xref: /openbmc/linux/sound/firewire/amdtp-stream.c (revision 0edbfea5)
1 /*
2  * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
3  * with Common Isochronous Packet (IEC 61883-1) headers
4  *
5  * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
6  * Licensed under the terms of the GNU General Public License, version 2.
7  */
8 
9 #include <linux/device.h>
10 #include <linux/err.h>
11 #include <linux/firewire.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <sound/pcm.h>
15 #include <sound/pcm_params.h>
16 #include "amdtp-stream.h"
17 
18 #define TICKS_PER_CYCLE		3072
19 #define CYCLES_PER_SECOND	8000
20 #define TICKS_PER_SECOND	(TICKS_PER_CYCLE * CYCLES_PER_SECOND)
21 
22 /* Always support Linux tracing subsystem. */
23 #define CREATE_TRACE_POINTS
24 #include "amdtp-stream-trace.h"
25 
26 #define TRANSFER_DELAY_TICKS	0x2e00 /* 479.17 microseconds */
27 
28 /* isochronous header parameters */
29 #define ISO_DATA_LENGTH_SHIFT	16
30 #define TAG_CIP			1
31 
32 /* common isochronous packet header parameters */
33 #define CIP_EOH_SHIFT		31
34 #define CIP_EOH			(1u << CIP_EOH_SHIFT)
35 #define CIP_EOH_MASK		0x80000000
36 #define CIP_SID_SHIFT		24
37 #define CIP_SID_MASK		0x3f000000
38 #define CIP_DBS_MASK		0x00ff0000
39 #define CIP_DBS_SHIFT		16
40 #define CIP_DBC_MASK		0x000000ff
41 #define CIP_FMT_SHIFT		24
42 #define CIP_FMT_MASK		0x3f000000
43 #define CIP_FDF_MASK		0x00ff0000
44 #define CIP_FDF_SHIFT		16
45 #define CIP_SYT_MASK		0x0000ffff
46 #define CIP_SYT_NO_INFO		0xffff
47 
48 /* Audio and Music transfer protocol specific parameters */
49 #define CIP_FMT_AM		0x10
50 #define AMDTP_FDF_NO_DATA	0xff
51 
52 /* TODO: make these configurable */
53 #define INTERRUPT_INTERVAL	16
54 #define QUEUE_LENGTH		48
55 
56 #define IN_PACKET_HEADER_SIZE	4
57 #define OUT_PACKET_HEADER_SIZE	0
58 
59 static void pcm_period_tasklet(unsigned long data);
60 
61 /**
62  * amdtp_stream_init - initialize an AMDTP stream structure
63  * @s: the AMDTP stream to initialize
64  * @unit: the target of the stream
65  * @dir: the direction of stream
66  * @flags: the packet transmission method to use
67  * @fmt: the value of fmt field in CIP header
68  * @process_data_blocks: callback handler to process data blocks
69  * @protocol_size: the size to allocate newly for protocol
70  */
71 int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
72 		      enum amdtp_stream_direction dir, enum cip_flags flags,
73 		      unsigned int fmt,
74 		      amdtp_stream_process_data_blocks_t process_data_blocks,
75 		      unsigned int protocol_size)
76 {
77 	if (process_data_blocks == NULL)
78 		return -EINVAL;
79 
80 	s->protocol = kzalloc(protocol_size, GFP_KERNEL);
81 	if (!s->protocol)
82 		return -ENOMEM;
83 
84 	s->unit = unit;
85 	s->direction = dir;
86 	s->flags = flags;
87 	s->context = ERR_PTR(-1);
88 	mutex_init(&s->mutex);
89 	tasklet_init(&s->period_tasklet, pcm_period_tasklet, (unsigned long)s);
90 	s->packet_index = 0;
91 
92 	init_waitqueue_head(&s->callback_wait);
93 	s->callbacked = false;
94 
95 	s->fmt = fmt;
96 	s->process_data_blocks = process_data_blocks;
97 
98 	return 0;
99 }
100 EXPORT_SYMBOL(amdtp_stream_init);
101 
102 /**
103  * amdtp_stream_destroy - free stream resources
