCLES_PER_SECOND) & 0x0f; 481 unsigned int syt_cycle_lo = (syt & 0xf000) >> 12; 482 unsigned int syt_offset; 483 484 // Round up. 485 if (syt_cycle_lo < cycle_lo) 486 syt_cycle_lo += CIP_SYT_CYCLE_MODULUS; 487 syt_cycle_lo -= cycle_lo; 488 489 // Subtract transfer delay so that the synchronization offset is not so large 490 // at transmission. 491 syt_offset = syt_cycle_lo * TICKS_PER_CYCLE + (syt & 0x0fff); 492 if (syt_offset < transfer_delay) 493 syt_offset += CIP_SYT_CYCLE_MODULUS * TICKS_PER_CYCLE; 494 495 return syt_offset - transfer_delay; 496 } 497 498 // Both of the producer and consumer of the queue runs in the same clock of IEEE 1394 bus. 499 // Additionally, the sequence of tx packets is severely checked against any discontinuity 500 // before filling entries in the queue. The calculation is safe even if it looks fragile by 501 // overrun. 502 static unsigned int calculate_cached_cycle_count(struct amdtp_stream *s, unsigned int head) 503 { 504 const unsigned int cache_size = s->ctx_data.tx.cache.size; 505 unsigned int cycles = s->ctx_data.tx.cache.pos; 506 507 if (cycles < head) 508 cycles += cache_size; 509 cycles -= head; 510 511 return cycles; 512 } 513 514 static void cache_seq(struct amdtp_stream *s, const struct pkt_desc *src, unsigned int desc_count) 515 { 516 const unsigned int transfer_delay = s->transfer_delay; 517 const unsigned int cache_size = s->ctx_data.tx.cache.size; 518 struct seq_desc *cache = s->ctx_data.tx.cache.descs; 519 unsigned int cache_pos = s->ctx_data.tx.cache.pos; 520 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 521 int i; 522 523 for (i = 0; i < desc_count; ++i) { 524 struct seq_desc *dst = cache + cache_pos; 525 526 if (aware_syt && src->syt != CIP_SYT_NO_INFO) 527 dst->syt_offset = compute_syt_offset(src->syt, src->cycle, transfer_delay); 528 else 529 dst->syt_offset = CIP_SYT_NO_INFO; 530 dst->data_blocks = src->data_blocks; 531 532 cache_pos = (cache_pos + 1) % cache_size; 533 src = amdtp_stream_next_packet_desc(s, src); 534 } 535 536 s->ctx_data.tx.cache.pos = cache_pos; 537 } 538 539 static void pool_ideal_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 540 unsigned int pos, unsigned int count) 541 { 542 pool_ideal_syt_offsets(s, descs, size, pos, count); 543 544 if (s->flags & CIP_BLOCKING) 545 pool_blocking_data_blocks(s, descs, size, pos, count); 546 else 547 pool_ideal_nonblocking_data_blocks(s, descs, size, pos, count); 548 } 549 550 static void pool_replayed_seq(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 551 unsigned int pos, unsigned int count) 552 { 553 struct amdtp_stream *target = s->ctx_data.rx.replay_target; 554 const struct seq_desc *cache = target->ctx_data.tx.cache.descs; 555 const unsigned int cache_size = target->ctx_data.tx.cache.size; 556 unsigned int cache_pos = s->ctx_data.rx.cache_pos; 557 int i; 558 559 for (i = 0; i < count; ++i) { 560 descs[pos] = cache[cache_pos]; 561 cache_pos = (cache_pos + 1) % cache_size; 562 pos = (pos + 1) % size; 563 } 564 565 s->ctx_data.rx.cache_pos = cache_pos; 566 } 567 568 static void pool_seq_descs(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 569 unsigned int pos, unsigned int count) 570 { 571 struct amdtp_domain *d = s->domain; 572 void (*pool_seq_descs)(struct amdtp_stream *s, struct seq_desc *descs, unsigned int size, 573 unsigned int pos, unsigned int count); 574 575 if (!d->replay.enable || !s->ctx_data.rx.replay_target) { 576 pool_seq_descs = pool_ideal_seq_descs; 577 } else { 578 if (!d->replay.on_the_fly) { 579 pool_seq_descs = pool_replayed_seq; 580 } else { 581 struct amdtp_stream *tx = s->ctx_data.rx.replay_target; 582 const unsigned int cache_size = tx->ctx_data.tx.cache.size; 583 const unsigned int cache_pos = s->ctx_data.rx.cache_pos; 584 unsigned int cached_cycles = calculate_cached_cycle_count(tx, cache_pos); 585 586 if (cached_cycles > count && cached_cycles > cache_size / 2) 587 pool_seq_descs = pool_replayed_seq; 588 else 589 pool_seq_descs = pool_ideal_seq_descs; 590 } 591 } 592 593 pool_seq_descs(s, descs, size, pos, count); 594 } 595 596 static void update_pcm_pointers(struct amdtp_stream *s, 597 struct snd_pcm_substream *pcm, 598 unsigned int frames) 599 { 600 unsigned int ptr; 601 602 ptr = s->pcm_buffer_pointer + frames; 603 if (ptr >= pcm->runtime->buffer_size) 604 ptr -= pcm->runtime->buffer_size; 605 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 606 607 s->pcm_period_pointer += frames; 608 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 609 s->pcm_period_pointer -= pcm->runtime->period_size; 610 611 // The program in user process should periodically check the status of intermediate 612 // buffer associated to PCM substream to process PCM frames in the buffer, instead 613 // of receiving notification of period elapsed by poll wait. 614 if (!pcm->runtime->no_period_wakeup) { 615 if (in_softirq()) { 616 // In software IRQ context for 1394 OHCI. 617 snd_pcm_period_elapsed(pcm); 618 } else { 619 // In process context of ALSA PCM application under acquired lock of 620 // PCM substream. 621 snd_pcm_period_elapsed_under_stream_lock(pcm); 622 } 623 } 624 } 625 } 626 627 static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params, 628 bool sched_irq) 629 { 630 int err; 631 632 params->interrupt = sched_irq; 633 params->tag = s->tag; 634 params->sy = 0; 635 636 err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer, 637 s->buffer.packets[s->packet_index].offset); 638 if (err < 0) { 639 dev_err(&s->unit->device, "queueing error: %d\n", err); 640 goto end; 641 } 642 643 if (++s->packet_index >= s->queue_size) 644 s->packet_index = 0; 645 end: 646 return err; 647 } 648 649 static inline int queue_out_packet(struct amdtp_stream *s, 650 struct fw_iso_packet *params, bool sched_irq) 651 { 652 params->skip = 653 !!(params->header_length == 0 && params->payload_length == 0); 654 return queue_packet(s, params, sched_irq); 655 } 656 657 static inline int queue_in_packet(struct amdtp_stream *s, 658 struct fw_iso_packet *params) 659 { 660 // Queue one packet for IR context. 