xref: /openbmc/linux/sound/firewire/amdtp-stream.c (revision 2209fda3)
1 /*
2  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3  * with Common Isochronous Packet (IEC 61883-1) headers
4  *
5  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6  * Licensed under the terms of the GNU General Public License, version 2.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <sound/pcm.h>
15 #include <sound/pcm_params.h>
16 #include "amdtp-stream.h"
17 
18 #define TICKS_PER_CYCLE		3072
19 #define CYCLES_PER_SECOND	8000
20 #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
21 
22 /* Always support Linux tracing subsystem. */
23 #define CREATE_TRACE_POINTS
24 #include "amdtp-stream-trace.h"
25 
26 #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
27 
28 /* isochronous header parameters */
29 #define ISO_DATA_LENGTH_SHIFT	16
30 #define TAG_NO_CIP_HEADER	0
31 #define TAG_CIP			1
32 
33 /* common isochronous packet header parameters */
34 #define CIP_EOH_SHIFT		31
35 #define CIP_EOH			(1u << CIP_EOH_SHIFT)
36 #define CIP_EOH_MASK		0x80000000
37 #define CIP_SID_SHIFT		24
38 #define CIP_SID_MASK		0x3f000000
39 #define CIP_DBS_MASK		0x00ff0000
40 #define CIP_DBS_SHIFT		16
41 #define CIP_SPH_MASK		0x00000400
42 #define CIP_SPH_SHIFT		10
43 #define CIP_DBC_MASK		0x000000ff
44 #define CIP_FMT_SHIFT		24
45 #define CIP_FMT_MASK		0x3f000000
46 #define CIP_FDF_MASK		0x00ff0000
47 #define CIP_FDF_SHIFT		16
48 #define CIP_SYT_MASK		0x0000ffff
49 #define CIP_SYT_NO_INFO		0xffff
50 
51 /* Audio and Music transfer protocol specific parameters */
52 #define CIP_FMT_AM		0x10
53 #define AMDTP_FDF_NO_DATA	0xff
54 
55 /* TODO: make these configurable */
56 #define INTERRUPT_INTERVAL	16
57 #define QUEUE_LENGTH		48
58 
59 #define IN_PACKET_HEADER_SIZE	4
60 #define OUT_PACKET_HEADER_SIZE	0
61 
62 static void pcm_period_tasklet(unsigned long data);
63 
64 /**
65  * amdtp_stream_init - initialize an AMDTP stream structure
66  * @s: the AMDTP stream to initialize
67  * @unit: the target of the stream
68  * @dir: the direction of stream
69  * @flags: the packet transmission method to use
70  * @fmt: the value of fmt field in CIP header
71  * @process_data_blocks: callback handler to process data blocks
72  * @protocol_size: the size to allocate newly for protocol
73  */
74 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
75 		      enum amdtp_stream_direction dir, enum cip_flags flags,
76 		      unsigned int fmt,
77 		      amdtp_stream_process_data_blocks_t process_data_blocks,
78 		      unsigned int protocol_size)
79 {
80 	if (process_data_blocks == NULL)
81 		return -EINVAL;
82 
83 	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
84 	if (!s->protocol)
85 		return -ENOMEM;
86 
87 	s->unit = unit;
88 	s->direction = dir;
89 	s->flags = flags;
90 	s->context = ERR_PTR(-1);
91 	mutex_init(&s->mutex);
92 	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
93 	s->packet_index = 0;
94 
95 	init_waitqueue_head(&s->callback_wait);
96 	s->callbacked = false;
97 
98 	s->fmt = fmt;
99 	s->process_data_blocks = process_data_blocks;
100 
101 	return 0;
102 }
103 EXPORT_SYMBOL(amdtp_stream_init);
104 
105 /**
106  * amdtp_stream_destroy - free stream resources
107  * @s: the AMDTP stream to destroy
108  */
109 void amdtp_stream_destroy(struct amdtp_stream *s)
110 {
111 	/* Not initialized. */
112 	if (s->protocol == NULL)
113 		return;
114 
115 	WARN_ON(amdtp_stream_running(s));
116 	kfree(s->protocol);
117 	mutex_destroy(&s->mutex);
118 }
119 EXPORT_SYMBOL(amdtp_stream_destroy);
120 
121 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
122 	[CIP_SFC_32000]  =  8,
123 	[CIP_SFC_44100]  =  8,
124 	[CIP_SFC_48000]  =  8,
125 	[CIP_SFC_88200]  = 16,
126 	[CIP_SFC_96000]  = 16,
127 	[CIP_SFC_176400] = 32,
128 	[CIP_SFC_192000] = 32,
129 };
130 EXPORT_SYMBOL(amdtp_syt_intervals);
131 
132 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
133 	[CIP_SFC_32000]  =  32000,
134 	[CIP_SFC_44100]  =  44100,
135 	[CIP_SFC_48000]  =  48000,
136 	[CIP_SFC_88200]  =  88200,
137 	[CIP_SFC_96000]  =  96000,
138 	[CIP_SFC_176400] = 176400,
139 	[CIP_SFC_192000] = 192000,
140 };
141 EXPORT_SYMBOL(amdtp_rate_table);
142 
143 static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
144 				    struct snd_pcm_hw_rule *rule)
145 {
146 	struct snd_interval *s = hw_param_interval(params, rule->var);
147 	const struct snd_interval *r =