104  * @s: the AMDTP stream to destroy
105  */
106 void amdtp_stream_destroy(struct amdtp_stream *s)
107 {
108 	/* Not initialized. */
109 	if (s->protocol == NULL)
110 		return;
111 
112 	WARN_ON(amdtp_stream_running(s));
113 	kfree(s->protocol);
114 	mutex_destroy(&s->mutex);
115 }
116 EXPORT_SYMBOL(amdtp_stream_destroy);
117 
118 const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
119 	[CIP_SFC_32000]  =  8,
120 	[CIP_SFC_44100]  =  8,
121 	[CIP_SFC_48000]  =  8,
122 	[CIP_SFC_88200]  = 16,
123 	[CIP_SFC_96000]  = 16,
124 	[CIP_SFC_176400] = 32,
125 	[CIP_SFC_192000] = 32,
126 };
127 EXPORT_SYMBOL(amdtp_syt_intervals);
128 
129 const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
130 	[CIP_SFC_32000]  =  32000,
131 	[CIP_SFC_44100]  =  44100,
132 	[CIP_SFC_48000]  =  48000,
133 	[CIP_SFC_88200]  =  88200,
134 	[CIP_SFC_96000]  =  96000,
135 	[CIP_SFC_176400] = 176400,
136 	[CIP_SFC_192000] = 192000,
137 };
138 EXPORT_SYMBOL(amdtp_rate_table);
139 
140 /**
141  * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
142  * @s:		the AMDTP stream, which must be initialized.
143  * @runtime:	the PCM substream runtime
144  */
145 int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
146 					struct snd_pcm_runtime *runtime)
147 {
148 	int err;
149 
150 	/*
151 	 * Currently firewire-lib processes 16 packets in one software
152 	 * interrupt callback. This equals to 2msec but actually the
153 	 * interval of the interrupts has a jitter.
154 	 * Additionally, even if adding a constraint to fit period size to
155 	 * 2msec, actual calculated frames per period doesn't equal to 2msec,
156 	 * depending on sampling rate.
157 	 * Anyway, the interval to call snd_pcm_period_elapsed() cannot 2msec.
158 	 * Here let us use 5msec for safe period interrupt.
159 	 */
160 	err = snd_pcm_hw_constraint_minmax(runtime,
161 					   SNDRV_PCM_HW_PARAM_PERIOD_TIME,
162 					   5000, UINT_MAX);
163 	if (err < 0)
164 		goto end;
165 
166 	/* Non-Blocking stream has no more constraints */
167 	if (!(s->flags & CIP_BLOCKING))
168 		goto end;
169 
170 	/*
171 	 * One AMDTP packet can include some frames. In blocking mode, the
172 	 * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
173 	 * depending on its sampling rate. For accurate period interrupt, it's
174 	 * preferrable to align period/buffer sizes to current SYT_INTERVAL.
175 	 *
176 	 * TODO: These constraints can be improved with proper rules.
177 	 * Currently apply LCM of SYT_INTERVALs.
178 	 */
179 	err = snd_pcm_hw_constraint_step(runtime, 0,
180 					 SNDRV_PCM_HW_PARAM_PERIOD_SIZE, 32);
181 	if (err < 0)
182 		goto end;
183 	err = snd_pcm_hw_constraint_step(runtime, 0,
184 					 SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 32);
185 end:
186 	return err;
187 }
188 EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
189 
190 /**
191  * amdtp_stream_set_parameters - set stream parameters
192  * @s: the AMDTP stream to configure
193  * @rate: the sample rate
194  * @data_block_quadlets: the size of a data block in quadlet unit
195  *
196  * The parameters must be set before the stream is started, and must not be
197  * changed while the stream is running.