661 params->header_length = s->ctx_data.tx.ctx_header_size; 662 params->payload_length = s->ctx_data.tx.max_ctx_payload_length; 663 params->skip = false; 664 return queue_packet(s, params, false); 665 } 666 667 static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2], 668 unsigned int data_block_counter, unsigned int syt) 669 { 670 cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 671 (s->data_block_quadlets << CIP_DBS_SHIFT) | 672 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 673 data_block_counter); 674 cip_header[1] = cpu_to_be32(CIP_EOH | 675 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 676 ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 677 (syt & CIP_SYT_MASK)); 678 } 679 680 static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle, 681 struct fw_iso_packet *params, unsigned int header_length, 682 unsigned int data_blocks, 683 unsigned int data_block_counter, 684 unsigned int syt, unsigned int index, u32 curr_cycle_time) 685 { 686 unsigned int payload_length; 687 __be32 *cip_header; 688 689 payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets; 690 params->payload_length = payload_length; 691 692 if (header_length > 0) { 693 cip_header = (__be32 *)params->header; 694 generate_cip_header(s, cip_header, data_block_counter, syt); 695 params->header_length = header_length; 696 } else { 697 cip_header = NULL; 698 } 699 700 trace_amdtp_packet(s, cycle, cip_header, payload_length + header_length, data_blocks, 701 data_block_counter, s->packet_index, index, curr_cycle_time); 702 } 703 704 static int check_cip_header(struct amdtp_stream *s, const __be32 *buf, 705 unsigned int payload_length, 706 unsigned int *data_blocks, 707 unsigned int *data_block_counter, unsigned int *syt) 708 { 709 u32 cip_header[2]; 710 unsigned int sph; 711 unsigned int fmt; 712 unsigned int fdf; 713 unsigned int dbc; 714 bool lost; 715 716 cip_header[0] = be32_to_cpu(buf[0]); 717 cip_header[1] = be32_to_cpu(buf[1]); 718 719 /* 720 * This module supports 'Two-quadlet CIP header with SYT field'. 721 * For convenience, also check FMT field is AM824 or not. 722 */ 723 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 724 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 725 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 726 dev_info_ratelimited(&s->unit->device, 727 "Invalid CIP header for AMDTP: %08X:%08X\n", 728 cip_header[0], cip_header[1]); 729 return -EAGAIN; 730 } 731 732 /* Check valid protocol or not. */ 733 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 734 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 735 if (sph != s->sph || fmt != s->fmt) { 736 dev_info_ratelimited(&s->unit->device, 737 "Detect unexpected protocol: %08x %08x\n", 738 cip_header[0], cip_header[1]); 739 return -EAGAIN; 740 } 741 742 /* Calculate data blocks */ 743 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 744 if (payload_length == 0 || (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 745 *data_blocks = 0; 746 } else { 747 unsigned int data_block_quadlets = 748 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 749 /* avoid division by zero */ 750 if (data_block_quadlets == 0) { 751 dev_err(&s->unit->device, 752 "Detect invalid value in dbs field: %08X\n", 753 cip_header[0]); 754 return -EPROTO; 755 } 756 if (s->flags & CIP_WRONG_DBS) 757 data_block_quadlets = s->data_block_quadlets; 758 759 *data_blocks = payload_length / sizeof(__be32) / data_block_quadlets; 760 } 761 762 /* Check data block counter continuity */ 763 dbc = cip_header[0] & CIP_DBC_MASK; 764 if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 765 *data_block_counter != UINT_MAX) 766 dbc = *data_block_counter; 767 768 if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) || 769 *data_block_counter == UINT_MAX) { 770 lost = false; 771 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 772 lost = dbc != *data_block_counter; 773 } else { 774 unsigned int dbc_interval; 775 776 if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0) 777 dbc_interval = s->ctx_data.tx.dbc_interval; 778 else 779 dbc_interval = *data_blocks; 780 781 lost = dbc != ((*data_block_counter + dbc_interval) & 0xff); 782 } 783 784 if (lost) { 785 dev_err(&s->unit->device, 786 "Detect discontinuity of CIP: %02X %02X\n", 787 *data_block_counter, dbc); 788 return -EIO; 789 } 790 791 *data_block_counter = dbc; 792 793 if (!(s->flags & CIP_UNAWARE_SYT)) 794 *syt = cip_header[1] & CIP_SYT_MASK; 795 796 return 0; 797 } 798 799 static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle, 800 const __be32 *ctx_header, 801 unsigned int *data_blocks, 802 unsigned int *data_block_counter, 803 unsigned int *syt, unsigned int packet_index, unsigned int index, 804 u32 curr_cycle_time) 805 { 806 unsigned int payload_length; 807 const __be32 *cip_header; 808 unsigned int cip_header_size; 809 810 payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT; 811 812 if (!(s->flags & CIP_NO_HEADER)) 813 cip_header_size = CIP_HEADER_SIZE; 814 else 815 cip_header_size = 0; 816 817 if (payload_length > cip_header_size + s->ctx_data.tx.max_ctx_payload_length) { 818 dev_err(&s->unit->device, 819 "Detect jumbo payload: %04x %04x\n", 820 payload_length, cip_header_size + s->ctx_data.tx.max_ctx_payload_length); 821 return -EIO; 822 } 823 824 if (cip_header_size > 0) { 825 if (payload_length >= cip_header_size) { 826 int err; 827 828 cip_header = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 829 err = check_cip_header(s, cip_header, payload_length - cip_header_size, 830 data_blocks, data_block_counter, syt); 831 if (err < 0) 832 return err; 833 } else { 834 // Handle the cycle so that empty packet arrives. 835 cip_header = NULL; 836 *data_blocks = 0; 837 *syt = 0; 838 } 839 } else { 840 cip_header = NULL; 841 *data_blocks = payload_length / sizeof(__be32) / s->data_block_quadlets; 842 *syt = 0; 843 844 if (*data_block_counter == UINT_MAX) 845 *data_block_counter = 0; 846 } 847 848 trace_amdtp_packet(s, cycle, cip_header, payload_length, *data_blocks, 849 *data_block_counter, packet_index, index, curr_cycle_time); 850 851 return 0; 852 } 853 854 // In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 855 // the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 856 // it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 857 static inline u32 compute_ohci_iso_ctx_cycle_count(u32 tstamp) 858 { 859 return (((tstamp >> 13) & 0x07) * CYCLES_PER_SECOND) + (tstamp & 0x1fff); 860 } 861 862 static inline u32 compute_ohci_cycle_count(__be32 ctx_header_tstamp) 863 { 864 u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK; 865 return compute_ohci_iso_ctx_cycle_count(tstamp); 866 } 867 868 static inline u32 increment_ohci_cycle_count(u32 cycle, unsigned int addend) 869 { 870 cycle += addend; 871 if (cycle >= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND) 872 cycle -= OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 873 return cycle; 874 } 875 876 static inline u32 decrement_ohci_cycle_count(u32 minuend, u32 subtrahend) 877 { 878 if (minuend < subtrahend) 879 minuend += OHCI_SECOND_MODULUS * CYCLES_PER_SECOND; 880 881 return minuend - subtrahend; 882 } 883 884 static int compare_ohci_cycle_count(u32 lval, u32 rval) 885 { 886 if (lval == rval) 887 return 0; 888 else if (lval < rval && rval - lval < OHCI_SECOND_MODULUS * CYCLES_PER_SECOND / 2) 889 return -1; 890 else 891 return 1; 892 } 893 894 // Align to actual cycle count for the packet which is going to be scheduled. 