148 		hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
149 	struct snd_interval t = {
150 		.min = s->min, .max = s->max, .integer = 1,
151 	};
152 	int i;
153 
154 	for (i = 0; i < CIP_SFC_COUNT; ++i) {
155 		unsigned int rate = amdtp_rate_table[i];
156 		unsigned int step = amdtp_syt_intervals[i];
157 
158 		if (!snd_interval_test(r, rate))
159 			continue;
160 
161 		t.min = roundup(t.min, step);
162 		t.max = rounddown(t.max, step);
163 	}
164 
165 	if (snd_interval_checkempty(&t))
166 		return -EINVAL;
167 
168 	return snd_interval_refine(s, &t);
169 }
170 
171 static int apply_constraint_to_rate(struct snd_pcm_hw_params *params,
172 				    struct snd_pcm_hw_rule *rule)
173 {
174 	struct snd_interval *r =
175 			hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
176 	const struct snd_interval *s = hw_param_interval_c(params, rule->deps[0]);
177 	struct snd_interval t = {
178 		.min = UINT_MAX, .max = 0, .integer = 1,
179 	};
180 	int i;
181 
182 	for (i = 0; i < CIP_SFC_COUNT; ++i) {
183 		unsigned int step = amdtp_syt_intervals[i];
184 		unsigned int rate = amdtp_rate_table[i];
185 
186 		if (s->min % step || s->max % step)
187 			continue;
188 
189 		t.min = min(t.min, rate);
190 		t.max = max(t.max, rate);
191 	}
192 
193 	return snd_interval_refine(r, &t);
194 }
195 
196 /**
197  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
198  * @s:		the AMDTP stream, which must be initialized.
199  * @runtime:	the PCM substream runtime
200  */
201 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
202 					struct snd_pcm_runtime *runtime)
203 {
204 	struct snd_pcm_hardware *hw = &runtime->hw;
205 	int err;
206 
207 	hw->info = SNDRV_PCM_INFO_BATCH |
208 		   SNDRV_PCM_INFO_BLOCK_TRANSFER |
209 		   SNDRV_PCM_INFO_INTERLEAVED |
210 		   SNDRV_PCM_INFO_JOINT_DUPLEX |
211 		   SNDRV_PCM_INFO_MMAP |
212 		   SNDRV_PCM_INFO_MMAP_VALID;
213 
214 	/* SNDRV_PCM_INFO_BATCH */
215 	hw->periods_min = 2;
216 	hw->periods_max = UINT_MAX;
217 
218 	/* bytes for a frame */
219 	hw->period_bytes_min = 4 * hw->channels_max;
220 
221 	/* Just to prevent from allocating much pages. */
222 	hw->period_bytes_max = hw->period_bytes_min * 2048;
223 	hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
224 
225 	/*
226 	 * Currently firewire-lib processes 16 packets in one software
227 	 * interrupt callback. This equals to 2msec but actually the
228 	 * interval of the interrupts has a jitter.
229 	 * Additionally, even if adding a constraint to fit period size to
230 	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
231 	 * depending on sampling rate.
232 	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
233 	 * Here let us use 5msec for safe period interrupt.
234 	 */
235 	err = snd_pcm_hw_constraint_minmax(runtime,
236 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
237 					   5000, UINT_MAX);
238 	if (err < 0)
239 		goto end;
240 
241 	/* Non-Blocking stream has no more constraints */
242 	if (!(s->flags & CIP_BLOCKING))
243 		goto end;
244 
245 	/*
246 	 * One AMDTP packet can include some frames. In blocking mode, the
247 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
248 	 * depending on its sampling rate. For accurate period interrupt, it's
249 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
250 	 */
251 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
252 				  apply_constraint_to_size, NULL,
253 				  SNDRV_PCM_HW_PARAM_RATE, -1);
254 	if (err < 0)
255 		goto end;
256 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
257 				  apply_constraint_to_rate, NULL,
258 				  SNDRV_PCM_HW_PARAM_PERIOD_SIZE, -1);
259 	if (err < 0)
260 		goto end;
261 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
262 				  apply_constraint_to_size, NULL,
263 				  SNDRV_PCM_HW_PARAM_RATE, -1);
264 	if (err < 0)
265 		goto end;
266 	err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
267 				  apply_constraint_to_rate, NULL,
268 				  SNDRV_PCM_HW_PARAM_BUFFER_SIZE, -1);
269 	if (err < 0)
270 		goto end;
271 end:
272 	return err;
273 }
274 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
275 
276 /**
277  * amdtp_stream_set_parameters - set stream parameters
278  * @s: the AMDTP stream to configure
279  * @rate: the sample rate
280  * @data_block_quadlets: the size of a data block in quadlet unit
281  *
282  * The parameters must be set before the stream is started, and must not be
283  * changed while the stream is running.