198  */
199 int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
200 				unsigned int data_block_quadlets)
201 {
202 	unsigned int sfc;
203 
204 	for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
205 		if (amdtp_rate_table[sfc] == rate)
206 			break;
207 	}
208 	if (sfc == ARRAY_SIZE(amdtp_rate_table))
209 		return -EINVAL;
210 
211 	s->sfc = sfc;
212 	s->data_block_quadlets = data_block_quadlets;
213 	s->syt_interval = amdtp_syt_intervals[sfc];
214 
215 	/* default buffering in the device */
216 	s->transfer_delay = TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
217 	if (s->flags & CIP_BLOCKING)
218 		/* additional buffering needed to adjust for no-data packets */
219 		s->transfer_delay += TICKS_PER_SECOND * s->syt_interval / rate;
220 
221 	return 0;
222 }
223 EXPORT_SYMBOL(amdtp_stream_set_parameters);
224 
225 /**
226  * amdtp_stream_get_max_payload - get the stream's packet size
227  * @s: the AMDTP stream
228  *
229  * This function must not be called before the stream has been configured
230  * with amdtp_stream_set_parameters().
231  */
232 unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
233 {
234 	unsigned int multiplier = 1;
235 
236 	if (s->flags & CIP_JUMBO_PAYLOAD)
237 		multiplier = 5;
238 
239 	return 8 + s->syt_interval * s->data_block_quadlets * 4 * multiplier;
240 }
241 EXPORT_SYMBOL(amdtp_stream_get_max_payload);
242 
243 /**
244  * amdtp_stream_pcm_prepare - prepare PCM device for running
245  * @s: the AMDTP stream
246  *
247  * This function should be called from the PCM device's .prepare callback.
248  */
249 void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
250 {
251 	tasklet_kill(&s->period_tasklet);
252 	s->pcm_buffer_pointer = 0;
253 	s->pcm_period_pointer = 0;
254 }
255 EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
256 
257 static unsigned int calculate_data_blocks(struct amdtp_stream *s,
258 					  unsigned int syt)
259 {
260 	unsigned int phase, data_blocks;
261 
262 	/* Blocking mode. */
263 	if (s->flags & CIP_BLOCKING) {
264 		/* This module generate empty packet for 'no data'. */
265 		if (syt == CIP_SYT_NO_INFO)
266 			data_blocks = 0;
267 		else
268 			data_blocks = s->syt_interval;
269 	/* Non-blocking mode. */
270 	} else {
271 		if (!cip_sfc_is_base_44100(s->sfc)) {
272 			/* Sample_rate / 8000 is an integer, and precomputed. */
273 			data_blocks = s->data_block_state;
274 		} else {
275 			phase = s->data_block_state;
276 
277 		/*
278 		 * This calculates the number of data blocks per packet so that
279 		 * 1) the overall rate is correct and exactly synchronized to
280 		 *    the bus clock, and
281 		 * 2) packets with a rounded-up number of blocks occur as early
282 		 *    as possible in the sequence (to prevent underruns of the
283 		 *    device's buffer).
284 		 */
285 			if (s->sfc == CIP_SFC_44100)
286 				/* 6 6 5 6 5 6 5 ... */
287 				data_blocks = 5 + ((phase & 1) ^
288 						   (phase == 0 || phase >= 40));
289 			else
290 				/* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
291 				data_blocks = 11 * (s->sfc >> 1) + (phase == 0);
292 			if (++phase >= (80 >> (s->sfc >> 1)))
293 				phase = 0;
294 			s->data_block_state = phase;
295 		}
296 	}
297 
298 	return data_blocks;
299 }
300 
301 static unsigned int calculate_syt(struct amdtp_stream *s,
302 				  unsigned int cycle)
303 {
304 	unsigned int syt_offset, phase, index, syt;
305 
306 	if (s->last_syt_offset < TICKS_PER_CYCLE) {
307 		if (!cip_sfc_is_base_44100(s->sfc))
308 			syt_offset = s->last_syt_offset + s->syt_offset_state;
309 		else {
310 		/*
311 		 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
312 		 *   n * SYT_INTERVAL * 24576000 / sample_rate
313 		 * Modulo TICKS_PER_CYCLE, the difference between successive
314 		 * elements is about 1386.23.  Rounding the results of this
315 		 * formula to the SYT precision results in a sequence of
316 		 * differences that begins with:
317 		 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
318 		 * This code generates _exactly_ the same sequence.