895 // This module queued the same number of isochronous cycle as the size of queue 896 // to kip isochronous cycle, therefore it's OK to just increment the cycle by 897 // the size of queue for scheduled cycle. 898 static inline u32 compute_ohci_it_cycle(const __be32 ctx_header_tstamp, 899 unsigned int queue_size) 900 { 901 u32 cycle = compute_ohci_cycle_count(ctx_header_tstamp); 902 return increment_ohci_cycle_count(cycle, queue_size); 903 } 904 905 static int generate_tx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 906 const __be32 *ctx_header, unsigned int packet_count, 907 unsigned int *desc_count) 908 { 909 unsigned int next_cycle = s->next_cycle; 910 unsigned int dbc = s->data_block_counter; 911 unsigned int packet_index = s->packet_index; 912 unsigned int queue_size = s->queue_size; 913 u32 curr_cycle_time = 0; 914 int i; 915 int err; 916 917 if (trace_amdtp_packet_enabled()) 918 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 919 920 *desc_count = 0; 921 for (i = 0; i < packet_count; ++i) { 922 unsigned int cycle; 923 bool lost; 924 unsigned int data_blocks; 925 unsigned int syt; 926 927 cycle = compute_ohci_cycle_count(ctx_header[1]); 928 lost = (next_cycle != cycle); 929 if (lost) { 930 if (s->flags & CIP_NO_HEADER) { 931 // Fireface skips transmission just for an isoc cycle corresponding 932 // to empty packet. 933 unsigned int prev_cycle = next_cycle; 934 935 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 936 lost = (next_cycle != cycle); 937 if (!lost) { 938 // Prepare a description for the skipped cycle for 939 // sequence replay. 940 desc->cycle = prev_cycle; 941 desc->syt = 0; 942 desc->data_blocks = 0; 943 desc->data_block_counter = dbc; 944 desc->ctx_payload = NULL; 945 desc = amdtp_stream_next_packet_desc(s, desc); 946 ++(*desc_count); 947 } 948 } else if (s->flags & CIP_JUMBO_PAYLOAD) { 949 // OXFW970 skips transmission for several isoc cycles during 950 // asynchronous transaction. The sequence replay is impossible due 951 // to the reason. 952 unsigned int safe_cycle = increment_ohci_cycle_count(next_cycle, 953 IR_JUMBO_PAYLOAD_MAX_SKIP_CYCLES); 954 lost = (compare_ohci_cycle_count(safe_cycle, cycle) > 0); 955 } 956 if (lost) { 957 dev_err(&s->unit->device, "Detect discontinuity of cycle: %d %d\n", 958 next_cycle, cycle); 959 return -EIO; 960 } 961 } 962 963 err = parse_ir_ctx_header(s, cycle, ctx_header, &data_blocks, &dbc, &syt, 964 packet_index, i, curr_cycle_time); 965 if (err < 0) 966 return err; 967 968 desc->cycle = cycle; 969 desc->syt = syt; 970 desc->data_blocks = data_blocks; 971 desc->data_block_counter = dbc; 972 desc->ctx_payload = s->buffer.packets[packet_index].buffer; 973 974 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 975 dbc = (dbc + desc->data_blocks) & 0xff; 976 977 next_cycle = increment_ohci_cycle_count(next_cycle, 1); 978 desc = amdtp_stream_next_packet_desc(s, desc); 979 ++(*desc_count); 980 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 981 packet_index = (packet_index + 1) % queue_size; 982 } 983 984 s->next_cycle = next_cycle; 985 s->data_block_counter = dbc; 986 987 return 0; 988 } 989 990 static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle, 991 unsigned int transfer_delay) 992 { 993 unsigned int syt; 994 995 syt_offset += transfer_delay; 996 syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) | 997 (syt_offset % TICKS_PER_CYCLE); 998 return syt & CIP_SYT_MASK; 999 } 1000 1001 static void generate_rx_packet_descs(struct amdtp_stream *s, struct pkt_desc *desc, 1002 const __be32 *ctx_header, unsigned int packet_count) 1003 { 1004 struct seq_desc *seq_descs = s->ctx_data.rx.seq.descs; 1005 unsigned int seq_size = s->ctx_data.rx.seq.size; 1006 unsigned int seq_pos = s->ctx_data.rx.seq.pos; 1007 unsigned int dbc = s->data_block_counter; 1008 bool aware_syt = !(s->flags & CIP_UNAWARE_SYT); 1009 int i; 1010 1011 pool_seq_descs(s, seq_descs, seq_size, seq_pos, packet_count); 1012 1013 for (i = 0; i < packet_count; ++i) { 1014 unsigned int index = (s->packet_index + i) % s->queue_size; 1015 const struct seq_desc *seq = seq_descs + seq_pos; 1016 1017 desc->cycle = compute_ohci_it_cycle(*ctx_header, s->queue_size); 1018 1019 if (aware_syt && seq->syt_offset != CIP_SYT_NO_INFO) 1020 desc->syt = compute_syt(seq->syt_offset, desc->cycle, s->transfer_delay); 1021 else 1022 desc->syt = CIP_SYT_NO_INFO; 1023 1024 desc->data_blocks = seq->data_blocks; 1025 1026 if (s->flags & CIP_DBC_IS_END_EVENT) 1027 dbc = (dbc + desc->data_blocks) & 0xff; 1028 1029 desc->data_block_counter = dbc; 1030 1031 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 1032 dbc = (dbc + desc->data_blocks) & 0xff; 1033 1034 desc->ctx_payload = s->buffer.packets[index].buffer; 1035 1036 seq_pos = (seq_pos + 1) % seq_size; 1037 desc = amdtp_stream_next_packet_desc(s, desc); 1038 1039 ++ctx_header; 1040 } 1041 1042 s->data_block_counter = dbc; 1043 s->ctx_data.rx.seq.pos = seq_pos; 1044 } 1045 1046 static inline void cancel_stream(struct amdtp_stream *s) 1047 { 1048 s->packet_index = -1; 1049 if (in_softirq()) 1050 amdtp_stream_pcm_abort(s); 1051 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 1052 } 1053 1054 static snd_pcm_sframes_t compute_pcm_extra_delay(struct amdtp_stream *s, 1055 const struct pkt_desc *desc, unsigned int count) 1056 { 1057 unsigned int data_block_count = 0; 1058 u32 latest_cycle; 1059 u32 cycle_time; 1060 u32 curr_cycle; 1061 u32 cycle_gap; 1062 int i, err; 1063 1064 if (count == 0) 1065 goto end; 1066 1067 // Forward to the latest record. 1068 for (i = 0; i < count - 1; ++i) 1069 desc = amdtp_stream_next_packet_desc(s, desc); 1070 latest_cycle = desc->cycle; 1071 1072 err = fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &cycle_time); 1073 if (err < 0) 1074 goto end; 1075 1076 // Compute cycle count with lower 3 bits of second field and cycle field like timestamp 1077 // format of 1394 OHCI isochronous context. 