284  */
285 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
286 				unsigned int data_block_quadlets)
287 {
288 	unsigned int sfc;
289 
290 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
291 		if (amdtp_rate_table[sfc] == rate)
292 			break;
293 	}
294 	if (sfc == ARRAY_SIZE(amdtp_rate_table))
295 		return -EINVAL;
296 
297 	s->sfc = sfc;
298 	s->data_block_quadlets = data_block_quadlets;
299 	s->syt_interval = amdtp_syt_intervals[sfc];
300 
301 	/* default buffering in the device */
302 	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
303 	if (s->flags & CIP_BLOCKING)
304 		/* additional buffering needed to adjust for no-data packets */
305 		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
306 
307 	return 0;
308 }
309 EXPORT_SYMBOL(amdtp_stream_set_parameters);
310 
311 /**
312  * amdtp_stream_get_max_payload - get the stream's packet size
313  * @s: the AMDTP stream
314  *
315  * This function must not be called before the stream has been configured
316  * with amdtp_stream_set_parameters().
317  */
318 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
319 {
320 	unsigned int multiplier = 1;
321 	unsigned int header_size = 0;
322 
323 	if (s->flags & CIP_JUMBO_PAYLOAD)
324 		multiplier = 5;
325 	if (!(s->flags & CIP_NO_HEADER))
326 		header_size = 8;
327 
328 	return header_size +
329 		s->syt_interval * s->data_block_quadlets * 4 * multiplier;
330 }
331 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
332 
333 /**
334  * amdtp_stream_pcm_prepare - prepare PCM device for running
335  * @s: the AMDTP stream
336  *
337  * This function should be called from the PCM device's .prepare callback.
338  */
339 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
340 {
341 	tasklet_kill(&s->period_tasklet);
342 	s->pcm_buffer_pointer = 0;
343 	s->pcm_period_pointer = 0;
344 }
345 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
346 
347 static unsigned int calculate_data_blocks(struct amdtp_stream *s,
348 					  unsigned int syt)
349 {
350 	unsigned int phase, data_blocks;
351 
352 	/* Blocking mode. */
353 	if (s->flags & CIP_BLOCKING) {
354 		/* This module generate empty packet for 'no data'. */
355 		if (syt == CIP_SYT_NO_INFO)
356 			data_blocks = 0;
357 		else
358 			data_blocks = s->syt_interval;
359 	/* Non-blocking mode. */
360 	} else {
361 		if (!cip_sfc_is_base_44100(s->sfc)) {
362 			/* Sample_rate / 8000 is an integer, and precomputed. */
363 			data_blocks = s->data_block_state;
364 		} else {
365 			phase = s->data_block_state;
366 
367 		/*
368 		 * This calculates the number of data blocks per packet so that
369 		 * 1) the overall rate is correct and exactly synchronized to
370 		 *    the bus clock, and
371 		 * 2) packets with a rounded-up number of blocks occur as early
372 		 *    as possible in the sequence (to prevent underruns of the
373 		 *    device's buffer).
374 		 */
375 			if (s->sfc == CIP_SFC_44100)
376 				/* 6 6 5 6 5 6 5 ... */
377 				data_blocks = 5 + ((phase & 1) ^
378 						   (phase == 0 || phase >= 40));
379 			else
380 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
381 				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
382 			if (++phase >= (80 >> (s->sfc >> 1)))
383 				phase = 0;
384 			s->data_block_state = phase;
385 		}
386 	}
387 
388 	return data_blocks;
389 }
390 
391 static unsigned int calculate_syt(struct amdtp_stream *s,
392 				  unsigned int cycle)
393 {
394 	unsigned int syt_offset, phase, index, syt;
395 
396 	if (s->last_syt_offset < TICKS_PER_CYCLE) {
397 		if (!cip_sfc_is_base_44100(s->sfc))
398 			syt_offset = s->last_syt_offset + s->syt_offset_state;
399 		else {
400 		/*
401 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
402 		 *   n * SYT_INTERVAL * 24576000 / sample_rate
403 		 * Modulo TICKS_PER_CYCLE, the difference between successive
404 		 * elements is about 1386.23.  Rounding the results of this
405 		 * formula to the SYT precision results in a sequence of
406 		 * differences that begins with:
407 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
408 		 * This code generates _exactly_ the same sequence.