319 		 */
320 			phase = s->syt_offset_state;
321 			index = phase % 13;
322 			syt_offset = s->last_syt_offset;
323 			syt_offset += 1386 + ((index && !(index & 3)) ||
324 					      phase == 146);
325 			if (++phase >= 147)
326 				phase = 0;
327 			s->syt_offset_state = phase;
328 		}
329 	} else
330 		syt_offset = s->last_syt_offset - TICKS_PER_CYCLE;
331 	s->last_syt_offset = syt_offset;
332 
333 	if (syt_offset < TICKS_PER_CYCLE) {
334 		syt_offset += s->transfer_delay;
335 		syt = (cycle + syt_offset / TICKS_PER_CYCLE) << 12;
336 		syt += syt_offset % TICKS_PER_CYCLE;
337 
338 		return syt & CIP_SYT_MASK;
339 	} else {
340 		return CIP_SYT_NO_INFO;
341 	}
342 }
343 
344 static void update_pcm_pointers(struct amdtp_stream *s,
345 				struct snd_pcm_substream *pcm,
346 				unsigned int frames)
347 {
348 	unsigned int ptr;
349 
350 	ptr = s->pcm_buffer_pointer + frames;
351 	if (ptr >= pcm->runtime->buffer_size)
352 		ptr -= pcm->runtime->buffer_size;
353 	ACCESS_ONCE(s->pcm_buffer_pointer) = ptr;
354 
355 	s->pcm_period_pointer += frames;
356 	if (s->pcm_period_pointer >= pcm->runtime->period_size) {
357 		s->pcm_period_pointer -= pcm->runtime->period_size;
358 		tasklet_hi_schedule(&s->period_tasklet);
359 	}
360 }
361 
362 static void pcm_period_tasklet(unsigned long data)
363 {
364 	struct amdtp_stream *s = (void *)data;
365 	struct snd_pcm_substream *pcm = ACCESS_ONCE(s->pcm);
366 
367 	if (pcm)
368 		snd_pcm_period_elapsed(pcm);
369 }
370 
371 static int queue_packet(struct amdtp_stream *s, unsigned int header_length,
372 			unsigned int payload_length)
373 {
374 	struct fw_iso_packet p = {0};
375 	int err = 0;
376 
377 	if (IS_ERR(s->context))
378 		goto end;
379 
380 	p.interrupt = IS_ALIGNED(s->packet_index + 1, INTERRUPT_INTERVAL);
381 	p.tag = TAG_CIP;
382 	p.header_length = header_length;
383 	if (payload_length > 0)
384 		p.payload_length = payload_length;
385 	else
386 		p.skip = true;
387 	err = fw_iso_context_queue(s->context, &p, &s->buffer.iso_buffer,
388 				   s->buffer.packets[s->packet_index].offset);
389 	if (err < 0) {
390 		dev_err(&s->unit->device, "queueing error: %d\n", err);
391 		goto end;
392 	}
393 
394 	if (++s->packet_index >= QUEUE_LENGTH)
395 		s->packet_index = 0;
396 end:
397 	return err;
398 }
399 
400 static inline int queue_out_packet(struct amdtp_stream *s,
401 				   unsigned int payload_length)
402 {
403 	return queue_packet(s, OUT_PACKET_HEADER_SIZE, payload_length);
404 }
405 
406 static inline int queue_in_packet(struct amdtp_stream *s)
407 {
408 	return queue_packet(s, IN_PACKET_HEADER_SIZE,
409 			    amdtp_stream_get_max_payload(s));
410 }
411 
412 static int handle_out_packet(struct amdtp_stream *s, unsigned int cycle,
413 			     unsigned int index)
414 {
415 	__be32 *buffer;
416 	unsigned int syt;
417 	unsigned int data_blocks;
418 	unsigned int payload_length;
419 	unsigned int pcm_frames;
420 	struct snd_pcm_substream *pcm;
421 
422 	buffer = s->buffer.packets[s->packet_index].buffer;
423 	syt = calculate_syt(s, cycle);
424 	data_blocks = calculate_data_blocks(s, syt);
425 	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
426 
427 	buffer[0] = cpu_to_be32(ACCESS_ONCE(s->source_node_id_field) |
428 				(s->data_block_quadlets << CIP_DBS_SHIFT) |
429 				s->data_block_counter);
430 	buffer[1] = cpu_to_be32(CIP_EOH |
431 				((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
432 				((s->fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
433 				(syt & CIP_SYT_MASK));
434 
435 	s->data_block_counter = (s->data_block_counter + data_blocks) & 0xff;
436 	payload_length = 8 + data_blocks * 4 * s->data_block_quadlets;
437 
