1 /* 2 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams 3 * with Common Isochronous Packet (IEC 61883-1) headers 4 * 5 * Copyright (c) Clemens Ladisch <clemens@ladisch.de> 6 * Licensed under the terms of the GNU General Public License, version 2. 7 */ 8 9 #include <linux/device.h> 10 #include <linux/err.h> 11 #include <linux/firewire.h> 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <sound/pcm.h> 15 #include <sound/pcm_params.h> 16 #include "amdtp-stream.h" 17 18 #define TICKS_PER_CYCLE 3072 19 #define CYCLES_PER_SECOND 8000 20 #define TICKS_PER_SECOND (TICKS_PER_CYCLE * CYCLES_PER_SECOND) 21 22 /* Always support Linux tracing subsystem. */ 23 #define CREATE_TRACE_POINTS 24 #include "amdtp-stream-trace.h" 25 26 #define TRANSFER_DELAY_TICKS 0x2e00 /* 479.17 microseconds */ 27 28 /* isochronous header parameters */ 29 #define ISO_DATA_LENGTH_SHIFT 16 30 #define TAG_NO_CIP_HEADER 0 31 #define TAG_CIP 1 32 33 /* common isochronous packet header parameters */ 34 #define CIP_EOH_SHIFT 31 35 #define CIP_EOH (1u << CIP_EOH_SHIFT) 36 #define CIP_EOH_MASK 0x80000000 37 #define CIP_SID_SHIFT 24 38 #define CIP_SID_MASK 0x3f000000 39 #define CIP_DBS_MASK 0x00ff0000 40 #define CIP_DBS_SHIFT 16 41 #define CIP_SPH_MASK 0x00000400 42 #define CIP_SPH_SHIFT 10 43 #define CIP_DBC_MASK 0x000000ff 44 #define CIP_FMT_SHIFT 24 45 #define CIP_FMT_MASK 0x3f000000 46 #define CIP_FDF_MASK 0x00ff0000 47 #define CIP_FDF_SHIFT 16 48 #define CIP_SYT_MASK 0x0000ffff 49 #define CIP_SYT_NO_INFO 0xffff 50 51 /* Audio and Music transfer protocol specific parameters */ 52 #define CIP_FMT_AM 0x10 53 #define AMDTP_FDF_NO_DATA 0xff 54 55 /* TODO: make these configurable */ 56 #define INTERRUPT_INTERVAL 16 57 #define QUEUE_LENGTH 48 58 59 #define IN_PACKET_HEADER_SIZE 4 60 #define OUT_PACKET_HEADER_SIZE 0 61 62 static void pcm_period_tasklet(unsigned long data); 63 64 /** 65 * amdtp_stream_init - initialize an AMDTP stream structure 66 * @s: the AMDTP stream to initialize 67 * @unit: the target of the stream 68 * @dir: the direction of stream 69 * @flags: the packet transmission method to use 70 * @fmt: the value of fmt field in CIP header 71 * @process_data_blocks: callback handler to process data blocks 72 * @protocol_size: the size to allocate newly for protocol 73 */ 74 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit, 75 enum amdtp_stream_direction dir, enum cip_flags flags, 76 unsigned int fmt, 77 amdtp_stream_process_data_blocks_t process_data_blocks, 78 unsigned int protocol_size) 79 { 80 if (process_data_blocks == NULL) 81 return -EINVAL; 82 83 s->protocol = kzalloc(protocol_size, GFP_KERNEL); 84 if (!s->protocol) 85 return -ENOMEM; 86 87 s->unit = unit; 88 s->direction = dir; 89 s->flags = flags; 90 s->context = ERR_PTR(-1); 91 mutex_init(&s->mutex); 92 tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s); 93 s->packet_index = 0; 94 95 init_waitqueue_head(&s->callback_wait); 96 s->callbacked = false; 97 98 s->fmt = fmt; 99 s->process_data_blocks = process_data_blocks; 100 101 return 0; 102 } 103 EXPORT_SYMBOL(amdtp_stream_init); 104 105 /** 106 * amdtp_stream_destroy - free stream resources 107 * @s: the AMDTP stream to destroy 108 */ 109 void amdtp_stream_destroy(struct amdtp_stream *s) 110 { 111 /* Not initialized. */ 112 if (s->protocol == NULL) 113 return; 114 115 WARN_ON(amdtp_stream_running(s)); 116 kfree(s->protocol); 117 mutex_destroy(&s->mutex); 118 } 119 EXPORT_SYMBOL(amdtp_stream_destroy); 120 121 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = { 122 [CIP_SFC_32000] = 8, 123 [CIP_SFC_44100] = 8, 124 [CIP_SFC_48000] = 8, 125 [CIP_SFC_88200] = 16, 126 [CIP_SFC_96000] = 16, 127 [CIP_SFC_176400] = 32, 128 [CIP_SFC_192000] = 32, 129 }; 130 EXPORT_SYMBOL(amdtp_syt_intervals); 131 132 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = { 133 [CIP_SFC_32000] = 32000, 134 [CIP_SFC_44100] = 44100, 135 [CIP_SFC_48000] = 48000, 136 [CIP_SFC_88200] = 88200, 137 [CIP_SFC_96000] = 96000, 138 [CIP_SFC_176400] = 176400, 139 [CIP_SFC_192000] = 192000, 140 }; 141 EXPORT_SYMBOL(amdtp_rate_table); 142 143 static