409 		 */
410 			phase = s->syt_offset_state;
411 			index = phase % 13;
412 			syt_offset = s->last_syt_offset;
413 			syt_offset += 1386 + ((index && !(index & 3)) ||
414 					      phase == 146);
415 			if (++phase >= 147)
416 				phase = 0;
417 			s->syt_offset_state = phase;
418 		}
419 	} else
420 		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
421 	s->last_syt_offset = syt_offset;
422 
423 	if (syt_offset < TICKS_PER_CYCLE) {
424 		syt_offset += s->transfer_delay;
425 		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
426 		syt += syt_offset % TICKS_PER_CYCLE;
427 
428 		return syt & CIP_SYT_MASK;
429 	} else {
430 		return CIP_SYT_NO_INFO;
431 	}
432 }
433 
434 static void update_pcm_pointers(struct amdtp_stream *s,
435 				struct snd_pcm_substream *pcm,
436 				unsigned int frames)
437 {
438 	unsigned int ptr;
439 
440 	ptr = s->pcm_buffer_pointer + frames;
441 	if (ptr >= pcm->runtime->buffer_size)
442 		ptr -= pcm->runtime->buffer_size;
443 	WRITE_ONCE(s->pcm_buffer_pointer, ptr);
444 
445 	s->pcm_period_pointer += frames;
446 	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
447 		s->pcm_period_pointer -= pcm->runtime->period_size;
448 		tasklet_hi_schedule(&s->period_tasklet);
449 	}
450 }
451 
452 static void pcm_period_tasklet(unsigned long data)
453 {
454 	struct amdtp_stream *s = (void *)data;
455 	struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
456 
457 	if (pcm)
458 		snd_pcm_period_elapsed(pcm);
459 }
460 
461 static int queue_packet(struct amdtp_stream *s, unsigned int header_length,
462 			unsigned int payload_length)
463 {
464 	struct fw_iso_packet p = {0};
465 	int err = 0;
466 
467 	if (IS_ERR(s->context))
468 		goto end;
469 
470 	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
471 	p.tag = s->tag;
472 	p.header_length = header_length;
473 	if (payload_length > 0)
474 		p.payload_length = payload_length;
475 	else
476 		p.skip = true;
477 	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
478 				   s->buffer.packets[s->packet_index].offset);
479 	if (err < 0) {
480 		dev_err(&s->unit->device, "queueing error: %d\n", err);
481 		goto end;
482 	}
483 
484 	if (++s->packet_index >= QUEUE_LENGTH)
485 		s->packet_index = 0;
486 end:
487 	return err;
488 }
489 
490 static inline int queue_out_packet(struct amdtp_stream *s,
491 				   unsigned int payload_length)
492 {
493 	return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length);
494 }
495 
496 static inline int queue_in_packet(struct amdtp_stream *s)
497 {
498 	return queue_packet(s, IN_PACKET_HEADER_SIZE, s->max_payload_length);
499 }
500 
501 static int handle_out_packet(struct amdtp_stream *s,
502 			     unsigned int payload_length, unsigned int cycle,
503 			     unsigned int index)
504 {
505 	__be32 *buffer;
506 	unsigned int syt;
507 	unsigned int data_blocks;
508 	unsigned int pcm_frames;
509 	struct snd_pcm_substream *pcm;
510 
511 	buffer = s->buffer.packets[s->packet_index].buffer;
512 	syt = calculate_syt(s, cycle);
513 	data_blocks = calculate_data_blocks(s, syt);
514 	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
515 
516 	if (s->flags & CIP_DBC_IS_END_EVENT)
517 		s->data_block_counter =
518 				(s->data_block_counter + data_blocks) & 0xff;
519 
520 	buffer[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
521 				(s->data_block_quadlets << CIP_DBS_SHIFT) |
522 				((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
523 				s->data_block_counter);
524 	buffer[1] = cpu_to_be32(CIP_EOH |
525 				((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
526 				((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
527 				(syt & CIP_SYT_MASK));
528 
529 	if (!(s->flags & CIP_DBC_IS_END_EVENT))
530 		s->data_block_counter =
531 				(s->data_block_counter + data_blocks) & 0xff;
532 	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
533 
534 	trace_out_packet(s, cycle, buffer, payload_length, index);
535 
536 	if (queue_out_packet(s, payload_length) < 0)
537 		return -EIO;
538 
539 	pcm = READ_ONCE(s->pcm);
540 	if (pcm && pcm_frames > 0)
541 		update_pcm_pointers(s, pcm, pcm_frames);
542 
543 	/* No need to return the number of handled data blocks. */
544 	return 0;
545 }
546 
547 static int handle_out_packet_without_header(struct amdtp_stream *s,
548 			unsigned int payload_length, unsigned int cycle,
549 			unsigned int index)
550 {
551 	__be32 *buffer;
552 	unsigned int syt;
553 	unsigned int data_blocks;
554 	unsigned int pcm_frames;