438 	trace_out_packet(s, cycle, buffer, payload_length, index);
439 
440 	if (queue_out_packet(s, payload_length) < 0)
441 		return -EIO;
442 
443 	pcm = ACCESS_ONCE(s->pcm);
444 	if (pcm && pcm_frames > 0)
445 		update_pcm_pointers(s, pcm, pcm_frames);
446 
447 	/* No need to return the number of handled data blocks. */
448 	return 0;
449 }
450 
451 static int handle_in_packet(struct amdtp_stream *s,
452 			    unsigned int payload_quadlets, unsigned int cycle,
453 			    unsigned int index)
454 {
455 	__be32 *buffer;
456 	u32 cip_header[2];
457 	unsigned int fmt, fdf, syt;
458 	unsigned int data_block_quadlets, data_block_counter, dbc_interval;
459 	unsigned int data_blocks;
460 	struct snd_pcm_substream *pcm;
461 	unsigned int pcm_frames;
462 	bool lost;
463 
464 	buffer = s->buffer.packets[s->packet_index].buffer;
465 	cip_header[0] = be32_to_cpu(buffer[0]);
466 	cip_header[1] = be32_to_cpu(buffer[1]);
467 
468 	trace_in_packet(s, cycle, cip_header, payload_quadlets, index);
469 
470 	/*
471 	 * This module supports 'Two-quadlet CIP header with SYT field'.
472 	 * For convenience, also check FMT field is AM824 or not.
473 	 */
474 	if (((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
475 	    ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) {
476 		dev_info_ratelimited(&s->unit->device,
477 				"Invalid CIP header for AMDTP: %08X:%08X\n",
478 				cip_header[0], cip_header[1]);
479 		data_blocks = 0;
480 		pcm_frames = 0;
481 		goto end;
482 	}
483 
484 	/* Check valid protocol or not. */
485 	fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
486 	if (fmt != s->fmt) {
487 		dev_info_ratelimited(&s->unit->device,
488 				     "Detect unexpected protocol: %08x %08x\n",
489 				     cip_header[0], cip_header[1]);
490 		data_blocks = 0;
491 		pcm_frames = 0;
492 		goto end;
493 	}
494 
495 	/* Calculate data blocks */
496 	fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
497 	if (payload_quadlets < 3 ||
498 	    (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
499 		data_blocks = 0;
500 	} else {
501 		data_block_quadlets =
502 			(cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
503 		/* avoid division by zero */
504 		if (data_block_quadlets == 0) {
505 			dev_err(&s->unit->device,
506 				"Detect invalid value in dbs field: %08X\n",
507 				cip_header[0]);
508 			return -EPROTO;
509 		}
510 		if (s->flags & CIP_WRONG_DBS)
511 			data_block_quadlets = s->data_block_quadlets;
512 
513 		data_blocks = (payload_quadlets - 2) / data_block_quadlets;
514 	}
515 
516 	/* Check data block counter continuity */
517 	data_block_counter = cip_header[0] & CIP_DBC_MASK;
518 	if (data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
519 	    s->data_block_counter != UINT_MAX)
520 		data_block_counter = s->data_block_counter;
521 
522 	if (((s->flags & CIP_SKIP_DBC_ZERO_CHECK) &&
523 	     data_block_counter == s->tx_first_dbc) ||
524 	    s->data_block_counter == UINT_MAX) {
525 		lost = false;
526 	} else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
527 		lost = data_block_counter != s->data_block_counter;
528 	} else {
529 		if (data_blocks > 0 && s->tx_dbc_interval > 0)
530 			dbc_interval = s->tx_dbc_interval;
531 		else
532 			dbc_interval = data_blocks;
533 
534 		lost = data_block_counter !=
535 		       ((s->data_block_counter + dbc_interval) & 0xff);
536 	}
537 
538 	if (lost) {
539 		dev_err(&s->unit->device,
540 			"Detect discontinuity of CIP: %02X %02X\n",
541 			s->data_block_counter, data_block_counter);
542 		return -EIO;
543 	}
544 
545 	syt = be32_to_cpu(buffer[1]) & CIP_SYT_MASK;
546 	pcm_frames = s->process_data_blocks(s, buffer + 2, data_blocks, &syt);
547 
548 	if (s->flags & CIP_DBC_IS_END_EVENT)