int apply_constraint_to_size(struct snd_pcm_hw_params *params, 144 struct snd_pcm_hw_rule *rule) 145 { 146 struct snd_interval *s = hw_param_interval(params, rule->var); 147 const struct snd_interval *r = 148 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE); 149 struct snd_interval t = { 150 .min = s->min, .max = s->max, .integer = 1, 151 }; 152 int i; 153 154 for (i = 0; i < CIP_SFC_COUNT; ++i) { 155 unsigned int rate = amdtp_rate_table[i]; 156 unsigned int step = amdtp_syt_intervals[i]; 157 158 if (!snd_interval_test(r, rate)) 159 continue; 160 161 t.min = roundup(t.min, step); 162 t.max = rounddown(t.max, step); 163 } 164 165 if (snd_interval_checkempty(&t)) 166 return -EINVAL; 167 168 return snd_interval_refine(s, &t); 169 } 170 171 static int apply_constraint_to_rate(struct snd_pcm_hw_params *params, 172 struct snd_pcm_hw_rule *rule) 173 { 174 struct snd_interval *r = 175 hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE); 176 const struct snd_interval *s = hw_param_interval_c(params, rule->deps[0]); 177 struct snd_interval t = { 178 .min = UINT_MAX, .max = 0, .integer = 1, 179 }; 180 int i; 181 182 for (i = 0; i < CIP_SFC_COUNT; ++i) { 183 unsigned int step = amdtp_syt_intervals[i]; 184 unsigned int rate = amdtp_rate_table[i]; 185 186 if (s->min % step || s->max % step) 187 continue; 188 189 t.min = min(t.min, rate); 190 t.max = max(t.max, rate); 191 } 192 193 return snd_interval_refine(r, &t); 194 } 195 196 /** 197 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream 198 * @s: the AMDTP stream, which must be initialized. 199 * @runtime: the PCM substream runtime 200 */ 201 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s, 202 struct snd_pcm_runtime *runtime) 203 { 204 struct snd_pcm_hardware *hw = &runtime->hw; 205 int err; 206 207 hw->info = SNDRV_PCM_INFO_BATCH | 208 SNDRV_PCM_INFO_BLOCK_TRANSFER | 209 SNDRV_PCM_INFO_INTERLEAVED | 210 SNDRV_PCM_INFO_JOINT_DUPLEX | 211 SNDRV_PCM_INFO_MMAP | 212 SNDRV_PCM_INFO_MMAP_VALID; 213 214 /* SNDRV_PCM_INFO_BATCH */ 215 hw->periods_min = 2; 216 hw->periods_max = UINT_MAX; 217 218 /* bytes for a frame */ 219 hw->period_bytes_min = 4 * hw->channels_max; 220 221 /* Just to prevent from allocating much pages. */ 222 hw->period_bytes_max = hw->period_bytes_min * 2048; 223 hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min; 224 225 /* 226 * Currently firewire-lib processes 16 packets in one software 227 * interrupt callback. This equals to 2msec but actually the 228 * interval of the interrupts has a jitter. 229 * Additionally, even if adding a constraint to fit period size to 230 * 2msec, actual calculated frames per period doesn't equal to 2msec, 231 * depending on sampling rate. 232 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec. 233 * Here let us use 5msec for safe period interrupt. 234 */ 235 err = snd_pcm_hw_constraint_minmax(runtime, 236 SNDRV_PCM_HW_PARAM_PERIOD_TIME, 237 5000, UINT_MAX); 238 if (err < 0) 239 goto end; 240 241 /* Non-Blocking stream has no more constraints */ 242 if (!(s->flags & CIP_BLOCKING)) 243 goto end; 244 245 /* 246 * One AMDTP packet can include some frames. In blocking mode, the 247 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32, 248 * depending on its sampling rate. For accurate period interrupt, it's 249 * preferrable to align period/buffer sizes to current SYT_INTERVAL. 250 */ 251 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 252 apply_constraint_to_size, NULL, 253 SNDRV_PCM_HW_PARAM_RATE, -1); 254 if (err < 0) 255 goto end; 256 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 257 apply_constraint_to_rate, NULL, 258 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, -1); 259 if (err < 0) 260 goto end; 261 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 262 apply_constraint_to_size, NULL, 263 SNDRV_PCM_HW_PARAM_RATE, -1); 264 if (err < 0) 265 goto end; 266 err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE, 267 apply_constraint_to_rate, NULL, 268 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, -1); 269 if (err < 0) 270 goto end; 271 end: 272 return err; 273 } 274 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints); 275 276 /** 277 * amdtp_stream_set_parameters - set stream parameters 278 * @s: the AMDTP stream to configure 279 * @rate: the sample rate 280 * @data_block_quadlets: the size of a data block in quadlet unit 281 * 282 * The parameters must be set before the stream is started, and must not be 283 * changed while the stream is running. 