555 	struct snd_pcm_substream *pcm;
556 
557 	buffer = s->buffer.packets[s->packet_index].buffer;
558 	syt = calculate_syt(s, cycle);
559 	data_blocks = calculate_data_blocks(s, syt);
560 	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, &syt);
561 	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
562 
563 	payload_length = data_blocks * 4 * s->data_block_quadlets;
564 
565 	trace_out_packet_without_header(s, cycle, payload_length, data_blocks,
566 					index);
567 
568 	if (queue_out_packet(s, payload_length) < 0)
569 		return -EIO;
570 
571 	pcm = READ_ONCE(s->pcm);
572 	if (pcm && pcm_frames > 0)
573 		update_pcm_pointers(s, pcm, pcm_frames);
574 
575 	/* No need to return the number of handled data blocks. */
576 	return 0;
577 }
578 
579 static int handle_in_packet(struct amdtp_stream *s,
580 			    unsigned int payload_length, unsigned int cycle,
581 			    unsigned int index)
582 {
583 	__be32 *buffer;
584 	u32 cip_header[2];
585 	unsigned int sph, fmt, fdf, syt;
586 	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
587 	unsigned int data_blocks;
588 	struct snd_pcm_substream *pcm;
589 	unsigned int pcm_frames;
590 	bool lost;
591 
592 	buffer = s->buffer.packets[s->packet_index].buffer;
593 	cip_header[0] = be32_to_cpu(buffer[0]);
594 	cip_header[1] = be32_to_cpu(buffer[1]);
595 
596 	trace_in_packet(s, cycle, cip_header, payload_length, index);
597 
598 	/*
599 	 * This module supports 'Two-quadlet CIP header with SYT field'.
600 	 * For convenience, also check FMT field is AM824 or not.
601 	 */
602 	if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
603 	     ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
604 	    (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
605 		dev_info_ratelimited(&s->unit->device,
606 				"Invalid CIP header for AMDTP: %08X:%08X\n",
607 				cip_header[0], cip_header[1]);
608 		data_blocks = 0;
609 		pcm_frames = 0;
610 		goto end;
611 	}
612 
613 	/* Check valid protocol or not. */
614 	sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
615 	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
616 	if (sph != s->sph || fmt != s->fmt) {
617 		dev_info_ratelimited(&s->unit->device,
618 				     "Detect unexpected protocol: %08x %08x\n",
619 				     cip_header[0], cip_header[1]);
620 		data_blocks = 0;
621 		pcm_frames = 0;
622 		goto end;
623 	}
624 
625 	/* Calculate data blocks */
626 	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
627 	if (payload_length < 12 ||
628 	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
629 		data_blocks = 0;
630 	} else {
631 		data_block_quadlets =
632 			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
633 		/* avoid division by zero */
634 		if (data_block_quadlets == 0) {
635 			dev_err(&s->unit->device,
636 				"Detect invalid value in dbs field: %08X\n",
637 				cip_header[0]);
638 			return -EPROTO;
639 		}
640 		if (s->flags & CIP_WRONG_DBS)
641 			data_block_quadlets = s->data_block_quadlets;
642 
643 		data_blocks = (payload_length / 4 - 2) /
644 							data_block_quadlets;
645 	}
646 
647 	/* Check data block counter continuity */
648 	data_block_counter = cip_header[0] & CIP_DBC_MASK;
649 	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
650 	    s->data_block_counter != UINT_MAX)
651 		data_block_counter = s->data_block_counter;
652 
653 	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
654 	     data_block_counter == s->tx_first_dbc) ||
655 	    s->data_block_counter == UINT_MAX) {
656 		lost = false;
657 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
658 		lost = data_block_counter != s->data_block_counter;
659 	} else {
660 		if (data_blocks > 0 && s->tx_dbc_interval > 0)
661 			dbc_interval = s->tx_dbc_interval;
662 		else
663 			dbc_interval = data_blocks;
664 
665 		lost = data_block_counter !=
666 		       ((s->data_block_counter + dbc_interval) & 0xff);
667 	}
668 
669 	if (lost) {
670 		dev_err(&s->unit->device,
671 			"Detect discontinuity of CIP: %02X %02X\n",
672 			s->data_block_counter, data_block_counter);
673 		return -EIO;
674 	}
675 
676 	syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
677 	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
678 
679 	if (s->flags & CIP_DBC_IS_END_EVENT)
680 		s->data_block_counter = data_block_counter;
681 	else
682 		s->data_block_counter =
683 				(data_block_counter + data_blocks) & 0xff;
684 end:
685 	if (queue_in_packet(s) < 0)
686 		return -EIO;