549 		s->data_block_counter = data_block_counter;
550 	else
551 		s->data_block_counter =
552 				(data_block_counter + data_blocks) & 0xff;
553 end:
554 	if (queue_in_packet(s) < 0)
555 		return -EIO;
556 
557 	pcm = ACCESS_ONCE(s->pcm);
558 	if (pcm && pcm_frames > 0)
559 		update_pcm_pointers(s, pcm, pcm_frames);
560 
561 	return 0;
562 }
563 
564 /*
565  * In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
566  * the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
567  * it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
568  */
569 static inline u32 compute_cycle_count(u32 tstamp)
570 {
571 	return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
572 }
573 
574 static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
575 {
576 	cycle += addend;
577 	if (cycle >= 8 * CYCLES_PER_SECOND)
578 		cycle -= 8 * CYCLES_PER_SECOND;
579 	return cycle;
580 }
581 
582 static inline u32 decrement_cycle_count(u32 cycle, unsigned int subtrahend)
583 {
584 	if (cycle < subtrahend)
585 		cycle += 8 * CYCLES_PER_SECOND;
586 	return cycle - subtrahend;
587 }
588 
589 static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
590 				size_t header_length, void *header,
591 				void *private_data)
592 {
593 	struct amdtp_stream *s = private_data;
594 	unsigned int i, packets = header_length / 4;
595 	u32 cycle;
596 
597 	if (s->packet_index < 0)
598 		return;
599 
600 	cycle = compute_cycle_count(tstamp);
601 
602 	/* Align to actual cycle count for the last packet. */
603 	cycle = increment_cycle_count(cycle, QUEUE_LENGTH - packets);
604 
605 	for (i = 0; i < packets; ++i) {
606 		cycle = increment_cycle_count(cycle, 1);
607 		if (handle_out_packet(s, cycle, i) < 0) {
608 			s->packet_index = -1;
609 			amdtp_stream_pcm_abort(s);
610 			return;
611 		}
612 	}
613 
614 	fw_iso_context_queue_flush(s->context);
615 }
616 
617 static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
618 			       size_t header_length, void *header,
619 			       void *private_data)
620 {
621 	struct amdtp_stream *s = private_data;
622 	unsigned int i, packets;
623 	unsigned int payload_quadlets, max_payload_quadlets;
624 	__be32 *headers = header;
625 	u32 cycle;
626 
627 	if (s->packet_index < 0)
628 		return;
629 
630 	/* The number of packets in buffer */
631 	packets = header_length / IN_PACKET_HEADER_SIZE;
632 
633 	cycle = compute_cycle_count(tstamp);
634 
635 	/* Align to actual cycle count for the last packet. */
636 	cycle = decrement_cycle_count(cycle, packets);
637 
638 	/* For buffer-over-run prevention. */
639 	max_payload_quadlets = amdtp_stream_get_max_payload(s) / 4;
640 
641 	for (i = 0; i < packets; i++) {
642 		cycle = increment_cycle_count(cycle, 1);
643 
644 		/* The number of quadlets in this packet */
645 		payload_quadlets =
646 			(be32_to_cpu(headers[i]) >> ISO_DATA_LENGTH_SHIFT) / 4;
647 		if (payload_quadlets > max_payload_quadlets) {
648 			dev_err(&s->unit->device,
649 				"Detect jumbo payload: %02x %02x\n",
650 				payload_quadlets, max_payload_quadlets);
651 			break;
652 		}
653 
654 		if (handle_in_packet(s, payload_quadlets, cycle, i) < 0)
655 			break;
656 	}
657 
658 	/* Queueing error or detecting invalid payload. */
659 	if (i < packets) {
660 		s->packet_index = -1;
661 		amdtp_stream_pcm_abort(s);
662 		return;
663 	}
664 
665 	fw_iso_context_queue_flush(s->context);
666 }
667 
668 /* this is executed one time */
669 static void amdtp_stream_first_callback(struct fw_iso_context *context,
670 					u32 tstamp, size_t header_length,
671 					void *header, void *private_data)
672 {
673 	struct amdtp_stream *s = private_data;
674 
675 	/*
676 	 * For in-stream, first packet has come.