1078 curr_cycle = compute_ohci_iso_ctx_cycle_count((cycle_time >> 12) & 0x0000ffff); 1079 1080 if (s->direction == AMDTP_IN_STREAM) { 1081 // NOTE: The AMDTP packet descriptor should be for the past isochronous cycle since 1082 // it corresponds to arrived isochronous packet. 1083 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) > 0) 1084 goto end; 1085 cycle_gap = decrement_ohci_cycle_count(curr_cycle, latest_cycle); 1086 1087 // NOTE: estimate delay by recent history of arrived AMDTP packets. The estimated 1088 // value expectedly corresponds to a few packets (0-2) since the packet arrived at 1089 // the most recent isochronous cycle has been already processed. 1090 for (i = 0; i < cycle_gap; ++i) { 1091 desc = amdtp_stream_next_packet_desc(s, desc); 1092 data_block_count += desc->data_blocks; 1093 } 1094 } else { 1095 // NOTE: The AMDTP packet descriptor should be for the future isochronous cycle 1096 // since it was already scheduled. 1097 if (compare_ohci_cycle_count(latest_cycle, curr_cycle) < 0) 1098 goto end; 1099 cycle_gap = decrement_ohci_cycle_count(latest_cycle, curr_cycle); 1100 1101 // NOTE: use history of scheduled packets. 1102 for (i = 0; i < cycle_gap; ++i) { 1103 data_block_count += desc->data_blocks; 1104 desc = prev_packet_desc(s, desc); 1105 } 1106 } 1107 end: 1108 return data_block_count * s->pcm_frame_multiplier; 1109 } 1110 1111 static void process_ctx_payloads(struct amdtp_stream *s, 1112 const struct pkt_desc *desc, 1113 unsigned int count) 1114 { 1115 struct snd_pcm_substream *pcm; 1116 int i; 1117 1118 pcm = READ_ONCE(s->pcm); 1119 s->process_ctx_payloads(s, desc, count, pcm); 1120 1121 if (pcm) { 1122 unsigned int data_block_count = 0; 1123 1124 pcm->runtime->delay = compute_pcm_extra_delay(s, desc, count); 1125 1126 for (i = 0; i < count; ++i) { 1127 data_block_count += desc->data_blocks; 1128 desc = amdtp_stream_next_packet_desc(s, desc); 1129 } 1130 1131 update_pcm_pointers(s, pcm, data_block_count * s->pcm_frame_multiplier); 1132 } 1133 } 1134 1135 static void process_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1136 void *header, void *private_data) 1137 { 1138 struct amdtp_stream *s = private_data; 1139 const struct amdtp_domain *d = s->domain; 1140 const __be32 *ctx_header = header; 1141 const unsigned int events_per_period = d->events_per_period; 1142 unsigned int event_count = s->ctx_data.rx.event_count; 1143 struct pkt_desc *desc = s->packet_descs_cursor; 1144 unsigned int pkt_header_length; 1145 unsigned int packets; 1146 u32 curr_cycle_time; 1147 bool need_hw_irq; 1148 int i; 1149 1150 if (s->packet_index < 0) 1151 return; 1152 1153 // Calculate the number of packets in buffer and check XRUN. 1154 packets = header_length / sizeof(*ctx_header); 1155 1156 generate_rx_packet_descs(s, desc, ctx_header, packets); 1157 1158 process_ctx_payloads(s, desc, packets); 1159 1160 if (!(s->flags & CIP_NO_HEADER)) 1161 pkt_header_length = IT_PKT_HEADER_SIZE_CIP; 1162 else 1163 pkt_header_length = 0; 1164 1165 if (s == d->irq_target) { 1166 // At NO_PERIOD_WAKEUP mode, the packets for all IT/IR contexts are processed by 1167 // the tasks of user process operating ALSA PCM character device by calling ioctl(2) 1168 // with some requests, instead of scheduled hardware IRQ of an IT context. 1169 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 1170 need_hw_irq = !pcm || !pcm->runtime->no_period_wakeup; 1171 } else { 1172 need_hw_irq = false; 1173 } 1174 1175 if (trace_amdtp_packet_enabled()) 1176 (void)fw_card_read_cycle_time(fw_parent_device(s->unit)->card, &curr_cycle_time); 1177 1178 for (i = 0; i < packets; ++i) { 1179 struct { 1180 struct fw_iso_packet params; 1181 __be32 header[CIP_HEADER_QUADLETS]; 1182 } template = { {0}, {0} }; 1183 bool sched_irq = false; 1184 1185 build_it_pkt_header(s, desc->cycle, &template.params, pkt_header_length, 1186 desc->data_blocks, desc->data_block_counter, 1187 desc->syt, i, curr_cycle_time); 1188 1189 if (s == s->domain->irq_target) { 1190 event_count += desc->data_blocks; 1191 if (event_count >= events_per_period) { 1192 event_count -= events_per_period; 1193 sched_irq = need_hw_irq; 1194 } 1195 } 1196 1197 if (queue_out_packet(s, &template.params, sched_irq) < 0) { 1198 cancel_stream(s); 1199 return; 1200 } 1201 1202 desc = amdtp_stream_next_packet_desc(s, desc); 1203 } 1204 1205 s->ctx_data.rx.event_count = event_count; 1206 s->packet_descs_cursor = desc; 1207 } 1208 1209 static void skip_rx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1210 void *header, void *private_data) 1211 { 1212 struct amdtp_stream *s = private_data; 1213 struct amdtp_domain *d = s->domain; 1214 const __be32 *ctx_header = header; 1215 unsigned int packets; 1216 unsigned int cycle; 1217 int i; 1218 1219 if (s->packet_index < 0) 1220 return; 1221 1222 packets = header_length / sizeof(*ctx_header); 1223 1224 cycle = compute_ohci_it_cycle(ctx_header[packets - 1], s->queue_size); 1225 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1226 1227 for (i = 0; i < packets; ++i) { 1228 struct fw_iso_packet params = { 1229 .header_length = 0, 1230 .payload_length = 0, 1231 }; 1232 bool sched_irq = (s == d->irq_target && i == packets - 1); 1233 1234 if (queue_out_packet(s, ¶ms, sched_irq) < 0) { 1235 cancel_stream(s); 1236 return; 1237 } 1238 } 1239 } 1240 1241 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1242 void *header, void *private_data); 1243 1244 static void process_rx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1245 size_t header_length, void *header, void *private_data) 1246 { 1247 struct amdtp_stream *s = private_data; 1248 struct amdtp_domain *d = s->domain; 1249 __be32 *ctx_header = header; 1250 const unsigned int queue_size = s->queue_size; 1251 unsigned int packets; 1252 unsigned int offset; 1253 1254 if (s->packet_index < 0) 1255 return; 1256 1257 packets = header_length / sizeof(*ctx_header); 1258 1259 offset = 0; 1260 while (offset < packets) { 1261 unsigned int cycle = compute_ohci_it_cycle(ctx_header[offset], queue_size); 1262 1263 if (compare_ohci_cycle_count(cycle, d->processing_cycle.rx_start) >= 0) 1264 break; 1265 1266 ++offset; 1267 } 1268 1269 if (offset > 0) { 1270 unsigned int length = sizeof(*ctx_header) * offset; 1271 1272 