687 
688 	pcm = READ_ONCE(s->pcm);
689 	if (pcm && pcm_frames > 0)
690 		update_pcm_pointers(s, pcm, pcm_frames);
691 
692 	return 0;
693 }
694 
695 static int handle_in_packet_without_header(struct amdtp_stream *s,
696 			unsigned int payload_quadlets, unsigned int cycle,
697 			unsigned int index)
698 {
699 	__be32 *buffer;
700 	unsigned int data_blocks;
701 	struct snd_pcm_substream *pcm;
702 	unsigned int pcm_frames;
703 
704 	buffer = s->buffer.packets[s->packet_index].buffer;
705 	data_blocks = payload_quadlets / s->data_block_quadlets;
706 
707 	trace_in_packet_without_header(s, cycle, payload_quadlets, data_blocks,
708 				       index);
709 
710 	pcm_frames = s->process_data_blocks(s, buffer, data_blocks, NULL);
711 	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
712 
713 	if (queue_in_packet(s) < 0)
714 		return -EIO;
715 
716 	pcm = READ_ONCE(s->pcm);
717 	if (pcm && pcm_frames > 0)
718 		update_pcm_pointers(s, pcm, pcm_frames);
719 
720 	return 0;
721 }
722 
723 /*
724  * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
725  * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
726  * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
727  */
728 static inline u32 compute_cycle_count(u32 tstamp)
729 {
730 	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
731 }
732 
733 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
734 {
735 	cycle += addend;
736 	if (cycle >= 8 * CYCLES_PER_SECOND)
737 		cycle -= 8 * CYCLES_PER_SECOND;
738 	return cycle;
739 }
740 
741 static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend)
742 {
743 	if (cycle < subtrahend)
744 		cycle += 8 * CYCLES_PER_SECOND;
745 	return cycle - subtrahend;
746 }
747 
748 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
749 				size_t header_length, void *header,
750 				void *private_data)
751 {
752 	struct amdtp_stream *s = private_data;
753 	unsigned int i, packets = header_length / 4;
754 	u32 cycle;
755 
756 	if (s->packet_index < 0)
757 		return;
758 
759 	cycle = compute_cycle_count(tstamp);
760 
761 	/* Align to actual cycle count for the last packet. */
762 	cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
763 
764 	for (i = 0; i < packets; ++i) {
765 		cycle = increment_cycle_count(cycle, 1);
766 		if (s->handle_packet(s, 0, cycle, i) < 0) {
767 			s->packet_index = -1;
768 			if (in_interrupt())
769 				amdtp_stream_pcm_abort(s);
770 			WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
771 			return;
772 		}
773 	}
774 
775 	fw_iso_context_queue_flush(s->context);
776 }
777 
778 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
779 			       size_t header_length, void *header,
780 			       void *private_data)
781 {
782 	struct amdtp_stream *s = private_data;
783 	unsigned int i, packets;
784 	unsigned int payload_length, max_payload_length;
785 	__be32 *headers = header;
786 	u32 cycle;
787 
788 	if (s->packet_index < 0)
789 		return;
790 
791 	/* The number of packets in buffer */
792 	packets = header_length / IN_PACKET_HEADER_SIZE;
793 
794 	cycle = compute_cycle_count(tstamp);
795 
796 	/* Align to actual cycle count for the last packet. */
797 	cycle = decrement_cycle_count(cycle, packets);
798 
799 	/* For buffer-over-run prevention. */
800 	max_payload_length = s->max_payload_length;
801 
802 	for (i = 0; i < packets; i++) {
803 		cycle = increment_cycle_count(cycle, 1);
804 
805 		/* The number of bytes in this packet */
806 		payload_length =
807 			(be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT);
808 		if (payload_length > max_payload_length) {
809 			dev_err(&s->unit->device,
810 				"Detect jumbo payload: %04x %04x\n",
811 				payload_length, max_payload_length);
812 			break;
813 		}
814 
815 		if (s->handle_packet(s, payload_length, cycle, i) < 0)
816 			break;
817 	}
818 
819 	/* Queueing error or detecting invalid payload. */
820 	if (i < packets) {
821 		s->packet_index = -1;
822 		if (in_interrupt())
823 			amdtp_stream_pcm_abort(s);
824 		WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
825 		return;
826 	}
827 
828 	fw_iso_context_queue_flush(s->context);
829 }
830 
831 /* this is executed one time */
832 static void amdtp_stream_first_callback(struct fw_iso_context *context,
833 					u32 tstamp, size_t header_length,
834 					void *header, void *private_data)
835 {
836 	struct amdtp_stream *s = private_data;
837 	u32 cycle;
838 	unsigned int packets;
839 
840 	/*
841 	 * For in-stream, first packet has come.