677 	 * For out-stream, prepared to transmit first packet
678 	 */
679 	s->callbacked = true;
680 	wake_up(&s->callback_wait);
681 
682 	if (s->direction == AMDTP_IN_STREAM)
683 		context->callback.sc = in_stream_callback;
684 	else
685 		context->callback.sc = out_stream_callback;
686 
687 	context->callback.sc(context, tstamp, header_length, header, s);
688 }
689 
690 /**
691  * amdtp_stream_start - start transferring packets
692  * @s: the AMDTP stream to start
693  * @channel: the isochronous channel on the bus
694  * @speed: firewire speed code
695  *
696  * The stream cannot be started until it has been configured with
697  * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
698  * device can be started.
699  */
700 int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed)
701 {
702 	static const struct {
703 		unsigned int data_block;
704 		unsigned int syt_offset;
705 	} initial_state[] = {
706 		[CIP_SFC_32000]  = {  4, 3072 },
707 		[CIP_SFC_48000]  = {  6, 1024 },
708 		[CIP_SFC_96000]  = { 12, 1024 },
709 		[CIP_SFC_192000] = { 24, 1024 },
710 		[CIP_SFC_44100]  = {  0,   67 },
711 		[CIP_SFC_88200]  = {  0,   67 },
712 		[CIP_SFC_176400] = {  0,   67 },
713 	};
714 	unsigned int header_size;
715 	enum dma_data_direction dir;
716 	int type, tag, err;
717 
718 	mutex_lock(&s->mutex);
719 
720 	if (WARN_ON(amdtp_stream_running(s) ||
721 		    (s->data_block_quadlets < 1))) {
722 		err = -EBADFD;
723 		goto err_unlock;
724 	}
725 
726 	if (s->direction == AMDTP_IN_STREAM)
727 		s->data_block_counter = UINT_MAX;
728 	else
729 		s->data_block_counter = 0;
730 	s->data_block_state = initial_state[s->sfc].data_block;
731 	s->syt_offset_state = initial_state[s->sfc].syt_offset;
732 	s->last_syt_offset = TICKS_PER_CYCLE;
733 
734 	/* initialize packet buffer */
735 	if (s->direction == AMDTP_IN_STREAM) {
736 		dir = DMA_FROM_DEVICE;
737 		type = FW_ISO_CONTEXT_RECEIVE;
738 		header_size = IN_PACKET_HEADER_SIZE;
739 	} else {
740 		dir = DMA_TO_DEVICE;
741 		type = FW_ISO_CONTEXT_TRANSMIT;
742 		header_size = OUT_PACKET_HEADER_SIZE;
743 	}
744 	err = iso_packets_buffer_init(&s->buffer, s->unit, QUEUE_LENGTH,
745 				      amdtp_stream_get_max_payload(s), dir);
746 	if (err < 0)
747 		goto err_unlock;
748 
749 	s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
750 					   type, channel, speed, header_size,
751 					   amdtp_stream_first_callback, s);
752 	if (IS_ERR(s->context)) {
753 		err = PTR_ERR(s->context);
754 		if (err == -EBUSY)
755 			dev_err(&s->unit->device,
756 				"no free stream on this controller\n");
757 		goto err_buffer;
758 	}
759 
760 	amdtp_stream_update(s);
761 
762 	s->packet_index = 0;
763 	do {
764 		if (s->direction == AMDTP_IN_STREAM)
765 			err = queue_in_packet(s);
766 		else
767 			err = queue_out_packet(s, 0);
768 		if (err < 0)
769 			goto err_context;
770 	} while (s->packet_index > 0);
771 
772 	/* NOTE: TAG1 matches CIP. This just affects in stream. */
773 	tag = FW_ISO_CONTEXT_MATCH_TAG1;
774 	if (s->flags & CIP_EMPTY_WITH_TAG0)
775 		tag |= FW_ISO_CONTEXT_MATCH_TAG0;
776 
777 	s->callbacked = false;
778 	err = fw_iso_context_start(s->context, -1, 0, tag);
779 	if (err < 0)
780 		goto err_context;
781 
782 	mutex_unlock(&s->mutex);
783 
784 	return 0;
785 
786 err_context:
787 	fw_iso_context_destroy(s->context);
788 	s->context = ERR_PTR(-1);
789 err_buffer:
790 	iso_packets_buffer_destroy(&s->buffer, s->unit);
791 err_unlock:
792 	mutex_unlock(&s->mutex);
793 
794 	return err;
795 }
796 EXPORT_SYMBOL(amdtp_stream_start);
797 
798 /**
799  * amdtp_stream_pcm_pointer - get the PCM buffer position
800  * @s: the AMDTP stream that transports the PCM data
801  *
802  * Returns the current buffer position, in frames.