skip_rx_packets(context, tstamp, length, ctx_header, private_data); 1273 if (amdtp_streaming_error(s)) 1274 return; 1275 1276 ctx_header += offset; 1277 header_length -= length; 1278 } 1279 1280 if (offset < packets) { 1281 s->ready_processing = true; 1282 wake_up(&s->ready_wait); 1283 1284 if (d->replay.enable) 1285 s->ctx_data.rx.cache_pos = 0; 1286 1287 process_rx_packets(context, tstamp, header_length, ctx_header, private_data); 1288 if (amdtp_streaming_error(s)) 1289 return; 1290 1291 if (s == d->irq_target) 1292 s->context->callback.sc = irq_target_callback; 1293 else 1294 s->context->callback.sc = process_rx_packets; 1295 } 1296 } 1297 1298 static void process_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1299 void *header, void *private_data) 1300 { 1301 struct amdtp_stream *s = private_data; 1302 __be32 *ctx_header = header; 1303 struct pkt_desc *desc = s->packet_descs_cursor; 1304 unsigned int packet_count; 1305 unsigned int desc_count; 1306 int i; 1307 int err; 1308 1309 if (s->packet_index < 0) 1310 return; 1311 1312 // Calculate the number of packets in buffer and check XRUN. 1313 packet_count = header_length / s->ctx_data.tx.ctx_header_size; 1314 1315 desc_count = 0; 1316 err = generate_tx_packet_descs(s, desc, ctx_header, packet_count, &desc_count); 1317 if (err < 0) { 1318 if (err != -EAGAIN) { 1319 cancel_stream(s); 1320 return; 1321 } 1322 } else { 1323 struct amdtp_domain *d = s->domain; 1324 1325 process_ctx_payloads(s, desc, desc_count); 1326 1327 if (d->replay.enable) 1328 cache_seq(s, desc, desc_count); 1329 1330 for (i = 0; i < desc_count; ++i) 1331 desc = amdtp_stream_next_packet_desc(s, desc); 1332 s->packet_descs_cursor = desc; 1333 } 1334 1335 for (i = 0; i < packet_count; ++i) { 1336 struct fw_iso_packet params = {0}; 1337 1338 if (queue_in_packet(s, ¶ms) < 0) { 1339 cancel_stream(s); 1340 return; 1341 } 1342 } 1343 } 1344 1345 static void drop_tx_packets(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1346 void *header, void *private_data) 1347 { 1348 struct amdtp_stream *s = private_data; 1349 const __be32 *ctx_header = header; 1350 unsigned int packets; 1351 unsigned int cycle; 1352 int i; 1353 1354 if (s->packet_index < 0) 1355 return; 1356 1357 packets = header_length / s->ctx_data.tx.ctx_header_size; 1358 1359 ctx_header += (packets - 1) * s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header); 1360 cycle = compute_ohci_cycle_count(ctx_header[1]); 1361 s->next_cycle = increment_ohci_cycle_count(cycle, 1); 1362 1363 for (i = 0; i < packets; ++i) { 1364 struct fw_iso_packet params = {0}; 1365 1366 if (queue_in_packet(s, ¶ms) < 0) { 1367 cancel_stream(s); 1368 return; 1369 } 1370 } 1371 } 1372 1373 static void process_tx_packets_intermediately(struct fw_iso_context *context, u32 tstamp, 1374 size_t header_length, void *header, void *private_data) 1375 { 1376 struct amdtp_stream *s = private_data; 1377 struct amdtp_domain *d = s->domain; 1378 __be32 *ctx_header; 1379 unsigned int packets; 1380 unsigned int offset; 1381 1382 if (s->packet_index < 0) 1383 return; 1384 1385 packets = header_length / s->ctx_data.tx.ctx_header_size; 1386 1387 offset = 0; 1388 ctx_header = header; 1389 while (offset < packets) { 1390 unsigned int cycle = compute_ohci_cycle_count(ctx_header[1]); 1391 1392 if (compare_ohci_cycle_count(cycle, d->processing_cycle.tx_start) >= 0) 1393 break; 1394 1395 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1396 ++offset; 1397 } 1398 1399 ctx_header = header; 1400 1401 if (offset > 0) { 1402 size_t length = s->ctx_data.tx.ctx_header_size * offset; 1403 1404 drop_tx_packets(context, tstamp, length, ctx_header, s); 1405 if (amdtp_streaming_error(s)) 1406 return; 1407 1408 ctx_header += length / sizeof(*ctx_header); 1409 header_length -= length; 1410 } 1411 1412 if (offset < packets) { 1413 s->ready_processing = true; 1414 wake_up(&s->ready_wait); 1415 1416 process_tx_packets(context, tstamp, header_length, ctx_header, s); 1417 if (amdtp_streaming_error(s)) 1418 return; 1419 1420 context->callback.sc = process_tx_packets; 1421 } 1422 } 1423 1424 static void drop_tx_packets_initially(struct fw_iso_context *context, u32 tstamp, 1425 size_t header_length, void *header, void *private_data) 1426 { 1427 struct amdtp_stream *s = private_data; 1428 struct amdtp_domain *d = s->domain; 1429 __be32 *ctx_header; 1430 unsigned int count; 1431 unsigned int events; 1432 int i; 1433 1434 if (s->packet_index < 0) 1435 return; 1436 1437 count = header_length / s->ctx_data.tx.ctx_header_size; 1438 1439 // Attempt to detect any event in the batch of packets. 1440 events = 0; 1441 ctx_header = header; 1442 for (i = 0; i < count; ++i) { 1443 unsigned int payload_quads = 1444 (be32_to_cpu(*ctx_header) >> ISO_DATA_LENGTH_SHIFT) / sizeof(__be32); 1445 unsigned int data_blocks; 1446 1447 if (s->flags & CIP_NO_HEADER) { 1448 data_blocks = payload_quads / s->data_block_quadlets; 1449 } else { 1450 __be32 *cip_headers = ctx_header + IR_CTX_HEADER_DEFAULT_QUADLETS; 1451 1452 if (payload_quads < CIP_HEADER_QUADLETS) { 1453 data_blocks = 0; 1454 } else { 1455 payload_quads -= CIP_HEADER_QUADLETS; 1456 1457 if (s->flags & CIP_UNAWARE_SYT) { 1458 data_blocks = payload_quads / s->data_block_quadlets; 1459 } else { 1460 u32 cip1 = be32_to_cpu(cip_headers[1]); 1461 1462 // NODATA packet can includes any data blocks but they are 1463 // not available as event. 1464 if ((cip1 & CIP_NO_DATA) == CIP_NO_DATA) 1465 data_blocks = 0; 1466 else 1467 data_blocks = payload_quads / s->data_block_quadlets; 1468 } 1469 } 1470 } 1471 1472 events += data_blocks; 1473 1474 ctx_header += s->ctx_data.tx.ctx_header_size / sizeof(__be32); 1475 } 1476 1477 drop_tx_packets(context, tstamp, header_length, header, s); 1478 1479 if (events > 0) 1480 s->ctx_data.tx.event_starts = true; 1481 1482 // Decide the cycle count to begin processing content of packet in IR contexts. 