284 */ 285 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate, 286 unsigned int data_block_quadlets) 287 { 288 unsigned int sfc; 289 290 for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) { 291 if (amdtp_rate_table[sfc] == rate) 292 break; 293 } 294 if (sfc == ARRAY_SIZE(amdtp_rate_table)) 295 return -EINVAL; 296 297 s->sfc = sfc; 298 s->data_block_quadlets = data_block_quadlets; 299 s->syt_interval = amdtp_syt_intervals[sfc]; 300 301 /* default buffering in the device */ 302 s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE; 303 if (s->flags & CIP_BLOCKING) 304 /* additional buffering needed to adjust for no-data packets */ 305 s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate; 306 307 return 0; 308 } 309 EXPORT_SYMBOL(amdtp_stream_set_parameters); 310 311 /** 312 * amdtp_stream_get_max_payload - get the stream's packet size 313 * @s: the AMDTP stream 314 * 315 * This function must not be called before the stream has been configured 316 * with amdtp_stream_set_parameters(). 317 */ 318 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s) 319 { 320 unsigned int multiplier = 1; 321 unsigned int header_size = 0; 322 323 if (s->flags & CIP_JUMBO_PAYLOAD) 324 multiplier = 5; 325 if (!(s->flags & CIP_NO_HEADER)) 326 header_size = 8; 327 328 return header_size + 329 s->syt_interval * s->data_block_quadlets * 4 * multiplier; 330 } 331 EXPORT_SYMBOL(amdtp_stream_get_max_payload); 332 333 /** 334 * amdtp_stream_pcm_prepare - prepare PCM device for running 335 * @s: the AMDTP stream 336 * 337 * This function should be called from the PCM device's .prepare callback. 338 */ 339 void amdtp_stream_pcm_prepare(struct amdtp_stream *s) 340 { 341 tasklet_kill(&s->period_tasklet); 342 s->pcm_buffer_pointer = 0; 343 s->pcm_period_pointer = 0; 344 } 345 EXPORT_SYMBOL(amdtp_stream_pcm_prepare); 346 347 static unsigned int calculate_data_blocks(struct amdtp_stream *s, 348 unsigned int syt) 349 { 350 unsigned int phase, data_blocks; 351 352 /* Blocking mode. */ 353 if (s->flags & CIP_BLOCKING) { 354 /* This module generate empty packet for 'no data'. */ 355 if (syt == CIP_SYT_NO_INFO) 356 data_blocks = 0; 357 else 358 data_blocks = s->syt_interval; 359 /* Non-blocking mode. */ 360 } else { 361 if (!cip_sfc_is_base_44100(s->sfc)) { 362 /* Sample_rate / 8000 is an integer, and precomputed. */ 363 data_blocks = s->data_block_state; 364 } else { 365 phase = s->data_block_state; 366 367 /* 368 * This calculates the number of data blocks per packet so that 369 * 1) the overall rate is correct and exactly synchronized to 370 * the bus clock, and 371 * 2) packets with a rounded-up number of blocks occur as early 372 * as possible in the sequence (to prevent underruns of the 373 * device's buffer). 374 */ 375 if (s->sfc == CIP_SFC_44100) 376 /* 6 6 5 6 5 6 5 ... */ 377 data_blocks = 5 + ((phase & 1) ^ 378 (phase == 0 || phase >= 40)); 379 else 380 /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */ 381 data_blocks = 11 * (s->sfc >> 1) + (phase == 0); 382 if (++phase >= (80 >> (s->sfc >> 1))) 383 phase = 0; 384 s->data_block_state = phase; 385 } 386 } 387 388 return data_blocks; 389 } 390 391 static unsigned int calculate_syt(struct amdtp_stream *s, 392 unsigned int cycle) 393 { 394 unsigned int syt_offset, phase, index, syt; 395 396 if (s->last_syt_offset < TICKS_PER_CYCLE) { 397 if (!cip_sfc_is_base_44100(s->sfc)) 398 syt_offset = s->last_syt_offset + s->syt_offset_state; 399 else { 400 /* 401 * The time, in ticks, of the n'th SYT_INTERVAL sample is: 402 * n * SYT_INTERVAL * 24576000 / sample_rate 403 * Modulo TICKS_PER_CYCLE, the difference between successive 404 * elements is about 1386.23. Rounding the results of this 405 * formula to the SYT precision results in a sequence of 406 * differences that begins with: 407 * 1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ... 