842 	 * For out-stream, prepared to transmit first packet
843 	 */
844 	s->callbacked = true;
845 	wake_up(&s->callback_wait);
846 
847 	cycle = compute_cycle_count(tstamp);
848 
849 	if (s->direction == AMDTP_IN_STREAM) {
850 		packets = header_length / IN_PACKET_HEADER_SIZE;
851 		cycle = decrement_cycle_count(cycle, packets);
852 		context->callback.sc = in_stream_callback;
853 		if (s->flags & CIP_NO_HEADER)
854 			s->handle_packet = handle_in_packet_without_header;
855 		else
856 			s->handle_packet = handle_in_packet;
857 	} else {
858 		packets = header_length / 4;
859 		cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
860 		context->callback.sc = out_stream_callback;
861 		if (s->flags & CIP_NO_HEADER)
862 			s->handle_packet = handle_out_packet_without_header;
863 		else
864 			s->handle_packet = handle_out_packet;
865 	}
866 
867 	s->start_cycle = cycle;
868 
869 	context->callback.sc(context, tstamp, header_length, header, s);
870 }
871 
872 /**
873  * amdtp_stream_start - start transferring packets
874  * @s: the AMDTP stream to start
875  * @channel: the isochronous channel on the bus
876  * @speed: firewire speed code
877  *
878  * The stream cannot be started until it has been configured with
879  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
880  * device can be started.
881  */
882 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
883 {
884 	static const struct {
885 		unsigned int data_block;
886 		unsigned int syt_offset;
887 	} initial_state[] = {
888 		[CIP_SFC_32000]  = {  4, 3072 },
889 		[CIP_SFC_48000]  = {  6, 1024 },
890 		[CIP_SFC_96000]  = { 12, 1024 },
891 		[CIP_SFC_192000] = { 24, 1024 },
892 		[CIP_SFC_44100]  = {  0,   67 },
893 		[CIP_SFC_88200]  = {  0,   67 },
894 		[CIP_SFC_176400] = {  0,   67 },
895 	};
896 	unsigned int header_size;
897 	enum dma_data_direction dir;
898 	int type, tag, err;
899 
900 	mutex_lock(&s->mutex);
901 
902 	if (WARN_ON(amdtp_stream_running(s) ||
903 		    (s->data_block_quadlets < 1))) {
904 		err = -EBADFD;
905 		goto err_unlock;
906 	}
907 
908 	if (s->direction == AMDTP_IN_STREAM)
909 		s->data_block_counter = UINT_MAX;
910 	else
911 		s->data_block_counter = 0;
912 	s->data_block_state = initial_state[s->sfc].data_block;
913 	s->syt_offset_state = initial_state[s->sfc].syt_offset;
914 	s->last_syt_offset = TICKS_PER_CYCLE;
915 
916 	/* initialize packet buffer */
917 	if (s->direction == AMDTP_IN_STREAM) {
918 		dir = DMA_FROM_DEVICE;
919 		type = FW_ISO_CONTEXT_RECEIVE;
920 		header_size = IN_PACKET_HEADER_SIZE;
921 	} else {
922 		dir = DMA_TO_DEVICE;
923 		type = FW_ISO_CONTEXT_TRANSMIT;
924 		header_size = OUT_PACKET_HEADER_SIZE;
925 	}
926 	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
927 				      amdtp_stream_get_max_payload(s), dir);
928 	if (err < 0)
929 		goto err_unlock;
930 
931 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
932 					   type, channel, speed, header_size,
933 					   amdtp_stream_first_callback, s);
934 	if (IS_ERR(s->context)) {
935 		err = PTR_ERR(s->context);
936 		if (err == -EBUSY)
937 			dev_err(&s->unit->device,
938 				"no free stream on this controller\n");
939 		goto err_buffer;
940 	}
941 
942 	amdtp_stream_update(s);
943 
944 	if (s->direction == AMDTP_IN_STREAM)
945 		s->max_payload_length = amdtp_stream_get_max_payload(s);
946 
947 	if (s->flags & CIP_NO_HEADER)
948 		s->tag = TAG_NO_CIP_HEADER;
949 	else
950 		s->tag = TAG_CIP;
951 
952 	s->packet_index = 0;
953 	do {
954 		if (s->direction == AMDTP_IN_STREAM)
955 			err = queue_in_packet(s);
956 		else
957 			err = queue_out_packet(s, 0);
958 		if (err < 0)
959 			goto err_context;
960 	} while (s->packet_index > 0);
961 
962 	/* NOTE: TAG1 matches CIP. This just affects in stream. */
963 	tag = FW_ISO_CONTEXT_MATCH_TAG1;
964 	if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
965 		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
966 
967 	s->callbacked = false;
968 	err = fw_iso_context_start(s->context, -1, 0, tag);
969 	if (err < 0)
970 		goto err_context;
971 
972 	mutex_unlock(&s->mutex);
973 
974 	return 0;
975 
976 err_context:
977 	fw_iso_context_destroy(s->context);
978 	s->context = ERR_PTR(-1);
979 err_buffer:
980 	iso_packets_buffer_destroy(&s->buffer, s->unit);
981 err_unlock:
982 	mutex_unlock(&s->mutex);
983 
984 	return err;
985 }
986 EXPORT_SYMBOL(amdtp_stream_start);
987 
988 /**
989  * amdtp_stream_pcm_pointer - get the PCM buffer position
990  * @s: the AMDTP stream that transports the PCM data
991  *
992  * Returns the current buffer position, in frames.