1483 { 1484 unsigned int stream_count = 0; 1485 unsigned int event_starts_count = 0; 1486 unsigned int cycle = UINT_MAX; 1487 1488 list_for_each_entry(s, &d->streams, list) { 1489 if (s->direction == AMDTP_IN_STREAM) { 1490 ++stream_count; 1491 if (s->ctx_data.tx.event_starts) 1492 ++event_starts_count; 1493 } 1494 } 1495 1496 if (stream_count == event_starts_count) { 1497 unsigned int next_cycle; 1498 1499 list_for_each_entry(s, &d->streams, list) { 1500 if (s->direction != AMDTP_IN_STREAM) 1501 continue; 1502 1503 next_cycle = increment_ohci_cycle_count(s->next_cycle, 1504 d->processing_cycle.tx_init_skip); 1505 if (cycle == UINT_MAX || 1506 compare_ohci_cycle_count(next_cycle, cycle) > 0) 1507 cycle = next_cycle; 1508 1509 s->context->callback.sc = process_tx_packets_intermediately; 1510 } 1511 1512 d->processing_cycle.tx_start = cycle; 1513 } 1514 } 1515 } 1516 1517 static void process_ctxs_in_domain(struct amdtp_domain *d) 1518 { 1519 struct amdtp_stream *s; 1520 1521 list_for_each_entry(s, &d->streams, list) { 1522 if (s != d->irq_target && amdtp_stream_running(s)) 1523 fw_iso_context_flush_completions(s->context); 1524 1525 if (amdtp_streaming_error(s)) 1526 goto error; 1527 } 1528 1529 return; 1530 error: 1531 if (amdtp_stream_running(d->irq_target)) 1532 cancel_stream(d->irq_target); 1533 1534 list_for_each_entry(s, &d->streams, list) { 1535 if (amdtp_stream_running(s)) 1536 cancel_stream(s); 1537 } 1538 } 1539 1540 static void irq_target_callback(struct fw_iso_context *context, u32 tstamp, size_t header_length, 1541 void *header, void *private_data) 1542 { 1543 struct amdtp_stream *s = private_data; 1544 struct amdtp_domain *d = s->domain; 1545 1546 process_rx_packets(context, tstamp, header_length, header, private_data); 1547 process_ctxs_in_domain(d); 1548 } 1549 1550 static void irq_target_callback_intermediately(struct fw_iso_context *context, u32 tstamp, 1551 size_t header_length, void *header, void *private_data) 1552 { 1553 struct amdtp_stream *s = private_data; 1554 struct amdtp_domain *d = s->domain; 1555 1556 process_rx_packets_intermediately(context, tstamp, header_length, header, private_data); 1557 process_ctxs_in_domain(d); 1558 } 1559 1560 static void irq_target_callback_skip(struct fw_iso_context *context, u32 tstamp, 1561 size_t header_length, void *header, void *private_data) 1562 { 1563 struct amdtp_stream *s = private_data; 1564 struct amdtp_domain *d = s->domain; 1565 bool ready_to_start; 1566 1567 skip_rx_packets(context, tstamp, header_length, header, private_data); 1568 process_ctxs_in_domain(d); 1569 1570 if (d->replay.enable && !d->replay.on_the_fly) { 1571 unsigned int rx_count = 0; 1572 unsigned int rx_ready_count = 0; 1573 struct amdtp_stream *rx; 1574 1575 list_for_each_entry(rx, &d->streams, list) { 1576 struct amdtp_stream *tx; 1577 unsigned int cached_cycles; 1578 1579 if (rx->direction != AMDTP_OUT_STREAM) 1580 continue; 1581 ++rx_count; 1582 1583 tx = rx->ctx_data.rx.replay_target; 1584 cached_cycles = calculate_cached_cycle_count(tx, 0); 1585 if (cached_cycles > tx->ctx_data.tx.cache.size / 2) 1586 ++rx_ready_count; 1587 } 1588 1589 ready_to_start = (rx_count == rx_ready_count); 1590 } else { 1591 ready_to_start = true; 1592 } 1593 1594 // Decide the cycle count to begin processing content of packet in IT contexts. All of IT 1595 // contexts are expected to start and get callback when reaching here. 1596 if (ready_to_start) { 1597 unsigned int cycle = s->next_cycle; 1598 list_for_each_entry(s, &d->streams, list) { 1599 if (s->direction != AMDTP_OUT_STREAM) 1600 continue; 1601 1602 if (compare_ohci_cycle_count(s->next_cycle, cycle) > 0) 1603 cycle = s->next_cycle; 1604 1605 if (s == d->irq_target) 1606 s->context->callback.sc = irq_target_callback_intermediately; 1607 else 1608 s->context->callback.sc = process_rx_packets_intermediately; 1609 } 1610 1611 d->processing_cycle.rx_start = cycle; 1612 } 1613 } 1614 1615 // This is executed one time. For in-stream, first packet has come. For out-stream, prepared to 1616 // transmit first packet. 1617 static void amdtp_stream_first_callback(struct fw_iso_context *context, 1618 u32 tstamp, size_t header_length, 1619 void *header, void *private_data) 1620 { 1621 struct amdtp_stream *s = private_data; 1622 struct amdtp_domain *d = s->domain; 1623 1624 if (s->direction == AMDTP_IN_STREAM) { 1625 context->callback.sc = drop_tx_packets_initially; 1626 } else { 1627 if (s == d->irq_target) 1628 context->callback.sc = irq_target_callback_skip; 1629 else 1630 context->callback.sc = skip_rx_packets; 1631 } 1632 1633 context->callback.sc(context, tstamp, header_length, header, s); 1634 } 1635 1636 /** 1637 * amdtp_stream_start - start transferring packets 1638 * @s: the AMDTP stream to start 1639 * @channel: the isochronous channel on the bus 1640 * @speed: firewire speed code 1641 * @queue_size: The number of packets in the queue. 1642 * @idle_irq_interval: the interval to queue packet during initial state. 1643 * 1644 * The stream cannot be started until it has been configured with 1645 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 1646 * device can be started. 1647 */ 1648 static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed, 1649 unsigned int queue_size, unsigned int idle_irq_interval) 1650 { 1651 bool is_irq_target = (s == s->domain->irq_target); 1652 unsigned int ctx_header_size; 1653 unsigned int max_ctx_payload_size; 1654 enum dma_data_direction dir; 1655 struct pkt_desc *descs; 1656 int i, type, tag, err; 1657 1658 mutex_lock(&s->mutex); 1659 1660 if (WARN_ON(amdtp_stream_running(s) || 1661 (s->data_block_quadlets < 1))) { 1662 err = -EBADFD; 1663 goto err_unlock; 1664 } 1665 1666 if (s->direction == AMDTP_IN_STREAM) { 1667 // NOTE: IT context should be used for constant IRQ. 1668 if (is_irq_target) { 1669 err = -EINVAL; 1670 goto err_unlock; 1671 } 1672 1673 s->data_block_counter = UINT_MAX; 1674 } else { 1675 s->data_block_counter = 0; 1676 } 1677 1678 // initialize packet buffer. 1679 if (s->direction == AMDTP_IN_STREAM) { 1680 dir = DMA_FROM_DEVICE; 1681 type = FW_ISO_CONTEXT_RECEIVE; 1682 if (!(s->flags & CIP_NO_HEADER)) 1683 ctx_header_size = IR_CTX_HEADER_SIZE_CIP; 1684 else 1685 ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP; 1686 } else { 1687 dir = DMA_TO_DEVICE; 1688 type = FW_ISO_CONTEXT_TRANSMIT; 1689 ctx_header_size = 0; // No effect for IT context. 1690 } 1691 max_ctx_payload_size = amdtp_stream_get_max_ctx_payload_size(s); 1692 1693 err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size, max_ctx_payload_size, dir); 1694 if (err < 0) 1695 goto err_unlock; 1696 s->queue_size = queue_size; 1697 1698 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 1699 type, channel, speed, ctx_header_size, 1700 amdtp_stream_first_callback, s); 1701 if (IS_ERR(s->context)) { 1702 err = PTR_ERR(s->context); 1703 if (err == -EBUSY) 1704 dev_err(&s->unit->device, 1705 "no free stream on this controller\n"); 1706 goto err_buffer; 1707 } 1708 1709 amdtp_stream_update(s); 1710 1711 if (s->direction == AMDTP_IN_STREAM) { 1712 s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size; 1713 s->ctx_data.tx.ctx_header_size = ctx_header_size; 1714 s->ctx_data.tx.event_starts = false; 1715 1716 if (s->domain->replay.enable) { 1717 // struct fw_iso_context.drop_overflow_headers is false therefore it's 1718 // possible to cache much unexpectedly. 