408 * This code generates _exactly_ the same sequence. 409 */ 410 phase = s->syt_offset_state; 411 index = phase % 13; 412 syt_offset = s->last_syt_offset; 413 syt_offset += 1386 + ((index && !(index & 3)) || 414 phase == 146); 415 if (++phase >= 147) 416 phase = 0; 417 s->syt_offset_state = phase; 418 } 419 } else 420 syt_offset = s->last_syt_offset - TICKS_PER_CYCLE; 421 s->last_syt_offset = syt_offset; 422 423 if (syt_offset < TICKS_PER_CYCLE) { 424 syt_offset += s->transfer_delay; 425 syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12; 426 syt += syt_offset % TICKS_PER_CYCLE; 427 428 return syt & CIP_SYT_MASK; 429 } else { 430 return CIP_SYT_NO_INFO; 431 } 432 } 433 434 static void update_pcm_pointers(struct amdtp_stream *s, 435 struct snd_pcm_substream *pcm, 436 unsigned int frames) 437 { 438 unsigned int ptr; 439 440 ptr = s->pcm_buffer_pointer + frames; 441 if (ptr >= pcm->runtime->buffer_size) 442 ptr -= pcm->runtime->buffer_size; 443 WRITE_ONCE(s->pcm_buffer_pointer, ptr); 444 445 s->pcm_period_pointer += frames; 446 if (s->pcm_period_pointer >= pcm->runtime->period_size) { 447 s->pcm_period_pointer -= pcm->runtime->period_size; 448 tasklet_hi_schedule(&s->period_tasklet); 449 } 450 } 451 452 static void pcm_period_tasklet(unsigned long data) 453 { 454 struct amdtp_stream *s = (void *)data; 455 struct snd_pcm_substream *pcm = READ_ONCE(s->pcm); 456 457 if (pcm) 458 snd_pcm_period_elapsed(pcm); 459 } 460 461 static int queue_packet(struct amdtp_stream *s, unsigned int header_length, 462 unsigned int payload_length) 463 { 464 struct fw_iso_packet p = {0}; 465 int err = 0; 466 467 if (IS_ERR(s->context)) 468 goto end; 469 470 p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL); 471 p.tag = s->tag; 472 p.header_length = header_length; 473 if (payload_length > 0) 474 p.payload_length = payload_length; 475 else 476 p.skip = true; 477 err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer, 478 s->buffer.packets[s->packet_index].offset); 479 if (err < 0) { 480 dev_err(&s->unit->device, "queueing error: %d\n", err); 481 goto end; 482 } 483 484 if (++s->packet_index >= QUEUE_LENGTH) 485 s->packet_index = 0; 486 end: 487 return err; 488 } 489 490 static inline int queue_out_packet(struct amdtp_stream *s, 491 unsigned int payload_length) 492 { 493 return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length); 494 } 495 496 static inline int queue_in_packet(struct amdtp_stream *s) 497 { 498 return queue_packet(s, IN_PACKET_HEADER_SIZE, s->max_payload_length); 499 } 500 501 static int handle_out_packet(struct amdtp_stream *s, 502 unsigned int payload_length, unsigned int cycle, 503 unsigned int index) 504 { 505 __be32 *buffer; 506 unsigned int syt; 507 unsigned int data_blocks; 508 unsigned int pcm_frames; 509 struct snd_pcm_substream *pcm; 510 511 buffer = s->buffer.packets[s->packet_index].buffer; 512 syt = calculate_syt(s, cycle); 513 data_blocks = calculate_data_blocks(s, syt); 514 pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt); 515 516 if (s->flags & CIP_DBC_IS_END_EVENT) 517 s->data_block_counter = 518 (s->data_block_counter + data_blocks) & 0xff; 519 520 buffer[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) | 521 (s->data_block_quadlets << CIP_DBS_SHIFT) | 522 ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) | 523 s->data_block_counter); 524 buffer[1] = cpu_to_be32(CIP_EOH | 525 ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) | 526 ((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) | 527 (syt & CIP_SYT_MASK)); 528 529 if (!