803  */
804 unsigned long amdtp_stream_pcm_pointer(struct amdtp_stream *s)
805 {
806 	/*
807 	 * This function is called in software IRQ context of period_tasklet or
808 	 * process context.
809 	 *
810 	 * When the software IRQ context was scheduled by software IRQ context
811 	 * of IR/IT contexts, queued packets were already handled. Therefore,
812 	 * no need to flush the queue in buffer anymore.
813 	 *
814 	 * When the process context reach here, some packets will be already
815 	 * queued in the buffer. These packets should be handled immediately
816 	 * to keep better granularity of PCM pointer.
817 	 *
818 	 * Later, the process context will sometimes schedules software IRQ
819 	 * context of the period_tasklet. Then, no need to flush the queue by
820 	 * the same reason as described for IR/IT contexts.
821 	 */
822 	if (!in_interrupt() && amdtp_stream_running(s))
823 		fw_iso_context_flush_completions(s->context);
824 
825 	return ACCESS_ONCE(s->pcm_buffer_pointer);
826 }
827 EXPORT_SYMBOL(amdtp_stream_pcm_pointer);
828 
829 /**
830  * amdtp_stream_update - update the stream after a bus reset
831  * @s: the AMDTP stream
832  */
833 void amdtp_stream_update(struct amdtp_stream *s)
834 {
835 	/* Precomputing. */
836 	ACCESS_ONCE(s->source_node_id_field) =
837 		(fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) &
838 								CIP_SID_MASK;
839 }
840 EXPORT_SYMBOL(amdtp_stream_update);
841 
842 /**
843  * amdtp_stream_stop - stop sending packets
844  * @s: the AMDTP stream to stop
845  *
846  * All PCM and MIDI devices of the stream must be stopped before the stream
847  * itself can be stopped.
848  */
849 void amdtp_stream_stop(struct amdtp_stream *s)
850 {
851 	mutex_lock(&s->mutex);
852 
853 	if (!amdtp_stream_running(s)) {
854 		mutex_unlock(&s->mutex);
855 		return;
856 	}
857 
858 	tasklet_kill(&s->period_tasklet);
859 	fw_iso_context_stop(s->context);
860 	fw_iso_context_destroy(s->context);
861 	s->context = ERR_PTR(-1);
862 	iso_packets_buffer_destroy(&s->buffer, s->unit);
863 
864 	s->callbacked = false;
865 
866 	mutex_unlock(&s->mutex);
867 }
868 EXPORT_SYMBOL(amdtp_stream_stop);
869 
870 /**
871  * amdtp_stream_pcm_abort - abort the running PCM device
872  * @s: the AMDTP stream about to be stopped
873  *
874  * If the isochronous stream needs to be stopped asynchronously, call this
875  * function first to stop the PCM device.
876  */
877 void amdtp_stream_pcm_abort(struct amdtp_stream *s)
878 {
879 	struct snd_pcm_substream *pcm;
880 
881 	pcm = ACCESS_ONCE(s->pcm);
882 	if (pcm)
883 		snd_pcm_stop_xrun(pcm);
884 }
885 EXPORT_SYMBOL(amdtp_stream_pcm_abort);
886