1719 s->ctx_data.tx.cache.size = max_t(unsigned int, s->syt_interval * 2, 1720 queue_size * 3 / 2); 1721 s->ctx_data.tx.cache.pos = 0; 1722 s->ctx_data.tx.cache.descs = kcalloc(s->ctx_data.tx.cache.size, 1723 sizeof(*s->ctx_data.tx.cache.descs), GFP_KERNEL); 1724 if (!s->ctx_data.tx.cache.descs) { 1725 err = -ENOMEM; 1726 goto err_context; 1727 } 1728 } 1729 } else { 1730 static const struct { 1731 unsigned int data_block; 1732 unsigned int syt_offset; 1733 } *entry, initial_state[] = { 1734 [CIP_SFC_32000] = { 4, 3072 }, 1735 [CIP_SFC_48000] = { 6, 1024 }, 1736 [CIP_SFC_96000] = { 12, 1024 }, 1737 [CIP_SFC_192000] = { 24, 1024 }, 1738 [CIP_SFC_44100] = { 0, 67 }, 1739 [CIP_SFC_88200] = { 0, 67 }, 1740 [CIP_SFC_176400] = { 0, 67 }, 1741 }; 1742 1743 s->ctx_data.rx.seq.descs = kcalloc(queue_size, sizeof(*s->ctx_data.rx.seq.descs), GFP_KERNEL); 1744 if (!s->ctx_data.rx.seq.descs) { 1745 err = -ENOMEM; 1746 goto err_context; 1747 } 1748 s->ctx_data.rx.seq.size = queue_size; 1749 s->ctx_data.rx.seq.pos = 0; 1750 1751 entry = &initial_state[s->sfc]; 1752 s->ctx_data.rx.data_block_state = entry->data_block; 1753 s->ctx_data.rx.syt_offset_state = entry->syt_offset; 1754 s->ctx_data.rx.last_syt_offset = TICKS_PER_CYCLE; 1755 1756 s->ctx_data.rx.event_count = 0; 1757 } 1758 1759 if (s->flags & CIP_NO_HEADER) 1760 s->tag = TAG_NO_CIP_HEADER; 1761 else 1762 s->tag = TAG_CIP; 1763 1764 // NOTE: When operating without hardIRQ/softIRQ, applications tends to call ioctl request 1765 // for runtime of PCM substream in the interval equivalent to the size of PCM buffer. It 1766 // could take a round over queue of AMDTP packet descriptors and small loss of history. For 1767 // safe, keep more 8 elements for the queue, equivalent to 1 ms. 1768 descs = kcalloc(s->queue_size + 8, sizeof(*descs), GFP_KERNEL); 1769 if (!descs) { 1770 err = -ENOMEM; 1771 goto err_context; 1772 } 1773 s->packet_descs = descs; 1774 1775 INIT_LIST_HEAD(&s->packet_descs_list); 1776 for (i = 0; i < s->queue_size; ++i) { 1777 INIT_LIST_HEAD(&descs->link); 1778 list_add_tail(&descs->link, &s->packet_descs_list); 1779 ++descs; 1780 } 1781 s->packet_descs_cursor = list_first_entry(&s->packet_descs_list, struct pkt_desc, link); 1782 1783 s->packet_index = 0; 1784 do { 1785 struct fw_iso_packet params; 1786 1787 if (s->direction == AMDTP_IN_STREAM) { 1788 err = queue_in_packet(s, ¶ms); 1789 } else { 1790 bool sched_irq = false; 1791 1792 params.header_length = 0; 1793 params.payload_length = 0; 1794 1795 if (is_irq_target) { 1796 sched_irq = !((s->packet_index + 1) % 1797 idle_irq_interval); 1798 } 1799 1800 err = queue_out_packet(s, ¶ms, sched_irq); 1801 } 1802 if (err < 0) 1803 goto err_pkt_descs; 1804 } while (s->packet_index > 0); 1805 1806 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 1807 tag = FW_ISO_CONTEXT_MATCH_TAG1; 1808 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 1809 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 1810 1811 s->ready_processing = false; 1812 err = fw_iso_context_start(s->context, -1, 0, tag); 1813 if (err < 0) 1814 goto err_pkt_descs; 1815 1816 mutex_unlock(&s->mutex); 1817 1818 return 0; 1819 err_pkt_descs: 1820 kfree(s->packet_descs); 1821 s->packet_descs = NULL; 1822 err_context: 1823 if (s->direction == AMDTP_OUT_STREAM) { 1824 kfree(s->ctx_data.rx.seq.descs); 1825 } else { 1826 if (s->domain->replay.enable) 1827 kfree(s->ctx_data.tx.cache.descs); 1828 } 1829 fw_iso_context_destroy(s->context); 1830 s->context = ERR_PTR(-1); 1831 err_buffer: 1832 iso_packets_buffer_destroy(&s->buffer, s->unit); 1833 err_unlock: 1834 mutex_unlock(&s->mutex); 1835 1836 return err; 1837 } 1838 1839 /** 1840 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position 1841 * @d: the AMDTP domain. 1842 * @s: the AMDTP stream that transports the PCM data 1843 * 1844 * Returns the current buffer position, in frames. 1845 */ 1846 unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d, 1847 struct amdtp_stream *s) 1848 { 1849 struct amdtp_stream *irq_target = d->irq_target; 1850 1851 // Process isochronous packets queued till recent isochronous cycle to handle PCM frames. 1852 if (irq_target && amdtp_stream_running(irq_target)) { 1853 // In software IRQ context, the call causes dead-lock to disable the tasklet 1854 // synchronously. 1855 if (!in_softirq()) 1856 fw_iso_context_flush_completions(irq_target->context); 1857 } 1858 1859 return READ_ONCE(s->pcm_buffer_pointer); 1860 } 1861 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer); 1862 1863 /** 1864 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames 1865 * @d: the AMDTP domain. 1866 * @s: the AMDTP stream that transfers the PCM frames 1867 * 1868 * Returns zero always. 1869 */ 1870 int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s) 1871 { 1872 struct amdtp_stream *irq_target = d->irq_target; 1873 1874 // Process isochronous packets for recent isochronous cycle to handle 1875 // queued PCM frames. 1876 if (irq_target && amdtp_stream_running(irq_target)) 1877 fw_iso_context_flush_completions(irq_target->context); 1878 1879 return 0; 1880 } 1881 EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack); 1882 1883 /** 1884 * amdtp_stream_update - update the stream after a bus reset 1885 * @s: the AMDTP stream 1886 */ 1887 void amdtp_stream_update(struct amdtp_stream *s) 1888 { 1889 /* Precomputing. */ 1890 WRITE_ONCE(s->source_node_id_field, 1891 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1892 } 1893 EXPORT_SYMBOL(amdtp_stream_update); 1894 1895 /** 1896 * amdtp_stream_stop - stop sending packets 1897 * @s: the AMDTP stream to stop 1898 * 1899 * All PCM and MIDI devices of the stream must be stopped before the stream 1900 * itself can be stopped. 