(s->flags & CIP_DBC_IS_END_EVENT)) 530 s->data_block_counter = 531 (s->data_block_counter + data_blocks) & 0xff; 532 payload_length = 8 + data_blocks * 4 * s->data_block_quadlets; 533 534 trace_out_packet(s, cycle, buffer, payload_length, index); 535 536 if (queue_out_packet(s, payload_length) < 0) 537 return -EIO; 538 539 pcm = READ_ONCE(s->pcm); 540 if (pcm && pcm_frames > 0) 541 update_pcm_pointers(s, pcm, pcm_frames); 542 543 /* No need to return the number of handled data blocks. */ 544 return 0; 545 } 546 547 static int handle_out_packet_without_header(struct amdtp_stream *s, 548 unsigned int payload_length, unsigned int cycle, 549 unsigned int index) 550 { 551 __be32 *buffer; 552 unsigned int syt; 553 unsigned int data_blocks; 554 unsigned int pcm_frames; 555 struct snd_pcm_substream *pcm; 556 557 buffer = s->buffer.packets[s->packet_index].buffer; 558 syt = calculate_syt(s, cycle); 559 data_blocks = calculate_data_blocks(s, syt); 560 pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt); 561 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff; 562 563 payload_length = data_blocks * 4 * s->data_block_quadlets; 564 565 trace_out_packet_without_header(s, cycle, payload_length, data_blocks, 566 index); 567 568 if (queue_out_packet(s, payload_length) < 0) 569 return -EIO; 570 571 pcm = READ_ONCE(s->pcm); 572 if (pcm && pcm_frames > 0) 573 update_pcm_pointers(s, pcm, pcm_frames); 574 575 /* No need to return the number of handled data blocks. */ 576 return 0; 577 } 578 579 static int handle_in_packet(struct amdtp_stream *s, 580 unsigned int payload_length, unsigned int cycle, 581 unsigned int index) 582 { 583 __be32 *buffer; 584 u32 cip_header[2]; 585 unsigned int sph, fmt, fdf, syt; 586 unsigned int data_block_quadlets, data_block_counter, dbc_interval; 587 unsigned int data_blocks; 588 struct snd_pcm_substream *pcm; 589 unsigned int pcm_frames; 590 bool lost; 591 592 buffer = s->buffer.packets[s->packet_index].buffer; 593 cip_header[0] = be32_to_cpu(buffer[0]); 594 cip_header[1] = be32_to_cpu(buffer[1]); 595 596 trace_in_packet(s, cycle, cip_header, payload_length, index); 597 598 /* 599 * This module supports 'Two-quadlet CIP header with SYT field'. 600 * For convenience, also check FMT field is AM824 or not. 601 */ 602 if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) || 603 ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) && 604 (!(s->flags & CIP_HEADER_WITHOUT_EOH))) { 605 dev_info_ratelimited(&s->unit->device, 606 "Invalid CIP header for AMDTP: %08X:%08X\n", 607 cip_header[0], cip_header[1]); 608 data_blocks = 0; 609 pcm_frames = 0; 610 goto end; 611 } 612 613 /* Check valid protocol or not. */ 614 sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT; 615 fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT; 616 if (sph != s->sph || fmt != s->fmt) { 617 dev_info_ratelimited(&s->unit->device, 618 "Detect unexpected protocol: %08x %08x\n", 619 cip_header[0], cip_header[1]); 620 data_blocks = 0; 621 pcm_frames = 0; 622 goto end; 623 } 624 625 /* Calculate data blocks */ 626 fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT; 627 if (payload_length < 12 || 628 (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) { 629 data_blocks = 0; 630 } else { 631 data_block_quadlets = 632 (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT; 633 /* avoid division by zero */ 634 if (data_block_quadlets == 0) { 635 dev_err(&s->unit->device, 636 "Detect invalid value in dbs field: %08X\n", 637 cip_header[0]); 638 return -EPROTO; 639 } 640 if (s->flags & CIP_WRONG_DBS) 641 data_block_quadlets = s->data_block_quadlets; 642 643 data_blocks = (payload_length / 4 - 2) / 644 data_block_quadlets; 645 } 646 647 /* Check data block counter continuity */ 648 data_block_counter = cip_header[0] & CIP_DBC_MASK; 649 if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) && 650 s->data_block_counter != UINT_MAX) 651 data_block_counter = s->data_block_counter; 652 653 if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) && 654 data_block_counter == s->tx_first_dbc) || 655 s->data_block_counter == UINT_MAX) { 656 lost = false; 657 } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) { 658 lost = data_block_counter != s->data_block_counter; 659 } else { 660 if (data_blocks > 0 && s->tx_dbc_interval > 0) 661 dbc_interval = s->tx_dbc_interval; 662 else 663 dbc_interval = data_blocks; 664 665 lost = data_block_counter != 666 ((s->data_block_counter + dbc_interval) & 0xff); 667 } 668 669 if (lost) { 670 dev_err(&s->unit->device, 671 "Detect discontinuity of CIP: %02X %02X\n", 672 s->data_block_counter, data_block_counter); 673 return -EIO; 674 } 675 676 syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK; 677 pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt); 678 679 if (s->flags & CIP_DBC_IS_END_EVENT) 680 s->data_block_counter = data_block_counter; 681 else 682 s->data_block_counter = 683 (data_block_counter + data_blocks) & 0xff; 684 end: 685 if (queue_in_packet(s) < 0) 686 return -EIO; 687 688 pcm = READ_ONCE(s->pcm); 689 if (pcm && pcm_frames > 0) 690 update_pcm_pointers(s, pcm, pcm_frames); 691 692 return 0; 693 } 694 695 static int handle_in_packet_without_header(struct amdtp_stream *s, 696 unsigned int payload_quadlets, unsigned int cycle, 697 unsigned int index) 698 { 699 __be32 *buffer; 700 unsigned int data_blocks; 701 struct snd_pcm_substream *pcm; 702 unsigned int pcm_frames; 703 704 buffer = s->buffer.packets[s->packet_index].buffer; 705 data_blocks = payload_quadlets / s->data_block_quadlets; 706 707 trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks, 708 index); 709 710 pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL); 711 s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff; 712 713 if (queue_in_packet(s) < 0) 714 return -EIO; 715 716 pcm = READ_ONCE(s->pcm); 717 if (pcm && pcm_frames > 0) 718 update_pcm_pointers(s, pcm, pcm_frames); 719 720 return 0; 721 } 722 723 /* 724 * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On 725 * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent 726 * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second. 727 */ 728 static inline u32 compute_cycle_count(u32 tstamp) 729 { 730 return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff); 731 } 732 733 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend) 734 { 735 cycle += addend; 736 if (cycle >= 8 * CYCLES_PER_SECOND) 737 cycle -= 8 * CYCLES_PER_SECOND; 738 return cycle; 739 } 740 741 static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend) 742 { 743 if (cycle < subtrahend) 744 cycle += 8 * CYCLES_PER_SECOND; 745 return cycle - subtrahend; 746 } 747 748 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp, 749 size_t header_length, void *header, 750 void *private_data) 751 { 752 struct amdtp_stream *s = private_data; 753 unsigned int i, packets = header_length / 4; 754 u32 cycle; 755 756 if (s->packet_index < 0) 757 return; 758 759 cycle = compute_cycle_count(tstamp); 760 761 /* Align to actual cycle count for the last packet. */ 762 cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets); 763 764 for (i = 0; i < packets; ++i) { 765 cycle = increment_cycle_count(cycle, 1); 766 if (s->handle_packet(s, 0, cycle, i) < 0) { 767 s->packet_index = -1; 768 if (in_interrupt()) 769 amdtp_stream_pcm_abort(s); 770 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 771 return; 772 } 773 } 774 775 fw_iso_context_queue_flush(s->context); 776 } 777 778 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp, 779 size_t header_length, void *header, 780 void *private_data) 781 { 782 struct amdtp_stream *s = private_data; 783 unsigned int i, packets; 784 unsigned int payload_length, max_payload_length; 785 __be32 *headers = header; 786 u32 cycle; 787 788 if (s->packet_index < 0) 789 return; 790 791 /* The number of packets in buffer */ 792 packets = header_length / IN_PACKET_HEADER_SIZE; 793 794 cycle = compute_cycle_count(tstamp); 795 796 /* Align to actual cycle count for the last packet. */ 797 cycle = decrement_cycle_count(cycle, packets); 798 799 /* For buffer-over-run prevention. */ 800 max_payload_length = s->max_payload_length; 801 802 for (i = 0; i < packets; i++) { 803 cycle = increment_cycle_count(cycle, 1); 804 805 /* The number of bytes in this packet */ 806 payload_length = 807 (be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT); 808 if (payload_length > max_payload_length) { 809 dev_err(&s->unit->device, 810 "Detect jumbo payload: %04x %04x\n", 811 payload_length, max_payload_length); 