993  */
994 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
995 {
996 	/*
997 	 * This function is called in software IRQ context of period_tasklet or
998 	 * process context.
999 	 *
1000 	 * When the software IRQ context was scheduled by software IRQ context
1001 	 * of IR/IT contexts, queued packets were already handled. Therefore,
1002 	 * no need to flush the queue in buffer anymore.
1003 	 *
1004 	 * When the process context reach here, some packets will be already
1005 	 * queued in the buffer. These packets should be handled immediately
1006 	 * to keep better granularity of PCM pointer.
1007 	 *
1008 	 * Later, the process context will sometimes schedules software IRQ
1009 	 * context of the period_tasklet. Then, no need to flush the queue by
1010 	 * the same reason as described for IR/IT contexts.
1011 	 */
1012 	if (!in_interrupt() && amdtp_stream_running(s))
1013 		fw_iso_context_flush_completions(s->context);
1014 
1015 	return READ_ONCE(s->pcm_buffer_pointer);
1016 }
1017 EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
1018 
1019 /**
1020  * amdtp_stream_pcm_ack - acknowledge queued PCM frames
1021  * @s: the AMDTP stream that transfers the PCM frames
1022  *
1023  * Returns zero always.
1024  */
1025 int amdtp_stream_pcm_ack(struct amdtp_stream *s)
1026 {
1027 	/*
1028 	 * Process isochronous packets for recent isochronous cycle to handle
1029 	 * queued PCM frames.
1030 	 */
1031 	if (amdtp_stream_running(s))
1032 		fw_iso_context_flush_completions(s->context);
1033 
1034 	return 0;
1035 }
1036 EXPORT_SYMBOL(amdtp_stream_pcm_ack);
1037 
1038 /**
1039  * amdtp_stream_update - update the stream after a bus reset
1040  * @s: the AMDTP stream
1041  */
1042 void amdtp_stream_update(struct amdtp_stream *s)
1043 {
1044 	/* Precomputing. */
1045 	WRITE_ONCE(s->source_node_id_field,
1046                    (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1047 }
1048 EXPORT_SYMBOL(amdtp_stream_update);
1049 
1050 /**
1051  * amdtp_stream_stop - stop sending packets
1052  * @s: the AMDTP stream to stop
1053  *
1054  * All PCM and MIDI devices of the stream must be stopped before the stream
1055  * itself can be stopped.
1056  */
1057 void amdtp_stream_stop(struct amdtp_stream *s)
1058 {
1059 	mutex_lock(&s->mutex);
1060 
1061 	if (!amdtp_stream_running(s)) {
1062 		mutex_unlock(&s->mutex);
1063 		return;
1064 	}
1065 
1066 	tasklet_kill(&s->period_tasklet);
1067 	fw_iso_context_stop(s->context);
1068 	fw_iso_context_destroy(s->context);
1069 	s->context = ERR_PTR(-1);
1070 	iso_packets_buffer_destroy(&s->buffer, s->unit);
1071 
1072 	s->callbacked = false;
1073 
1074 	mutex_unlock(&s->mutex);
1075 }
1076 EXPORT_SYMBOL(amdtp_stream_stop);
1077 
1078 /**
1079  * amdtp_stream_pcm_abort - abort the running PCM device
1080  * @s: the AMDTP stream about to be stopped
1081  *
1082  * If the isochronous stream needs to be stopped asynchronously, call this
1083  * function first to stop the PCM device.
1084  */
1085 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1086 {
1087 	struct snd_pcm_substream *pcm;
1088 
1089 	pcm = READ_ONCE(s->pcm);
1090 	if (pcm)
1091 		snd_pcm_stop_xrun(pcm);
1092 }
1093 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1094