1901 */ 1902 static void amdtp_stream_stop(struct amdtp_stream *s) 1903 { 1904 mutex_lock(&s->mutex); 1905 1906 if (!amdtp_stream_running(s)) { 1907 mutex_unlock(&s->mutex); 1908 return; 1909 } 1910 1911 fw_iso_context_stop(s->context); 1912 fw_iso_context_destroy(s->context); 1913 s->context = ERR_PTR(-1); 1914 iso_packets_buffer_destroy(&s->buffer, s->unit); 1915 kfree(s->packet_descs); 1916 s->packet_descs = NULL; 1917 1918 if (s->direction == AMDTP_OUT_STREAM) { 1919 kfree(s->ctx_data.rx.seq.descs); 1920 } else { 1921 if (s->domain->replay.enable) 1922 kfree(s->ctx_data.tx.cache.descs); 1923 } 1924 1925 mutex_unlock(&s->mutex); 1926 } 1927 1928 /** 1929 * amdtp_stream_pcm_abort - abort the running PCM device 1930 * @s: the AMDTP stream about to be stopped 1931 * 1932 * If the isochronous stream needs to be stopped asynchronously, call this 1933 * function first to stop the PCM device. 1934 */ 1935 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1936 { 1937 struct snd_pcm_substream *pcm; 1938 1939 pcm = READ_ONCE(s->pcm); 1940 if (pcm) 1941 snd_pcm_stop_xrun(pcm); 1942 } 1943 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1944 1945 /** 1946 * amdtp_domain_init - initialize an AMDTP domain structure 1947 * @d: the AMDTP domain to initialize. 1948 */ 1949 int amdtp_domain_init(struct amdtp_domain *d) 1950 { 1951 INIT_LIST_HEAD(&d->streams); 1952 1953 d->events_per_period = 0; 1954 1955 return 0; 1956 } 1957 EXPORT_SYMBOL_GPL(amdtp_domain_init); 1958 1959 /** 1960 * amdtp_domain_destroy - destroy an AMDTP domain structure 1961 * @d: the AMDTP domain to destroy. 1962 */ 1963 void amdtp_domain_destroy(struct amdtp_domain *d) 1964 { 1965 // At present nothing to do. 1966 return; 1967 } 1968 EXPORT_SYMBOL_GPL(amdtp_domain_destroy); 1969 1970 /** 1971 * amdtp_domain_add_stream - register isoc context into the domain. 1972 * @d: the AMDTP domain. 1973 * @s: the AMDTP stream. 1974 * @channel: the isochronous channel on the bus. 1975 * @speed: firewire speed code. 1976 */ 1977 int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s, 1978 int channel, int speed) 1979 { 1980 struct amdtp_stream *tmp; 1981 1982 list_for_each_entry(tmp, &d->streams, list) { 1983 if (s == tmp) 1984 return -EBUSY; 1985 } 1986 1987 list_add(&s->list, &d->streams); 1988 1989 s->channel = channel; 1990 s->speed = speed; 1991 s->domain = d; 1992 1993 return 0; 1994 } 1995 EXPORT_SYMBOL_GPL(amdtp_domain_add_stream); 1996 1997 // Make the reference from rx stream to tx stream for sequence replay. When the number of tx streams 1998 // is less than the number of rx streams, the first tx stream is selected. 1999 static int make_association(struct amdtp_domain *d) 2000 { 2001 unsigned int dst_index = 0; 2002 struct amdtp_stream *rx; 2003 2004 // Make association to replay target. 2005 list_for_each_entry(rx, &d->streams, list) { 2006 if (rx->direction == AMDTP_OUT_STREAM) { 2007 unsigned int src_index = 0; 2008 struct amdtp_stream *tx = NULL; 2009 struct amdtp_stream *s; 2010 2011 list_for_each_entry(s, &d->streams, list) { 2012 if (s->direction == AMDTP_IN_STREAM) { 2013 if (dst_index == src_index) { 2014 tx = s; 2015 break; 2016 } 2017 2018 ++src_index; 2019 } 2020 } 2021 if (!tx) { 2022 // Select the first entry. 2023 list_for_each_entry(s, &d->streams, list) { 2024 if (s->direction == AMDTP_IN_STREAM) { 2025 tx = s; 2026 break; 2027 } 2028 } 2029 // No target is available to replay sequence. 2030 if (!tx) 2031 return -EINVAL; 2032 } 2033 2034 rx->ctx_data.rx.replay_target = tx; 2035 2036 ++dst_index; 2037 } 2038 } 2039 2040 return 0; 2041 } 2042 2043 /** 2044 * amdtp_domain_start - start sending packets for isoc context in the domain. 2045 * @d: the AMDTP domain. 2046 * @tx_init_skip_cycles: the number of cycles to skip processing packets at initial stage of IR 2047 * contexts. 2048 * @replay_seq: whether to replay the sequence of packet in IR context for the sequence of packet in 2049 * IT context. 2050 * @replay_on_the_fly: transfer rx packets according to nominal frequency, then begin to replay 2051 * according to arrival of events in tx packets. 2052 */ 2053 int amdtp_domain_start(struct amdtp_domain *d, unsigned int tx_init_skip_cycles, bool replay_seq, 2054 bool replay_on_the_fly) 2055 { 2056 unsigned int events_per_buffer = d->events_per_buffer; 2057 unsigned int events_per_period = d->events_per_period; 2058 unsigned int queue_size; 2059 struct amdtp_stream *s; 2060 bool found = false; 2061 int err; 2062 2063 if (replay_seq) { 2064 err = make_association(d); 2065 if (err < 0) 2066 return err; 2067 } 2068 d->replay.enable = replay_seq; 2069 d->replay.on_the_fly = replay_on_the_fly; 2070 2071 // Select an IT context as IRQ target. 2072 list_for_each_entry(s, &d->streams, list) { 2073 if (s->direction == AMDTP_OUT_STREAM) { 2074 found = true; 2075 break; 2076 } 2077 } 2078 if (!found) 2079 return -ENXIO; 2080 d->irq_target = s; 2081 2082 d->processing_cycle.tx_init_skip = tx_init_skip_cycles; 2083 2084 // This is a case that AMDTP streams in domain run just for MIDI 2085 // substream. Use the number of events equivalent to 10 msec as 2086 // interval of hardware IRQ. 2087 if (events_per_period == 0) 2088 events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100; 2089 if (events_per_buffer == 0) 2090 events_per_buffer = events_per_period * 3; 2091 2092 queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer, 2093 amdtp_rate_table[d->irq_target->sfc]); 2094 2095 list_for_each_entry(s, &d->streams, list) { 2096 unsigned int idle_irq_interval = 0; 2097 2098 if (s->direction == AMDTP_OUT_STREAM && s == d->irq_target) { 2099 idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period, 2100 amdtp_rate_table[d->irq_target->sfc]); 2101 } 2102 2103 // Starts immediately but actually DMA context starts several hundred cycles later. 2104 err = amdtp_stream_start(s, s->channel, s->speed, queue_size, idle_irq_interval); 2105 if (err < 0) 2106 goto error; 2107 } 2108 2109 return 0; 2110 error: 2111 list_for_each_entry(s, &d->streams, list) 2112 amdtp_stream_stop(s); 2113 return err; 2114 } 2115 EXPORT_SYMBOL_GPL(amdtp_domain_start); 2116 2117 /** 2118 * amdtp_domain_stop - stop sending packets for isoc context in the same domain. 2119 * @d: the AMDTP domain to which the isoc contexts belong. 2120 */ 2121 void amdtp_domain_stop(struct amdtp_domain *d) 2122 { 2123 struct amdtp_stream *s, *next; 2124 2125 if (d->irq_target) 2126 amdtp_stream_stop(d->irq_target); 2127 2128 list_for_each_entry_safe(s, next, &d->streams, list) { 2129 list_del(&s->list); 2130 2131 if (s != d->irq_target) 2132 amdtp_stream_stop(s); 2133 } 2134 2135 d->events_per_period = 0; 2136 d->irq_target = NULL; 2137 } 2138 EXPORT_SYMBOL_GPL(amdtp_domain_stop); 2139