812 break; 813 } 814 815 if (s->handle_packet(s, payload_length, cycle, i) < 0) 816 break; 817 } 818 819 /* Queueing error or detecting invalid payload. */ 820 if (i < packets) { 821 s->packet_index = -1; 822 if (in_interrupt()) 823 amdtp_stream_pcm_abort(s); 824 WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN); 825 return; 826 } 827 828 fw_iso_context_queue_flush(s->context); 829 } 830 831 /* this is executed one time */ 832 static void amdtp_stream_first_callback(struct fw_iso_context *context, 833 u32 tstamp, size_t header_length, 834 void *header, void *private_data) 835 { 836 struct amdtp_stream *s = private_data; 837 u32 cycle; 838 unsigned int packets; 839 840 /* 841 * For in-stream, first packet has come. 842 * For out-stream, prepared to transmit first packet 843 */ 844 s->callbacked = true; 845 wake_up(&s->callback_wait); 846 847 cycle = compute_cycle_count(tstamp); 848 849 if (s->direction == AMDTP_IN_STREAM) { 850 packets = header_length / IN_PACKET_HEADER_SIZE; 851 cycle = decrement_cycle_count(cycle, packets); 852 context->callback.sc = in_stream_callback; 853 if (s->flags & CIP_NO_HEADER) 854 s->handle_packet = handle_in_packet_without_header; 855 else 856 s->handle_packet = handle_in_packet; 857 } else { 858 packets = header_length / 4; 859 cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets); 860 context->callback.sc = out_stream_callback; 861 if (s->flags & CIP_NO_HEADER) 862 s->handle_packet = handle_out_packet_without_header; 863 else 864 s->handle_packet = handle_out_packet; 865 } 866 867 s->start_cycle = cycle; 868 869 context->callback.sc(context, tstamp, header_length, header, s); 870 } 871 872 /** 873 * amdtp_stream_start - start transferring packets 874 * @s: the AMDTP stream to start 875 * @channel: the isochronous channel on the bus 876 * @speed: firewire speed code 877 * 878 * The stream cannot be started until it has been configured with 879 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI 880 * device can be started. 881 */ 882 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed) 883 { 884 static const struct { 885 unsigned int data_block; 886 unsigned int syt_offset; 887 } initial_state[] = { 888 [CIP_SFC_32000] = { 4, 3072 }, 889 [CIP_SFC_48000] = { 6, 1024 }, 890 [CIP_SFC_96000] = { 12, 1024 }, 891 [CIP_SFC_192000] = { 24, 1024 }, 892 [CIP_SFC_44100] = { 0, 67 }, 893 [CIP_SFC_88200] = { 0, 67 }, 894 [CIP_SFC_176400] = { 0, 67 }, 895 }; 896 unsigned int header_size; 897 enum dma_data_direction dir; 898 int type, tag, err; 899 900 mutex_lock(&s->mutex); 901 902 if (WARN_ON(amdtp_stream_running(s) || 903 (s->data_block_quadlets < 1))) { 904 err = -EBADFD; 905 goto err_unlock; 906 } 907 908 if (s->direction == AMDTP_IN_STREAM) 909 s->data_block_counter = UINT_MAX; 910 else 911 s->data_block_counter = 0; 912 s->data_block_state = initial_state[s->sfc].data_block; 913 s->syt_offset_state = initial_state[s->sfc].syt_offset; 914 s->last_syt_offset = TICKS_PER_CYCLE; 915 916 /* initialize packet buffer */ 917 if (s->direction == AMDTP_IN_STREAM) { 918 dir = DMA_FROM_DEVICE; 919 type = FW_ISO_CONTEXT_RECEIVE; 920 header_size = IN_PACKET_HEADER_SIZE; 921 } else { 922 dir = DMA_TO_DEVICE; 923 type = FW_ISO_CONTEXT_TRANSMIT; 924 header_size = OUT_PACKET_HEADER_SIZE; 925 } 926 err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH, 927 amdtp_stream_get_max_payload(s), dir); 928 if (err < 0) 929 goto err_unlock; 930 931 s->context = fw_iso_context_create(fw_parent_device(s->unit)->card, 932 type, channel, speed, header_size, 933 amdtp_stream_first_callback, s); 934 if (IS_ERR(s->context)) { 935 err = PTR_ERR(s->context); 936 if (err == -EBUSY) 937 dev_err(&s->unit->device, 938 "no free stream on this controller\n"); 939 goto err_buffer; 940 } 941 942 amdtp_stream_update(s); 943 944 if (s->direction == AMDTP_IN_STREAM) 945 s->max_payload_length = amdtp_stream_get_max_payload(s); 946 947 if (s->flags & CIP_NO_HEADER) 948 s->tag = TAG_NO_CIP_HEADER; 949 else 950 s->tag = TAG_CIP; 951 952 s->packet_index = 0; 953 do { 954 if (s->direction == AMDTP_IN_STREAM) 955 err = queue_in_packet(s); 956 else 957 err = queue_out_packet(s, 0); 958 if (err < 0) 959 goto err_context; 960 } while (s->packet_index > 0); 961 962 /* NOTE: TAG1 matches CIP. This just affects in stream. */ 963 tag = FW_ISO_CONTEXT_MATCH_TAG1; 964 if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER)) 965 tag |= FW_ISO_CONTEXT_MATCH_TAG0; 966 967 s->callbacked = false; 968 err = fw_iso_context_start(s->context, -1, 0, tag); 969 if (err < 0) 970 goto err_context; 971 972 mutex_unlock(&s->mutex); 973 974 return 0; 975 976 err_context: 977 fw_iso_context_destroy(s->context); 978 s->context = ERR_PTR(-1); 979 err_buffer: 980 iso_packets_buffer_destroy(&s->buffer, s->unit); 981 err_unlock: 982 mutex_unlock(&s->mutex); 983 984 return err; 985 } 986 EXPORT_SYMBOL(amdtp_stream_start); 987 988 /** 989 * amdtp_stream_pcm_pointer - get the PCM buffer position 990 * @s: the AMDTP stream that transports the PCM data 991 * 992 * Returns the current buffer position, in frames. 993 */ 994 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s) 995 { 996 /* 997 * This function is called in software IRQ context of period_tasklet or 998 * process context. 999 * 1000 * When the software IRQ context was scheduled by software IRQ context 1001 * of IR/IT contexts, queued packets were already handled. Therefore, 1002 * no need to flush the queue in buffer anymore. 1003 * 1004 * When the process context reach here, some packets will be already 1005 * queued in the buffer. These packets should be handled immediately 1006 * to keep better granularity of PCM pointer. 1007 * 1008 * Later, the process context will sometimes schedules software IRQ 1009 * context of the period_tasklet. Then, no need to flush the queue by 1010 * the same reason as described for IR/IT contexts. 1011 */ 1012 if (!in_interrupt() && amdtp_stream_running(s)) 1013 fw_iso_context_flush_completions(s->context); 1014 1015 return READ_ONCE(s->pcm_buffer_pointer); 1016 } 1017 EXPORT_SYMBOL(amdtp_stream_pcm_pointer); 1018 1019 /** 1020 * amdtp_stream_pcm_ack - acknowledge queued PCM frames 1021 * @s: the AMDTP stream that transfers the PCM frames 1022 * 1023 * Returns zero always. 1024 */ 1025 int amdtp_stream_pcm_ack(struct amdtp_stream *s) 1026 { 1027 /* 1028 * Process isochronous packets for recent isochronous cycle to handle 1029 * queued PCM frames. 1030 */ 1031 if (amdtp_stream_running(s)) 1032 fw_iso_context_flush_completions(s->context); 1033 1034 return 0; 1035 } 1036 EXPORT_SYMBOL(amdtp_stream_pcm_ack); 1037 1038 /** 1039 * amdtp_stream_update - update the stream after a bus reset 1040 * @s: the AMDTP stream 1041 */ 1042 void amdtp_stream_update(struct amdtp_stream *s) 1043 { 1044 /* Precomputing. */ 1045 WRITE_ONCE(s->source_node_id_field, 1046 (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK); 1047 } 1048 EXPORT_SYMBOL(amdtp_stream_update); 1049 1050 /** 1051 * amdtp_stream_stop - stop sending packets 1052 * @s: the AMDTP stream to stop 1053 * 1054 * All PCM and MIDI devices of the stream must be stopped before the stream 1055 * itself can be stopped. 1056 */ 1057 void amdtp_stream_stop(struct amdtp_stream *s) 1058 { 1059 mutex_lock(&s->mutex); 1060 1061 if (!amdtp_stream_running(s)) { 1062 mutex_unlock(&s->mutex); 1063 return; 1064 } 1065 1066 tasklet_kill(&s->period_tasklet); 1067 fw_iso_context_stop(s->context); 1068 fw_iso_context_destroy(s->context); 1069 s->context = ERR_PTR(-1); 1070 iso_packets_buffer_destroy(&s->buffer, s->unit); 1071 1072 s->callbacked = false; 1073 1074 mutex_unlock(&s->mutex); 1075 } 1076 EXPORT_SYMBOL(amdtp_stream_stop); 1077 1078 /** 1079 * amdtp_stream_pcm_abort - abort the running PCM device 1080 * @s: the AMDTP stream about to be stopped 1081 * 1082 * If the isochronous stream needs to be stopped asynchronously, call this 1083 * function first to stop the PCM device. 1084 */ 1085 void amdtp_stream_pcm_abort(struct amdtp_stream *s) 1086 { 1087 struct snd_pcm_substream *pcm; 1088 1089 pcm = READ_ONCE(s->pcm); 1090 if (pcm) 1091 snd_pcm_stop_xrun(pcm); 1092 } 1093 EXPORT_SYMBOL(amdtp_stream_pcm_abort); 1094